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An algorithm for Mean Curvature Motion
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We propose a new algorithm for computing the evolution by mean curvature of a hypersurface. Our
algorithm is a variant of the variational approach of Almgren, Taylor and Walng [2]. We show that

it approximates, as the time step goes to zero, the generalized motion (in the sense of barriers or
viscosity solutions). The results still hold for the Anisotropic Mean Curvature Motion, as long as the
anisotropy is smooth.

1. Introduction

In this paper, we propose a method for computing the evolufian of a volume inR" whose
boundary moves with a velocity equal to its mean curvature (in the normal direction). We also
consider the situation where the velocity is a function of the curvature tensor, corresponding to
the first variation of the “anisotropic” perimetgy . ¢°(vg) dHN-1 wherev is the normal th E

andg°® is a convex 1-homogeneous function. This kind of motion belongs to the class of so-called
“geometric” evolutions.

Classical (smooth) solutions to such evolution equations are shown to exist only up to some
finite time, past which they usually either disappear or form singularities. We referlito [34] for a
proof of existence of classical solutions for very general geometric motions, and to [2] for a proof
in the cases which are considered in this paper (seelalso [4]).

Among the attempts to understand the behaviour of solutions past singularities, various
definitions of generalized motion have been proposed. Apart from the approaches of Brakke [19] and
of Almgren, Taylor and Wang [2] and Luckhaus and Sturzenhetkeér [45], all other approaches, to our
knowledge, are based on an inclusion principle which is the geometrical equivalent of the maximum
principle for PDEs. It is well known that the Mean Curvature Motion is “monotone”, in the following
sense: if two solid€ (¢) and F(¢) evolve smoothly by Mean Curvature Motion fore (1o, 1),
then if E(tg) C F(tg), this property is conserved for all subsequent times,&g) C F(r1). This
observation leads to two different (but equivalent) theories for a generalized motion.

A first idea, of Osher and Sethidn [48], is to consider the evolving hypersurface as the level set
of a functionu, and to find the corresponding PDE forlt is not difficult to find thatu(z, x) must
solve the following degenerate elliptic equation:
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It is then shown that ifio is bounded and uniformly continuous, then equatjdn (1) has a unique
viscosity solution, and all level sets ofz, x) evolve according to a motion that coincides with the
Mean Curvature Motion for smooth evolutions, and satisfies the inclusion principle. This problem
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has been studied by Evans and Spruck([28—31], and, for more general geometric evolution equations,
by Chen, Giga and Gotd [22]. We refer o [23] for the general theory of viscosity solutions of second
order elliptic and parabolic PDEs, 1d [6] for the theory of discontinuous solutions, as well as to [8]

in the particular case of geometric motions.

Another approach to defining a generalized evolution is the notion of “minimal barriers” of
De Giorgi. The idea is to define the generalized motion of a set by comparison with smooth
evolutions inside and outside the evolving set. This approach has been studied in particular by
Bellettini, Novaga and Paolini [17, 11,112,114]. It is essentially equivalent to the viscosity approach,
as shown in[[16, 13], but it seems sometimes more natural in the context of this paper.

On the other hand, Almgren, Taylor and Wang have proposed!in [2] a variational approach
to constructing evolutions at all times. The same approach has been simultaneously proposed, in
the isotropic case, by Luckhaus and Sturzenhecker [45]. The idea of these authors follows the
framework of “Minimizing Movements” introduced by De Giorgi and described by Ambrosid in [3]
(with in particular a small chapter dedicated to Almgren, Taylor and Wang’s paper). It is based on
a discretization in time and on a minimization problem for computing the surface atkimel)h
from the surface at timéh, k € N, & > 0. The main drawback in their construction is the lack of
uniqueness of the solution of this minimization problem, and of the evolution, given an initial state;
this is related to the absence of comparison principle in their construction. On the other hand, they
are able to show the consistency of their evolution with the Mean Curvature Motion as long as it
remains smooth.

