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Coarsening rates for models of multicomponent phase separation
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We study the coarsening of solutions of two models of multicomponent phase separation. One is
a constant mobility system; the other is a degenerate mobility system. These models are natural
generalizations of the Cahn—Hilliard equation to the case of a vector-valued order parameter. It has
been conjectured that the characteristic length st@jegrows liker1/3 ast — oo for the first case

and¢ ~ +1/4 for the second case. We prove a weak one-sided version of this assertion. Our method
follows a strategy introduced by Kohn and Otto for problems with a scalar-valued order parameter; it

combines a dissipation relationship with an isoperimetric inequality and an ODE argument. We also

address a related model for anisotropic epitaxial growth.

1. Introduction

We study the coarsening associated with two models of multicomponent phase separation, and a
third model from the epitaxial growth literature. Each evolution has a scale-invariant sharp-interface
limit, and it is natural to guess that coarsening proceeds at the “similarity rate.” We prove a weak,
one-sided version of this assertion: roughly speaking, the system can coarsen no faster than the
similarity rate.

Our analysis uses the method introduced by Kohn and Ottd ih [22]. That paper discussed
only binary systems, described by scalar-valued order parameters. This paper represents its natural
generalization to multicomponent systems, described by vector-valued order parameters. The
method of [22] relies upon (i) dissipation relation (ii) an isoperimetric inequalityand (iii) an
ODE lemmaThe main novelty of the multicomponent setting is the isoperimetric inequality: its
proof is quite different from the binary case.

The two models of multicomponent phase separation we shall consider are:

(A) Constant-mobility Cahn—Hilliard systemsHere the order parameteris= (u*,...,u") €
R™, and the PDE is

uh+ A% — AV @) =0, i=1,...,m. 1)

It decreases the energy
1
/ §|Vu|2 + @ (u)

while conserving the mean value of The bulk term® (1) is nonnegative, vanishing at finitely
many points which represent the system’s distinct “phases.” Equdtjon (1) models the spinodal
decomposition of an alloy witln + 1 components (see e.@.[9)10,[11[15[19, 27]). Typicaily
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represents the scaled difference between the mass concentration -l tbemponent and that of
the m + 1)-th component. Whem = 1 and® (1) = %1(u2 — 1)2 the PDE reduces to the scalar

Cahn-Hilliard equatiom; + A%u — A3 — u) = 0.
(B) Degenerate-mobility Cahn—Hilliard systemsThe order parameter is once again =

ul, ..., u™) e R™, but the interpretation is different: now represents the mass fraction of the
i-th component in am-component mixture. Therefore it must satisfy the pointwise constraint

m
u' >0 foreach, and ) u'=1. 2)
i=1
The evolution preserves this constraint and decreases the free energy

}vz W (u)
/2| ul“+ wu).

At temperature the bulk term has the form

m
W) =0 u'lnu +u-Au (3)
i=1

with A =e®e —I,wheree = (1, ..., 1) and/ is them x m identity. We shall focus on the deep-
quench limit, wher® = 0O; then the preferred values of-the system’s phases—are the vertices of
the constraint simplex[2). The PDE has the form

m
up==v-J', I ==Y BijwVuw, 4)
j=1

where the chemical potential is the first variation of the energy,
w' = VW) — Au',
and the mobilityB;; (1) is given by
Bij(u) = u' (8i; — u’). (5)

The special form of the mobilitys;; assures thap_; J' = 0, and also that! = 0 whenever
u' = 0. Thus the evolution preserves the const%ﬂwt (2). Whes 2 this model reduces to the
scalar degenerate-mobility Cahn—Hilliard equation: indeed, in thatccase® — u? satisfiesc; =
V- (1=c®V(=2¢c — Ac).

The third model we study—from the epitaxial growth literature—is described near the end of
this introduction.

