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This paper deals with the evolution of fronts or interfaces propagating with normal velocityvn =

f − cκ, wheref is a spatially periodic function,c a constant andκ the mean curvature. This study
is motivated by the propagation of phase boundaries and dislocation loops through heterogeneous
media. We establish a homogenization result when the scale of oscillation off is small compared
to the macroscopic dimensions, and show that the overall front is governed by a geometric law
vn = f̄ (n). We illustrate the results using examples. We also provide an explicit characterization of
f̄ in the limit c → ∞.

1. Introduction

This paper deals with the evolution of fronts or interfaces propagating with a normal velocity
that depends on the position and the mean curvature of the front. Specifically consider a front
propagating with normal velocity

vn = f − cκ, (1.1)

wheref = f (x) is a given spatially dependent function,c is a constant andκ is the mean curvature.
Supposef is heterogeneous on a scale small compared to the domain; then the evolution of the front
may be very complicated. It is of interest then to ask if one can define an average or overall front—
one that captures the essential macroscopic features and ignores the exact microscopic details—and
describe its propagation. That is the issue studied in this paper.

A motivation for such a study is the motion of a phase boundary through a heterogeneous
material, for example a matrix with precipitates. Consider a body occupying a regionΩ ⊂ RN
consisting of one phase occupying a regionA ⊂ Ω and surrounded by a second phase which
occupiesΩ \ A. Phase transformation causes the regionA to evolve, and we are interested in this
evolution. The energy associated with the two-phase arrangement is

E(A) =

∫
A
φ+(x)dx +

∫
Ω\A

φ−(x)dx +

∫
∂A
c da,
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whereφ± is the density of the bulk energy in the two phases andc is the density of the interfacial
energy (c > 0). We assume that the bulk energy density may depend on position in view of
inhomogeneities and defects in the material. We assume that the interfacial energy density is
constant for simplicity. The energy dissipation associated with the motion of the phase boundary
can be shown (following Gurtin [21]) to be

4(A) =

∫
∂A
(f − cκ)vn da,

where−f = φ+
− φ− is the jump in the bulk energy density across the phase boundary,vn is the

normal velocity of the interface andκ is the mean curvature. Therefore,f−cκ is the thermodynamic
force conjugate to the normal velocity and may be interpreted as the thermodynamic driving force
that drives the phase boundary. It is natural, therefore, to assume that the normal velocity depends on
the driving force, and (1.1) is the simplest model of this type. We note that this model automatically
satisfies the requirement that the dissipation be non-negative.

A specialization of this interfacial evolution model is the Edwards–Wilkinson model much
studied in statistical mechanics (see for example [22]). We may obtain this model from our equation
(1.1) by assuming that the interface is a graph, linearizing the curvature and takingf to be stochastic
(constant plus an appropriate noise). The equation (1.1) is also often used inR2 to study the
evolution of dislocation loops, where it is referred to as the ‘line tension model’ (see for example
[24]).

There is large literature on (1.1) whenf is constant that establishes existence [9] and proposes
fast numerical algorithms (see for example [31, 30]). However, actual materials often contain defects
and heterogeneities, and thereforef is not constant. These defects and heterogeneities can change
the evolution significantly, and thus have a critically important implication in practice. Therefore the
role of defects have also been studied in a variety of settings. Notable among them is the study of
dislocation loops in material science wheref is assumed to be either constant except on a collection
of small inclusions (where it takes another value) or a collection of point defects (Dirac masses).
The motion past an individual defect and the “bow-out” of dislocation loops pinned by multiple
defects is well understood [24]. More recently, numerical studies that consider a very large number
of (periodically or randomly distributed) defects and also take into account the elastic interactions
have been conducted [17, 25, 23, 27, 14]. Another interesting literature uses statistical mechanics
to study the Edwards–Wilkinson and related models of interfaces propagating in a random medium
(see for example [22, 28, 2]). A related literature concerns the propagation of contact line in the
presence of defects [20, 32].

Yet, many important and interesting questions remain open. In particular, a mathematical
treatment from the homogenization viewpoint is missing. We develop it in this paper, and obtain
interesting and useful insights. This paper is the second in a series dealing with the propagation of
fronts through heterogeneous media. The first [11] considered onlyf and ignored the curvature.
The third [12] considers the situation where the evolution of the interface is coupled to a partial
differential equation inΩ (specifically elasticity).

An efficient tool for studying problems such as (1.1) is the level set formulation. If we assume
that there exists a smooth functionh : RN × [0, T ) → R such that our front coincides with its zero
level set at all times, a simple calculation yields

n =
∇h

|∇h|
, κ = div

∇h

|∇h|
, vn = −

1

|∇h|

∂h

∂t
;
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so our normal velocity law (1.1) implies thath satisfies the following equation:

∂h

∂t
= −f (x)|∇h| + c|∇h| div

∇h

|∇h|
. (1.2)

To this equation one has to attach the initial condition

h(x,0) = h0(x) in RN ,

whereh0 is a function chosen such that its zero level set coincides with the initial position of the
front, and appropriate boundary or far field conditions.

If the medium in which the front is propagating is periodic with unit cell [0, ε]N , the corre-
sponding problem is

∂hε

∂t
= −f

(
x

ε

)
|∇hε| + εc|∇hε| div

∇hε

|∇hε|
in RN × [0, T ),

hε(x,0) = h0(x) in RN ,
(1.3)

with f continuous and periodic with periodYN = [0,1]N . Our aim is to study the homogenization
of this phenomenon, i.e., to capture its limit behavior when the structure of the medium becomes
infinitely fine (ε → 0).

We remark that the scaling of the curvature coefficient,εc, chosen in (1.3) is the most interesting.
Heuristically, in this situation we expect the curvature to scale as 1/ε, or the radius of curvature
of the interface to be comparable to the unit cell. So the curvature and heterogeneities contribute
comparably to the evolution of the interface and thus interact. If we assume that the curvature
coefficient is larger, orεαc for α < 1, the radius of curvature scales as 1/εα and becomes large
compared to the unit cell asε → 0. In other words, the curvature term dominates so that the
interface becomes flat and we obtain a one-dimensional problem studied in [5]. Similarly, if we
assume that the curvature coefficient is smaller, orεαc for α > 1, then the interface does not feel
the contribution of the curvature and one obtains geometric motion studied in [11].

