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This paper deals with the evolution of fronts or interfaces propagating with normal velgcity

f — ck, wheref is a spatially periodic functior; a constant and the mean curvature. This study

is motivated by the propagation of phase boundaries and dislocation loops through heterogeneous
media. We establish a homogenization result when the scale of oscillatirisocmall compared

to the macroscopic dimensions, and show that the overall front is governed by a geometric law
vy, = f(n). We illustrate the results using examples. We also provide an explicit characterization of
finthe limitc — oo.

1. Introduction

This paper deals with the evolution of fronts or interfaces propagating with a normal velocity
that depends on the position and the mean curvature of the front. Specifically consider a front
propagating with normal velocity

v, = f —ck, (1.2)

wheref = f(x) is a given spatially dependent functieris a constant and is the mean curvature.
Supposef is heterogeneous on a scale small compared to the domain; then the evolution of the front
may be very complicated. It is of interest then to ask if one can define an average or overall front—
one that captures the essential macroscopic features and ignores the exact microscopic details—and
describe its propagation. That is the issue studied in this paper.

A motivation for such a study is the motion of a phase boundary through a heterogeneous
material, for example a matrix with precipitates. Consider a body occupying a regian RY
consisting of one phase occupying a regidncC £2 and surrounded by a second phase which
occupiess? \ A. Phase transformation causes the regioto evolve, and we are interested in this
evolution. The energy associated with the two-phase arrangement is

5<A>=/¢+<x>dx+/ ¢*<x>dx+/ ¢ da,
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whereg® is the density of the bulk energy in the two phases aiglthe density of the interfacial
energy ¢ > 0). We assume that the bulk energy density may depend on position in view of
inhomogeneities and defects in the material. We assume that the interfacial energy density is
constant for simplicity. The energy dissipation associated with the motion of the phase boundary
can be shown (following Gurtirn [21]) to be

A(A) = / (f — c)v, da,
9A

where— f = ¢+ — ¢~ is the jump in the bulk energy density across the phase bounggais/the

normal velocity of the interface andis the mean curvature. Therefope;-c« is the thermodynamic

force conjugate to the normal velocity and may be interpreted as the thermodynamic driving force
that drives the phase boundary. It is natural, therefore, to assume that the normal velocity depends on
the driving force, and (1]1) is the simplest model of this type. We note that this model automatically
satisfies the requirement that the dissipation be non-negative.

A specialization of this interfacial evolution model is the Edwards—Wilkinson model much
studied in statistical mechanics (see for exariplé [22]). We may obtain this model from our equation
(L.7) by assuming that the interface is a graph, linearizing the curvature and fatarime stochastic
(constant plus an appropriate noise). The equa (1.1) is also often ug®ltim study the
evolution of dislocation loops, where it is referred to as the ‘line tension model’ (see for example
[24]).

There is large literature of (1.1) whehis constant that establishes existerice [9] and proposes
fast numerical algorithms (see for examplel[31, 30]). However, actual materials often contain defects
and heterogeneities, and therefgirés not constant. These defects and heterogeneities can change
the evolution significantly, and thus have a critically important implication in practice. Therefore the
role of defects have also been studied in a variety of settings. Notable among them is the study of
dislocation loops in material science wherés assumed to be either constant except on a collection
of small inclusions (where it takes another value) or a collection of point defects (Dirac masses).
The motion past an individual defect and the “bow-out” of dislocation loops pinned by multiple
defects is well understood [24]. More recently, numerical studies that consider a very large number
of (periodically or randomly distributed) defects and also take into account the elastic interactions
have been conducted [17,125] 23] 27|, 14]. Another interesting literature uses statistical mechanics
to study the Edwards—Wilkinson and related models of interfaces propagating in a random medium
(see for example [22, 28] 2]). A related literature concerns the propagation of contact line in the
presence of defects [P0, 132].

Yet, many important and interesting questions remain open. In particular, a mathematical
treatment from the homogenization viewpoint is missing. We develop it in this paper, and obtain
interesting and useful insights. This paper is the second in a series dealing with the propagation of
fronts through heterogeneous media. The first [11] considered fgd ignored the curvature.

The third [12] considers the situation where the evolution of the interface is coupled to a partial
differential equation inf2 (specifically elasticity).

An efficient tool for studying problems such s (1.1) is the level set formulation. If we assume
that there exists a smooth functibn RY x [0, T) — R such that our front coincides with its zero
level set at all times, a simple calculation yields

Vh . Vh 1 0h
n=—— «=d ;
[Vh|

|V_, Un = — 75~
|Vh| |Vh| ot
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so our normal velocity law (1] 1) implies thatsatisfies the following equation:

oh Vh
— =— Vh Vh|div—. 1.2
a7 S )IVh] + c|Vh] Vil 1.2)
To this equation one has to attach the initial condition

h(x,0) = ho(x) inRY,

wherehg is a function chosen such that its zero level set coincides with the initial position of the
front, and appropriate boundary or far field conditions.

If the medium in which the front is propagating is periodic with unit cell{, the corre-
sponding problem is

oh® x Vh
=_—f(Z)|vhe Vhe| div inRN x [0, T),
o1 f(s)' [ el VATV 1G] x<[0.1) (1.3)

he (x, 0) = ho(x) in RN,

&

with £ continuous and periodic with peridgy = [0, 1]V. Our aim is to study the homogenization
of this phenomenon, i.e., to capture its limit behavior when the structure of the medium becomes
infinitely fine (¢ — 0).

We remark that the scaling of the curvature coefficientchosen in(1]3) is the most interesting.
Heuristically, in this situation we expect the curvature to scale/asdr the radius of curvature
of the interface to be comparable to the unit cell. So the curvature and heterogeneities contribute
comparably to the evolution of the interface and thus interact. If we assume that the curvature
coefficient is larger, oe%c for « < 1, the radius of curvature scales & and becomes large
compared to the unit cell as — 0. In other words, the curvature term dominates so that the
interface becomes flat and we obtain a one-dimensional problem studied in [5]. Similarly, if we
assume that the curvature coefficient is smalleg®aerfor « > 1, then the interface does not feel
the contribution of the curvature and one obtains geometric motion studied in [11].

We show in Section 2, following the methods of Evelns [16], that, as 0, the solution of[(1]3)

converges uniformly to the solution of
dh -( Vh
- = _f -
ot |Vh|

h(x, 0) = ho(x) in RN,

H N
>|Vh| inRY x [0, T), (1.4)

where f is determined by solving a suitable periodic problem on the unit(2.19). This implies
that the average or overall interface propagates with normal velocity

vy = f(n),
wheren is the normal to the interface. So, the normal velocity depends on the orientation of the
interface but not on the position or the mean curvature. In short, the average interface is governed
by an anisotropic geometric law.