For simplicity, we have presented in (B) only the simplest version of degenerate-mobility Cahn—
Hilliard dynamics. More general versions and references to the relevant physics literature can be
found in [13]. In (A), by contrast, we made the opposite choice—presenting a very general PDE
to which our method applies. The equations modeling spinodal decomposition are somewhat more
restricted, since they come from free energies [ife (3) in the shallow-quenchdijoit(below the
critical value 2m).
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These PDE’s have solutions. For the constant-mobility case, seke é.g. [14] for a concise derivation
of (1) and a global existence theorem. For the degenerate-mobility ase, [13] proves the global
existence of suitably-defined weak solutions for- 0, and remarks that the deep-quench limit
® — 0 can be treated as in the scalar case [12]. There is also some literature on the numerical
approximation of these systems: dele [2] and [3]. The PDE theory is far from complete; for example,
the weak solutions constructed [n [13] are not known to be unique. Fortunately, our method does
not require smoothness or uniqueness; in particular it applies to the weak solutions constructed in
[13,[14].

How should we expect solutions to behave as oo? The situation is analogous to the binary
case, discussed at lengthlin[22], so we shall be relatively brief. If we assume the solution coarsens,
e interface width

—_— Y
domain size
then late-stage coarsening involves, more or less, a sharp-interface limit. The sharp-interface limit of
(I) is a multicomponent version of Mullins—Sekerka dynamics [7]. The sharp-interface lifnjt of (4) is
a multicomponent version of motion by surface diffusion [17]. Both these results were demonstrated
using asymptotic expansions; the paper [17] also includes local-in-time existence for the limiting
geometric motion in 2D.

Each sharp-interface limit has a natural scale-invariance. Indeed, Mullins—Sekerka dynamics
is invariant upon scaling space byand time byx3; motion by surface diffusion is invariant
upon scaling space by and time byA%. If, as many people believe, coarsening is in some sense
statistically self-similar, then scale-invariance determines the coarsening rate. We therefore expect
the typical domain size to grow liké”/2 for Mullins—Sekerka and'/* for surface diffusion. And
we expect the same fdr|(1) ar{d (4), since they can be viewed as diffuse-interface versions of the
multicomponent Mullins—Sekerka and surface diffusion evolution laws.

For binary systems, modeled by scalar Cahn—Hilliard equations, the scaling and apparent self-
similarity of coarsening has been studied in considerable depth: seé e.g. [29] and the references
given there. For multicomponent systems the literature on late-stage coarsening is however relatively
sparse. One recent theme is the simulation of segregation dynamigssfate Potts models with
conserved kinetics: see [20,28] 34] for the ternary case and [8] for lardére existence of a direct
relation between Potts models and the continuous multicomponent[RDE (1) is still open; but it is
widely believed that the continuum limit of a Potts model should resemble a Cahn—Hilliard system
[35]. (In the binary case, where the Potts model reduces to an Ising model, such a result is true:
see e.g.[[18].) The behavior of the Potts model is consistent with the conjectured coarsening rate
for @): the characteristic length scale is observed in the simulations to grow!ftkéor larger,
until finite-size effects become important.

The main goal of the present paper is a rigorous bound on the coarsening rate. We shall prove,
roughly speaking, that fo[kl) the typical length scale grows no fasterr#&rand for Q) it grows
no faster tham'/4. Our analysis is the multicomponent extension of the argumentin [22].

To define the “typical length scale” we need a scheme for averaging. Therefore it is convenient
to solve the PDE’s with periodic boundary conditions. The period@ett R” is arbitrary, but we
are mainly interested in the behavior wh@ris large; therefore it is important that all estimates be
independent of the size @¥. We shall writefQ f for the average of @-periodic functionf.

In studying phase separation, our interest is in solutions|of ()] or (4) that represent mixtures of
the pure phases. For such a solutiotx, r) should be near one of the zeros of the bulk term, except
in some transition layers whose volume fraction is relatively small. Since the dynamics preserves
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f, u, the volume fractions of the phases are set by the initial datafandshould lie in the convex
hull of the pure phases.

The essential idea af [22] is to identify two distinct measures of the local length scale. The first
is 1/E where E is the energy per unit volume. The second—call#-is defined by a suitable
negative norm of the order parameter. The main steps of the argument involve

(i) a“dissipation relation” linkingE to L;
(i) an “isoperimetric inequality” constraining andL pointwise; and
(i) an ODE lemma, showing that (i) and (ii) imply a bound on the time-averaged coarsening rate.