We show in Section 2, following the methods of Evans [16], that, asε → 0, the solution of (1.3)
converges uniformly to the solution of

∂h

∂t
= −f̄

(
∇h

|∇h|

)
|∇h| in RN × [0, T ),

h(x,0) = h0(x) in RN ,
(1.4)

wheref̄ is determined by solving a suitable periodic problem on the unit cell (2.19). This implies
that the average or overall interface propagates with normal velocity

vn = f̄ (n),

wheren is the normal to the interface. So, the normal velocity depends on the orientation of the
interface but not on the position or the mean curvature. In short, the average interface is governed
by an anisotropic geometric law.

We also show that iff is strictly positive (negative), then the resultinḡf is also strictly positive
(negative). Iff takes both signs, then̄f may be positive, negative or even zero. This corresponds to
the interface being trapped. We explore this and other issues with various examples in Section 3.

We notice from our examples that the effective behavior is easily characterized when the
curvature coefficientc is large. We study this limit in Section 4 and provide an explicit charac-
terization forf̄ in this case.
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2. A homogenization result

This section considers the homogenization of (1.3) assuming thatc > 0. The casec = 0 when (1.3)
reduces to a Hamilton–Jacobi equation has been treated in [11, 15, 16, 26]. It has been shown that
the viscosity solution of the Hamilton–Jacobi initial value problem

∂hε

∂t
+ f

(
x

ε

)
|∇hε| = 0 in RN × [0,∞),

hε(x,0) = h0(x) in RN ,

converges uniformly onRN × [0, T ) (for all T < ∞) to the viscosity solution of the homogenized
Hamilton–Jacobi initial value problem

∂h

∂t
+ f̄ (∇h)|∇h| = 0 in RN × [0,∞),

h(x,0) = h0(x) in RN ,
,

for f̄ determined by the solution of a suitable ‘unit cell’ problem. Various variational character-
izations forf̄ are given in [11].

We will in fact consider the homogenization of a slightly more general problem than (1.3). Note
that (1.3) can also be written as

∂hε

∂t
+ F

(
ε∇2hε,∇hε,

x

ε

)
= 0,

where

F(A, p, x) = f (x)|p| − c

〈
I −

p ⊗ p

|p|2
, A

〉
. (2.1)

The operatorF defined above is degenerate elliptic, in the sense that

F(X, p, x) > F(Y, p, x) if Y > X (i.e. if Y −X is positive semidefinite).

Also, it can be easily checked thatF is a geometric operator, in the sense that it has the following
scaling invariance:

F(λX + σp ⊗ p, λp, x) = λF(X, p, x) for all λ > 0, σ ∈ R.

We now study the homogenization of the problem
∂uε

∂t
+ F

(
ε∇2uε,∇uε,

x

ε

)
= 0 in RN × [0, T ),

uε(x,0) = u0(x) in RN ,
(2.2)

whereF is a geometric and degenerate elliptic operator, Lipschitz continuous and periodic in the
variablex with unit cell YN = [0,1]N . This more general problem includes our front propagation
problem (1.3) as a particular case.

We start by gaining some insight with a formal asymptotic treatment. For this, it is natural to
begin with the expansion (see [4] for a systematic presentation of such ansatz)

uε(x, t) = u0(x, t)+ εu1
(
x

ε
, t

)
+ o(ε).
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Plugging this expansion into (2.2) and identifying the terms in front of powers ofε0, we find

u0
t (x, t)+ F(∇2

yu
1(y, t),∇xu

0(x, t)+ ∇yu
1(y, t), y) = 0,

wherey = x/ε. This can be looked at as a partial differential equation for the correctoru1; its
solvability condition provides a constraint between the partial derivatives of the averageu0:

u0
t + F̄ (∇u0) = 0,

with F̄ determined by the condition that a periodic solutionv of

F(∇2
yv(y), p + ∇yv(y), y) = F̄ (p)

exists.
We now prove the homogenization theorem for (2.2), following the work of Evans [16].

THEOREM 1 Assume thatF is a degenerate elliptic and geometric operator, Lipschitz continuous
onSN × (RN \ {0})× [0, T ), periodic in the variablex with unit cellYN = [0,1]N and satisfying

lim
p→0, X→0

sup
x

|F(X, p, x)| = 0. (2.3)

Further, assume that the viscosity solution of the problem

δu+ F(∇2u,∇u+ p0, x) = 0 (2.4)

is Hölder continuous inx and its Ḧolder coefficient is bounded with respect toδ for δ ∈ (0,1) (see
Remark 2 after the theorem for a discussion on this assumption).

Then the viscosity solution of problem (2.2) converges uniformly (asε → 0) onRN × [0, T ) to
the viscosity solution of the Hamilton–Jacobi initial value problem

∂u

∂t
+ F̄ (∇u) = 0 in RN × [0, T ),

u(x,0) = u0(x) in RN ,
(2.5)

where the Hamiltonian̄F(p) is uniquely determined by the requirement that there exists a periodic
viscosity solutionv to the following degenerate elliptic equation:

F(∇2v(y),∇v(y)+ p, y) = F̄ (p). (2.6)

(We call the relation (2.6) thecell problem.)

Proof. Consider the approximating problem

δwδ(y)+ F(∇2
yw

δ(y),∇yw
δ(y)+ p, y) = 0, (2.7)

for somep ∈ RN and someδ ∈ (0,1). This problem has a unique continuous viscosity solutionwδ

(see [13]). Moreover, the periodicity ofF and the uniqueness of the solutionwδ imply thatwδ has
to be periodic with the same unit cellYN = [0,1]N .
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At any point wherewδ attains its maximum, its Hessian∇2
yw

δ is negative semidefinite, so the
degenerate ellipticity ofF implies that

δwδ(y) = −F(∇2
yw

δ(y),∇yw
δ(y)+ p, y) 6 F(0, p, y) 6 ‖F(0, p, ·)‖L∞(YN )

whenevery is a maximum ofwδ. In a similar manner it can be argued that

δwδ(y) > −‖F(0, p, ·)‖L∞(YN )

wheneverwδ reaches its minimum. It follows that

sup
0<δ<1

‖δwδ‖L∞(YN ) 6 ‖F(0, p, ·)‖L∞(YN ).

