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The paper concerns a moving boundary problem for a coupled system of an elliptic and a parabolic
boundary value problem. This system is applied to a model describing the growth of a homogeneous
solid tumor in which the cell proliferation rate depends on the nutrient concentration only. For a large
class of initial data the existence of a unique classical solution is shown.

1. Introduction

In this paper we investigate a simple model describing in vivo cancer growth for a single
tumor. The model comprises a reaction-diffusion equation describing the evolution of the nutrient
concentration, denoted by and an elliptic equation for the internal pressure, denoteg, by the
tissue. The cell proliferation rate is denoted pgu), wheref : R — R is assumed to be smooth.
Typically, this proliferation ratef is assumed to be linear or of logistic type (¢fl [6, p. 157] and
[7, pp. 190, 193]). A polynomial proliferation rate is proposed in the Appendix df [16]. At time
the tumor occupies the domaii(z) with the moving boundary (). In dimensionless fornp and

u satisfy the equations

—Ap = f) inQ@), (1.1)
ou—Au+u=20 in 2(). (1.2)

To formulate the boundary conditions satisfiedpgndu, let V denote the normal velocity of the
boundary, i.e. the component of the derivativerof> I'(¢) in direction of the outward normal
v(t). Moreover, we writeH (¢) for the mean curvature df (r) andy for the nutrient concentration
outside the tumor. Then we have the following boundary conditions:

V=-0,p onl), (1.3)
p=cH onI (1), (1.4)
U=y onr(r). (1.5)

Herec is a positive constant. Further we use the sign conventionW®thiat positive if the tumor
grows and thaf{ is positive if " (¢) is convex with respect t& (r). Finally, we close the system by
the initial conditions

=1y u,-)=uom, (1.6)

where 29 denotes the domain initially occupied by the tumor, so that= 029 is the initial
shape of the tumor. The initial nutrient concentration is denoteddyFinally, we assume that
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¥ R" — Ris smooth and bounded and has bounded derivatives of arbitrary order. We mention
that the casey = ¢ for somec € R is of particular interest in applications. In order to state our
main result we denote the usual Sobolev and Besov spacﬁsjtrynd B, respectively, where

q €[1, <], k € N, ands > 0 (cf. [21]).

THEOREM1 Letn > 2 andg > n+ 1. Let further2g be a bounded domain iR" of cIassqu_l/q

and assume thatp — ¢ € W;O(Qo). Then system (1.1)—(1.6) has a unique classical solution

(p.u, ') of classW? x W2 x B;lq_l/" on some time interval [0F') with 7 > 0. This solution is
smooth on the time-space manifold

U dn x2@).

te(0,7)

We refer to Sections 3 and 4 for the proof of this result. The precise spatial and temporal
regularity of the solution as well as the class in which the solution is unique can be found there too.

Let I'y be a compact hypersurface®f which is of clas<C*. Then it follows from Proposition
2.3.2 of [21] thatl is of cIassB;‘q_l/". Thus any bounded*-domain inR” is within the scope of
Theorem 1.

Let us briefly exhibit the method used to prove the above result. In the first step we introduce
suitable diffeomorphisms to transform the original domaihg@) and original moving boundary
I'(¢) onto a fixed reference domaib with a fixed boundary, respectively. Next we perform a
reduction of the transformed system by eliminating the pressiivée are then left with a nonlinear
system of the form

%X =FX), X0 = Xo, (1.7

where X and Xo denote the transformed paicg, I') and (uo, I'p), respectively. Besides the
transformed differential operators from (1.2) and (1.3) the opefatantains the solution operator

for the (transformed) pressugeas well. It turns out thaf is a quasilinear and nonlocal operator.
However, we show in Section 4 that the evolution equation is of parabolic type, in the sense that
F contains a leading linear term which generates an analytic semigroup on a suitable product of
Sobolev spaces ovér and Besov spaces over. Using the notation of Section 4, we havez) =
—A(Z)Z + F(Z), with the quasilinear parabolic leading tefrand the lower order terri. Some
technical effort is needed to establish appropriate mapping properties of the nonlinear operators
Z — F(Z)andZ — A(Z) and the generation property of the linear operator> —A(Zg)Z

with Zg fixed. This is done in the first part of Section 4. In the second part we prove the main result
by solving the quasilinear evolution equation

7'+ AZ)Z = F(Z), Z(0) = Zo.

Here we rely on the well established theory of quasilinear parabolic evolution equations which is
based on analytic semigroups (see [2] of [20]).

Roughly speaking, moving boundary problems may be regarded as nonlinear evolution
equations for the boundary manifolds (in the present case this evolution equation is coupled to
the parabolic equation for the nutrient concentratign Mostly, these evolution equations are
of quasilinear, sometimes even of fully nonlinear type. Therefore, any loss of regularity in the
construction of classical solutions shatters the possibility to go beyond a mere existence result (for
classical solutions). It is worth mentioning that the functional analytic frame proposed here avoids
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any loss of regularity and offers therefore an excellent basis to study further properties of solutions
to the system (1.1)—(1.6). Of particular interest are certainly blow-up behaviour or global existence
of solutions. It is for instance possible to show that a solution exists globally, provided the nutrient
concentration is a priori bounded i and the moving boundary is a priori boundetﬂfﬁz_l/q.
This result as well as further dynamical properties of the system (1.1)—(1.6) will be the subject of a
forthcoming paper.

