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Coarsening rates for models of multicomponent phase separation
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We study the coarsening of solutions of two models of multicomponent phase separation. One is
a constant mobility system; the other is a degenerate mobility system. These models are natural
generalizations of the Cahn–Hilliard equation to the case of a vector-valued order parameter. It has
been conjectured that the characteristic length scale`(t) grows liket1/3 ast → ∞ for the first case
and` ∼ t1/4 for the second case. We prove a weak one-sided version of this assertion. Our method
follows a strategy introduced by Kohn and Otto for problems with a scalar-valued order parameter; it
combines a dissipation relationship with an isoperimetric inequality and an ODE argument. We also
address a related model for anisotropic epitaxial growth.

1. Introduction

We study the coarsening associated with two models of multicomponent phase separation, and a
third model from the epitaxial growth literature. Each evolution has a scale-invariant sharp-interface
limit, and it is natural to guess that coarsening proceeds at the “similarity rate.” We prove a weak,
one-sided version of this assertion: roughly speaking, the system can coarsen no faster than the
similarity rate.

Our analysis uses the method introduced by Kohn and Otto in [22]. That paper discussed
only binary systems, described by scalar-valued order parameters. This paper represents its natural
generalization to multicomponent systems, described by vector-valued order parameters. The
method of [22] relies upon (i) adissipation relation, (ii) an isoperimetric inequality, and (iii) an
ODE lemma. The main novelty of the multicomponent setting is the isoperimetric inequality: its
proof is quite different from the binary case.

The two models of multicomponent phase separation we shall consider are:

(A) Constant-mobility Cahn–Hilliard systems.Here the order parameter isu = (u1, . . . , um) ∈

Rm, and the PDE is

uit +∆2ui −∆(∇uiΦ(u)) = 0, i = 1, . . . , m. (1)

It decreases the energy ∫
1

2
|∇u|2 +Φ(u)

while conserving the mean value ofu. The bulk termΦ(u) is nonnegative, vanishing at finitely
many points which represent the system’s distinct “phases.” Equation (1) models the spinodal
decomposition of an alloy withm + 1 components (see e.g. [9, 10, 11, 15, 19, 27]). Typicallyui
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represents the scaled difference between the mass concentration of thei-th component and that of
the (m + 1)-th component. Whenm = 1 andΦ(u) =

1
4(u

2
− 1)2 the PDE reduces to the scalar

Cahn–Hilliard equationut +∆2u−∆(u3
− u) = 0.

(B) Degenerate-mobility Cahn–Hilliard systems.The order parameter is once againu =

(u1, . . . , um) ∈ Rm, but the interpretation is different: nowui represents the mass fraction of the
i-th component in anm-component mixture. Therefore it must satisfy the pointwise constraint

ui > 0 for eachi, and
m∑
i=1

ui = 1. (2)

The evolution preserves this constraint and decreases the free energy∫
1

2
|∇u|2 + Ψ (u).

At temperatureθ the bulk term has the form

Ψ (u) = θ

m∑
i=1

ui ln ui + u · Au (3)

with A = e⊗ e− I , wheree = (1, . . . ,1) andI is them×m identity. We shall focus on the deep-
quench limit, whenθ = 0; then the preferred values ofu—the system’s phases—are the vertices of
the constraint simplex (2). The PDE has the form

uit = −∇ · J i, J i = −

m∑
j=1

Bij (u)∇w
j , (4)

where the chemical potentialwi is the first variation of the energy,

wi = ∇uiΨ (u)−∆ui,

and the mobilityBij (u) is given by

Bij (u) = ui(δij − uj ). (5)

The special form of the mobilityBij assures that
∑
i J

i
= 0, and also thatuit = 0 whenever

ui = 0. Thus the evolution preserves the constraint (2). Whenm = 2 this model reduces to the
scalar degenerate-mobility Cahn–Hilliard equation: indeed, in that casec = u1

− u2 satisfiesct =

∇ · (1 − c2)∇(−2c −∆c).

The third model we study—from the epitaxial growth literature—is described near the end of
this introduction.