We also show that if is strictly positive (negative), then the resultifigs also strictly positive
(negative). Iff takes both signs, thefimay be positive, negative or even zero. This corresponds to
the interface being trapped. We explore this and other issues with various examples in Section 3.

We notice from our examples that the effective behavior is easily characterized when the
curvature coefficient is large. We study this limit in Section 4 and provide an explicit charac-
terization for f in this case.
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2. A homogenization result

This section considers the homogenizatiorf of|(1.3) assuming thal. The case = 0 when [1.B)
reduces to a Hamilton—Jacobi equation has been treated|in [11./15] 16, 26]. It has been shown that
the viscosity solution of the Hamilton—Jacobi initial value problem

ah® ;

T f(f>|Vh8| =0 inR" x [0, 00),
at €
hS(x’ 0) — ho(x) in RN,

converges uniformly oY x [0, T') (for all T < oo) to the viscosity solution of the homogenized
Hamilton—Jacobi initial value problem

oh - .
e + f(VR)|Vh =0 inRY x [0, 00),

h(x,0) = ho(x) in RV,

for f determined by the solution of a suitable ‘unit cell’ problem. Various variational character-
izations for f are given in[[11].

We will in fact consider the homogenization of a slightly more general problem|[thgn (1.3). Note
that [1.3) can also be written as

Ihe
AL F<avzh8, VHE, f) —0,
ot e

where

®
F(A, p,x) = f(®)lpl - c<1 - ”|p—|2” A>. 2.1)
The operato# defined above is degenerate elliptic, in the sense that
F(X,p,x) 2 F(Y,p,x) ifY > X (i.e.ifY — X is positive semidefinite

Also, it can be easily checked thA&tis a geometric operator, in the sense that it has the following
scaling invariance:

FOX+op®p,Ap,x)=AF(X,p,x) forali >0, o €R.

We now study the homogenization of the problem

0 p(ev2ie vur, ) =0 inRN x [0, 7)

u, u ., — = ) )
ot & (2.2)
u®(x, 0) = ug(x) inRY,

where F is a geometric and degenerate elliptic operator, Lipschitz continuous and periodic in the
variablex with unit cell Yy = [0, 1]¥. This more general problem includes our front propagation
problem [1.B) as a particular case.

We start by gaining some insight with a formal asymptotic treatment. For this, it is natural to
begin with the expansion (se€ [4] for a systematic presentation of such ansatz)

ub(x,t) = uO(x, 1+ eul(g, t) + o(e).
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Plugging this expansion int@.Z) and identifying the terms in front of powes$,afie find
ulx, 1)+ F(Vaul (v, 1), Veaul(x, 1) + Vyul(y, 1), y) = 0,

wherey = x/e. This can be looked at as a partial differential equation for the corredtaits
solvability condition provides a constraint between the partial derivatives of the avétage

u’ + F(vu®) =0,
with F determined by the condition that a periodic solutioof

F(V2u(y). p + Vyu(»). y) = F(p)

exists.
We now prove the homogenization theorem for](2.2), following the work of Evans [16].

THEOREM1 Assume thafF is a degenerate elliptic and geometric operator, Lipschitz continuous
onSy x (RV\ {0}) x [0, T), periodic in the variable with unit cell Yy = [0, 1]¥ and satisfying

lim sup|F(X, p, =0. 2.3
i SUpIF (X, p. )| 23)

Further, assume that the viscosity solution of the problem
Su+ F(Vu,Vu + po, x) =0 (2.4)

is Holder continuous it and its Hilder coefficient is bounded with respectétéor § € (0, 1) (see
RemarK 2 after the theorem for a discussion on this assumption).

Then the viscosity solution of proble.2) converges uniformly(as 0) onRY x [0, T) to
the viscosity solution of the Hamilton—Jacobi initial value problem

ou _
— 4+ F(Vu)=0 inRN x[0,7),
o+ (Vu) x [0,T) 2.5)

u(x,0) = ug(x) in RV,

where the Hamiltoniai¥ (p) is uniquely determined by the requirement that there exists a periodic
viscosity solutiorv to the following degenerate elliptic equation:

F(V?(y), Vo(y) + p.y) = F(p). (2.6)
(We call the relation (2]6) theell problem)
Proof. Consider the approximating problem

sw’ (y) + F(Vaw’(y). Vyw’ (y) + p.y) =0, (2.7)

for somep € RY and someé < (0, 1). This problem has a unique continuous viscosity soluiién
(see [13]). Moreover, the periodicity ¢f and the uniqueness of the solutiefi imply thatw?® has
to be periodic with the same unit célly = [0, 1]".
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At any point wherew? attains its maximum, its Hessieﬂﬁw“ is negative semidefinite, so the
degenerate ellipticity of” implies that

sw’ (y) = —=F(Vaw’ (), Vyw’ (3) + p. ) < F(0, p, y) < |F(0, p. )l o(vy)
whenevery is a maximum ofw®. In a similar manner it can be argued that

Sw’(y) = —[IF(0, p, )loo(yy)

whenevem? reaches its minimum. It follows that

sup 8w’ llz=(ry) < IF O, p, )llLeery)-
0<8<1
Using this and the assumption on thélder continuity of the solution of (2.4), we conclude that
there exists a subsequerige— 0 such thav® — v uniformly inRY ands;w® — —x uniformly
in RN, where the function?’ is defined by? (y) = w®(y) —miny, w?® anda is some constant. Thus
we can pass to the limét — 0 in (2.7) to get

F(V5o(y). Dyv(y) + p.y) = &. (2.8)

We now want to prove the uniqueness of the constdat which a functiorw that satisfieq (2]8)
exists. Assume by contradiction that there exists a secondfaij that satisfie8), withh a
periodic function and. > A. By adding a constant if necessary, we may also assume thaf.
Then, for some small enough, we have

£0 + F(V33(y), Dyd(y) + p. y) > 0 > ev + F(Dv(y), Dyv(y) + p. y)
for some constartt. Thusv is a periodic supersolution of the equation
F(VZu(y), Dyv(y) + p,y) +ev—6 =0

andv is a periodic subsolution of the same equation. Using the comparison principle for periodic
solutions of geometric degenerate elliptic equations (s€e [13]), we arrive-af, in contradiction
with our assumption that > 9. Thus the constarit for which a periodic solutiom to (2.8) exists
is unique and we may denote it B p). All we have now left to prove is that the viscosity solution
of problem ) converges uniformly (as— 0) onR" x [0, T) to the viscosity solution of the
Hamilton—Jacobi initial value problerpi (2.5).