Using this and the assumption on the Hölder continuity of the solution of (2.4), we conclude that
there exists a subsequenceδj → 0 such thatvδj → v uniformly in RN andδjwδj → −λ uniformly
in RN , where the functionvδ is defined byvδ(y) = wδ(y)−minYN w

δ andλ is some constant. Thus
we can pass to the limitδ → 0 in (2.7) to get

F(∇2
yv(y),Dyv(y)+ p, y) = λ. (2.8)

We now want to prove the uniqueness of the constantλ for which a functionv that satisfies (2.8)
exists. Assume by contradiction that there exists a second pair(ṽ, λ̃) that satisfies (2.8), with̃v a
periodic function and̃λ > λ. By adding a constant if necessary, we may also assume thatv > ṽ.
Then, for someε small enough, we have

εṽ + F(∇2
y ṽ(y),Dy ṽ(y)+ p, y) > θ > εv + F(D2

yv(y),Dyv(y)+ p, y)

for some constantθ . Thusṽ is a periodic supersolution of the equation

F(∇2
yv(y),Dyv(y)+ p, y)+ εv − θ = 0

andv is a periodic subsolution of the same equation. Using the comparison principle for periodic
solutions of geometric degenerate elliptic equations (see [13]), we arrive atṽ > v, in contradiction
with our assumption thatv > ṽ. Thus the constantλ for which a periodic solutionv to (2.8) exists
is unique and we may denote it bȳF(p). All we have now left to prove is that the viscosity solution
of problem (2.2) converges uniformly (asε → 0) onRN × [0, T ) to the viscosity solution of the
Hamilton–Jacobi initial value problem (2.5).

SinceF is degenerate elliptic and parabolic, problem (2.2) has a unique continuous viscosity
solution uε of on RN × [0, T ] (Theorem 1.1 in [3], Theorem 4.3.5 in [18]). Let us define the
functionu∗ : RN × [0, T ) → R by

u∗(x, t) = lim sup
ε→0, z→x, s→t

uε(z, s).

We claim that
∂u∗

∂t
(x, t)+ F̄ (∇u∗(x, t)) 6 0 (2.9)

in viscosity sense. By Remark 2.1.6 in [18], this is equivalent to the claim that (2.9) holds inF-
viscosity sense (as defined in Definition 2.1.5 of [18]).
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To prove that (2.9) holds inF-viscosity sense, consider a functionφ ∈ C∞(RN × [0, T )) such
thatu∗

− φ has a strict local maximum at the point(x0, t0), with

u∗(x0, t0) = φ(x0, t0). (2.10)

We shall assume by contradiction that

∂φ

∂t
+ F̄ (∇φ) = θ at (x0, t0), (2.11)

whereθ is some positive constant. By the definition ofF̄ , there exists aY -periodic viscosity solution
v to the problem

F(∇2
yv(y),∇v(y)+ ∇xφ(x0, t0), y) = F̄ (∇xφ(x0, t0)). (2.12)

Define the functionφε by

φε(x, t) = φ(x, t)+ εv

(
x

ε

)
.

We claim that, ifε is small enough, then

∂φ

∂t
(x, t0)+ F

(
ε∇2φε(x, t0),∇φ

ε(x, t0),
x

ε

)
>
θ

2
(2.13)

in viscosity sense, in some ballB(x0, r) centered atx0 with small enough radiusr. To prove this,
fix someψ ∈ C∞(RN × [0, T )) such thatφε − ψ has a minimum at(x1, t0) ∈ B(x0, r)× t0 with

φε(x1, t0) = ψ(x1, t0).

Then the mappingy 7→ v(y)− η(y) has a minimum aty1 = x1/ε, where

η(y) =
1

ε
(ψ(εy, t0)− φ(εy, t0)).

Sincev is a viscosity solution of (2.12), this implies that

F(∇2
yη(y),∇yη(y)+ ∇xφ(x0, t0), y) > F̄ (∇xφ(x0, t0)).

Thus, using (2.11),

∂φ

∂t
(x0, t0)+ F

(
ε∇2ψ(x1, t0)− ε∇2φ(x1, t0),∇ψ(x1, t0)− ∇φ(x1, t0)+ ∇φ(x0, t0),

x1

ε

)
> θ.

Wherever∇ψ is not null, we can use the Lipschitz continuity ofF and the fact that

∂φ

∂t
(x1, t0) =

∂φε

∂t
(x1, t0) =

∂ψ

∂t
(x1, t0),

to infer that
∂ψ

∂t
+ F

(
ε∇2ψ,∇ψ,

x1

ε

)
>
θ

2
at (x1, t0)

providedε andr are small enough.
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At the points where∇ψ is null, according to the definition ofF-viscosity, we can assume that
the test functionψ also satisfies∇2ψ = 0 so we can still pass to the limit using (2.3).

Since the choice of the test functionψ ∈ C∞(RN × [0, T )) was arbitrary, the argument above
establishes (2.13).

Sinceφ ∈ C∞(RN × [0, T )), inequality (2.13) implies that

∂φ

∂t
(x, t)+ F

(
ε∇2φε(x, t),∇φε(x, t),

x

ε

)
>
θ

4
in B(x0, r)× [t0 − r ′, t0 + r ′]

for somer ′ small enough. Butuε is a viscosity solution of (2.2), so the comparison principle
for initial and boundary value problems for geometric degenerate parabolic equations on bounded
domains (Theorem 3.6.1 in [18], Theorem 1.3 in [3]) yields

max
B(x0,r)×B(t0,r

′)
(uε − φε) 6 max

∂(B(x0,r)×B(t0,r
′))
(uε − φε).