Concerning (i): our notation (here and throughout the papef)4sdf/dt; the dissipation relation
for (1)) saysi.? < —E. Concerning (ii): we shall prove th#&L > C for some constarn, provided

E is sufficiently small. We call this an isoperimetric inequality because the average eBergy
resembles the perimeter of the interfaces. Concerning (iii): a special case say<thatind L (1)

are functions satisfying (af L > 1 and (b)L.2 < —E, then we have the following time-averaged
lower bound ork:

T T
][ E%dr > ][ ¢ V32dr  forT » L3> 1> Eo. (6)
0 0
HereLo = L(0), Eo = E(0), and the symbolg, > are to be interpreted as follows:> y means

x > Cy for some constant’; x > y meansy/y is sufficiently large. Thug {6) says there exists a
constaniC > 0 (possibly very large), such that

1 (7 1
—/ E2dt > =123
T Jo c
whenT > CL3andEy < 1/C.
Our argument uses the same main steps. To capture the key issues, we briefly sketch it for the

constant mobility cas¢(1). The multicomponent versions ahdL are defined for ang®-periodic
functionu = (ut, ..., u™) onR" by

E 7[ 1|v P+dw), L ][ vl <§ <][ vt '|)2)1/2 (7)
= — —I— . = - = - 4 s
Q2 u u 0 u : 0 u

][ Vil = sup{ ][ (u' —u')g : g periodic with sugVg| < 1} (8)
o 8 o

where

withu' = f, u'.

With these choices of andL, the dissipation relation is relatively easy: the argument.in [22]
extends straightforwardly to the multicomponent setting. The isoperimetric inequality is however
more subtle. Its statement is the same as in the scalar case, but the proof is significantly different.
Our argument combines some elements from [22] and others ffroml[1,/116, 33]. Once the dissipation
relation and isoperimetric inequality are in hand no further work is required—our time-averaged
bound onE follows using the ODE lemma of [22].

Our method uses relatively little information from the phase-separation PDE’s (1] and (4)—
basically just their dissipative, mass-conserving character. To emphasize this—and to give an
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additional application of the method—we also discuss the coarsening of a different class of fourth-
order PDE'’s, proposed in the epitaxial growth literature as a model for the growth of some materials:

(C) An epitaxial growth model with anisotropy and slope selectiadere the unknown is a scalar-
valued function, representing the height of a growing film (more precisely: the difference between
surface height and its mean). The PDE is

u + A% — V- (V,®(Vu)) =0, 9)

which decreases the energy
1
E = ][ ZIVVul? + & (Vu)
02

while conserving the mearf u. Our methods are applicable provided the bulk teftVu)
“prefers” finitely many slope¥u € {a1, ..., a}, i.e. provided® (o) vanishes at these slopes and
is positive otherwise. In applying the method, it is natural to assume: thas mean value 0, and to
takeL as the standard deviation of the surface height

L= f MZ)”Z.

Epitaxial growth models of this type are discussed for example_in [24, 26, 32]. Space is two-
dimensional, and the preferred slop8s. . ., a; are usually assumed to be the vertices of a regular
k-sided polygon in the plane. Heuristic arguments suggest a coarsening r&t& af least whert
is large enough. Numerical simulations bear this oukfer 6, but reveal much slower coarsening—
more likerY/—whenk = 4. We shall show that the system can coarsen no fasterttarThis is
consistent with the behavior observed numerically, though it does not explaik whyis different.

Our argument makes no use of symmetry—we assume nothing about the preferred slopes—and it
works in any spatial dimension.

The isotropic analogue (9), associated wittVu) = (|Vu|? — 1), has also been considered
as a model of epitaxial growth. It, too, coarsens no fasterthdnas we show ir[23]. But the proof
is quite different from the one we give fdr|(9). Briefly: the isoperimetric inequality is easier when
there are finitely many preferred slopes, because each slope can be viewed as a distinct “phase.”
Unlike the present paper, the method[ofI[23] is limited to space dimension two.