SinceF is degenerate elliptic and parabolic, problgm](2.2) has a unique continuous viscosity
solution«® of on RY x [0, T] (Theorem 11 in [3], Theorem 43.5 in [18]). Let us define the
functionu* : RY x [0, T) — R by

u*(x,t) = limsup u®(z,s).

=0, z—>x, s—>t

We claim that
ou*

at

in viscosity sense. By Remark126 in [18], this is equivalent to the claim that (2.9) holds/n
viscosity sense (as defined in Definitiol3 of [18]).

(x,1) + F(Vu*(x,1)) <0 (2.9)
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To prove that) holds ifF-viscosity sense, consider a functipre C*° (R x [0, T)) such
thatu™ — ¢ has a strict local maximum at the pointy, 7o), with

u*(xo, to) = ¢ (x0, 10)- (2.10)
We shall assume by contradiction that
Lo} -

o T F(V¢) =06 at(xo, o), (2.11)

whered is some positive constant. By the definitionffthere exists & -periodic viscosity solution
v to the problem

F(V3u(y), Vo(y) + Ve (x0. 0). ) = F(Vr¢(x0. 10)). (2.12)
Define the functio® by
P (x, 1) = ¢(x,1) +eu(f>.
&
We claim that, ife is small enough, then

8—¢(x, fo) + F<8V2¢8(x, 10), Vé* (x, to), f) > o (2.13)
ot e 2

in viscosity sense, in some ball(xg, r) centered akg with small enough radius. To prove this,
fix somey € C® (RN x [0, T)) such thatp® — v has a minimum atx1, o) € B(xo, r) x fo With

¢° (x1, 10) = ¥ (x1, t0).
Then the mapping — v(y) — n(y) has a minimum ap; = x1/¢, where
n(y) = ;—L(lﬂ(sy, 10) — ¢ (€Y, 10)).
Sincev is a viscosity solution of (2.12), this implies that
F(an(y), Vyn(y) + Vag (x0. 10), y) = F (V¢ (x0. 10)).
Thus, using[(Z2.111),

¢ 2 2 X1
E(XO, fo) + F<8V Y (x1, fo) — eVoP(x1, 10), VY (x1, o) — Vo (x1, o) + V¢ (xo, 10), ?) > 0.

Wherevervy is not null, we can use the Lipschitz continuity Bfand the fact that

¢ _ d¢° 0y
” (x1,70) = o7 (x1, t0) = o (x1, t0),
to infer that
oy

0
E + F(SVZ'(//, Vw7 %) 2 E at (xlv tO)

providedes andr are small enough.
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At the points wherévr is null, according to the definition of-viscosity, we can assume that
the test functiony also satisfies72y = 0 so we can still pass to the limit usirlg (2.3).
Since the choice of the test functigne C*°(R" x [0, T)) was arbitrary, the argument above

establisheq (2.13).
Sinceg € C*(RY x [0, T)), inequality ) implies that

0 0 .
—a‘f (.0 + F(svzw(x,r), Vo (x. 1), f) > 2 inBGo.r) x[o—r's1o+7]
£

for somer’ small enough. Buk® is a viscosity solution of2), so the comparison principle
for initial and boundary value problems for geometric degenerate parabolic equations on bounded
domains (Theorem.8.1 in [18], Theorem 13 in [3]) yields

max  (u® —¢°%) < max u® — ¢%).
B(x0,r)x B(tg,r") 9d(B(x0,r)x B(tg,r"))

In the limite — O this inequality becomes

U™ —¢%)(x0,70) < max u* —¢%),
3(B(x0.r) x Bto.r"))

which contradictg(2.70). This establishes2.9).
Also, by the continuity of.* and the definition of:*, the initial condition in[(2.R) implies

u*(x0, 0) = ug(x) inRM. (2.14)
Then the comparison principle fdr (2.5), along with {2.9) gnd (2.14), gives
u* < u.
Similarly it can be proved that
u<u,= liminf 4%, 2)

£—0, z—x, s—t

and since we obviously have < u*, we conclude that = u* = u,.
Henceu® converges uniformly (as — 0) tou, the solution of[(2.b). O

REMARK 2 In stating Theorerp|1, we assumed that the viscosity solution of the proplem (2.4) is
Holder continuous inc and its Hlder coefficient is bounded with respectstéor § € (0, 1). This
assumption is stronger than the established continuity of the viscosity solutidns|of (2.4) (see [13]).
However the assumption does appear plausible in light of the regularity theory for free boundary
problems|([6[ 77, B]. In any case, we point out that this assumption of unifditdet continuity is

used only for proving existence of the solution of the cell problen] (2.8). So an alternative approach
to stating the theorem would be to assume that the solutign g¢f (2.8) exists. Again, this assumption is
beyond what is known in general. However, we show the existence of solution of the cell problem
for a special class of functions and f (i.e., for curvature-sensitive evolution with a special class

of defect microstructure) in Section 3.1. Our numerical computations in Section 3.2 and discussion
in Section 3.3 also support existence in other examples.

We now show that certain properties of the operdtare inherited by the limit Hamiltonia#.
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THEOREM3  If the operatorF in (2.9) satisfies

lim F(O, p,y) =00 uniformlyiny,
[pl—o0

then the same holds for the homogenized Hamiltorian

lim F(p) = oo.

|pl—>o00

Proof. We refer to the approximating problefn (2.7) in the proof of Thedrém 1. Wrifing (2.7) at
point yo wherew? attains its maximum we get

sw’ (yo) + F(0, p, yo) < 0. (2.15)
ForanyM > 0, if p is large enough[ (2.15) implies that
—sw® > M.
But —sw® — F(p) uniformly ass — 0, so the inequality above proves the theorem. g

THEOREM4 If the operatorF in (2.2) is convex with respect to its first two variables £ x
RV \ {0}, then the homogenized Hamiltonidhis convex inp.