We propose here an approach that unifies the previous constructions. It is based on a new
algorithm which is relatively easy to implement, and provides a monotonous selection of Aimgren,
Taylor and Wang's evolution. The monotonicity, together with the consistency with smooth
evolutions proved in[]2], allows us to conclude that our algorithm is an approximation of the
generalized motion, in the sense of minimal barriers or viscosity solutions. The proof of convergence
of our algorithm relies on the formalism of minimal barriers described ih [13], which seemed to us
more suitable to tackle the problem, given the consistency result of [2]. However, it is very likely that
the setting of viscosity solutions and the approaches of Barles and Sougahidis [9] and_Leoni [44]
would have led to the same results.

Our algorithm is similar to other approaches that alternate the resolution of a PDE (or
convolution with a smoothing kernel) and truncation, following an initial idea of Merriman,
Bence and Oshel [46, 47] (see [25] 42| 7|,[20,[44, 43]). We point out however that our method,
although probably slightly more complicated than these approaches, is valid also in the case of the
“Anisotropic” Mean Curvature Motion, which is also considered[inh [2], as long as the anisotropy
remains “smooth” (in a sense made precise later on). Some sort of anisotropic diffusion-generated
curvature motion is introduced in_[b1] but it is different from what is usually understood by
Anisotropic Mean Curvature Motion. We refer to [41,155] for the physical motivations of this
motion. We show that a simple anisotropic version of our algorithm converges to the generalized
motion by anisotropic mean curvature (we follow the definition[inl [18]), defined as before in
the sense of barriers or viscosity solutions. The proof is again based on the monotonicity of our
algorithm combined with the consistency of [2].

We have to mention other approaches to computing anisotropic curvature flows, which rely on
an Allen—Cahn approximation of the flow (see for instancé([2V7, 49, 32]).

Of particular interest is the situation where the anisotropy is nonsmooth, that is, when the
above-mentioned convex functigf is nondifferentiable (just Lipschitz). This leads to the so-called
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“Crystalline Curvature Motion"[54, 53,5]. In this case, the equation becomes nonlocal and little is
known. In dimension two, however, a principle of comparison is shown in [35] and M.-H. Giga and
Y. Giga can define a generalized evolution (seée [33] and the references herein), based on a variant
of the classical viscosity solutions. It is likely that our algorithm still converges to this generalized
motion, since in the planar crystalline case, Almgren and Taylor [1] still can show the consistency
of the “flat curvature flow” with the crystalline motion; however, we have not investigated this
situation in the present paper. In dimension three, Giga, Gurtin and Matias [36] consider a movement
of crystals in which all facets evolve with uniform velocity. This movement should not coincide
with the crystalline motion for all initial shapes. They show short-time existence and a principle of
inclusion but no notion of generalized motion is known. A major difficulty in the study of crystalline
curvature motion comes from the phenomenon of “facet-breaking” pointed outiin [15], and which is
not taken into account in_[86]. We conjecture that our selection of Almgren, Taylor and Wang’s
algorithm still converges to a reasonable evolution. Other algorithms for computing crystalline
flows in 2D are proposed by Gio and Kohn[[3[7=39]. A proof of convergence of an Allen—Cahn
approximation is found ir. [10].

2. A new algorithm
2.1 Description

Throughout the papef? is a bounded open subset®t . All that follows can easily be adapted to
the case2 = TV = (R/Z)", which is also interesting. Lek(«; £2) denote the total variation of

the functionu € Li.(£2):

J(u; 2) = sup{/ u(x)divé(x)dr : £ € CH(2; RY), |E(x)| < 1Vx € .{2} (2)
2

with |-| the Euclidean norm iRY. It is clearly a convex and lower semicontinuous functional
(as a supremum of continuous linear functionals). It is well known that £2) < +oo if and
only if the distributional derivativeDu of u is a finite Radon measure if2, in which case we
haveJ (u; 2) = |Dul|(£2) and we say that hasbounded variatiorin 2. The space of functions
u € LY(£2) with J(u; 2) < 400 is denoted byBV (£2). We refer to [[40], or to[[26, 7], for the
properties of/ and of functions with bounded variation. Throughout the paper, when no ambiguity
can arise, we will often writd (1) instead of/ (u; £2).

For E C £2, we define thesigned distancdg by

dp(x) =d(x, E) —d(x,RN \ E).