In the limit ε → 0 this inequality becomes

(u∗
− φε)(x0, t0) 6 max

∂(B(x0,r)×B(t0,r
′))
(u∗

− φε),

which contradicts (2.10). This establishes (2.9).
Also, by the continuity ofuε and the definition ofu∗, the initial condition in (2.2) implies

u∗(x0,0) = u0(x) in RN . (2.14)

Then the comparison principle for (2.5), along with (2.9) and (2.14), gives

u∗ 6 u.

Similarly it can be proved that

u 6 u∗ = lim inf
ε→0, z→x, s→t

uε(s, z)

and since we obviously haveu∗ 6 u∗, we conclude thatu = u∗
= u∗.

Henceuε converges uniformly (asε → 0) tou, the solution of (2.5). 2

REMARK 2 In stating Theorem 1, we assumed that the viscosity solution of the problem (2.4) is
Hölder continuous inx and its Ḧolder coefficient is bounded with respect toδ for δ ∈ (0,1). This
assumption is stronger than the established continuity of the viscosity solutions of (2.4) (see [13]).
However the assumption does appear plausible in light of the regularity theory for free boundary
problems [6, 7, 8]. In any case, we point out that this assumption of uniform Hölder continuity is
used only for proving existence of the solution of the cell problem (2.8). So an alternative approach
to stating the theorem would be to assume that the solution of (2.8) exists. Again, this assumption is
beyond what is known in general. However, we show the existence of solution of the cell problem
for a special class of functionsF andf (i.e., for curvature-sensitive evolution with a special class
of defect microstructure) in Section 3.1. Our numerical computations in Section 3.2 and discussion
in Section 3.3 also support existence in other examples.

We now show that certain properties of the operatorF are inherited by the limit Hamiltonian̄F .
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THEOREM 3 If the operatorF in (2.2) satisfies

lim
|p|→∞

F(0, p, y) = ∞ uniformly in y,

then the same holds for the homogenized HamiltonianF̄ :

lim
|p|→∞

F̄ (p) = ∞.

Proof. We refer to the approximating problem (2.7) in the proof of Theorem 1. Writing (2.7) at
pointy0 wherewδ attains its maximum we get

δwδ(y0)+ F(0, p, y0) 6 0. (2.15)

For anyM > 0, if p is large enough, (2.15) implies that

−δwδ > M.

But −δwδ → F̄ (p) uniformly asδ → 0, so the inequality above proves the theorem. 2

THEOREM 4 If the operatorF in (2.2) is convex with respect to its first two variables onSN ×

RN \ {0}, then the homogenized Hamiltonian̄F is convex inp.

Proof. Fix p, q ∈ RN \ {0}, x ∈ RN and letvp, vq andv(p+q)/2 be theYN -periodic viscosity
solutions of the following cell problems:

F(∇2vp(y),∇vp(y)+ p, y) = F̄ (p),

F (∇2vq(y),∇vq(y)+ q, y) = F̄ (q),

F

(
∇

2v(p+q)/2(y),∇v(p+q)/2(y)+
p + q

2
, y

)
= F̄

(
p + q

2

)
.

By subtracting a constant fromv(p+q)/2 if necessary, we may also assume that

v(p+q)/2 <
1

2
(vp + vq) in RN . (2.16)

To prove the convexity of̄F , we assume by contradiction that

F̄

(
p + q

2

)
>

1

2
(F̄ (p)+ F̄ (q)). (2.17)

We claim that

F

(
∇

2v
p

+ vq

2
(y),∇

vp + vq

2
(y)+

p + q

2
, y

)
6

1

2
(F̄ (p)+ F̄ (q)) in RN . (2.18)

To prove this, letw =
1
2(v

p
+ vq) andwε = ηε ∗ w, whereηε is the mollifier with support in the

ballB(0, ε), i.e., an infinitely differentiable functionηε > 0 such that

ηε(x) = ηε(|x|),

∫ ε

0
ηε(x)x dx = 1, ηε(x) = 0 if x > ε.
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Then

F

(
∇

2wε(y),∇wε(y)+
p+ q

2
, y

)
6

∫
B(y,ε)

ηε(y− z)F

(
∇

2w(z),∇w(z)+
p+ q

2
, y

)
dz

=

∫
B(y,ε)

ηε(y− z)F

(
∇

2w(z),∇w(z)+
p+ q

2
, z

)
dz+ o(1)

6
1

2

∫
B(y,ε)

ηε(y− z)F (∇2vp(z),∇vp(z)+p, z)dz

+
1

2

∫
B(y,ε)

ηε(y− z)F (∇2vq(z),∇vq(z)+ q, z)dz+ o(1)

=
1

2
F̄ (p)+

1

2
F̄ (q)+ o(1)

asε → 0. In the limitε = 0, we get (2.18).
But (2.17) and (2.18) imply, by the comparison principle for periodic solutions of geometric

degenerate elliptic equations, that

1

2
(vp + vq) 6 v(p+q)/2,

which contradicts (2.16). 2

We now specialize toF defined by the interface propagation problem (2.1). Theorem 1 tells us that
its viscosity solution converges uniformly (asε → 0) onRN × [0, T ) to the viscosity solution of
the Hamilton–Jacobi initial value problem (2.5), withF̄ (p) uniquely determined by the requirement
that there exists a periodic viscosity solutionv to the following cell problem:

f (x)|∇v + p| − c

(
δij −

(vxi + pi)(vxj + pj )

|∇v + p|2

)
vxixj = F̄ (p). (2.19)

PROPOSITION5 ForF defined by (2.1) we have

F̄ (p) = f̄

(
p

|p|

)
|p|.

Proof. If v is a viscosity solution of (2.19) corresponding top andF̄ (p), then it is easily verified
thatαv is a viscosity solution of (2.19) corresponding toαp andF̄ (αp). It follows then from the
uniqueness of̄F thatF̄ (αp) = αF̄ (p), and we obtain the desired result. 2

We conclude that the effective motion of a curvature driven interface through a heterogeneous
medium is an anisotropic geometric one, similar to the effective motion studied in [11].