Proof. Fix p,q € RV \ {0}, x € RN and letv?, v? andvP*+9)/2 be theYy-periodic viscosity
solutions of the following cell problems:

F(VZ2P(y), VoP(y) + p,y) = F(p),
F(V2i(y), Vui(y) +q,y) = F(q),

F<V2”(”*"’/2<y>, Vo2 # y) N F(#)

By subtracting a constant from{?+%)/2 if necessary, we may also assume that
1 .
(P2 é(v” +v9) inRY. (2.16)

To prove the convexity of’, we assume by contradiction that

_ + 1 - _
F(%) > S(EP) + F(@). (2.17)
We claim that
p q P q 1 - - .
F(vzv ;” (y), V2 ;” (y)+’”2”’,y> <S(F(p)+Fig) inkY. (2.18)

To prove this, letw = %(v" + v?) andw, = n, * w, wheren, is the mollifier with support in the
ball B(0, ¢), i.e., an infinitely differentiable function. > 0 such that

7 () = ne (I ). fons(mdx:l, ne(r) = 0if x > e.
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Then
+ +
F(vzws(y), Vue(y) + y) < f N (y —z>F<v2w<z>, Vu() + =1, y) dz
B(y.¢)

Ptq

= f ne(y — z)F<V2w(z), Vw(z) + , z) dz +o(1)
B(y,e)

1
< —/ ne(y — 2) F(V20P (2), VoP () + p, 2) dz
2 JB(y,e)

1 2
+—/ ne(y —2) F(Vv1(2), Vvi(2) + ¢, 2) dz 4+ o(D)
2 JB(y,e)

= 2rp+iF@+oa
=5 (P)—FE () +0o(1)

ase — 0. In the limite = 0, we get[(2.18).
But (Z.17) and[(2.38) imply, by the comparison principle for periodic solutions of geometric
degenerate elliptic equations, that

}(UP +v9) < P92
2 ~X ’

which contradictg(2.16). O

We now specialize té¢ defined by the interface propagation probl¢m](2.1). Thegijem 1 tells us that

its viscosity solution converges uniformly (as— 0) on RY x [0, T) to the viscosity solution of

the Hamilton—Jacobi initial value proble.5), witl{p) uniquely determined by the requirement

that there exists a periodic viscosity solutioto the following cell problem:

(vy; + pi)(vx; + pj)
Vv + p|?

PrRoPOsITIONS For F defined by[(Z.]l) we have

F(p) =f<%) Ipl.

f)|Vv+ p| — c<aij - )vx,.x_, = F(p). (2.19)

thatov is a viscosity solution of (2.19) correspondingdp and F (ap). It follows then from the
unigueness of’ that F (ap) = a F(p), and we obtain the desired result. O

Proof. If v is a viscosity soluti09) correspondingg@nd F (p), then it is easily verified

We conclude that the effective motion of a curvature driven interface through a heterogeneous
medium is an anisotropic geometric one, similar to the effective motion studiedin [11].

3. Examples
3.1 Laminates
Assume that the functiorf (x) takes two valuesf; and f> in alternating stripes with volume
fractionsp and 1— 1 respectively, as shown in FigJre B.1. Specifically, let
fi ifx1 €0, u/2]U[L —pn/2,1],

FOLXD =0 0 i e (/21— u)2).
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FiG. 3.1. Laminated material.

with f extended by periodicity outside the strip € [0, 1]. We assume thaf; > f> without loss
of generality.

We study the propagation of an interface whose average normal is:in thisection. We claim
that if we find a self-similar fron#, [0, 1]-periodic inx1, that propagates by uniform translation in
thex; direction, then the translation velocity will be the effective normal velocity in this upwards
direction. Indeed, any other front that has effective normal paralleptoan be initially trapped
between two copies of and remains trapped between them for all time by the comparison
principle. It follows that its effective velocity has to be the same as the effective velocfty of

We begin by trying to find a self-similar frodft that can also be written as the gragh= g(x1)
of a [0, 1]-periodic functiong. If v denotes the constant upwards-translation velocitf othen its
normal velocity and curvature at any point are

"
=00 n= k= 8" (x1)

Vi+gG? W1t g23

Plugging this in our normal velocity formulp (1.1), we get

v 7/ (x1)
V1+z(x1)? (\/1+z(X1)2)3’

wherez(x1) = g’(x1). This equation can also be written as

= f(x) +c (3.1

veosu(xy) = f(x1) + cu’(x1) cosu(xy),

in the new unknown function(x1) = arctarnz(x1). The variables in this ordinary differential equa-
tion can be separated
du cosu . dxq

vecosu — f c (3.2)

in all the regions wher¢ is constant.
Due to the periodicity of andg and due to the symmetry gfwith respect to the axig; = 1/2,
the frontF has critical points at; = 0 andx; = 1/2. This means that

u(0) = u(1/2) = 0. (3.3)
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We can obtain two conditions far = u(u/2), by integrating[(3.2) with starting pointg = 0
(forward) andx1 = 1/2 (backward), respectively:

i
d
ﬁz_/ u COSu ’ (3.4)
2c 0 vecosu — f1
1-— “  ducos
a zf bt (3.5)
2c 0 vcosu — f2

We now show that this pair of equations can be solved simultaneously for the two unkiaowns
[0, umay] andv € [ f2, f1] if ¢ < u/2k where

Umax  dy cOS
Umax = arccos<é> € [0, n/2], k =/ oo
N 0

f1— f2cosu

Note 0< k < .
First, given any € [ f2, f1], we show that[(3]5) has a solutiane [0, umay, and further that
this solutioniz(v) is decreasing. Lat* = arccosg f2/v) € [0, umay, and let

) © du cosu
i [ st

o vCOSu — fo’

Note thatg is increasing on [Qu*] and that
limg@) =0, Im g@) =
i—0 i—>00

Thereforeg(u) = (1 — w)/2 or (3.5) has a solution in [@*] C [0, umad. Further, it is clear from
the right hand side of (3.5) that this solution is increasing.
Second, given any € [0, umax, we show that[(3}4) has a solutien= v € [ f2, f1], and that

v(i) is decreasing. Let
du cos
h(D) = / Lo
f —dcosu’
Note thath is increasing on f, f1], and that

#  dycos
lim ht) = | —2 < B lim h(d) = (3.6)
01— fo2 0 fl — f2 COSu 2c — f1

Therefore h(d) = w/2c or (3.4) has a solution infp, f1]. Further, it is clear from the right hand
side of [3.4) that this solution is decreasing.
Now defineg (v) = v(i(v)). This mapping is decreasing fronfy], f1] to itself, so it must have
a fixed pointv. Then{v, i(v)} are the simultaneous solutions [of (3.4) gnd](3.5) that we seek.
This result can be extended forlarger thanu./2k. Note from [3.}) thati becomes smaller
with ¢, and we can use this to improve the lower estimatg ifj (3.6). The details are cumbersome and
omitted since we will deal with the largecase in some generality later.
Figure[3.2 shows the dependence= v(c) for fixed values off; (= 1) andu (= 1/2) and
for various f> varying from—.05 t0.95 (the uppermost graph is for the highest value of the para-
meter f2). For each value ofy, v decreases with, reaches the limit mayi, f») = 1 asc — 0 and
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FIG. 3.2. The effective normal velocity in the ¢, direction for a laminate withf; = 1, © = 0.5 as a function ot for
various values off, from —0.05 (lowest curve) to 0.95 (highest curve).