Here, E€ denotes the se \ E andd(x, E) = inf,cg |x — y|. Itis clear thatE = {dr < 0} while
E = {dg < 0}. Leth > 0 andw be the unique solution of

. —d 2
min / de—l—](u};ﬂ). 3)
wel2(2) Jo 2h

We define the transformatich, : P(£2) — P(£2) by lettingT,(E) = {w < 0} = {x € 2 :
w(x) < 0}. We also defind; (E) = {w < 0}; unless otherwise mentioned, all the statements we
will make aboutT}, are also valid fof},.
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GivenEg C £2 andh > 0, we define, for every > 0,
E"(t) = (Tl " (Ey), @)

where [] is the integer part. We claim thatt" (1) is a time-discrete approximation of the Mean
Curvature Motion starting fromd Eg. The reason for which it is reasonable to believe so is that if
Vuw is not zero in the neighbourhood ofe £2, then neax the Euler equation fof [3) is

It turns out that the expression dww/|Vw|)(x) is the mean curvature atof the level hypersurface
{w = w(x)}. Hence, ifx € 3T, (E), then (forw continuous)

dE(x) =—h CUI‘VaTh(E)(x).

If xg is the projection ofc on 0E andv(xg) = Vdg(xp) is the exterior normal to the sét at xq,
one hast = xg + dg (x)v(xp). The equation then reads

x=x0—h CUI’VaTh(E)(x) v(x0).

This is clearly a discretization for the Mean Curvature Motion, with time ételf E is locally
convex aroundyp, and if we assume that al§@ (E) is convex neax, then curyr, (g)(x) is positive
and the movement goes in the direction opposite to the outer norna) that is, towards the
interior. This is the expected behaviour.

Let us consider the special case wh&e= B(0, R) andE = B(0,r), withO < r < R. Then
dg(x) = |x] —r andw(x) = |x| —r +h(N — 1)/|x|, except neajx| = 0 and|x| = R. If 4 is small
enough, one checks thab = 0} = {|x| = r(1 4+ /1 —4h(N — 1)/r)/2}. If we fix ¢ and takeh
small enough, we get— (1+¢)h(N—1)/r < |x| <r—h(N—-1)/r ondT,(E), and this estimate is
locally uniform inr. One easily deduces that&as— 0, the limit of the motionE” () starting from
a ball Eg = B(0, rg) is B(O, r(¢)), with 7(¢) = —(N — 1)/r (), thatis,r () = \/rg —2(N — Dt
if r < rg/(Z(N — 1)) and 0 ifz is larger. This happens to be the solution of the Mean Curvature
Motion starting fromEg.

2.2 Two essential properties

2.2.1 The algorithm is monotone.Let us now state one of the two key properties of the
operatorTy,.

LEMMA 2.1 If E C E’,thenT,(E) C T,(E').

Proof. The proof is quite straightforward. E C E’, thendg > dg/. One checks that the mapping
dg — w given by the solution of {3) is monotone (see the sketch of proof below). Hengew’
(wherew’ is the solution of[(B) withi:). We deduce thatw < 0} C {w’ < 0}, which proves the
lemma.

It remains to show that whenevgr< g, the minimizenw; of [, [w — f12/(2h) + J (w) is less
than the minimizet, of [, |w — g|2/(2h) + J (w). From the inequalities

1 1
Z/ lwp A wg(x) — FO)I2dx + J(wy A wg) > Z/ lwp(x) — f)12dx + J (wy),
2 2
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1 1
ﬂ/ |wfvwg(x>—g(x>|2dx+1<wfvwg>>E/ lwe (x) — g(x)|% dx 4 J (wy),
2 2

and (se€[40])

J(wr Awg) + J(wyp Vwg) < J(wy) + J(wy),
one deduces easily thj}wf>wg}(w]f —we)(f —¢g) = 0.Henceiff < g, thenwy < w, a.e.
in £2. By continuity of the mapping +— wy (in L?(£2); indeed, if f1, f2 € L2(2), taking the
difference of the Euler equations far; andwy, and multiplying byw s, —wy, one finds easily that
lwry —wplirzg) < 12— f2llp2e)). this remains true whei < g. O

2.2.2 The algorithm implements Almgren, Taylor and Wang's flat curvature fléde now show

that our method is just another way to compute the algorithm introduced by Almgren, Taylor and
Wang in [2] and by Luckhaus and Sturzenheckef in [45]. Another nice presentation of the approach
is given by Ambrosio in([B]. In[[2], the evolution of a finite-perimeter & 2 across a time step

h > 0is computed by solving the problem

ming (7 2+ [ idpwolas. (5)