3. Examples

3.1 Laminates

Assume that the functionf (x) takes two valuesf1 and f2 in alternating stripes with volume
fractionsµ and 1− µ respectively, as shown in Figure 3.1. Specifically, let

f (x1, x2) =

{
f1 if x1 ∈ [0, µ/2] ∪ [1 − µ/2,1],

f2 if x1 ∈ (µ/2,1 − µ/2),
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f1 f2 f1 f2 f1

1

1

0

FIG. 3.1. Laminated material.

with f extended by periodicity outside the stripx1 ∈ [0,1]. We assume thatf1 > f2 without loss
of generality.

We study the propagation of an interface whose average normal is in thex2 direction. We claim
that if we find a self-similar frontF , [0,1]-periodic inx1, that propagates by uniform translation in
thex2 direction, then the translation velocity will be the effective normal velocity in this upwardsx2
direction. Indeed, any other front that has effective normal parallel tox2 can be initially trapped
between two copies ofF and remains trapped between them for all time by the comparison
principle. It follows that its effective velocity has to be the same as the effective velocity ofF .

We begin by trying to find a self-similar frontF that can also be written as the graphx2 = g(x1)

of a [0,1]-periodic functiong. If v denotes the constant upwards-translation velocity ofF , then its
normal velocity and curvature at any point are

vn = (0, v) · n =
v√

1 + g′(x1)2
, κ = −

g′′(x1)

(
√

1 + g′(x1)2)3
.

Plugging this in our normal velocity formula (1.1), we get

v√
1 + z(x1)2

= f (x1)+ c
z′(x1)

(
√

1 + z(x1)2)3
, (3.1)

wherez(x1) = g′(x1). This equation can also be written as

v cosu(x1) = f (x1)+ cu′(x1) cosu(x1),

in the new unknown functionu(x1) = arctanz(x1). The variables in this ordinary differential equa-
tion can be separated

du cosu

v cosu− f
=

dx1

c
(3.2)

in all the regions wheref is constant.
Due to the periodicity off andg and due to the symmetry off with respect to the axisx1 = 1/2,

the frontF has critical points atx1 = 0 andx1 = 1/2. This means that

u(0) = u(1/2) = 0. (3.3)
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We can obtain two conditions for̄u = u(µ/2), by integrating (3.2) with starting pointsx1 = 0
(forward) andx1 = 1/2 (backward), respectively:

µ

2c
= −

∫ ū

0

du cosu

v cosu− f1
, (3.4)

1 − µ

2c
=

∫ ū

0

du cosu

v cosu− f2
. (3.5)

We now show that this pair of equations can be solved simultaneously for the two unknownsū ∈

[0, umax] andv ∈ [f2, f1] if c 6 µ/2k where

umax = arccos

(
f2

f1

)
∈ [0, π/2], k =

∫ umax

0

du cosu

f1 − f2 cosu
.

Note 06 k < ∞.
First, given anyv ∈ [f2, f1], we show that (3.5) has a solution̄u ∈ [0, umax], and further that

this solutionū(v) is decreasing. Letu∗
= arccos(f2/v) ∈ [0, umax], and let

g(û) =

∫ û

0

du cosu

v cosu− f2
.

Note thatg is increasing on [0, u∗] and that

lim
û→0

g(û) = 0, lim
û→∞

g(û) = ∞.

Therefore,g(ū) = (1 − µ)/2 or (3.5) has a solution in [0, u∗] ⊂ [0, umax]. Further, it is clear from
the right hand side of (3.5) that this solution is increasing.

Second, given anȳu ∈ [0, umax], we show that (3.4) has a solutionv = v̄ ∈ [f2, f1], and that
v̄(ū) is decreasing. Let

h(v̂) =

∫ ū

0

du cosu

f1 − v̂ cosu
.

Note thath is increasing on [f2, f1], and that

lim
v̂→f2

h(v̂) =

∫ ū

0

du cosu

f1 − f2 cosu
< k 6

µ

2c
, lim

v̂→f1

h(v̂) = ∞. (3.6)

Therefore,h(v̂) = µ/2c or (3.4) has a solution in [f2, f1]. Further, it is clear from the right hand
side of (3.4) that this solution is decreasing.

Now defineφ(v) = v̄(ū(v)). This mapping is decreasing from [f2, f1] to itself, so it must have
a fixed pointv. Then{v, ū(v)} are the simultaneous solutions of (3.4) and (3.5) that we seek.

This result can be extended forc larger thanµ/2k. Note from (3.5) that̄u becomes smaller
with c, and we can use this to improve the lower estimate in (3.6). The details are cumbersome and
omitted since we will deal with the largec case in some generality later.

Figure 3.2 shows the dependencev = v(c) for fixed values off1 (= 1) andµ (= 1/2) and
for variousf2 varying from−.05 to .95 (the uppermost graph is for the highest value of the para-
meterf2). For each value off2, v decreases withc, reaches the limit max(f1, f2) = 1 asc → 0 and
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FIG. 3.2. The effective normal velocityv in the e2 direction for a laminate withf1 = 1, µ = 0.5 as a function ofc for
various values off2 from −0.05 (lowest curve) to 0.95 (highest curve).

the average12(f1 + f2) asc → ∞. We note that the former limit is consistent with the casec = 0
(Example 1 in Section 4 of [11]) and we now discuss the latter limit.

Combining (3.4) and (3.5), we obtain

−
1

µ

∫ ū

0

du cosu

v cosu− f1
=

1

1 − µ

∫ ū

0

du cosu

v cosu− f2
.

Applying the mean value theorem to each integral, we findu1, u2 ∈ [0, ū] such that

−
1

µ

(
cosu1

v cosu1 − f1

)
=

1

1 − µ

(
cosu2

v cosu2 − f2

)
.