the average%(fl + f2) asc — oo. We note that the former limit is consistent with the case 0
(Example 1 in Section 4 of [11]) and we now discuss the latter limit.
Combining [3.4) and (3]5), we obtain

1/ﬁ decosu 1 /ﬁ du cosu
wlo veosu—f1 1—pJo veosu — fo

Applying the mean value theorem to each integral, we dind:» € [0, i] such that

1 COSu1 1 cosup

w\veosuy — f1)  1—pu \vcosus— fo)°
Now, it is clear from|[(3.4) and (3.5) that and consequentlys, u», decreases to zero agjoes to
infinity. Therefore, up t@(1/c), the equation above becomes

B 1 _ 1
p—rf1) A-ww-rf)

and this in turn implies that

1
v=uf1+(l—u)f2=/o Flen dig

as suggested by Figure B.2. We shall return to this limit in the general case in Section 4.

The self-similar fronts not only allow us to calculate the values of the effective normal velocity
but they also seem to act as attractors in the space of solutiofis for (1.2), as is clear from the following
numerical simulation on a 64 64 grid. We use a semi-implicit scheme when discretizing (1.2):

hn+l —pn hn+l

T P 4o VA div e
At fP A+ clVhT A

where

\/maX(p’i, 0)2 + min(p, 0)2 + max(p’, 0)2 + min(p}, 02 if f >0,

P=
Jmin(p 02 + max(pt. 0)2 + min(p”, 0)2 + maxp}. 02 if £ <0,
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1 1
Pt =——D;¢}'; + >—— minmod D; D} ¢} ;, Dy Dy ¢}' 1 ),

Ax 2Ax L i=Lj
1 1 B .
py= 2D bitr; + 54, minmod Dy D{¢}'.q j» Dy DY),
1 1
y _ - : R S
p—= A_ny ¢+ 2Ax minmod Dy Dy ¢ ;, Dy Dy éy';_y),
' 1 1 . _ _
PY = 2=Dy 9} + 5 minmod Dy Dy ¢, Dy Dy ¢ ),
. | sign(u) min(|ul, [v]) if uv >0,
minmodu, v) = {O if uv < 0,

D ¢ij =¢ij—¢i—1j (backward,
D¢ =iv1j—¢i; (forward.

For the rest of the spatial derivatives, we simply use centered difference operators. We solve the
resulting linear system by means of a conjugate gradient method. Since we wish to avoid large gradi-
ents in the level set function, we keep it close to the signed distance function to the interface by using,

after each time step, a reinitialization procedure developed by Sussman, Smereka and Osher in [31].

30

251

o — o T

10 20 30 40 50 60 10 20 30 40 50 60
@ (b)

FiG. 3.3. Snapshots of an initially flat interface in a laminate with paramgtefs (3.7) at (a) every 50 time steps and (b) every
500 time steps.

Figure[3.B(a) shows several snapshots of an initially flat front moving in the laminate with the
parameters

n=12 fi=1l fo=0 c=1, (3.7)

taken at every 50 time steps (we used the time gtep= 0.0001). We see how this initially
flat interface rapidly approaches the self-similar shape. It subsequently starts a uniform upward
translation. This is shown in Figure 8.3(b), which shows snapshots of the same simulation taken at
every 500 time steps.

Figure[3.4 shows the evolution of an initially flat interface for the laminate with the parameters

n=1/2, fi=1l fo=-06, c=4 (3.8)

The front initially moves downwards in the part whefeis negative but is subsequently dragged
upwards by the other regions and eventually assumes the self-similar shape that translates upwards.
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FIG. 3.4. Snapshots of an initially flat interface in a laminate with paramgteis (3.8) vhtaies both positive and negative
values at (a) every 100 time steps and (b) every 2000 time steps.

In both these cases, the effective normal velocity (which can be calculated from the distance
between the level sets) agrees with that obtained earlier.

3.2 Other geometries

For mediums which do not have a laminate-type heterogeneity, self-similar interfaces do not
generally exist. However, Theordm 1 suggests the existence of interfaces which are self-similar
to the extent that they assume the same shape after they have propagated over one urfit bell of

certain situations, these self-similar interfaces also seem to act as attractors since any initial interface
approaches them as time evolves.
As an example, consider
. 2mx . 2wy
=10+ 5sin—- sin—-.

f=10%5sin"grsingy
Figure[3.5 shows the evolution of an initially flat interface positioned at the height10 with a
64 x 64 unit cell. The computational grid is also &464. The snapshots are taken at every 100 time
steps (withA: = 0.0001). In the lower half of the unit square, the left part is faster than the right

ofb—
50 y
40
o ————

20//—\//—
/,—\/_/

10 20 30 40 50 60

FiG. 3.5. Motion of a curvature driven interface in a medium with a sinusoidal normal velocity law. The figure shows
snapshots of an initially flat interface at every 100 time steps.
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so the front assumes a shape similar to the one observed in the laminate examples. However, as the
interface approaches the height= 32, the interface starts to flatten. In the upper half of the unit
square, the situation is reversed: the right part of the interface will be faster than the left and then it
again starts to flatten as it approaches the upper boundary of the unit cell.

3.3 Trapping

Of particular interest are the interfaces that are trapped, i.e., interfaces which evolve to a stationary
position. We begin with a laminate and seek conditions when one has a stationary interface with
average normal in the, direction. We assume, as before, that the interface is a graph. Proceeding
as before (or setting = 0 in (3.3)), we obtain

du cosu = 1 dx,
C
subject to[(3.B). If
1-—
. max{ |f12|ll7 |f2|(2 ) }

then we can solve this explicitly in regions whefés constant to obtain

—fix1

arcsin . forx1 € [0, u/2],
u(xy) = (3.9)
arcsinM forxy € [n/2,1/2].
C

The continuity ofu atx1 = /2 gives

—fimn

arcsin = arcsin

fo1—p)
BT

which implies
1
/0 fapdu=pfi+A—-pn)fo=0.

Thus we can construct a stationary front when the averagtisfzero and- is large enough. We
note that the converse is also true: if the averag¢ of positive (resp. negative), then the average
velocity is positive (resp. negative) for= co and therefore positive (resp. negative) for any 0

by the monotonicity of the effective velocity inin laminates.