In order to evade a loss of regularity, one first needs a suitable tool to measure precisely the
boundary regularity of functions on a domain. This is obvious fa¥@er-)continuous functions. In

the case of Sobolev spacw%‘ (which is a widely used class of function spaces to treat parabolic

problems), the boundary regularity is characterized by means of Besov spacesu@i\/mj}(ﬂ)

with k > 1,49 € (1, co) andds2 smooth, the restriction|d$2 of u to the boundary 2 belongs to

the Besov spacBqu_l/q(aQ); and vice versa: given any € ijq‘l/q(am there is au € WZI‘(Q)

such thatu|02 = ¢. Consequently, if one prefers to solve the parabolic equation farsome
Sobolev spacer(.Q), the right choice of the function spaces to solve for the moving boundary is
a suitable Besov space.

System (1.1)—(1.6) was introduced by Greenspan_in [16] &nd [17], seelalso [7]. Mostly the
radially symmetric situation was investigated in a recent series of papers by Friedman and Reitich
[13], [14,[15]. Existence and uniqueness of nhonsymmetric solutions have been shown even more
recently in [5] in the physically relevant case of space dimensiea 3. However, existence of
solutions is guaranteed inl[5] only under high regularity assumptions on the initial data, and a
serious loss of regularity of the solution could not be excluded. More precisely, it is shown in the
main result of[[5] that, givem2y of classC1"*+* andug of classC3+*, the solution(u, I") belongs
to C’*® x c1* For domains of dimension higher than 3 the regularity of the initial valuelin [5]
has even to be increased.

We emphasize that the regularity properties of the solution constructed by the above Theorem 1
are optimal with respect to that point (see Section 4). Moreover, we show that there is not only no
loss of regularity of the solutions during the evolution but even a strong regularizing effect: For
each positive time the solutions are smooth in time and in space up to the boundary. Finally, we
mention that an analytic framework in which a loss of regularity of solutions cannot be excluded is
not appropriate to deduce any global existence or blow-up results. Taking e.g. the framework of [5]
one has to bound a priori the moving boundargi+* and the nutrient concentration @3t in
order to guarantee that a solution exists globally.

Assume that the proliferation ratg vanishes. Then the original moving boundary problem
(1.1)—(1.6) reduces to the one phase Mullins—Sekerka problem

Ap=0 in2¢), V=-0,p and p=cH onIl(t)

for the pressure and the moving boundary' (cf. [4, [8,[11,/12]). However, iff is nontrivial,

the results obtained in these papers cannot be used to solve (1.1)—(1.6) for the following reason:
The second equation of (2.15) below shows that, even in the case of a linear proliferation rate
f ) = —u(u —u) (with positive constantg andu), there is a nonlinear coupling ¢f, u, andr".

Since the methods inf[4] B, 11,112] are designed to solyeasi-stationaryproblem, the temporal
regularity of p is not sufficient to go successfully through a fixed point iterationifooming from

a parabolic equation (although the spatial regularity pfobtained in[[4] 8, 11, 12] is optimal).
Therefore we propose here a different approach: We first eliminate the presBora the system

and then solve the reduced system simultaneouslgfaF).
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2. The transformed system

Let £29 be a bounded domain iR" such that its boundar¥p is a compact orientable hypersurface
of classC3. Then in any tubular neighbourhood B there is a smooth hypersurfage(see Section
8in [19]). Letu be the outward unit normal field aB. Then fora > 0 small enough, the mapping

X: XY x(—a,a) > R", (p,r)— p+ru(p), (2.2)

is a smooth diffeomorphism onto its range := im(X), i.e. X € Diff *°(X x (—a, a), R). We
further assume thafp C R. If I is smooth this assumption obviously holds true by choosing
XY =1Ty.

Later on it will be convenient to decompose the invers& afsX 1 = (P, A) such that

PeC®R,Y), AecC®R,(—a,a).

Here P is the metric projection oR onto X, i.e. P(x) is the nearest point o to x, and A(x) is
the signed distance fromto X'. Clearly,R is the set of those points with distance less than X
Forb € (0, a), we call

Ad = Adj, = {p € C3(2); lplcrs) < b} (2.2)
the set ofadmissible functionsGivenp € Ad, let

Op: X —R", pr p+p(pu(p),

and I, := im(,). Then I, is a C?-hypersurface which is diffeomorphic t&, i.e. 6, €
Diff 2(x, I;). Moreover, there is @9 € Ad such thatl,, = I, sincelp C R. We write §2,,
for the domain enclosed by, . Clearly, we have,, = £2¢. For simplicity we also seb := £2,=0,
which will be our fixed reference domain. Observe thais the boundary oD.