Now, it is clear from (3.4) and (3.5) thatū, and consequentlyu1, u2, decreases to zero asc goes to
infinity. Therefore, up too(1/c), the equation above becomes

−
1

µ(v − f1)
=

1

(1 − µ)(v − f2)
,

and this in turn implies that

v = µf1 + (1 − µ)f2 =

∫ 1

0
f (x1)dx1

as suggested by Figure 3.2. We shall return to this limit in the general case in Section 4.
The self-similar fronts not only allow us to calculate the values of the effective normal velocity

but they also seem to act as attractors in the space of solutions for (1.2), as is clear from the following
numerical simulation on a 64× 64 grid. We use a semi-implicit scheme when discretizing (1.2):

hn+1
− hn

∆t
= fP + c|∇hn| div

∇hn+1

|∇hn|
,

where

P =


√

max(px−,0)2 + min(px+,0)2 + max(py−,0)2 + min(py+,0)2 if f > 0,√
min(px−,0)2 + max(px+,0)2 + min(py−,0)2 + max(py+,0)2 if f 6 0,



164 B. CRACIUN & K . BHATTACHARYA

px− =
1

∆x
D−
x φ

n
i,j +

1

2∆x
minmod(D−

x D
+
x φ

n
i,j ,D

−
x D

+
x φ

n
i−1,j ),

px+ =
1

∆x
D−
x φ

n
i+1,j +

1

2∆x
minmod(D−

x D
+
x φ

n
i+1,j ,D

−
x D

+
x φ

n
i,j ),

p
y
− =

1

∆x
D−
y φ

n
i,j +

1

2∆x
minmod(D−

y D
+
y φ

n
i,j ,D

−
y D

+
y φ

n
i,j−1),

p
y
+ =

1

∆x
D−
y φ

n
i,j+1 +

1

2∆x
minmod(D−

y D
+
y φ

n
i,j+1,D

−
y D

+
y φ

n
i,j ),

minmod(u, v) =

{
sign(u)min(|u|, |v|) if uv > 0,
0 if uv 6 0,

D−
x φi,j = φi,j − φi−1,j (backward),

D+
x φi,j = φi+1,j − φi,j (forward).

For the rest of the spatial derivatives, we simply use centered difference operators. We solve the
resulting linear system by means of a conjugate gradient method. Since we wish to avoid large gradi-
ents in the level set function, we keep it close to the signed distance function to the interface by using,
after each time step, a reinitialization procedure developed by Sussman, Smereka and Osher in [31].

(a) (b)

FIG. 3.3. Snapshots of an initially flat interface in a laminate with parameters (3.7) at (a) every 50 time steps and (b) every
500 time steps.

Figure 3.3(a) shows several snapshots of an initially flat front moving in the laminate with the
parameters

µ = 1/2, f1 = 1, f2 = 0, c = 1, (3.7)

taken at every 50 time steps (we used the time step∆t = 0.0001). We see how this initially
flat interface rapidly approaches the self-similar shape. It subsequently starts a uniform upward
translation. This is shown in Figure 3.3(b), which shows snapshots of the same simulation taken at
every 500 time steps.

Figure 3.4 shows the evolution of an initially flat interface for the laminate with the parameters

µ = 1/2, f1 = 1, f2 = −0.6, c = 4. (3.8)

The front initially moves downwards in the part wheref is negative but is subsequently dragged
upwards by the other regions and eventually assumes the self-similar shape that translates upwards.
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(a) (b)

FIG. 3.4. Snapshots of an initially flat interface in a laminate with parameters (3.8) wheref takes both positive and negative
values at (a) every 100 time steps and (b) every 2000 time steps.

In both these cases, the effective normal velocity (which can be calculated from the distance
between the level sets) agrees with that obtained earlier.

3.2 Other geometries

For mediums which do not have a laminate-type heterogeneity, self-similar interfaces do not
generally exist. However, Theorem 1 suggests the existence of interfaces which are self-similar
to the extent that they assume the same shape after they have propagated over one unit cell off . In
certain situations, these self-similar interfaces also seem to act as attractors since any initial interface
approaches them as time evolves.

As an example, consider

f = 10+ 5 sin
2πx

64
sin

2πy

64
.

Figure 3.5 shows the evolution of an initially flat interface positioned at the heighty = 10 with a
64× 64 unit cell. The computational grid is also 64× 64. The snapshots are taken at every 100 time
steps (with∆t = 0.0001). In the lower half of the unit square, the left part is faster than the right

FIG. 3.5. Motion of a curvature driven interface in a medium with a sinusoidal normal velocity law. The figure shows
snapshots of an initially flat interface at every 100 time steps.
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so the front assumes a shape similar to the one observed in the laminate examples. However, as the
interface approaches the heightj = 32, the interface starts to flatten. In the upper half of the unit
square, the situation is reversed: the right part of the interface will be faster than the left and then it
again starts to flatten as it approaches the upper boundary of the unit cell.

3.3 Trapping

Of particular interest are the interfaces that are trapped, i.e., interfaces which evolve to a stationary
position. We begin with a laminate and seek conditions when one has a stationary interface with
average normal in thex2 direction. We assume, as before, that the interface is a graph. Proceeding
as before (or settingv = 0 in (3.2)), we obtain

du cosu = −
f

c
dx,

subject to (3.3). If

c > max

{
|f1|µ

2
,
|f2|(1 − µ)

2

}
,

then we can solve this explicitly in regions wheref is constant to obtain

u(x1) =


arcsin

−f1x1

c
for x1 ∈ [0, µ/2],

arcsin
f2(1/2 − x1)

c
for x1 ∈ [µ/2,1/2].

(3.9)

The continuity ofu atx1 = µ/2 gives

arcsin
−f1µ

2c
= arcsin

f2(1 − µ)

2c
,

which implies ∫ 1

0
f (x1)dx1 = µf1 + (1 − µ)f2 = 0.

Thus we can construct a stationary front when the average off is zero andc is large enough. We
note that the converse is also true: if the average off is positive (resp. negative), then the average
velocity is positive (resp. negative) forc = ∞ and therefore positive (resp. negative) for anyc > 0
by the monotonicity of the effective velocity inc in laminates.