Similar trapping conditions can also be deduced for other geometries. For example, consider the
case of a two-dimensional medium withconstant and positive except on a square array of circular
inclusions wheref is a (different) negative constant. In particular, consiflef0, 1]2 — R defined
by
fiif (1 —1/22+ (x2 — 1/2)? > 2,

fla, x2) = { 2 if (- 1/22 4 (x2— 1/2)2 < 12,

with 7 extended by periodicity outside the squarel]f, wherer € [0,1/2) andf1 > 0 > f» are
constants.
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(@) (b)

FIG. 3.6. Aninterface can propagate by (a) looping around a slow-velocity inclusion if the curvature coefficient is sufficiently
small or (b) cutting through a slow-velocity inclusion if the curvature coefficient is sufficiently large.

Stationary fronts with overall normab can be constructed using the same method as in the
laminate if

A< -<~fa (3.10)

Again, using the comparison principle, we conclude that no other front is able to break through
these stationary barriers, so the effective normal velocity ireshdérection is null.

The trapping conditions irjf (3.1.0) are sharp in the following sense: If the first inequality is not
satisfied, then the curvature is not penalized sufficiently and the front is able to propagate by looping
around the slow-speed inclusions (see Figurg 3.6(a)); if the second inequality is not satisfied, then
the resistance to phase change inside the inclusion is not large enough and the curvature allows it to
continue propagating by cutting through the inclusions (see Fjgufre 3.6(b)).

Finally, note from[(3.10) that in this example, unlike in a laminate, the effective normal velocity
is not monotone ire. The laminate is an exception in this regard and in general we do not expect
monotonicity inc.

4. The effective normal velocity for largec

We saw in our study of laminates that one can obtain a simple characterization of the effective
normal velocity when the curvature coefficiemtbecomes very large. We now generalize this
result to other microstructures. Indeed, we show that the average normal velocity of an interface
propagating in the overall directignis given by

Vp)=F(p) = () DN (4.1)
where(-),,1 denotes the average of¥a -periodic function on anv — 1-dimensional hyperplane

that is orthogonal tp, and(-), denotes the average of a periodic function of one variable in the
direction parallel top.

Heuristically, asc becomes large, the curvature is severely penalized, so the interface evolves
to become flat in the limi¢ — oo. The instantaneous normal velocity of this flat interface is given
by the average of over the interface. We thus obtain a one-dimensional problem: a flat interface
propagating normal to itself with a position-dependent velocity. Therefore, following Bhattacharya
[5] (also see Abeyaratne, Chu and James [1]), the effective velocity is the harmonic mean of its
instantaneous normal velocity. We thus obtain the characterizatign (4.1) above.

The rest of the section justifies this intuition. We prove the result in two dimensions, and justify
it through formal asymptotic analysis in higher dimensions. As a prelude, we make the following
observation. Since the effective normal velocity is a continuous function of direction (Theorem 3),
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it suffices to consider only ‘rational’ directions, i.e., directions where the ratios of components of
the normal vector referred to a rectangular cartesian system aligned with the unit cell are rational.
Then it is possible to choose a ‘super unit cell’, a cube which can be regarded as a unit cell of
periodicity of f and which has one edge aligned to the normal. By rescaling if necessary, we may
then take without loss of generality the unit cell to be a unit cartesian cube and the overall direction
of propagation to bey parallel toxy.

We begin with the two-dimensional case. We first prove that; farge enough, any sufficiently
smooth interface ifR2 with overall normaks that is initially a graph remains so for all future time.
Assume that the initial interface can be described as the graplg(x) of a [0, 1]-periodic function
g(-,0) : R — R. As we have seen in the previous section (geg (3.1)), the equation of motion for the
functiong is

g1 (x, 1) 8xx(x,1)

80D pagn) +
N e R A A vyt

as long as the interface can be written as a graph. By scalingstimer we can rewrite this as

gs = ky/1+ g2, (4.2)

where
fx, g(x,5) fx g(x,s) Gxx
k(x,s) = ———— —k(x, g(x,s)) = . 4.3
(x S) - K(.x g(-x S)) (1+g§)3/2 ( )
Differentiating [4.2) with respect te, we get the following expression fgt:
8x8xx
Qus = ky/1+ g2 + k——. (4.4)
Vi+g2
But, from (4.3),
8xx = <k - %)(1"‘ gf)s/z- (4.5)

Plugging this into[(4.]4), we get

8xs kax/1+g§+k<k_ {)gx(l‘Fg;%)- (4-6)

Differentiating [4.6) with respect to and replacing all second order spatial derivatiygswith the
right hand side of (4]5), we get the following expressiongdor;:

8xxs = kxx\/ 14 g)% + 2k, gx (k - f>(1+ g?)

c

2
n k<kx _ M%;x(l +g)+ k<k _ {) 1+3¢2)(1+¢d%2  (47)

We now differentiate] (4]3) with respect t@and obtain

_ fygs 8xxs 3<k f)zgxgxx

k - A )
T (1+gd¥2 2 1+ g2

Cc
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which, after replacing,, and g, with the expressions obtained in (4.6) apd {4.7) and some
algebraic manipulation, becomes

_ kxx f 8x
= e
Vitel cil+gd
We may choose the initial data for the interface to be such that

(4.8)

f)z fy_fxgx
kx+k(k—— + k.
c,/l—i—g%

c

k(x, g(x,0) > 0.

Then [4.8) enforces this inequality to stay valid at all times. Indeed; leé the first point in time
when the functiork assumes the value 0 at some paintlf x1 is an isolated zero point &f, then
we have

ky(x1,51) =0,  kyx(x1,11) >0

and thus[(4.8) givek; (x1, s1) > 0. If x1 is not an isolated zero point &f then

ky(x1,51) = kyx(x1,51) =0

and thus[(4]8) givek; (x1, s1) = 0. It follows that, indeedk does not ever assume negative values.
By (4.3), the positivity ofk implies
d gx > f('xv g)

dx /1+g§/ c

X0 2 X0 2
g§<1_ ( fx.g) dx) ) < < fx.g) dx) (4.9)

c Cc

thus

for all x < xg, wherexg is a point whereg assumes its maximum value. Moreover, a similar
inequality will hold forx > xg. Assuming that is large enough such that

X 2
( gEAC ) dx) <1 (4.10)

1 Cc

for any x; andx», (4.9) and its analogue for values ofwith x > xo will provide finite bounds
on g,. These bounds ensure, in particular, that the interface will be such that it can be written as the
graph of the functiory at all times.