We further need a suitable extensién : R*” — R” of 6, to R". To this end we introduce
a special case of the so-called Hanzawa transformations leet(0, a /4) be given, and picly €
C*®(R, [0, 1]) such that

1 if|r| <b,

o) = {0 if 17| > 3b and supe’(r)| < 1/b. (2.3)

Then, giverp € Ad, define

0, (x) = X(P(x), Ax) + p(A(x)p(P(x))) if x eR,

PR if x ¢ R.
Observe thaly’(r)p(p)| < 1forp € Adandr € R, p € X. Hence the function — r +¢(r)p(p)
is strictly increasing for any € Ad. From this one easily deduces tl@} < Diff 2(R", R™) with

©, € Diff (D, 2,), ©,|Z =0,. (2.4)

We now consider time-dependent functignsJ — Ad, whereJ := [0, T] for someT > 0. More
precisely, given
peClJy,c(Z)yncy,Ad
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we obtain a family
=) =rIypn; tel}

of hypersurfaces ifR”. The domains enclosed by those hypersurfaces are denot&2i(Ay—=
2,1, t € J. Itwill be convenient to describE (¢) as the zero-level set of a suitable time-dependent
function. Letting

¢ I XR—->R, (¢, x)—> AX)—p(t, P(x)),

we obviously have™ (1) = ¢,(t, )~1(0). Hence the outward unit normal fieldz, -) on I"(¢) at the
pointx = X (s, p(¢, s)) can be represented as

Ve, (t, x)

v(t,s) =
[V, (2, x)| x=X(s,p(t,s))

for(s,s) € J x X. (2.5)

In order to calculate the normal velocity of— I'(¢) at timet € [0, T) and at the poink =
X (s, p(t, s)), let us introduce the auxiliary functiop by setting

V(t,r) =¢,t+1,x+rv(t,s) =Ax+rv(t,s) —pt+1, P(x +rv(t,s)))
for(z,r) € [0, T —t) x [0,a — b). Clearlyw (0,0) = 0 and
2% (0,0) = Vo, (t,x)-v(t,s) = |V, (t, x)| #0.

Hence the implicit function theorem implies that there isan 0 and a functiork € C%([0, ¢), R)
such thaw (z, h(t)) = 0 fort € [0, ¢) with
_allp(ov O) _ afp(tss)

"O= 5000 ~ Ve,@ )

(2.6)

Observe that + h(t)v(t, s) belongs tol" (¢ + 7). Thush(z) is the increase at = X (s, p(¢, s)) €
I"(¢) in the direction of the outer normalz, s) so that the normal velocity (¢, s) of t — I'(¢) at
tandx = X(s, p(z, s)) is given byh’(0). Therefore (2.6) yields

Vit s) = %, 5) . () e x T @.7)

|V¢p (t, x) |x:X(s,p(t,s))

We can now rewrite the one-phase Stefan condition (1.3) in the form

alp(tss) = _(Vp(t9 x)lv¢p(tsx))'x:X(S,p(l,S))v (tvs) € J X 27 (28)

where(-|-) stands for the Euclidean inner productif.
We need some further notation. Let

2p.5 =t} x 2p0))  forp e CL(J,C(2))NC(J, Ad)

teJ

and define
D, I xD— R2,,, (1Y) Ou).

Then®, e Diff 0J x D, £2,.7) and hence the pull-back operatdf, defined by

@;u =uo®, for ueC(82,). (2.9)
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as well as the push-forward operatbf, given by
PPvi=vo @;l forv e C(J x D), (2.10)
are well defined. Using this notation we introduce the following transformed differential operators:
A(p)w 1= —PIA(PLw),  B(p)w = P5(V(PLw)[V)) (2.11)

forw e C(J, W[?(D)). Of course we also need the transformed versions of the nonlinear operator
f and the mean curvature, respectively:

g(w, p) =@ [(@Lw), H(p):=®}Hr,, (2.12)

whereHr,,, denotes the mean curvaturefdf forz € J.
Furthermore, given

weCWU,CYD)), qeCWU,CYD)), peCW,Ad),
we introduce a mapping (w, ¢, p) on D by

o Al-[B o P]-[B , Rp,
R(w. 4. p)(y) = gﬂ 1-[B(p)g o P]-[Bu(p)w](y) iiD[(RD (2.13)

whereB,, (p)w = (@;(V@fw)m o P) andRp := R N D. The transformed boundary initial data
are

x(p) = @,¢, woi= O uo. (2.14)
Then it follows from (2.11)—(2.14) that the original system (1.1)—(1.6) can be transformed into the
following system for- := &7 p andw := @ju:

A(p)r=g(w, p) in J x D,
ow+ A(p)w=R(w,r,p) —w in JxD,
0;p+ B(p)r=0 onJ x X,
r=H(p) onJ x X, (2.15)
w=x(p) onJ x X,
w(0, -) =wo in D,
p(0, )= po in X.

Let now pg € B;‘q_l/q(Z) N Ad andwg € WqZ(D) with ¢ € (1, c0) be given. We callw, r, p) a

classical solution to (2.15) with initial datavg, po) if the following conditions hold:

() p € C(J, By M(Z) N Ad) N CL(J, B, 4 (X)) N C®(J, BUC®(X));
(i) w e C®(J x D,R);
(iii) (w,r) € C(J, WA(D) x WA(D));
(iv) (w, r, p) satisfies (2.15) pointwise ah x D.

In order to give a precise notion of a classical solution to (1.1)—(1.6) we assume that

e [ satisfies the assumption stated at the beginning of this section;
o uo € Wi(£0); (2.16)
e € BUC®(R", R).
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Here BUC® stands for the Fachet space consisting of all bounded smooth functions which have
bounded and uniformly continuous derivatives of arbitrary order.
Givenp € CL(J, C(X)) N C(J, Ad), let

2,;= | d} x 2,0,
te(0,T)

and observe tha?p’j is an open subset &+, We call(u, p, I') a classical solution to (1.1)—(1.6)

with initial data(uo, I't) and boundary valug if there exists @ € C1(J, C(X)) N C(J, Ad) such
that the following conditions hold:

() Q@) =TypforeeJ;
(i) u € C*(R2, j,R);
(i) (u(, ), p(t, ) € WiR2p1) x Wa(Rp0) fore e J;
(iv) (u, p, I') satisfies (1.1)—(1.6) pointwise dnj, ; ({t} x £2 ().