The paper is organized as follows: Section 2 addresses the constant mobility Cahn—Hilliard
system [(IL); Section 3 addresses the epitaxial growth m@dlel (9); and Section 4 addresses the
degenerate mobility Cahn—Hilliard system (4). Finally, in Section 5 we discuss some open problems.

2. The constant mobility Cahn—Hilliard system

This section addresses coarsening for the constant mobility Cahn—Hilliard system (1). Our structural
hypotheses on the energy dengityu) are as follows:

Al. @ > 0, and® = 0 only at finitely many point§ay, ..., ar} C R™, with k > 2. Also, @ is
bounded away from zero outside a small neighborhood of @ach
A2. There existz, § > 0 such that

1 2 2
—u—a;|* < P) <alu —a;|© whenlu —o;| <§.
a
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A3. There exisb, R > 0 such that
&) > blul®> when|u| > R.

For example@ (1) could be mifu — a1/, ..., lu — ax|?}.
ChoosingE andL as in [7), we shall prove the following:

(i) Dissipation relation: 1.2 < —E.
(ii) Isoperimetric inequality: EL 2 1 whenE « 1.

The constants implicit in (i) depend o# through our structural hypotheses A1-A3. They are
independent of:, provided that its mean valuge stays bounded away frofwy, ..., ax}. This
condition is natural: elementary examples show that the isoperimetric relation cannot be uniform
in the limit as the mixture approaches a pure phase.

As explained in the introduction, (i) and (ii) lead immediately to the following time-averaged
upper bound on the coarsening rate, using the framewofk of [22].

THEOREM1 Suppose X 6 < 1 andr < 3 satisfydr > 0 and(1 — 6)r < 2. Fixp > 0, and
consider only initial data such that the mear- f u satisfiedi — «;| > p for alli. Then thereis a
constaniC with the following property: for solutions of [1) on any period célic R", the energy
per unit volumeE (t) and physical length scale(r) satisfy

T 1 T
][ EOrL=1=0rgr > E][ ¢ 3 dt forT > CLE, providedEg < 1/C. (10)
0 0
Here Lo = L(0) and Eg = E(0). Moreover, the dependence 6fon @ comes only from the

constant in the isoperimetric inequality (ii).

Proof. Lemma 3 of [22] shows thaf (10) follows by an ODE argument once we know the two
relations (i) and (ii). O

The rest of this section is devoted to proving (i) and (ii).

The dissipation relation. In terms of the energy
1 2
E(uw) = 4 5IVul®+ @(u),
02

one can write the syster|(1) in the form

. ) . SE
u;—i—VJ’:O, Jl:_v(s_l’ lzl,,m (11)
u

Thus .
. SE ou' .
i=—f Yo Ly
05 Sul ot 05

Recall from [T), [(B) that

1/2 _
L= (Z(Li)z) with L; = ][Q|V1u’|.
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Thereforel. = L1 Y. L; - L;, and
) ] 1/2 ) 1/2
LI < LlL(Z(L,->2> = (Z(L,-)2> : (12)
On the other hand, repeating the proof of Lemma 2_if [22], one obtains

Ll < ]l il (13)
0

The estimateg (12) and (13) give

IL| < (ZZ(L-)Z)M < (Z(][Q |J"|>2)1/2

S N\1/2 l
< (][ ZIJ’F) = (—E)Y2, (14)
O

which is the desired relation.

The isoperimetric inequality. We must prove
EL>1 whenE «1 (15)

with E, L given by [7). This is asserted for ang-periodic functionu whose mean satisfies
lit —a;| > p for all i. The constants implicit i (15) depend @n and p but not on the period
cell Q. Notice that the conditio® « 1 forcesu to be in the convex hull of«y, . .., ok}, or very
close to its boundary.
The proof of [(Ib) is essentially an interpolation argument. To simplify the notation we assume
i = 0. (This represents no loss of generality, since we can always raeplagce — ¢ and® (u) by
@ (u + ¢) with ¢ = i1.) Our strategy is the following: we will construct a functign R”™ — R and
a vectort € R™ such that

BL. ¢ () — (&, u)| < @Y%),
B2. |V(pw)| < 3IVul> + ®(u) ae.inQ,
B3. whenE < 1, f, I(€,u)] = 1.