Similar trapping conditions can also be deduced for other geometries. For example, consider the
case of a two-dimensional medium withf constant and positive except on a square array of circular
inclusions wheref is a (different) negative constant. In particular, considerf : [0,1]2 → R defined
by

f (x1, x2) =

{
f1 if (x1 − 1/2)2 + (x2 − 1/2)2 > r2,

f2 if (x1 − 1/2)2 + (x2 − 1/2)2 < r2,

with f extended by periodicity outside the square [0,1]2, wherer ∈ [0,1/2) andf1 > 0 > f2 are
constants.
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(a) (b)

FIG. 3.6. An interface can propagate by (a) looping around a slow-velocity inclusion if the curvature coefficient is sufficiently
small or (b) cutting through a slow-velocity inclusion if the curvature coefficient is sufficiently large.

Stationary fronts with overall normale2 can be constructed using the same method as in the
laminate if

f1 6
c

r
6 −f2. (3.10)

Again, using the comparison principle, we conclude that no other front is able to break through
these stationary barriers, so the effective normal velocity in thee2 direction is null.

The trapping conditions in (3.10) are sharp in the following sense: If the first inequality is not
satisfied, then the curvature is not penalized sufficiently and the front is able to propagate by looping
around the slow-speed inclusions (see Figure 3.6(a)); if the second inequality is not satisfied, then
the resistance to phase change inside the inclusion is not large enough and the curvature allows it to
continue propagating by cutting through the inclusions (see Figure 3.6(b)).

Finally, note from (3.10) that in this example, unlike in a laminate, the effective normal velocity
is not monotone inc. The laminate is an exception in this regard and in general we do not expect
monotonicity inc.

4. The effective normal velocity for largec

We saw in our study of laminates that one can obtain a simple characterization of the effective
normal velocity when the curvature coefficientc becomes very large. We now generalize this
result to other microstructures. Indeed, we show that the average normal velocity of an interface
propagating in the overall directionp is given by

V (p) = f̄ (p) = 〈〈f 〉
−1
p⊥〉

−1
p , (4.1)

where〈·〉p⊥ denotes the average of aYN -periodic function on anN − 1-dimensional hyperplane
that is orthogonal top, and〈·〉p denotes the average of a periodic function of one variable in the
direction parallel top.

Heuristically, asc becomes large, the curvature is severely penalized, so the interface evolves
to become flat in the limitc → ∞. The instantaneous normal velocity of this flat interface is given
by the average off over the interface. We thus obtain a one-dimensional problem: a flat interface
propagating normal to itself with a position-dependent velocity. Therefore, following Bhattacharya
[5] (also see Abeyaratne, Chu and James [1]), the effective velocity is the harmonic mean of its
instantaneous normal velocity. We thus obtain the characterization (4.1) above.

The rest of the section justifies this intuition. We prove the result in two dimensions, and justify
it through formal asymptotic analysis in higher dimensions. As a prelude, we make the following
observation. Since the effective normal velocity is a continuous function of direction (Theorem 3),
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it suffices to consider only ‘rational’ directions, i.e., directions where the ratios of components of
the normal vector referred to a rectangular cartesian system aligned with the unit cell are rational.
Then it is possible to choose a ‘super unit cell’, a cube which can be regarded as a unit cell of
periodicity off and which has one edge aligned to the normal. By rescaling if necessary, we may
then take without loss of generality the unit cell to be a unit cartesian cube and the overall direction
of propagation to beeN parallel toxN .

We begin with the two-dimensional case. We first prove that, forc large enough, any sufficiently
smooth interface inR2 with overall normale2 that is initially a graph remains so for all future time.
Assume that the initial interface can be described as the graphy = g(x) of a [0,1]-periodic function
g(·,0) : R → R. As we have seen in the previous section (see (3.1)), the equation of motion for the
functiong is

gt (x, t)√
1 + gx(x, t)2

= f (x, g(x, t))+ c
gxx(x, t)

(
√

1 + gx(x, t)2)3

as long as the interface can be written as a graph. By scaling times = ct we can rewrite this as

gs = k
√

1 + g2
x, (4.2)

where

k(x, s) =
f (x, g(x, s))

c
− κ(x, g(x, s)) =

f (x, g(x, s))

c
+

gxx

(1 + g2
x)

3/2
. (4.3)

Differentiating (4.2) with respect tox, we get the following expression forgxs :

gxs = kx
√

1 + g2
x + k

gxgxx√
1 + g2

x

. (4.4)

But, from (4.3),

gxx =

(
k −

f

c

)
(1 + g2

x)
3/2. (4.5)

Plugging this into (4.4), we get

gxs = kx
√

1 + g2
x + k

(
k −

f

c

)
gx(1 + g2

x). (4.6)

Differentiating (4.6) with respect tox and replacing all second order spatial derivativesgxx with the
right hand side of (4.5), we get the following expression forgxxs :

gxxs = kxx
√

1 + g2
x + 2kxgx

(
k −

f

c

)
(1 + g2

x)

+ k

(
kx −

fx + fygx

c

)
gx(1 + g2

x)+ k

(
k −

f

c

)2

(1 + 3g2
x)(1 + g2

x)
3/2. (4.7)

We now differentiate (4.3) with respect tos and obtain

ks =
fygs

c
+

gxxs

(1 + g2
x)

3/2
−

3

2

(
k −

f

c

)
2gxgxs
1 + g2

x

,



MOTION OF A CURVATURE-SENSITIVE INTERFACE 169

which, after replacinggxs and gxxs with the expressions obtained in (4.6) and (4.7) and some
algebraic manipulation, becomes

ks =
kxx√
1 + g2

x

+
f

c

gx√
1 + g2

x

kx + k

(
k −

f

c

)2

+ k
fy − fxgx

c
√

1 + g2
x

. (4.8)

We may choose the initial data for the interface to be such that

k(x, g(x,0)) > 0.