F h JEaE
Here,J(F; £2) is a simplified notation fot/ (1r; 2), wherelp(x) = 1 if x € F, 0 otherwise, is
the indicator function ofF. The minimum is taken over all subsdftsof 2 with finite perimeter,
that is, such thatf (F) < +o0, andF A E denotes the symmetric differen¢g \ E) U (E \ F).
In[2], 2 = RN (while in our problem the energy becomes unbounded = R"). We have the
following proposition.

PROPOSITION2.2 The sefl;,(E) is a solution of[(b).

Before proving this result, let us recall some propertied dhat are standard facts in convex
analysis. We refer td [24] for a good introduction to convex analysis. Haseviewed as a convex
l.s.c. functional mapping.?(£2) to [0, +oc]. Given any convex functional over the Hilbert space
L?(£2), one defines itsubgradient J («) atu by

8“@:{peL%Qﬁ]@ﬁ>MW+/ﬂMU—WVUEﬁGD}
2

One also defines tHeegendre—Fenchel transforth* which is the convex and I.s.c. function given
by

J*(p) = sup p(u(x)dx — J(u).

uel2(2)J 2

It is well known thatJ** is the convex |.s.c. envelope of the functionalin particular,J** = J
wheneverJ is already l.s.c. and convex. In our cadeis also 1-homogeneous, that is(tu) =
tJ(u) for all u and allz > 0. One deduces easily thadt'(p) is the characteristic functiorof a
closed and convex sé&t C L2(£2):

0 ifpek,

JH(p) = xx(p) = {-|-oo otherwise,

where the seK is {p : [, pu < J(u) Vu} = 3J(0).
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The identityJ** = J yields

Jw)=sup | pC)u(x)dx.
pekK J 2

From the definitionE]Z), one deduces tlais the closure in.2(£2) of
{dive : € e CL(2;RY), |E(x)| < 1Vx € 2).

Another well known identity is the Fenchel identity:
pedIJu) & uecdJ*(p) & Jw)+J (p) = /;2 p(xX)u(x) dx
from which one deduces easily that for ang L1(£2),
3J (u) = {p eK: fg p()u(x)dre = J(u)}.

We can now give the proof of Propositipn P.2.
Proof of Propositioft 22.The Euler equation for problerf|(3) is

w—dE

+dJ(w)>0.

Setp = (w —dg)/h € —3J(w). Let alsoM = diams$2. Since|dg| < M, from the maximum
principle alsojw| < M a.e. inf2. For everys € [—-M, M], let F; := {w < s} (so that in particular
Ty (E) = Fp). SinceJ (w) < 400, F has finite perimeter for almost every

One has/ (w) = — [, pw. By the coarea formula,

M
J(w) = / J(Fy) ds.

-M
On the other hand, sinae(x) = M — fﬁx) ds =M — ff’IM 1, (x) ds for everyx, one has
M
—/ pwx)dx = / / p(x)1F, (x) ds dx — M/ p(x)dx.
2 2J-m 2

One easily shows thgk, p = 0 (sincep € K), so that

M M
/ J(Fs)ds=/ / p(x)1F, (x) dx ds.
-M -MJ0

But sincep € K, [Q plr, < J(F;) for everys. It follows that for almost every, J (F;) = fg plr,,
thatis,p € 0J(1f,). Let now

I={se[-M,M]: J(F) <+ooandp € 3J(1r,)}.
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Then|[—M, M]\ I| = 0. Lets € I, andF C £2 have finite perimeter. One has
w — dE

J(F) > J(Fy) +/Q(1F C1p)p = J(Fy +/Q(1F — 1)

s—d w—s
_ J(Fs>+f (A — 1) =% +f 1 — 1) 25
Q h o h

Now, sinceFy; = {w < s}, we havefg(lp 1r)(w —s) > 0. We deduce that

w—S w — S
J(F)—/ 1 > J(Fs)—/ 1, LS
Q h Q2 h

that is, Fy is a solution to the problem

minJ(F)—}-E/(dE(x)—s)dx.
F h F

If we now letE; := {dr < s}, then for allFF we have

/ |dE_5|:/(dE_S)_/(dE_S)~
E;AF F E;

SincefES (dg — s) does not depend oR, we deduce thak; is also a solution of

1
minJ(F)—i——/ |dg(x) — 5| dx.
F h JrAE,

In particular, observe that(Fy) < 2M|$2|/ h.