LEMMA 2.1 Letpg € Bf,‘q’l/‘f(z) N Ad be such thafp = I, and letwg := @;‘Ouo. Moreover

assume thatw, r, p) is a classical solution to (2.15) with initial dateg, po) and define
u=dlw, p = oy, I'(t) = Loy, teld.

Then(u, p, I') is a classical solution to (1.1)—(1.6) with initial data, I'p) and boundary valug .

Proof. (i) Itis clear thatlI" (1) = I',«), t € J, satisfies the first requirement ¢m, p, I") to be a
classical solution to (1.1)—(1.6).

(i) Let us next verify the regularity ofi. For this pick(fo, xo) € 2, Thenrm > 0 and
X0 € $2p(q)-

(a) By assumptionp(fp) belongs toBUC* (X). This implies thatl,, is of classC* and
Op ) € DIiff (D, £2,,)). Furthermore, again by assumptian(, -) € C*°(D, R). Hence

u(to, ) = w(to, ) 0 @ 1 € C™(Ry(sp), R). (2.17)

(b) If xg does not belong t& we have@/j(}) (x0) = xo for all r € J. Consequentlyy(z, xo) =
w(r, xo) for all r € J, showing that:(-, xg) € C®(J, R).
(c) Assume now thatg € R, and setyg := © 2

() (¥0) € D. Furthermore, giveri, y) €
J x Rp, define the auxiliary function

H(t,y) = P(y) + [AQ) + oA, P(Y))]i(P(y)) — xo.

By assumptionp € C®(J x X, R) and hence (2.1) implies that € C>®(J x Rp, R). Observe
that

H(t,y) = Op0)(y) —x0, (t,y) € J X Rp.

ConsequentlyH (o, yo) = 0 and

d2H (to, y0) = DO 15 (y0) € GLERM).
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Therefore, the implicit function theorem guarantees the existence of-arD and a uniquer €
C*®(I;, Rp), wherel, := (1o — ¢, to + ¢€), such thatH (¢, 7 (t)) = 0 for¢ € I,. This implies that

7(t) = 0,5 (x0) €eRp fortel,

and that
7' (t) = —p(A@ () p(t, P(m()))[DO ) (m(1)] (P (7 (1)) (2.18)

for ¢ € I,. Observe now that
u(t, xo) = ®Lw(t, x0) = w(t, O, ¢ (x0) = w(t, 7(1), 1€ L.

In particular, we see that(-, xg) € C* (I, R). In view of (2.17) this shows thate C*°($2, ;, R).

p.J>
(iii) Recall thatp € C(J, By, Y/7(X) N Ad). This implies that

oL e IsomW2(D), W2(2p1)). 1 € J.
Since(w(?), r(t)) € WqZ(D) x WqZ(D), we conclude that
(e, ), p(t.)) = (©@LPw(®), OLVr (1)) € W2(2,0)) x WA(2p().
(iv) With the notation from (ii), we obtain
du(t, x0) = w' @) (7w (1)) + (Vyw(@O)(w@)|7' (1)), € L.
Using further the equatiod o (¢, s) — B(p(¢))r(t,s) = 0onJ x X, we conclude from (2.18) that
(Vyw(t) (@ (@)|7' (1)) = R(w, r, p)( (1)), 1€ I¢.
Hence we see that
dyu(t, x0) =[O W' )] (x0) + [0£R(w, 7, p(x0), 1 € L.
Usingw’ + A(p)w = R(w, r, p) —w onJ x D, we find

oL (1) = —0L A(pyw — 62w — 0L R(w, 7, p)
AM([) - M([) - @f([)R(wa r, 10)7

and therefore

0:u(to, x0) = Au(to, xo) — u(tg, xo).

The verifications of (1.1) and (1.3)—(1.6) can be done analogously (and are even easier than that
of (1.2)). O
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3. The reduced system

In this section we reduce system (2.15) by eliminating the transformed presdarerder to do
this, we need a suitable representation of the solution operator to the boundary value problem

A(p)r=g InD, r=h onx. (3.1)

Giveng € (1,00),1 € [1, 00], ands > O, we write H; and B;; for the usual Bessel potential and
Besov spaces, respectively (¢f.[21]). Recall tHéitcoincides in casg € N with the usual Sobolev
spaceWé< of orderk built over L, and thatB} ., = BUC?, provideds is not a natural number.
Here, BUC® stands, in the case € (0, 1), for the Banach space of all bounded and uniformly
Hodlder continuous functions of exponentlf s = k + s’ for somek € N ands’ € (0, 1) the space
BUC* consists of alk-times differentiable functions such that all derivatives up to okdeelong
to BUCY'.

We now fixg > n + 1 and choose € (0,1 —n/q) as well as

e e (0,min{l—1/2g, (1 —n/q — 7)/3}).

This choice ofe is motivated by various embedding properties of function spaces which will be
introduced in the next section. Moreover, we use the abbrevidfion= B,?,;38_1/"(2) N Ad.