Then (4.8) enforces this inequality to stay valid at all times. Indeed, lets1 be the first point in time
when the functionk assumes the value 0 at some pointx1. If x1 is an isolated zero point ofk, then
we have

kx(x1, s1) = 0, kxx(x1, t1) > 0

and thus (4.8) givesks(x1, s1) > 0. If x1 is not an isolated zero point ofk, then

kx(x1, s1) = kxx(x1, s1) = 0

and thus (4.8) givesks(x1, s1) = 0. It follows that, indeed,k does not ever assume negative values.
By (4.3), the positivity ofk implies

d

dx

gx√
1 + g2

x

> −
f (x, g)

c
,

thus

g2
x

(
1 −

( ∫ x0

x

f (x, g)

c
dx

)2)
6

( ∫ x0

x

f (x, g)

c
dx

)2

(4.9)

for all x < x0, wherex0 is a point whereg assumes its maximum value. Moreover, a similar
inequality will hold forx > x0. Assuming thatc is large enough such that( ∫ x2

x1

f (x, g)

c
dx

)2

6 1 (4.10)

for any x1 andx2, (4.9) and its analogue for values ofx with x > x0 will provide finite bounds
ongx . These bounds ensure, in particular, that the interface will be such that it can be written as the
graph of the functiong at all times.

It also follows that we are able to use the governing equation forg,

gt = f (x, g)
√

1 + g2
x + c

gxx

1 + g2
x

,

at all times. Integrating this with respect tox yields( ∫ x2

x1

g(x, t)dx

)
t

=

∫ x2

x1

f (x, g(x, t))dx + c arctangx

∣∣∣∣x2

x1

.

If we choosex1 andx2 to be ends of an interval of periodicity forg, then the last term on the right
hand side vanishes and we are left with( ∫ x2

x1

g(x, t)dx

)
t

=

∫ x2

x1

f (x, g(x, t))dx, (4.11)
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which says that, at any time, the instantaneous effective speed of the interface equals the average of
the values off along the front.

We now estimate the effective normal velocity for the case when the constant interfacial energy
c is very large. Ifc is large enough such that (4.10) holds, (4.9) implies that

|gx | 6 m = m(c) =
max|f |√
c2 − max|f |

,

and thus, for everyx0 ∈ [0,1],
|g(x0, t)− ḡ(t)| 6 m(c), (4.12)

where

ḡ(t) =

∫ 1

0
g(x, t)dx.

This expresses the fact that, asc → ∞, curvature becomes more and more penalized so the front
becomes flatter and flatter. Using (4.11), (4.12) and the Lipschitz property off yields∣∣∣∣ḡt −

∫ 1

0
f (x, ḡ(x))dx

∣∣∣∣ =

∣∣∣∣ ∫ 1

0
f (x, g(x, t))dx −

∫ 1

0
f (x, ḡ(x))dx

∣∣∣∣
6

∫ 1

0
|f (x, g(x, t))− f (x, ḡ(t))| dx

6
∫ 1

0
L|g(x, t)− ḡ(t)| dx 6

∫ 1

0
Lm(c)dx 6 Lm(c).

Thus, at any instant of time, the velocity equals
∫ 1

0 f (x, ḡ(x))dx, up to an error of ordero(1/c).

Then, as long as
∫ 1

0 f (x, y)dx never vanishes, the speed with which the average frontḡ(t) travels
over one periodicity interval [0,1] will be( ∫ 1

0

1∫ 1
0 f (x, y)dx

dy

)−1

, (4.13)

up to an error of ordero(1/c). Since (4.12) ensures that the frontF stays close to its average (given
by ḡ(t)), (4.13) will also be the limit asc → ∞ of the effective normal velocity ofF .

If the functionf is such that
∫ 1

0 f (x, y)dx vanishes for somey, then the front will be trapped
once it reaches that position and we haveV (e2) = 0. We have proved the following.

PROPOSITION6 The effective normal velocity of a periodic interface inR2 with overall normalp
and moving with the normal velocity law (1.1) has the limit

V (p) = f̄ (p) = 〈〈f 〉
−1
p⊥〉

−1
p

asc → ∞, as long as〈f 〉p⊥ never vanishes. If〈f 〉p⊥ vanishes at some point, then̄f (p) = 0.

We now extend this result toRN through an asymptotic analysis of the unit cell problem (2.19).
Accordingly, we look for aYN -periodicv and constantV such that

f (x)|∇h+ eN | − c

(
∆h−

〈(eN + ∇h),∇2h(eN + ∇h)〉

|eN + ∇h|2

)
= V. (4.14)
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Above we assume without loss of generality that|eN | = 1. We make the ansatz

h(x) = u(x)+
1

c
v(x)+ o

(
1

c2

)
, V = cV−1 + V0 + o

(
1

c

)
. (4.15)

We plug this into (4.14) and separate terms based on the powers ofc. At orderc1, the problem is to
find YN -periodicu and constantV−1 that satisfy

∆u−
〈(eN + ∇u),∇2u(eN + ∇u)〉

|eN + ∇u|2
= V−1.

It is easy to verify that the solution is

V−1 = 0, u(x) = U(xN ),

so that∇u = U ′(xN )eN . We plug this back into (4.15) and then (4.14). At orderc0, we need to find
aYN -periodicv and constantV0 that solves

f (x)|(1 + U ′)eN | − (∆v − 〈eN ,∇
2veN 〉) = V0.

We recognize the term inside the parenthesis to be the Laplacian inRN−1. Therefore we can
eliminate it at eachxN by integrating the equation overYN−1 and using the periodicity ofv to
obtain

〈f 〉eN (xN )|(1 + U ′(xN ))eN | = V0, (4.16)

where we have used the notation introduced earlier. It is clear thatV0 is determined by this one-
dimensional problem which is essentially the same as that analyzed in [1, 5].

Let us assume for the moment that either〈f 〉eN > 0 everywhere or〈f 〉eN < 0 everywhere, and
seek a solution withU ′ > −1. We can then rewrite (4.16) as

1 + U ′
=

V0

〈f 〉eN

.

Integrating with respect toxN and using the periodicity ofU , we obtain

1 = V0〈〈f 〉
−1
eN

〉e⊥N
or V0 = 〈〈f 〉

−1
eN

〉
−1
e⊥N
.

We thus obtain the desired result that

V = 〈〈f 〉
−1
eN

〉
−1
e⊥N

in the limit asc → ∞. If 〈f 〉eN takes both signs, then it is clear from (4.16) thatV0 has to have both
signs and thus must be zero, once again giving us the desired result.
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