If 0 € I we are done. Indeed, the problem tlfgt= 7}, (E) solves is the same &g (5), although
the integral is taken ofi' A Ey, instead ofF A E in (B); but the difference between these two sets
is Eg \ E, onwhichdg = 0. Let us show that @ 7. Observe first that

Fo={w <0} = U{w<s} U F.

s<0 sel,s<0

In particular, if (sx)r>1 is an increasing sequence of negative numbers that converge to O,
then 1F — 1, in L1(£2) ask — oo. We deduce thaFy has finite perimeter, sincé(Fp) <
I|m|nfk_,Oo J(Fy) < 2M|82|/h < +o0. Moreover, [, plr, — Jo Plr, < J(Fo) ask — oo.
Since/,, plr, = J(Fy), we deduce thaf, p1r, = J (Fo). Thereforep € 3J(1p,), thatis, Oe 1.
(In fact, one shows easily in the same way that [—M, M].)

HenceFp = T, (E) is a solution of[(b) and the proof of the proposition is complete. O

2.3 The algorithm converges to the generalized Mean Curvature Motion

Everything that follows comes from the two essential properties that have been shown inCefnma 2.1
and Propositiof 2]2. The key is thgt provides anonotonémplementation of Almgren, Taylor and
Wang's algorithm. We recall Aimgren, Taylor and Wang's results first on th&,sét), then on the
evolution E”(r). Notice that the original functional of Almgren, Taylor and Wang is not defined on
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an open bounded s& but on all of RY. Hence the problems will be really equivalent only when
E C £2 and when the minimizer oﬂS) is also strictly insigiz

As soon asTj,(E) lies strictly inside £2, its perimeterHV—1(3,7,(E)) coincides with
J(Ty(E); £2) and is independent o2 (otherwise,J (T, (E); 2) = HN"1(3,T,(E) N £2); here
9, X denotes the measure-theoretic boundary of theXsehat is, the complement of the set of
points whereX has Lebesgue density 1 or 0). ThEN(E) is the minimizer of[(p) among all other
competitorsF c RM. In fact, Remarf A.B in Appendik A shows that in this situation, the set
Ty (E) = {w < 0} for a solutionw of (3) is “independent of2” and would be identical if computed
in any larger sef2’ D 2.

In particular, ifcOE CC 2, and if one can establish th&{(COE) cc §2 for h small enough,
then, using([2, 3.1.9], one deduces that for such,dh,(COE) C COE. This allows us to conclude
that7;'(E) C COE ccC £2 foreveryn > 0.

In what follows, we will assume for simplicity tha® is either a hypercube (or rectangle) or
the ball B(0, R) in RY. In the latter case, as soon &s= dist(E, 32) > 0, one shows that
also dist7y,(E), 02) > 8 whenh is small enough (of the order (sz). This is easily shown by
comparison (using Lemnja 2.1) with the §gtB(0, M — §)), which can be explicitly computed. If
2 is a hypercube, the same property is true by Coroflary A.7 and Rgmalk A.8.

REMARK 2.3 In fact, we conjecture that as sooncasZ C $2, thenT,(E) C cokE for h small
enough—so that all the results that follow should hold in any opefesefs soon as it contains the
closed convex envelope of the initial set.

For suchs2, the following results (shown first in[2] by Almgren, Taylor and Wang, but we quote
here the statements of Ambrosio [3]) are true.

THEOREM 1 (|3, Cor. 3.6, Teo. p. 228].[2, 3.4-3.7]) AssurBeccC 2 andT,(E) CcC £2. Then
the setl}, (E) coincides a.e. with an open set aHd ~1(37},(E) \ 3,7, (E)) = 0. Moreover, there
exists a closed subsé€tof 37, (E) of dimension less than or equal’— 8 (hence empty iV < 8)
such thab 7, (E) \ C is aC%* hypersurface for some > 0.