For simplicity, we have presented in (B) only the simplest version of degenerate-mobility Cahn–
Hilliard dynamics. More general versions and references to the relevant physics literature can be
found in [13]. In (A), by contrast, we made the opposite choice—presenting a very general PDE
to which our method applies. The equations modeling spinodal decomposition are somewhat more
restricted, since they come from free energies like (3) in the shallow-quench limit (θ just below the
critical value 2/m).
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These PDE’s have solutions. For the constant-mobility case, see e.g. [14] for a concise derivation
of (1) and a global existence theorem. For the degenerate-mobility case, [13] proves the global
existence of suitably-defined weak solutions forθ > 0, and remarks that the deep-quench limit
θ → 0 can be treated as in the scalar case [12]. There is also some literature on the numerical
approximation of these systems: see [2] and [3]. The PDE theory is far from complete; for example,
the weak solutions constructed in [13] are not known to be unique. Fortunately, our method does
not require smoothness or uniqueness; in particular it applies to the weak solutions constructed in
[13, 14].

How should we expect solutions to behave ast → ∞? The situation is analogous to the binary
case, discussed at length in [22], so we shall be relatively brief. If we assume the solution coarsens,
i.e.

interface width

domain size
→ 0

then late-stage coarsening involves, more or less, a sharp-interface limit. The sharp-interface limit of
(1) is a multicomponent version of Mullins–Sekerka dynamics [7]. The sharp-interface limit of (4) is
a multicomponent version of motion by surface diffusion [17]. Both these results were demonstrated
using asymptotic expansions; the paper [17] also includes local-in-time existence for the limiting
geometric motion in 2D.

Each sharp-interface limit has a natural scale-invariance. Indeed, Mullins–Sekerka dynamics
is invariant upon scaling space byλ and time byλ3; motion by surface diffusion is invariant
upon scaling space byλ and time byλ4. If, as many people believe, coarsening is in some sense
statistically self-similar, then scale-invariance determines the coarsening rate. We therefore expect
the typical domain size to grow liket1/3 for Mullins–Sekerka andt1/4 for surface diffusion. And
we expect the same for (1) and (4), since they can be viewed as diffuse-interface versions of the
multicomponent Mullins–Sekerka and surface diffusion evolution laws.

For binary systems, modeled by scalar Cahn–Hilliard equations, the scaling and apparent self-
similarity of coarsening has been studied in considerable depth: see e.g. [29] and the references
given there. For multicomponent systems the literature on late-stage coarsening is however relatively
sparse. One recent theme is the simulation of segregation dynamics forq-state Potts models with
conserved kinetics: see [20, 28, 34] for the ternary case and [8] for largerq. The existence of a direct
relation between Potts models and the continuous multicomponent PDE (1) is still open; but it is
widely believed that the continuum limit of a Potts model should resemble a Cahn–Hilliard system
[35]. (In the binary case, where the Potts model reduces to an Ising model, such a result is true:
see e.g. [18].) The behavior of the Potts model is consistent with the conjectured coarsening rate
for (1): the characteristic length scale is observed in the simulations to grow liket1/3 for large t ,
until finite-size effects become important.

The main goal of the present paper is a rigorous bound on the coarsening rate. We shall prove,
roughly speaking, that for (1) the typical length scale grows no faster thant1/3, and for (4) it grows
no faster thant1/4. Our analysis is the multicomponent extension of the argument in [22].

To define the “typical length scale” we need a scheme for averaging. Therefore it is convenient
to solve the PDE’s with periodic boundary conditions. The period cellQ ⊂ Rn is arbitrary, but we
are mainly interested in the behavior whenQ is large; therefore it is important that all estimates be
independent of the size ofQ. We shall write−

∫
Q
f for the average of aQ-periodic functionf .