Observe that is contained inBBUC3*7 (X)), by Sobolev’'s embedding theorem.
LEmmMA 3.1 Lets € [0, 1]. Then:
() A € C®(U, L(HZT (D), H) (D)) N L(BUC?**(D), BUC*(D))).
(b) B € C(U, LIHZT (D), Byy*~/9(2)) N LIBUC? (D), BUCYH ())).
(c) There exists
(S.T) € C®(U., LHY(D) x By;"V(%), HE (D))

such that, giverp € U and (g, h) € Hq‘S(D) X B,f,j‘s_l/q(z), the unique solutionr €

HZT (D) to (3.1) is given by = S(p)g + T (p)h.
(d) S € C®(U, L(BUC?(D), BUC?t%(D))).
Proof. Observe that the coefficients of(p) belong to BUC™ (D) and those ofB(p) to
BUC?t*(%); then the first two assertions follow as in the proof of Lemma 2.2 ih [12]. Assertions

(c) and (d) are now consequences of (a) and known elliptic regularity theory (cf. Theorem 4.3.3 in
[21] and the proof of Lemma 2.3 in[12]). a

Using Lemma 3.1 it is easily verified that the pair, p) satisfies the following reduced system:

dw+ A(p)w = Fi(w, p) inJ x D,
w=x(p) onJ x X,
dpo+ B(P)T(p)H(p)=B(p)S(p)g(w,p) onJ x X, (3.2)
w(0, ) =wo in D,
00, )=po onx,

where

Fi(w, p) == R(w, r(w, p), p) — w,
r(w, p) == S(p)g(w, p) + T (p)H(p).
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Due to the inhomogeneous Dirichlet boundary conditionugnsystem (3.2) is not yet suitable

to be treated in the abstract frame presented in the preceding section. To arrive at a homogeneous
boundary condition observe thatp) = ¥ 0®, is well defined oR”. Thus, if we letv := w—x (p)

andvg ;= wo — x (po), then the paiKv, p) satisfies the system

dv+ Ap)v=F1(v, p) — A(p)x(p) — Q(v, p) inJ x D,

v=0 on[ x X,
30+ B(p)T(p)H(p)=—B(p)S(p)&(v, p) onJ x X, (3.3)

v(0, ) =g in D,

p(0,)=po onx,
where

Fi(v, p) = R+ x(p), r(v + x(p), p)) — v — x(p),
g, p) =g+ x(p), p),

and

O, p)(y) i=[p o A] - [B(p)r(v + x(p), p) o P1 - [(O; Vw0 P)](y)

if y e Rp,andQ(v, p)(y) :=01if y € D\ Rp. The termQ(v, p) arises for the same reason as
the termR from (2.13) in the transformed system (2.15): The transformatigs) of the original
Dirichlet datayr depends on the time variable and we have

d .
Ex(p(t))(y) =0, p)(y), (,y)eJxD.

Next, we need a suitable splitting of the mean curvature operatpy. It is well known that this
operator has the structure of a quasilinear operator of second order. Indeed, using local coordinates
on X it is possible to show that there is a quasilinear oper&taf second order and a nonlinear
first order operatoK such thatH (p) = P(p)p + K (p) for any p € C?(X). In the next lemma we
state the precise regularity properties of these operators which we need in what follows. For a proof
of these results we refer to Lemma 3.1[0f|[12].

LEMMA 3.2 Givens € (0, 1/q), there exist

PeC®W, LBy Y(x), BZF Y (:))),
K € C®(U, BUCE ¥V (x))

such thatH (p) = P(p)p + K (p) foranyp € U 0 By 7 (x).

We are now prepared to introduce the following nonlinear oper&tes (F1, F>) for the pair
Z = (v, p): R
Fi1(Z) == Fi(v, p) — A(p)x (p) — Q(v, p),

) (3.4)
Fa(Z) == —=B(p)[T (p)K(p) + S(p)& (v, )],
as well as the quasilinear operator
A(Z)Z = (A(p)v, B(p)T (p) P(p)p). (3.5)

Observe that for fixed 1, the mappingZ — A(Z1)Z is linear.
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Using these operators, we can express the system (3.3) in the form
Z' +A2)Z =F(Z), Z(0) = Zo, (3.6)

where, of courseZp := (vo, po).
We callZ = (v, p) a classical solution to (3.6) if the following conditions hold:

(i) Z € C(J, HA(D) x U) N CY(J, Ly(D) x Bz Y4 (2));
(i) v(¢)| X =0fort € J,;
(i) Z € C(J, HZ*(D) x By* (%)) forallk € N;
(iv) Z satisfies (3.6) pointwise ai.

LEMMA 3.3 (a) LetZo = (vo, po) € qu(D) x U with vp| X = 0 be given, and assume
thatZ = (v, p) is a classical solution to (3.6). Thew, r, p) with w := v + x(p) and
r:=S(p)g(w, p) + T(p)H(p) is a classical solution to (2.15).

(b) If (w,r, p) is a classical solution to (2.15) with initial datag, o) € HqZ(D) x U then
Z = (w — x(p), p) is a classical solution to (3.6) with the corresponding initial value
Zo = (wo — x(0), p0)-

Proof. Due to the derivation of (3.6), the statements are easily verified. |

4. The abstract setting and the proof of the main result

In this section we introduce the abstract frame in which the equation (3.6) will be solved. First we
pick ¢ > n+ 1 ands € (0,1/3¢) and keep these numbers fixed hereafter. Using the notation
introduced at the beginning of the previous section, we know from the trace theorem that

v| X is a retraction fromH (D) ontoB,‘;q_l/"(E), providedo > 1/g (cf. Theorem 3.3.3 in[21]).