Given suchp andég, the proof of the isoperimetric inequality is easy. Indeed; i 1, then B1 and
B3 give

][Q"’““)' > ][Q|<s,u>|—CE1/251. (16)

Let [¢ (u)]. denote the convolution af (1) with the kernel

1 .
e \g )
wheren > 0 is radially symmetric and supported in the unit ball wiih n = 1. We clearly have

u)| < u) —[¢pu)le u)el. 17
][Q|¢<>| ][Q|¢>(> [¢(>]|+][Q|[¢(>]| (17)
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The first term is controlled byE, since

][Q|¢(u)—[¢(u)]s| < sup QI¢(M)(X)-¢(M)(X+h)I <8][Q|V¢(u)l

lhl<e

1
< s][ Z|\VulP+ o) = ¢E
02

using B2. The other term if (17) is controlled byze; to see this, note first that

& < s e (Dl/z &
][Ql[¢(u)] | < ][Qus ue)| + ][Q|[ @)]el

S ][ lue| + EY/? (18)
0
using B1. Since the convolution operator is symmetric intReorm and

1 .
sup|Vg.| < —suplg| for any functiong,
&

a duality argument gives

1 1
][ lue| S —][ IV ==L (19)
0 €Jo €

using the convention = 0. WhenE « 1, (16){19) imply
1<eE+6 L.

The isoperimetric inequality follows by optimization ouver

It remains to prove the existencepfnd¢ satisfying B1-B3. The choice gfis easy: it can be
any vector such thag, «;) # 0 for eachj. This assures that B3 is satisfied, sinteg 1 implies
thatu is close tofxy, . . ., ax} except on a set of small volume fraction. (We use here the hypothesis
thati stays bounded away from the pure phases; after translatingspace so that = 0 this
becomes the condition that;| > p for eachi.)

To prepare for the definition af, let d; (1) be the geodesic distance framto u in the metric
weighted byd /2

1
di () = min{/ M2y )ly' O] dr 1y (0) = i, y(1) = u}
0
(see e.g.[T1,16,33)). It is clearly Lipschitz continuous, with,d;| < @®/2; therefore for any
functionu(x) we have
Vedi )] < @Y2w)|Vul, (20)
Now let

di(u) if di(u) < dmin,

dmin = ?;'?di (aj),  ¢i(w) = {dmin otherwise.
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We claim that the function \
Pu) =y aigi(u)
i=1

satisfies B1 and B2 if the constants ..., a; are chosen appropriately. In fact, B2 holds for any
choice of they;’s, as an immediate consequence[0f (20). To get B1, it suffices to have

$lai) = (€, i), i=1... k (21)

To see why, notice that the left hand side of B1 is Lipschitz continuous with linear growth at infinity,
while the right hand side of B2 vanishes only at th&s, growing linearly (likeju — «;|) nearby and
at least linearly at infinity. Therefore {f (1) is true, B1 follows immediately.

Now, (21) gives a linear system of equationsder. . ., ax; to complete the proof we need only
check that the system is invertible. It has the form

011 ..1

101 ... 1[|% (6, 1)
dmin . : . = . (22)
111 ... ofL% (6, o)
The matrix on the leftis®e—1I withe = (1, ..., 1), which is clearly invertible since its eigenvalues
are—1 with multiplicity k — 1 andk — 1 with multiplicity 1. So [2]) has a solution and the proof is
complete. O

3. The epitaxial growth model
This section addresses the coarsening of the epitaxial growth njgdel (9) with periodic boundary
conditions. It represents steepest descent for

E= ][ |VVul? + & (Vu).
0

Solutions are known to exist, globally in time (see €.gl [24]). As explained in the introduction, to
apply our method it is natural to take

L= f u2>”2.