In studying phase separation, our interest is in solutions of (1) or (4) that represent mixtures of
the pure phases. For such a solution,u(x, t) should be near one of the zeros of the bulk term, except
in some transition layers whose volume fraction is relatively small. Since the dynamics preserves
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−

∫
Q
u, the volume fractions of the phases are set by the initial data, and−

∫
Q
u should lie in the convex

hull of the pure phases.
The essential idea of [22] is to identify two distinct measures of the local length scale. The first

is 1/E whereE is the energy per unit volume. The second—call itL—is defined by a suitable
negative norm of the order parameter. The main steps of the argument involve

(i) a “dissipation relation” linkingĖ to L̇;
(ii) an “isoperimetric inequality” constrainingE andL pointwise; and

(iii) an ODE lemma, showing that (i) and (ii) imply a bound on the time-averaged coarsening rate.

Concerning (i): our notation (here and throughout the paper) isḟ = ∂f/∂t ; the dissipation relation
for (1) saysL̇2 6 −Ė. Concerning (ii): we shall prove thatEL > C for some constantC, provided
E is sufficiently small. We call this an isoperimetric inequality because the average energyE

resembles the perimeter of the interfaces. Concerning (iii): a special case says that ifE(t) andL(t)
are functions satisfying (a)EL & 1 and (b)L̇2 . −Ė, then we have the following time-averaged
lower bound onE:

−

∫ T

0
E2 dt & −

∫ T

0
(t−1/3)2 dt for T � L3

0 � 1 � E0. (6)

HereL0 = L(0), E0 = E(0), and the symbols&, � are to be interpreted as follows:x & y means
x > Cy for some constantC; x � y meansx/y is sufficiently large. Thus (6) says there exists a
constantC > 0 (possibly very large), such that

1

T

∫ T

0
E2 dt >

1

C
T −2/3

whenT > CL3
0 andE0 6 1/C.

Our argument uses the same main steps. To capture the key issues, we briefly sketch it for the
constant mobility case (1). The multicomponent versions ofE andL are defined for anyQ-periodic
functionu = (u1, . . . , um) onRn by

E = −

∫
Q

1

2
|∇u|2 +Φ(u), L = −

∫
Q

|∇
−1u| =

( ∑
i

(
−

∫
Q

|∇
−1ui |

)2)1/2

, (7)

where

−

∫
Q

|∇
−1ui | = sup

g

{
−

∫
Q

(ui − ui)g : g periodic with sup|∇g| 6 1

}
(8)

with ui = −

∫
Q
ui .

With these choices ofE andL, the dissipation relation is relatively easy: the argument in [22]
extends straightforwardly to the multicomponent setting. The isoperimetric inequality is however
more subtle. Its statement is the same as in the scalar case, but the proof is significantly different.
Our argument combines some elements from [22] and others from [1, 16, 33]. Once the dissipation
relation and isoperimetric inequality are in hand no further work is required—our time-averaged
bound onE follows using the ODE lemma of [22].

Our method uses relatively little information from the phase-separation PDE’s (1) and (4)—
basically just their dissipative, mass-conserving character. To emphasize this—and to give an
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additional application of the method—we also discuss the coarsening of a different class of fourth-
order PDE’s, proposed in the epitaxial growth literature as a model for the growth of some materials:

(C) An epitaxial growth model with anisotropy and slope selection.Here the unknown is a scalar-
valued functionu, representing the height of a growing film (more precisely: the difference between
surface height and its mean). The PDE is

ut +∆2u− ∇ · (∇pΦ(∇u)) = 0, (9)

which decreases the energy

E = −

∫
Q

1

2
|∇∇u|2 +Φ(∇u)

while conserving the mean−
∫
u. Our methods are applicable provided the bulk termΦ(∇u)

“prefers” finitely many slopes∇u ∈ {α1, . . . , αk}, i.e. providedΦ(α) vanishes at these slopes and
is positive otherwise. In applying the method, it is natural to assume thatu has mean value 0, and to
takeL as the standard deviation of the surface height

L =

(
−

∫
Q

u2
)1/2

.