It also follows that we are able to use the governing equatiog,for

8xx
1+g2’

X

g =flx,9V1+g2+c

at all times. Integrating this with respectitgields

X2

(/xz g(x,1t) dx> = /XZ f(x, g(x, 1)) dx + carctang,
x t x1

1 X1

If we choosex1 andx; to be ends of an interval of periodicity fgr then the last term on the right
hand side vanishes and we are left with

</ng(x, 1) dx) = /xz f(x, g(x,1))dx, (4.11)
X t X1

1
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which says that, at any time, the instantaneous effective speed of the interface equals the average of
the values off along the front.

We now estimate the effective normal velocity for the case when the constant interfacial energy
c is very large. Ifc is large enough such th&t (4]10) holdls, [4.9) implies that

max| f |

V2 —max|f|’

Igx] <m =m(c) =

and thus, for everyg € [0, 1],
1g(x0, 1) — g(0)| < m(c), (4.12)

where L
g = /O g(x, 1) dx.

This expresses the fact that, @as> oo, curvature becomes more and more penalized so the front
becomes flatter and flatter. Usitig (4.1[), (4.12) and the Lipschitz propejtyiefids

1 1 1
gt_/o f(x,g(x))dx’ = ’/O f(x,g(x,t))dx—/O f(x,é(x))dx‘

1
<f0 If (s g(r 1) — fx, 30| e
1 1
</ Lig(x,t) —g(t)|dx </ Lm(c)dx < Lm(c).
0 0

Thus, at any instant of time, the velocity equg%lsf(x, g(x)) dx, up to an error of ordes(1/c).

Then, as long a;fol f(x, y) dx never vanishes, the speed with which the average fonttravels
over one periodicity interval [AL] will be

(/1 1 -1
_dy) , (4.13)
0 [ fx,y)dx

up to an error of ordes(1/c). Since [[4.1IR) ensures that the frofistays close to its average (given
by (1)), (4.13) will also be the limit as — oo of the effective normal velocity of .

If the function f is such tha’%1 f(x, y) dx vanishes for some, then the front will be trapped
once it reaches that position and we h&#e>) = 0. We have proved the following.

PROPOSITION6 The effective normal velocity of a periodic interfaceRA with overall normalp
and moving with the normal velocity lay (1.1) has the limit

Vip)=Ffp)=(f1;0,"

p
asc — oo, as long ag f),. never vanishes. Iff),. vanishes at some point, theiip) = 0.

We now extend this result 8" through an asymptotic analysis of the unit cell probl.19).
Accordingly, we look for a'y-periodicv and constanV such that

(eny + Vh), V2h(ey + w))) _v

{
Vh —c| Ah —
F@IVh + ey c( P

(4.14)
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Above we assume without loss of generality tlwat| = 1. We make the ansatz
1 1 1
h(x) :u(x)+—v(x)+0(—2>, 74 =cV_1—|—V0+0(—>. (4.15)
C C C
We plug this into) and separate terms based on the powerébbérderc!, the problem is to
find Yy-periodicu and constanV_; that satisfy

Ay Nlew + V1), VEu(eny + V) _
len + Vul|2 -t

It is easy to verify that the solution is
Voi=0, ulx)=Uxn),

so thatVu = U’(xy)en. We plug this back intd (4.15) and thén (4.14). At ord&rwe need to find
aYy-periodicv and constanty that solves

FOOIL+Uey| — (Av — (en, VPvey)) = Vo.

We recognize the term inside the parenthesis to be the Laplaci&!irt. Therefore we can
eliminate it at eachcy by integrating the equation ovéfy_; and using the periodicity of to
obtain

(Fexy GMIA+U'(xn))en| = Vo, (4.16)

where we have used the notation introduced earlier. It is clearVihat determined by this one-
dimensional problem which is essentially the same as that analyzed in [1, 5].

Let us assume for the moment that eithgf., > O everywhere off)., < O everywhere, and
seek a solution witly’ > —1. We can then rewrit¢ (4.1L6) as

Vo
(Fen

Integrating with respect toy and using the periodicity df’, we obtain

1=Voll)otet O Vo=

1+ U =

We thus obtain the desired result that
-1,-1
V=N
in the limit asc — oo. If ()., takes both signs, then it is clear frojn (4.16) thighas to have both
signs and thus must be zero, once again giving us the desired result.

Acknowledgements

This work was carried out while BC was at the California Institute of Technology, and partially when
both BC and KB were visiting the Isaac Newton Institute, Cambridge, UK. It is a pleasure to thank
Prof. L. C. Evans for useful discussions. We are also grateful for the support of the U.S. National
Science Foundation (CMS 9457573) and the Air-Force Office of Scientific Research through a
MURI grant (F49602-98-1-0433).



172 B. CRACIUN & K. BHATTACHARYA

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

REFERENCES

. ABEYARATNE, R., CHu, C., & JAMES, R. D. Kinetics of materials with wiggly energies: theory and

application to the evolution of twinning microstructures in a Cu-Al-Ni shape memory &lajos. Mag.
A73(1996), 457-497.

. ALAVA, M. & MURNoz, M. A. Interface depinning versus absorbing-state phase transifirys. Rev.

E 65(2002), Art. 026145.

. BARLES, G., SONER, H. M., & SOUGANIDIS, P. E. Front propagation and phase field the&AM J.

Control Optim.31(1993), 439-469., Zbl 0785.35049 MR 94c:35005

. BENsoOussaN A., LIONS, J. L., & PapaNIicoLAOU, G. Asymptotic Analysis for Periodic Structures

North-Holland (1978).| Zbl 0404.35001 MR 82h:35001

. BHATTACHARYA, K. Phase boundary propagation in a heterogeneous Bydg. Roy. Soc. London A

Math.455(1982), 757—766. Zbl 0990.74047 MR 2000d:74061

. CAFFARELLI, L. A. A Harnack inequality approach to the regularity of free boundaries. I. Lipschitz free

boundaries ar€ 1%, Rev. Mat. IberoameB (1987), 139-162. Zbl 0676.35085 MR 90d:35306

. CAFFARELLI, L. A. A Harnack inequality approach to the regularity of free boundaries. Il. Flat

boundaries are LipschitComm. Pure Appl. Mat2 (1989), 55-78.| Zbl 0676.35086 MR 90b:35246

. CAFFARELLI, L. A. A Harnack inequality approach to the regularity of free boundaries. Ill. Existence

theory, compactness and dependenceXoinn. Scoula Norm. Sup. Pisa Cl. Stb (1988), 583—-602.
Zbl 0702.35249| MR 91a:35170

. CHEN, Y.-G., GIGA, Y., & GoT0, S. Uniqueness and existence of viscosity solutions of generalized

mean curvature flow equationk.Diff. Geometry83(1991), 749-786. Zbl 0696.35087 MR 93a:35093
CHEN, Y.-G., GIGA, Y., & GoTo, S. Remarks on viscosity solutions for evolution equatid?sc.
Japan Acad. Ser. 87 (1991), 323-328., Zbl 0816.35068 MR 93b:35076

CRACIUN, B. & BHATTACHARYA, K. Homogenization of a Hamilton—Jacobi equation associated
with the geometric motion of an interfacBroc. Roy. Soc. Edinburgh Sect. 183 (2003), 773-805.
MR 2006202

CRACIUN, B. & BHATTACHARYA, K. The effect of precipitates on the motion of a twin boundary. In
preparation (2002).