We need not assume that= 0, but this is the case of primary interest, since ffolves the PDE so
doesu — ¢ for any constant, and theL? norm is minimized wher = ii. Notice that wher = 0,
L is the standard deviation af

The dissipation relation is familiar: using the steepest-descent character of the PDE we get

E:—][utz, L-L:][uu,,
0 0

L2 < —E. (23)

whence
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The isoperimetric inequality is also familiar, provided the preferred slapese all nonzero.
Indeed, ifu is periodic therv = Vu has mean value 0, and

1/2
][ |V_lv|§ <][ u2) .
9 o

Therefore if thay;’s are nonzero, the isoperimetric inequalfty](15) gives

1 12 1
<][ —|VVu|2+cD(Vu)><][ u2> >1 when ][ SIVVuP 4+ @(Vu) < 1. (24)
02 0 02

As before, [(2B) and (24) imply a time-averaged lower boundon

THEOREM2 Consider periodic solutions of the epitaxial growth mofgl (9), where the bulk energy
@ satisfies A1-A3 and the preferred slopgsare nonzero. Then forany € 6 < 1 andr < 3
satisfyingdr > 1 and(1—0)r < 2, there is a constaiit with the following property: for any period

cell 0 c R", the energy per unit volumg(z) and the standard deviatidi(z) satisfy

T 1 T
][ EO LA gr > E][ ¢~ 3 dt  provided T > CL3(0) andE(0) <
0 0

Al -

4. The degenerate mobility Cahn—Hilliard system

This section addresses the degenerate mobility Cahn—Hilliard system (4) in the deep quench limit.
In this case, the homogeneous parof the free energy¥ has the form

Y(u)=u-Au

with A = e®e — I, wheree = (1,...,1) and ! is them x m identity. As explained in the
introduction, the initial data should satisfy<Qu’ < 1 and}; ' = 1 pointwise, and the equation
preserves this constraint. We are interested in mixtures, so the mean of the initial data must have
bounded away from 1 for eag¢h{we permitiz’ = 0 for somei—a mixture can use just some of the
phases). Note that the meahis preserved by the evolutioE] 4).

As in the constant mobility case, we chodsandL by (7). We must prove a dissipation relation
and an isoperimetric inequality. Focusing first on the latter, we assert that

EL2>1 whenE <« 1

This is not a trivial consequence ¢f {15) because the bulk engi@y does not satisfy A1-A3.

A proof can be given by following the strategy we used ffoif (15). For variety, however, let us proceed
differently, using the specific form af. Letc’ = 2u' — 1, so that-1 < ¢' < 1, and¢' is bounded
away from both 1 and-1 for somei. Since)_; u’ = 1, the energy can be expressed as

1_ i, 1¢ -
E = —|Vc — 1—(H).
][Qs'C'U;( (c)?)

We shall use the scalar analogue@(lS) wittr) = (¢? — 1)2: it asserts that for periodic functions
¢! (x) with ¢ bounded away frore-1,

<][Q%|va|2+(1_(ci)2)2> . ][Q|v—1c"| > 1when][Q%|vC"|2+(1—(ci)2>2 <1 (25
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(This follows from [I5); alternatively, it was proved [n [22] for functions with mean value 0, and the
argument given there also prov.(25) ) Sirée< 1, we have

1 , , 1 , ,
][ E|vcl|2+(1— (H?? < ][ E|vcl|2+ 1— ()% <1 whenE <« 1. (26)
0 0

Therefore wherE « 1, (25) and[(Z6) give

(f %|Vc"|2+(1—<c")2>)-][ vl 21
0 0

for any i such thaté’ stays bounded away fromtl. The desired isoperimetric inequality is an
immediate consequence.

The dissipation relation requires a bit more work. It says
L?< —EE. (27)

We present the argument for smooth solutions; the modifications required for weak solutions are
minor, and are explained ih [22]. From the dissipative structure of the equation we have

—E= Z ][ B,J(u)VSE OE (28)

i J’
Pt Sul - Sul

On the other hand, sineé = —V - J' one verifies as in the constant-mobility case that

Ll < ][ ]
0

for eachi, so
. m_ 1/2 m_o m )
il < (Z(Li)z) sy i<y f i
i=1 i=1 i=1 70
SinceJ! = — i 1Bu(u)V5 =, we have
Z |JE| = max{ > Bl,(u)Vk Z"kz 1 for each'}.
i=1 k,i,j