Epitaxial growth models of this type are discussed for example in [24, 26, 32]. Space is two-
dimensional, and the preferred slopesα1, . . . , αk are usually assumed to be the vertices of a regular
k-sided polygon in the plane. Heuristic arguments suggest a coarsening rate oft1/3, at least whenk
is large enough. Numerical simulations bear this out fork = 6, but reveal much slower coarsening—
more liket1/4—whenk = 4. We shall show that the system can coarsen no faster thant1/3. This is
consistent with the behavior observed numerically, though it does not explain whyk = 4 is different.
Our argument makes no use of symmetry—we assume nothing about the preferred slopes—and it
works in any spatial dimension.

The isotropic analogue of (9), associated withΦ(∇u) = (|∇u|2 − 1)2, has also been considered
as a model of epitaxial growth. It, too, coarsens no faster thant1/3, as we show in [23]. But the proof
is quite different from the one we give for (9). Briefly: the isoperimetric inequality is easier when
there are finitely many preferred slopes, because each slope can be viewed as a distinct “phase.”
Unlike the present paper, the method of [23] is limited to space dimension two.

The paper is organized as follows: Section 2 addresses the constant mobility Cahn–Hilliard
system (1); Section 3 addresses the epitaxial growth model (9); and Section 4 addresses the
degenerate mobility Cahn–Hilliard system (4). Finally, in Section 5 we discuss some open problems.

2. The constant mobility Cahn–Hilliard system

This section addresses coarsening for the constant mobility Cahn–Hilliard system (1). Our structural
hypotheses on the energy densityΦ(u) are as follows:

A1. Φ > 0, andΦ = 0 only at finitely many points{α1, . . . , αk} ⊂ Rm, with k > 2. Also,Φ is
bounded away from zero outside a small neighborhood of eachαi .

A2. There exista, δ > 0 such that

1

a
|u− αi |

2 6 Φ(u) 6 a|u− αi |
2 when|u− αi | < δ.
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A3. There existb,R > 0 such that

Φ(u) > b|u|2 when|u| > R.

For example,Φ(u) could be min{|u− α1|
2, . . . , |u− αk|

2
}.

ChoosingE andL as in (7), we shall prove the following:

(i) Dissipation relation: L̇2 6 −Ė.
(ii) Isoperimetric inequality : EL & 1 whenE � 1.

The constants implicit in (ii) depend onΦ through our structural hypotheses A1–A3. They are
independent ofu, provided that its mean valuēu stays bounded away from{α1, . . . , αk}. This
condition is natural: elementary examples show that the isoperimetric relation cannot be uniform
in the limit as the mixture approaches a pure phase.

As explained in the introduction, (i) and (ii) lead immediately to the following time-averaged
upper bound on the coarsening rate, using the framework of [22].

THEOREM 1 Suppose 06 θ 6 1 andr < 3 satisfyθr > 0 and(1 − θ)r < 2. Fix ρ > 0, and
consider only initial data such that the meanū = −

∫
u satisfies|ū− αi | > ρ for all i. Then there is a

constantC with the following property: for solutions of (1) on any period cellQ ⊂ Rn, the energy
per unit volumeE(t) and physical length scaleL(t) satisfy

−

∫ T

0
EθrL−(1−θ)r dt >

1

C
−

∫ T

0
(t−1/3)r dt for T > CL3

0, providedE0 < 1/C. (10)

HereL0 = L(0) andE0 = E(0). Moreover, the dependence ofC on Φ comes only from the
constant in the isoperimetric inequality (ii).

Proof. Lemma 3 of [22] shows that (10) follows by an ODE argument once we know the two
relations (i) and (ii). 2

The rest of this section is devoted to proving (i) and (ii).

The dissipation relation. In terms of the energy

E(u) = −

∫
Q

1

2
|∇u|2 +Φ(u),

one can write the system (1) in the form

uit + ∇ · J i = 0, J i = −∇
δE

δui
, i = 1, . . . , m. (11)

Thus

−Ė = − −

∫
Q

∑
i

δE

δui

∂ui

∂t
= −

∫
Q

∑
i

|J i |2.