In particular,

;O(D) ={ve H;(D); v| X =0}, o>1/q,
is a closed subspace Hf;(D).
We now define

1+3s—1 4+35—1
Eo:= HZ(D) x B;f* (), Ei:= HZ§2 (D) x By /95,

Equation (3.6) will be considered in the spakg, whereasE1 will serve as the domain of the
leading linear operator contained in (3.6). We shall also need the complex interpolation spaces
Eg := [Eo, E1]s, With 6 € (0, 1), where [, -]9 stands for the complex interpolation method (cf.
[21]]). The next result characterizes most of the spdges

LEMMA 4.1 Givend € (0, 1), we have

qu(9+s)(D) « B§§9+x)+1fl/q(2) ifo+s<1/2q,

0 = _ )
H;fg*”(D) x BoHOHYa 5y if g 45 > 1/2g.
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Proof. It follows from Theorem 4.3.3(a) in[21] that

H2'(D) i3y < 1/q,

L,(D), H3 (D)], =
[Ly(D) 7.0( My {H,i%(D) if 3n > 1/q.

Hence the reiteration theorem for the complex interpolation functor yields

HZ™ (D) if6+s <1/2q,

HZS(D), H2+2S(D) —
LA, a0 (D)o H2GH (D) it 0 +s > 1/2q.

The assertion now follows from Proposition 1.2.3.3[ih [3], since Besov spaces over a smooth closed
manifold are stable under complex interpolation (cf. Theorem 7.4.3'in [22] and Theorem 2.4.7 in
[21D). d

We also need the following embeddings:
LEMMA 4.2 Given 0< rg < r1, we have

(@) BUC™ (D) — Hy°(D);
(b) BUCH(X) — By%(X).

Proof. (i) Assume thatg > 1 and pickk € N such thato — k& € [0, 1). Then it is known thab
belongs tor,° (D) if and only if 3“v belongs toI-IC;O_k(D) for anya € N” with |a| < k. Hence it
suffices to treat the caseQrg < r1 < 1.

(ii) Due to the boundedness &f we have

BUC(D) > Ly(D), BUCY(D) — W, (D) = H(D).

Furthermore, denoting the real interpolation method by ,, wheref € (0, 1) andg € [1, oo,
we have
BUC"™ (D) = (BUC (D), BUCY(D)),.00:

sincery € (0, 1) (cf. the proof of Theorem 2.5.7 i [21]). We now conclude from Theorem 2.4.2 in
[21] that

BUC™ (D) = (BUC(D), BUCl(D)),l,OO — (Ly(D), qu(D))rl,oQ = B;%)O(D).
Using Proposition 2.3.2.2 df [21] and the fact that>- ro we obtain
BUC™ (D) = By,(D) < B, (D) < H,°(D).
(i) Similarly, we haveBUC™ (X)) = (BUC(X), BUCl(E)),l,oo and thus
BUC™(2) = (Lg(2), H} (X))ry.00 = BL,(Z) = B%(X)

for 0 < ro < r1 < 1. The general case is now treated as in (i). d
Lettinga := 1 — s, by Lemma 4.1 we have

4-1
Eq = H2o(D) x By ().
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Further, by the choice af ands it follows that

2s<—<—<1—ﬁ.
33 ¢ q

We now choose
T€(25,1—n/q).

Thens < t/2. Moreovers < 1/3q < 1/3¢q + t/3. Thus there is & > 0 such that
2 +s)<t, 3y+s)<t+1/q.
Consequently, Lemma 4.2 implies that
BUCT(D) — H."™ (D), BUCY (%)< B ™ Yi(x). (4.1)
We now letg := 1—s5 — ¢, wheree € (0, 1 — 1/2¢) will be specified later. By Lemma 4.1, we have
Ep = H24 (D) x By~ 9" Y4(x), 4.2)
Observe further that
t<1l-—n/q, 3y+s)<t+1l/g<l <t/2<]1,
by the choice of andy. Hence there is an € (0, 1 — 1/2¢g) such that
1-3e—n/g>1t, 1-3c>3y+s), 1/2+e<Ll 4.3)

The first inequality in (4.3) and the generalized Sobolev embedding theorem (cf. Theorem 3.3.1 in
[21]) now yield

HY2(D) < BUCT(D), By, > Y(£) = BUCT(Y), (4.4)
while the second inequality in (4.3) implies
BZ 3 Y5y s IOV (5, (4.5)

The embeddings (4.4) and (4.5) will be used later in order to verify the mapping properties of the
nonlinearity F, formally introduced in (3.4). Before giving the full details of these facts, let us
mention that

O<y<f<a<l (4.6)

Indeed, sincer < t/2 — s, the third inequality in (4.3) gives
y<t/2—-s<l—s—e=8.

The remaining inequalities in (4.6) are clear.
For the sake of simplicity, we writ& for the j-th factor of E», wherej = 1, 2 andd < [0, 1].
This means e.g. that

4-1
Ef = H2®(D),  E2 =By (2).
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Furthermore, given € [B, 1], let
Xo '=1{Z = (v, p) € Eg; p € Ad}.

Obviously, Xy is open inEy. Again,Xg stands for thg-th factor of Xy wherej = 1, 2. Thus

XL=EL=H?yD), X3=B;, " ()nAd.