Since the matrixB;; (1) is symmetric and nonnegative, we can apply the inequébBty, n) <
(B&, §)Y2(Bn, m)*/? to get

SE SE SE\12 12
Z Bij () Vies 5 0ni < (Z Bij ) Vi ng—/) ' <Z |Bij(u)0'ki(7kj|> - (29
LJ

Since) ", (’kzi < 1, we havdgoy;| < 1 for eachk, i, so

> IBijwyorion;] < Y Bijw)l.

i,j i,J
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Therefore summing overin (29) and maximizing oves we conclude that

SE _ SE\Y? 12
Z|J|<<281](uw5, » j) .(Z|Bi,»<u>|> :
iJ

Integrating, and using &lder’s inequality, we conclude that
i SE _SE\Y?2 12
][;Z;'Jl'S(][ ZB”(M)V(S i 8u/> (][lejnBu(Mﬂ) . (30)

Since)"; u' = 1 we also have

][Zle,(un— ][ Z(u (l—u)—l—Zou) ][Zzu w < E. (31)

J# Q ji

The desired dissipation relation is an immediate consequenice|of[(28), (30), and (31).
Given these ingredients, the general framework of Kohn and Otio [22] implies the following
theorem.

THEOREM3 Suppose 0< 0 < 1 andr < 4 satisfyfr > 2 and(1—0)r < 2. Fixp > 0,
and consider only initial data f(4) that satisfy < 1 — p (in addition to the standard pointwise
constraints O< ' < 1and)_; u' = 1). Then

T T
][ EV L =1=0r g > ][ VHdr for T > L > 1> Eo.
0 0

5. Discussion

Our bounds are rather weak: they control only time-averaged valBe afid they do not contrdl.
The situation is the same as [n [22] 23]: the method of Kohn and Otto seems unable to do better. It
would be nice to prove pointwise bounds Brand L, but this seems to require a different method.

The problems considered here involve finitely many “phases.” The analogous problems with a
continuum of preferred states are fundamentally different. Consider for example what becomes of
our constant-mobility Cahn—Hilliard systefr| (1) when the bulk termpig) = (1 — |u|%)? with
u € R™. The energy per unit area is then

1
E= ][§|W|2+ (L— lu??, (32)
and the preferred values ofform a continuum—namely the unit sphere. The evolution equation

(T becomes
SE
Su

which decreases the energy while conserving the mean ©he associated coarsening has been
considered in[[5.16, 31]. Heuristic arguments suggest fat ~ /4 for all spatial dimensions
n > 2 and order-parameter dimensions> 2; this has been confirmed numerically in certain
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casesl[B, 20, 31]. We wonder whether the viewpoint of the present paper might be applicable to this
problem.

For the energy[ (32), the case = n = 2 seems special. Indeed, when the order parameter
and the spatial variable are both two-dimensional the coarsening process involves the interaction
and cancellation of vortices. To explain why, suppose the unit@dias side-length /&, and let
¥ (x) = u(x/e). Then the energy per unit area becomes

Ezef SV et - P2
01

The asymptotic behavior of this functional as— 0 has been studied at length: see €.g. [4].
The asymptotics of the associated second-order, steepest-descent dymamiéE/su = 0

have also been studied: see €.g![21, 25, 30]. But the analysis of coarsening is an entirely different
type of question. Given an initial condition with many vortices (randomly placed, perhaps, with
random degrees), the evolution makes the vortices interact and eventually annihilate one another.
In discussing coarsening, we want to know the density of vortices that remain at.tiD@m the
method of this paper be used to bound the coarsening rate?

Another open problem was noted in Section 3. It concerns the epitaxial growth model in two
space dimensions, when the preferred value¥ ofare the vertices of a square. The observed
coarsening rate is slower thah® in this case([26]. The reason appears to be that the valleys and
peaks in the graph af form a lattice with defects—and the true coarsening mechanism is the
motion of these defects. We wonder whether this intuition can be turned into a rigorous proof that
the coarsening rate is strictly slower then th&.
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