Recall from (7), (8) that

L =

( ∑
i

(Li)
2
)1/2

with Li = −

∫
Q

|∇
−1ui |.
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ThereforeL̇ = L−1
·
∑
i Li · L̇i , and

|L̇| 6 L−1L

( ∑
i

(L̇i)
2
)1/2

=

( ∑
i

(L̇i)
2
)1/2

. (12)

On the other hand, repeating the proof of Lemma 2 in [22], one obtains

|L̇i | 6 −

∫
Q

|J i |. (13)

The estimates (12) and (13) give

|L̇| 6

( ∑
i

(L̇i)
2
)1/2

6

( ∑
i

(
−

∫
Q

|J i |

)2)1/2

6

(
−

∫
Q

∑
i

|J i |2
)1/2

= (−Ė)1/2, (14)

which is the desired relation.

The isoperimetric inequality. We must prove

EL & 1 whenE � 1 (15)

with E,L given by (7). This is asserted for anyQ-periodic functionu whose mean satisfies
|ū− αi | > ρ for all i. The constants implicit in (15) depend onΦ andρ but not on the period
cellQ. Notice that the conditionE � 1 forcesū to be in the convex hull of{α1, . . . , αk}, or very
close to its boundary.

The proof of (15) is essentially an interpolation argument. To simplify the notation we assume
ū = 0. (This represents no loss of generality, since we can always replaceu by u− c andΦ(u) by
Φ(u+ c) with c = ū.) Our strategy is the following: we will construct a functionφ : Rm → R and
a vectorξ ∈ Rm such that

B1. |φ(u)− 〈ξ, u〉| . Φ1/2(u),
B2. |∇(φ(u))| . 1

2|∇u|2 +Φ(u) a.e. inQ,
B3. whenE � 1, −

∫
Q

|〈ξ, u〉| & 1.

Given suchφ andξ , the proof of the isoperimetric inequality is easy. Indeed, ifE � 1, then B1 and
B3 give

−

∫
Q

|φ(u)| > −

∫
Q

|〈ξ, u〉| − CE1/2 & 1. (16)

Let [φ(u)]ε denote the convolution ofφ(u) with the kernel

1

εn
η

(
·

ε

)
,

whereη > 0 is radially symmetric and supported in the unit ball with
∫
Rn η = 1. We clearly have

−

∫
Q

|φ(u)| 6 −

∫
Q

|φ(u)− [φ(u)]ε| + −

∫
Q

|[φ(u)]ε|. (17)
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The first term is controlled byεE, since

−

∫
Q

|φ(u)− [φ(u)]ε| 6 sup
|h|6ε

−

∫
Q

|φ(u)(x)− φ(u)(x + h)| 6 ε −

∫
Q

|∇φ(u)|

. ε −

∫
Q

1

2
|∇u|2 +Φ(u) = εE

using B2. The other term in (17) is controlled byL/ε; to see this, note first that

−

∫
Q

|[φ(u)]ε| . −

∫
Q

|〈ξ, uε〉| + −

∫
Q

|[Φ1/2(u)]ε|

. −

∫
Q

|uε| + E1/2 (18)

using B1. Since the convolution operator is symmetric in theL2 norm and

sup|∇gε| .
1

ε
sup|g| for any functiong,

a duality argument gives

−

∫
Q

|uε| .
1

ε
−

∫
Q

|∇
−1u| =

1

ε
L (19)

using the convention̄u = 0. WhenE � 1, (16)–(19) imply

1 . εE + ε−1L.

The isoperimetric inequality follows by optimization overε.

It remains to prove the existence ofξ andφ satisfying B1–B3. The choice ofξ is easy: it can be
any vector such that〈ξ, αj 〉 6= 0 for eachj . This assures that B3 is satisfied, sinceE � 1 implies
thatu is close to{α1, . . . , αk} except on a set of small volume fraction. (We use here the hypothesis
that ū stays bounded away from the pure phases; after translating inu-space so that̄u = 0 this
becomes the condition that|αi | > ρ for eachi.)