Notice that Corollary A.p in Appendik JA implies that is Lipschitz in a neighbourhood of
T, (E), showing again thaty, (E) = {w < 0} is open. (In fact, the statements of the theorem also
hold true foro, T, (E) N §2 even wher}, (E) is not strictly insides2, since the proofs rely on local
arguments that are also true in the neighbourhood of each. 7, (E) N £2.)

THEOREM 2 ([3, pp. 230-232]/12, Thm. 4.4]) Assuntgy cC $2 (henceCoEg CC £2 since our
choice of$2 is convex) o Eg has diameteD and|d Eg| = 0. There exists”, depending only oWV,
such that forevery > s > 0, |t — 5| < 1,

1/(n+1)
s son= o[- )

In particular, there exist& C 2 x R; and a subsequenc(e‘;hk)k>1 such that for anyl" > 0,
E — E in LY(2 x (0, T)) (in the sense of convergence of the indicator functions), Bnd
satisfiesk (0) = Eg and

|E(s) A E(t)] < (I’ + D)J(Eg)|t — s|Y/®+D

foreveryt > s > 0,|r —s| < 1.
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Here we view the setg8", E as subsets o2 x R, with E" = | J,.g E"(t) x {t} while E(t)
denotes the sectiofx € 2 : (x,7) € E}. More precisely, the convergence Bf to E is in
L®(0, T; LY(2)).

The following fundamental consistency result is shown by Almgren, Taylor and Wang:

THEOREM 3 ([2, Thm. 7.4]) Suppose thdi(¢) is such thatL(r) cc 2 forall 0 < r < 9 and
dL(r) is a smooth hypersurface evolving by mean curvature on the intervah[Qet Eo = L(0),
E" (1) be defined byl (4). TheB” — L in L1(£2 x (0, 10)) ash | 0.

REMARK 2.4 In fact, the proof of Aimgren, Taylor and Wang shows thaf goes todL in the
Hausdorff distance, it®2 x [0, r] for all ¢ < 1o (andE" — L, (E")¢ — (L)°).

A consequence of all these results is the following.

THEOREM4 AssumeEy CC £2 satisfiedd Eq| = 0 and is such that the viscosity solutiomf (1))
starting froml zc — 1z, is unique[6[8]. LetE" be defined byﬂA). TheB" — Ein L2 x [0, T])
for everyT > 0, withv(x, ) = Lg)c (x) — Lgq(x).

Proof. The proof of this result is a “straightforward” application of the results of Bellettini and
Novaga [13], once the properties in Lemma] 2.1 and The¢ijem 3 hold. We fix0, and choose

a subsequence ¢E"),-o (that we still denote byE")) such that the Hausdorff limits df” and

of (E")¢ both exist in2 x [0, T]. We let E* = lim, ;0 E" while E¢ = lim; o(E")¢. We can also
assume (by Theorefr] 2) that" converges to som& in L1(£2 x [0, T]). ThenE, C E C E*,

the first one being an open set while the last one is closed. We will show (in Lémina 2.&).that
is a “barrier” in the sense of Bellettini and Novag@al[13, Defs. 2.1 and 2.5] for the mean curvature
evolution equation. Next, let* = 1pc — 1, (x,¢) for0 <t < T andx € RN (u* is naturally
extended by 1 outsid€). The functionu™ is u.s.c. (sincek, is open), and for alh € R, the
sets{u*(-, 1) < A} are eitheRY, E,(r) or ¢, so that they are always a “barrier”. Hence, by![13,
Thm. 5.1@. u* is a viscosity subsolution oEkl) i x (0, 7). In the same way, we deduce that
uy = Lpre — 1+, whichis I.s.c., is a viscosity supersolution of (1).

We denote by = 1pc — 1r the unique viscosity solution qﬂ(l) starting frabge — 1g,. The
assumption that this solutianis unique yields (by.[8, Thm. 1.3 and the proof of TI91m. 2.1)) thiat
(the u.s.c. envelope o is the maximal subsolution df|(1) (with initial dalgs —1g,), while v, (the
I.s.c. envelope o) is the minimal supersolution. Hence, if we show thét, 0) < 1(12_0)C - 150 =
v¥*(-, 0) anduy(-,0) > 1@0)‘ — 150 = v, (-, 0), we will deduce thav, < uy, < u™ < v*. In other
words,F C E* D E, D F. But the uniqueness afalso yields 7 \ 7| = 0, henceF = E (upto a
negligible set).