CRANDALL, M., IsHII, H., & LIONS, P. L. User’s guide to viscosity solutions of second order partial
differential equationsBull. Amer. Math. So@27(1992), 1-67.| Zbl 0755.35015 MR 92:35050

DE LA RuBIA, T. D., ZBiB, H. M., KHRAISHI, T. A., WIRTH, B. D., VICTORIA, M., &
CATURIA, M. J. Multiscale modelling of plastic flow localization in irradiated materiélature 406
(2000), 871-874.

E, W. A class of homogenization problems in the calculus of variat@osim. Pure Appl. Mathd4
(1991), 733-759.  Zbl 0773.49007 MR 92h:49010

EvaNs, L. C. Periodic homogenization of certain nonlinear partial differential equatRms. Roy. Soc.
Edinburgh Sect. A20(1992), 245-265.| Zbl 0796.35011 MR 93a:35016

GHONIEM, N. M., TONG, S. H., & SUN, L. Z. Parametric dislocation dynamics: A thermodynamics-
based approach to investigations of mesoscopic plastic deformBtiga. Rev. B1 (2000), 913-927.
GIGA, Y. Surface evolution equations—a level set method. Hokkaido Univ. Technical Report Series in
Mathematics71(2002).

GGA, Y., GoTo, S., IsHIIl, H., & SATO, M.-H. Comparison principle and convexity preserving
properties for singular degenerate parabolic equations on unbounded dotndiasa Univ. Math. J.
40(1991), 443-470. Zbl 0836.35009 MR 92h:35010

GOLESTANIAN, R. & RAPHAEL, E. Roughening transition in a moving contact lifhys. Rev. B7
(2003), Art. 031603.


http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0785.35049&format=complete
http://www.ams.org/mathscinet-getitem?mr=94c%3A35005
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0404.35001&format=complete
http://www.ams.org/mathscinet-getitem?mr=82h%3A35001
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0990.74047&format=complete
http://www.ams.org/mathscinet-getitem?mr=2000d%3A74061
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0676.35085&format=complete
http://www.ams.org/mathscinet-getitem?mr=90d%3A35306
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0676.35086&format=complete
http://www.ams.org/mathscinet-getitem?mr=90b%3A35246
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0702.35249&format=complete
http://www.ams.org/mathscinet-getitem?mr=91a%3A35170
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0696.35087&format=complete
http://www.ams.org/mathscinet-getitem?mr=93a%3A35093
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0816.35063&format=complete
http://www.ams.org/mathscinet-getitem?mr=93b%3A35076
http://www.ams.org/mathscinet-getitem?mr=2006202
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0755.35015&format=complete
http://www.ams.org/mathscinet-getitem?mr=92j%3A35050
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0773.49007&format=complete
http://www.ams.org/mathscinet-getitem?mr=92h%3A49010
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0796.35011&format=complete
http://www.ams.org/mathscinet-getitem?mr=93a%3A35016
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0836.35009&format=complete
http://www.ams.org/mathscinet-getitem?mr=92h%3A35010

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

MOTION OF A CURVATURE-SENSITIVE INTERFACE 173

GURTIN, M. E. Thermomechanics of Evolving Phase Boundaries in the Pl@xéord Univ. Press
(1993). [ Zbl0787.73004 MR 97k:73001

HALPIN-HEALY, T. & ZHANG, Y. C. Kinetic roughening phenomena, stochastic growth, directed
polymers and all that—Aspects of multidisciplinary statistical mechafibys. Rep254 (1995), 215-
415.

HIRATANI, M. & ZBIB, H. M. On dislocation-defect interactions and patterning: stochastic discrete
dislocation dynamics (SDDJ. Nucl. Mat.323(2003), 290-303.

HIRTH, J. P. & LOTHE, J. Theory of DislocationsKrieger (1992).

KosLowskl, M., CuiTiNo, A. M., & ORTIZ, M. A phase-field theory of dislocation dynamics,
strain hardening and hysteresis in ductile single crystaldech. Phys. SolidS0 (2002), 2597-2635.

Zbl pre01929473 MR 2003h:74059

LIONS, P. L., RPANICOLAOU, G., & VARADHAN, S. R. S. Homogenization of Hamilton Jacobi
equation. Preprint (1987).

NicoLA, L., VAN DER GIESSEN E., & NEEDLEMMAN, A. 2D dislocation dynamics in thin metal
layers.Mat. Sci. Engng. 809(2001), 274-277.

mRRK, K. & KM, I. M. Dynamics of an interface driven through random media: The effect of spatially
correlated noisel. Phys. Soc. Japar? (2003), 111-116.

PETUKHOV, B. V. Statistical model of the local pinning of dislocations due to cross-slip evdiats Sci.
Engng. A309(2001), 345-347.

SETHIAN, J. A. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational
Geometry, Fluid Mechanics, Computer Vision, and Materials ScieGaenbridge Univ. Press (1999).
Zbl 0973.76008| MR 2000c:65015

BUSSMAN, M., SMEREKA, P., & OsHER, S. A level set approach for computing solutions to
incompressible two-phase flod. Comput. Physl14(1994), 146-159. Zbl 0808.76077

VANNIMENUS, J. Some recent (and surprising) results on interface and contact line depinning in random
media.Phys. A314(2002), 264—-271.  Zbl 0868.35046


http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0787.73004&format=complete
http://www.ams.org/mathscinet-getitem?mr=97k%3A73001
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=01929473&format=complete
http://www.ams.org/mathscinet-getitem?mr=2003h%3A74059
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0973.76003&format=complete
http://www.ams.org/mathscinet-getitem?mr=2000c%3A65015
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0808.76077&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0868.35046&format=complete

	Introduction
	A homogenization result
	Examples
	Laminates
	Other geometries
	Trapping

	The effective normal velocity for large c