To prepare for the definition ofφ, let di(u) be the geodesic distance fromαi to u in the metric
weighted byΦ1/2:

di(u) = min

{ ∫ 1

0
Φ1/2(γ (t))|γ ′(t)| dt : γ (0) = αi, γ (1) = u

}
(see e.g. [1, 16, 33]). It is clearly Lipschitz continuous, with|∇udi | 6 Φ1/2; therefore for any
functionu(x) we have

|∇xdi(u)| 6 Φ1/2(u)|∇u|. (20)

Now let

dmin = min
i 6=j

di(αj ), φi(u) =

{
di(u) if di(u) < dmin,

dmin otherwise.
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We claim that the function

φ(u) =

k∑
i=1

aiφi(u)

satisfies B1 and B2 if the constantsa1, . . . , ak are chosen appropriately. In fact, B2 holds for any
choice of theai ’s, as an immediate consequence of (20). To get B1, it suffices to have

φ(αi) = 〈ξ, αi〉, i = 1, . . . , k. (21)

To see why, notice that the left hand side of B1 is Lipschitz continuous with linear growth at infinity,
while the right hand side of B2 vanishes only at theαi ’s, growing linearly (like|u−αi |) nearby and
at least linearly at infinity. Therefore if (21) is true, B1 follows immediately.

Now, (21) gives a linear system of equations fora1, . . . , ak; to complete the proof we need only
check that the system is invertible. It has the form

dmin


0 1 1 . . . 1
1 0 1 . . . 1
...

...
...

1 1 1 . . . 0


 a1
...

ak

 =

 〈ξ, α1〉
...

〈ξ, αk〉

 . (22)

The matrix on the left ise⊗e−I with e = (1, . . . ,1), which is clearly invertible since its eigenvalues
are−1 with multiplicity k − 1 andk − 1 with multiplicity 1. So (21) has a solution and the proof is
complete. 2

3. The epitaxial growth model

This section addresses the coarsening of the epitaxial growth model (9) with periodic boundary
conditions. It represents steepest descent for

E = −

∫
Q

|∇∇u|2 +Φ(∇u).

Solutions are known to exist, globally in time (see e.g. [24]). As explained in the introduction, to
apply our method it is natural to take

L =

(
−

∫
Q

u2
)1/2

.

We need not assume thatū = 0, but this is the case of primary interest, since ifu solves the PDE so
doesu− c for any constantc, and theL2 norm is minimized whenc = ū. Notice that when̄u = 0,
L is the standard deviation ofu.

The dissipation relation is familiar: using the steepest-descent character of the PDE we get

Ė = − −

∫
Q

u2
t , L · L̇ = −

∫
Q

uut ,

whence

L̇2 6 −Ė. (23)
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The isoperimetric inequality is also familiar, provided the preferred slopesαi are all nonzero.
Indeed, ifu is periodic thenv = ∇u has mean value 0, and

−

∫
Q

|∇
−1v| .

(
−

∫
Q

u2
)1/2

.

Therefore if theαi ’s are nonzero, the isoperimetric inequality (15) gives(
−

∫
Q

1

2
|∇∇u|2 +Φ(∇u)

)(
−

∫
Q

u2
)1/2

& 1 when −

∫
Q

1

2
|∇∇u|2 +Φ(∇u) � 1. (24)

As before, (23) and (24) imply a time-averaged lower bound onE:

THEOREM 2 Consider periodic solutions of the epitaxial growth model (9), where the bulk energy
Φ satisfies A1–A3 and the preferred slopesαi are nonzero. Then for any 06 θ 6 1 andr < 3
satisfyingθr > 1 and(1−θ)r < 2, there is a constantC with the following property: for any period
cellQ ⊂ Rn, the energy per unit volumeE(t) and the standard deviationL(t) satisfy

−

∫ T

0
EθrL−(1−θ)r dt >

1

C
−

∫ T

0
(t−1/3)r dt provided T > CL3(0) andE(0) 6

1

C
.