Observe further thaX§ coincides with the sd introduced in Section 3. Given € X2, we define
a linear operator by

A(p) : dom(A(p)) =: E} = ijgb(D) — HZ(D)=Ej, v Alp)v.

In the following we shall see that A(p) generates a strongly continuous analytic semigroup in
L(Eé). Since we also need suitable regularity properties of the nonlinear mappigA(p), let
us introduce the following notation. Given two Banach spagesnd By with B1 < Bg and By
dense inBy, let H(B1, Bo) be the set of all linear operatorsin By such that dorgd) = B1 and
— A generates a strongly continuous analytic semigroufXiBy). It follows from the closed graph
theorem that{(B1, Bo) is a subset of2(B1, Bg) and Theorem 1.1.3.1 in [3] shows th&ft(B1, Bo)
is in fact open inC(B1, Bo).

LEMMA 4.3 A € C®(X3, H(EL, E)).
Proof. (i) It follows easily from (4.4) and Lemma 3.1 that — A(p) mast§ smoothly in
L(E], E}).

(i) Fix p € X2, and define

Ao(p) : dOM(Ao(p)) = HZ (D) — Lg(D), v A(p)v.
Then it is well known thatAg(p) € H(qu’O(D),Lq(D)). Observe thatEy = HZ(D) =
[L,(D), H;’O(D)]S, and write A, (p) for the HZ (D)-realization of Ag(p). Then it follows from

elliptic regularity theory and from the trace theorem that dagip)) = qufgzs(D) = E% and
As(p) = A(p). Thus interpolation implies that(p) € H(E], E}) (cf. Theorem V.2.1.3. i [3])J

We also need the following generation result for the leading part of the second component of (3.5).
LEMMA 4.4 [p > B(p)T (p)P(p)] € C®(X2, H(E?, E?)).

Proof. This follows by obvious modifications of the proof of Theorem 4.1in [12], where the case
g = o is treated. Indeed, one only has to replace the estimate (5.7)lin [12] by the corresponding
one in the spaces
4+35—1 143s—1
E2 =B Vi(x), EZ=B;"Y(D).

Moreover, the arguments in step (v) on page 640 in [12] can be carried over by using Theorem 4.1
of [9]. a

GivenZ = (v, p) € Xg, define the linear operatdy(Z) in Eq by setting donA(Z)) := E; and
AW = (A(p)w, B(p)T (p)P(p)o) forW = (w,0) € E1.

Then we have
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COROLLARY 4.5 A € C*®(Xg, H(E1, Ep)).

Proof. This is an immediate consequence of Lemmas 4.3 and 4.4, and the characterization of the
setH(E1, Eo) given in Theorem 1.1.2.2 of [3]. O

Letn € C*(R, R) be given. Therr induces so-called NemytskoperatordT acting on various
subspaces aBUC (R") by setting

O)(x) :=n(w(x)), wveBUCR"), xeR"

In the following we do not distinguish notationally betweenand 7. With this convention we
introduce the operatdf .= (F1, F2) : Xg — Eg by setting

F1(Z) := F1(v, p) — A(p)x(p) — O(v, p),
F2(Z) == B(p)[T(p)K (p) + S(p)&(v, p)],

whereZ := (v, p) € Xg. Recall thaty (p) = ey andg = (H);f@f. Moreover, we havé (v, p) =
g(v+ x(p)) and

F1(v, p) = R + x(p), S(p)& (v, p) + T(p)H(p), p) — v — x(p).

LEMMA 4.6 F € C*(Xg, E)).

Proof. (i) The mean value theorem implies thatmaps BUC**(D) x Ad smoothly into
BUC™T™ (D) and thaty mapsBUC3(X) N Ad smoothly intoBUC3(D). Using the embeddings
in (4.4) we therefore recognize that

§ € C®(Xg, BUCY™ (D)). 4.7)

(i) Given (v, p) € Xg, it follows from (4.7) and Lemma 3.1(d) th&tp)g(v+ x (p), p) belongs
to BUC?**(D), and hence, using Lemma 3.1(d) again, we get

[(v, p) > S(P)g(v + x(p), p)] € C®(Xg, BUCP™(D)).

Invoking Lemma 3.1(b), we conclude that

[(v, p) = B(p)S(p)g(v + x(p), p)] € C=(Xg, BUCYT* ().

Moreover, from Lemmas 3.1 and 3.2 we know that

[0~ B(O)T(0)K ()] € C¥(X3, By, ¥ Y1 (x)).

Hence (4.1) and (4.5) yield
F2 € C®(X4, E2).

(iii) Given (h, k) € BUCT™(X) x BUCT (D), we define a mappingy(h, k) : D — R by

e(A(Y)h(P(y)k(y) ifyeRp,

ro(h, k)(y) ‘= 0 ifye D\ Rp.
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Recalling that( P, A) € C*°(Rp, ¥ x (—a, a)) and thatp(¢) = 0 if |£|] > 3b, one easily verifies
thatro(h, k) belongs toBUC™ (D). Moreover, there is a constant= c¢(P, A), independent of
(h, k), such that
lro(h, H)llpuct by < clhlluctx)lklBuct (py-
This shows thatg is a bounded bilinear mapping froBWC™ (X)) x BUC™ (D) to BUCT (D).
(iv) GivenZ := (v, p) € Xgandj € {1,...,n}, let

hi(Z) == (B(p)[T (p)H(p) + S(p)g(v + x(p), p)] - n) o P,
K (Z) 1= ©7%(3,;0¢ (v + x (p))).