4. The degenerate mobility Cahn–Hilliard system

This section addresses the degenerate mobility Cahn–Hilliard system (4) in the deep quench limit.
In this case, the homogeneous partΨ of the free energyE has the form

Ψ (u) = u · Au

with A = e ⊗ e − I , wheree = (1, . . . ,1) and I is them × m identity. As explained in the
introduction, the initial data should satisfy 06 ui 6 1 and

∑
i u
i
= 1 pointwise, and the equation

preserves this constraint. We are interested in mixtures, so the mean of the initial data must haveūi

bounded away from 1 for eachi (we permitūi = 0 for somei—a mixture can use just some of the
phases). Note that the meanūi is preserved by the evolution (4).

As in the constant mobility case, we chooseE andL by (7). We must prove a dissipation relation
and an isoperimetric inequality. Focusing first on the latter, we assert that

EL & 1 whenE � 1.

This is not a trivial consequence of (15) because the bulk energyΨ (u) does not satisfy A1–A3.
A proof can be given by following the strategy we used for (15). For variety, however, let us proceed
differently, using the specific form ofΨ . Let ci = 2ui − 1, so that−1 6 ci 6 1, andci is bounded
away from both 1 and−1 for somei. Since

∑
i u
i
= 1, the energy can be expressed as

E = −

∫
Q

1

8
|∇ci |2 +

1

4

m∑
i=1

(1 − (ci)2).

We shall use the scalar analogue of (15) withΦ(c) = (c2
−1)2: it asserts that for periodic functions

ci(x) with c̄i bounded away from±1,(
−

∫
Q

1

2
|∇ci |2 + (1 − (ci)2)2

)
· −

∫
Q

|∇
−1ci | & 1 when −

∫
Q

1

2
|∇ci |2 + (1 − (ci)2)2 � 1. (25)
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(This follows from (15); alternatively, it was proved in [22] for functions with mean value 0, and the
argument given there also proves (25).) Since|ci | 6 1, we have

−

∫
Q

1

2
|∇ci |2 + (1 − (ci)2)2 6 −

∫
Q

1

2
|∇ci |2 + (1 − (ci)2) � 1 whenE � 1. (26)

Therefore whenE � 1, (25) and (26) give(
−

∫
Q

1

2
|∇ci |2 + (1 − (ci)2)

)
· −

∫
Q

|∇
−1ci | & 1

for any i such thatc̄i stays bounded away from±1. The desired isoperimetric inequality is an
immediate consequence.

The dissipation relation requires a bit more work. It says

L̇2 . −EĖ. (27)

We present the argument for smooth solutions; the modifications required for weak solutions are
minor, and are explained in [22]. From the dissipative structure of the equation we have

− Ė =

m∑
i,j=1

−

∫
Q

Bij (u)∇
δE

δui
∇
δE

δuj
. (28)

On the other hand, sinceuit = −∇ · J i one verifies as in the constant-mobility case that

|L̇i | 6 −

∫
Q

|J i |

for eachi, so

|L̇| 6

( m∑
i=1

(L̇i)
2
)1/2

.
m∑
i=1

|L̇i | 6
m∑
i=1

−

∫
Q

|J i |.

SinceJ i = −
∑m
j=1Bij (u)∇

δE
δuj

, we have

m∑
i=1

|J i | = max

{ ∑
k,i,j

Bij (u)∇k
δE

δuj
σki :

∑
k

σ 2
ki 6 1 for eachi

}
.

Since the matrixBij (u) is symmetric and nonnegative, we can apply the inequality〈Bξ, η〉 6
〈Bξ, ξ〉1/2

〈Bη, η〉1/2 to get

∑
i,j

Bij (u)∇k
δE

δuj
σki 6

( ∑
i,j

Bij (u)∇k
δE

δui
∇k
δE

δuj

)1/2

·

( ∑
i,j

|Bij (u)σkiσkj |

)1/2

. (29)

Since
∑
k σ

2
ki 6 1, we have|σki | 6 1 for eachk, i, so∑

i,j

|Bij (u)σkiσkj | 6
∑
i,j

|Bij (u)|.
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Therefore summing overk in (29) and maximizing overσ we conclude that

m∑
i=1

|J i | .

( ∑
i,j

Bij (u)∇
δE

δui
∇
δE

δuj

)1/2

·

( ∑
i,j

|Bij (u)|

)1/2

.

Integrating, and using Ḧolder’s inequality, we conclude that

−

∫
Q

m∑
i=1

|J i | .

(
−

∫
Q

∑
i,j

Bij (u)∇
δE

δui
∇
δE

δuj

)1/2

·

(
−

∫
Q

∑
i,j

|Bij (u)|

)1/2

. (30)

Since
∑
i u
i
= 1 we also have

−

∫
Q

∑
i,j

|Bij (u)| = −

∫
Q

∑
i

(
ui(1 − ui)+

∑
j 6=i

uiuj
)

= −

∫
Q

∑
j 6=i

2uiuj 6 E. (31)

The desired dissipation relation is an immediate consequence of (28), (30), and (31).
Given these ingredients, the general framework of Kohn and Otto [22] implies the following

theorem.

THEOREM 3 Suppose 06 θ 6 1 andr < 4 satisfyθr > 2 and(1 − θ)r < 2. Fix ρ > 0,
and consider only initial data for (4) that satisfyūi 6 1 − ρ (in addition to the standard pointwise
constraints 06 ui 6 1 and

∑
i u
i
= 1). Then

−

∫ T

0
EθrL−(1−θ)r dt & −

∫ T

0
(t−1/4)r dt for T � L4

0 � 1 � E0.

5. Discussion

Our bounds are rather weak: they control only time-averaged value ofE, and they do not controlL.
The situation is the same as in [22, 23]: the method of Kohn and Otto seems unable to do better. It
would be nice to prove pointwise bounds onE andL, but this seems to require a different method.

The problems considered here involve finitely many “phases.” The analogous problems with a
continuum of preferred states are fundamentally different. Consider for example what becomes of
our constant-mobility Cahn–Hilliard system (1) when the bulk term isΦ(u) = (1 − |u|2)2 with
u ∈ Rm. The energy per unit area is then

E = −

∫
1

2
|∇u|2 + (1 − |u|2)2, (32)

and the preferred values ofu form a continuum—namely the unit sphere. The evolution equation
(1) becomes

ut − ∇ ·

(
∇
δE

δu

)
= 0,

which decreases the energy while conserving the mean ofu. The associated coarsening has been
considered in [5, 6, 31]. Heuristic arguments suggest thatL(t) ∼ t1/4 for all spatial dimensions
n > 2 and order-parameter dimensionsm > 2; this has been confirmed numerically in certain
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cases [5, 20, 31]. We wonder whether the viewpoint of the present paper might be applicable to this
problem.

For the energy (32), the casem = n = 2 seems special. Indeed, when the order parameteru

and the spatial variablex are both two-dimensional the coarsening process involves the interaction
and cancellation of vortices. To explain why, suppose the unit cellQ has side-length 1/ε, and let
ψ(x) = u(x/ε). Then the energy per unit area becomes

E = ε

∫
Q1

ε

2
|∇ψ |

2
+ ε−1(1 − |ψ |

2)2.

The asymptotic behavior of this functional asε → 0 has been studied at length: see e.g. [4].
The asymptotics of the associated second-order, steepest-descent dynamicsut + δE/δu = 0
have also been studied: see e.g. [21, 25, 30]. But the analysis of coarsening is an entirely different
type of question. Given an initial condition with many vortices (randomly placed, perhaps, with
random degrees), the evolution makes the vortices interact and eventually annihilate one another.
In discussing coarsening, we want to know the density of vortices that remain at timet . Can the
method of this paper be used to bound the coarsening rate?

Another open problem was noted in Section 3. It concerns the epitaxial growth model in two
space dimensions, when the preferred values of∇u are the vertices of a square. The observed
coarsening rate is slower thant1/3 in this case [26]. The reason appears to be that the valleys and
peaks in the graph ofu form a lattice with defects—and the true coarsening mechanism is the
motion of these defects. We wonder whether this intuition can be turned into a rigorous proof that
the coarsening rate is strictly slower then thant1/3.
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