wherey/ andy/ stand for thej-th components of andy, respectively. We know from (ii) that’ e
C*®(Xg, BUC™ (X)), and one shows as in Lemma 3.1 thate C*°(Xg, BUCT(D)). Moreover,
observe that

n

R +d, S(0)g(v+d, p)+T(p)H(p), p) = Y _ r(h/ (2), k) (2)), (4.8)
j=1

whereZ = (v, p). Hence it follows from (4.8), (4.1) and Lemma 3.1 thate C™(Xg, EJ%).
(v) The operatorQ has the same structure &s(cf. (2.13)). Hence using verbatim the same
arguments as in step (iv) we conclude that C*° (X4, E)%).

Invoking Lemma 3.1 again, it follows fronp € C* (X2, BUC3(D)) (see step (i)) that
[p > A(p)x(p)] € C®(XF. BUCH(D))).

Combining finally (4.8), step (v) and (4.1) we infer that € C*°(Xg, E)%), which completes the
proof. O

Proof of Theorem 1. (i) Let £29 be a bounded domain of cIaB§q_l/q and chooser as in Section 2.
By assumption there is ag € B;l;l/"(z) NAd = Xg such thatl",, = I'n, wherelp denotes
the boundary of2q. Let furthery € BUC®(R", R) and assume thaty € HqZ(Qo) satisfies the
conditionug — ¥ € H;O(.Qo). SettingZo := (1o — ¥, po), we see thaZy € X,. Thus Corollary

4.5 and Lemma 4.6 guarantee that we can apply Theorem 1211 of [2] ta §et & and a unique
solution
Z = (v,p) € C([0,1%), Xo) N CH(0, 1), Eo) N C((0,1T), E1)

of (3.6). Set
u= L+ x(p) = PLv—y,

p = PL(S(p)gw+ x(p), p) + T(p)H(p)),
L) =TIy, tel0,th).

It follows from Lemmas 3.3 and 2.1 that, p, I') is a classical solution o := [0, 1) to (1.1)—
(1.6) with initial data(uo, I'v) and boundary valug, provided we can show that

veC®(0,t") x D,R), peC®0,tT) x X, R). (4.9)
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(ii) In order to verify (4.9), we first observe that the following temporal regularity is provided
by the abstract theory:
Z = (v,p) € C®((0,17), E1) (4.10)

(see Theorem 11.3 in][1]). Due to the Sobolev embeddings (4.4) we therefore obtain in particular
v(-, x), p(-,y) € C®((0,t7),R) forallx e Dandy € X.

(iii) Define
f1(t, x) == Fi(v, p)(t,x) for (t,x) € (0,t1) x D.
From (4.10) and the proof of Lemma 4.6 we know tifae C*((0, t*) x D, R). Moreover, we set
A(t) := A(p(t)) for t € [0, :T). By (4.10) and (4.4) the coefficients d@f belong toC1*7((0, 1)
x D). Let J’ be any compact subinterval @, 1*) and pickny € D(R) with |J’ = 0 and supfy)
C (0,77). ThenG1 := nf1+ n'v € C*((0, t*) x D, R) andnv is a solution to the linear parabolic
initial boundary value problem

du+Au =G, in(0,17) x D,
u=0 on[0:") x X,
u@©,)=0 inD.

Thus classical parabolic regularity theory implies that
v e C((0,tF), BUC?T™ (D)) n /2247 ((0,1+) x D)

(cf. Theorem IV.5.1in[[18]). Using this and (4.10) one verifies tfiat C**7((0, ™) x D). Hence
G1 has the same regularity and since the coefficients loélong toC1+7 ((0, 1) x D) we see from
[18, Theorem IV.5.1] that

v e C((0,t7), BUCHT (D)) N CCHI/23+7((0,++) x D). (4.11)

At this point the bootstrapping argument focannot be repeated since we can only guarantee that
the coefficients ofi belong toC1*7((0, 1) x D).
(iv) Define
f2(t) = B(p(1))S(p(1)Ew(®), p(1)), 1€ (0,11).

Then (4.10) and (4.1) imply, as in Lemma 3.1, that

f2 € C(O, 1), BRI+ (xy), (4.12)
Let nowr; € (0,t1) and setpy = p(f1) € B;f’“l/”(z). We takep; as initial value for the

abstract evolution equation

dp+ B(P)T(p)P(p)p = F2(p) + fo(t), p(t1) = p1,

where, of courseFo(p) = B(p)T(p)K (p). Arguing as in [I2, p. 635], we find that €
C(t1,t1), B;l;&*l/q(z)). This bootstrapping procedure can be repeated and after a finite number

of steps we obtain
p e C((0,1%), By (). (4.13)
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At this point the spatial regularity gf cannot be improved, due to (4.12). Nevertheless (4.13) and
(4.10) make it possible to repeat step (iii) to get

v e C((0,tF), BUC*T (D)) n CHHD/2447((0,1+) x D).

Using this, as in step (iv) we obtain

p € C(0.17), By, ().

By induction we now conclude that

v e C((0,t1), BUCKT (D)) n c*k+tD/2k+7((0, 1) x D),

p € C((0, %), Biy 74(2)) N C®((0, 1), By, V(%))

for anyk € N. This implies (4.9). |
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