REMARK 2.5 The uniqueness of the limit evolutidh(tl shows that the whole famiIYEh)h>0
converges (ir.1($2 x[0, +00)))to F (whereasE” goes toF in the Hausdorff sense if? x [0, +00),
and(E")¢ goes to(F)¢.)

The proof of Theorerf|4 will thus be complete if we show the following two assertions:

e E, and (E*)¢ are “barriers” in the sense df [L3] for the mean curvature evolution (see in
particular[13, Defs. 2.1 and 2.5, and the proof of Prop. 2.2]), saithandu.. are respectively
viscosity sub- and supersolutions of equat(dn (1);

1 In this particular case Proposition 5.2 bf[13] also yields the conclusion.
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e u* andu, are viscosity sub- and supersolutions ofydth initial data 156 —1g,. Inthe theory
of discontinuous viscosity solutions, this is expressed by the fackthads to be not greater
than the upper semicontinuous envelopd gf — 1g,, whereas:,. must be not less than its
lower semicontinuous envelope.

The first assertion will be consequence of the next Leijnma 2.6, whereas the second one is proved in
Lemmd2Y.

LEMMA 2.6 Letr; > 9 > 0 anddL(¢r) be a smooth evolution at a speed larger than the mean
curvature onp, 1], in the sense of [13, Def. 2.5].(¢) is compact for any € [, t1], there exists
an open seft ¢ R" such thatt, x) — dr(x) € C*([to, t1] x A), dL(t) C A for anyr and

%(r,x) > Adp(t, x) (6)

foranyt € [to, 11] andx € 0L(¢). ThenL(t1) C E.(t1) if L(tg) C E.(to), wheread (1) C E* (1)
if L(t0) C E*(t0)°.

Proof. First of all, by [2, Thm. 7.1], there exists a duration time- 0 such that for any € [z, 1],

a smooth evolution by mean curvatufg(s) starting fromL(z) exists fort < s < ¢t + 7. One has
F;(t) = L(¢t) and one can check that di8t; (s), dL(s)) is (strictly) increasing, so that(s) cc
Fy(s) for eachs € (¢, + 7). Then [2, Thm. 7.4] shows that if for eache [1o, 1], s > ¢, and
h > 0, one definesF" (s) = T,E‘Y/h]_[t/h]L(t), then fors € [, + ) the evolutionF}" (s) converges
to Fy(s) ash — 0, with (in particular) convergence 6177[’ (s) to 3 F; (s) in the Hausdorff sense (cf.
Theoreni B and Remafk 2.4).

AssumeL(tp) C E.(fo). Let us show that for > 1o, if L(t) C E.(t), thenL(s) C E.(s) for
everys € [t,t + 1), s < t1. This will clearly imply L(r1) C E.(r1). If L(t) C E(¢), then forh
small enoughL(r) x {r} = {(x,1) : x € L(r)} cC E". By Lemmg 2.1, this shows that if is
small enough, the! (s) = T}[S/h]_[’/h]L(t) C E"(s) for eachs > ¢, that is,E"(s)¢ C Fl'(s)‘.
SinceF,” (s)¢ converges in the Hausdorff sensefgs)¢ for eachs € [t,t + 1), it follows that
E.(s)° C Fy(s)¢fortr <s < t+T, hencelj*,(s) C Ey«(s).ButL(s) CC F;(s),sothatL(s) C E«(s).
This shows the first part of the lemma. The proof of the symmetric statement is similar. O
LEMMA 2.7 u*(-,0) <1

—léo andu,(-,0) > 1 -1z

(Eo)° (Eo) 0
Proof. We only prove the first assertion. It is enough to show that & 13"0, thenu*(x, 0) = —1,
thatis,x € E.(0). Lete > 0 be such thaB = B(x, ¢) CC Eg. We deduce thal“h[’/h](B) C EM)

for everyr. By arguments similar to those invoked in the proof of the previous lemma, we find that
{0, 1) 1 |y — x|? < 62— 2(N — 1)1} C E,, so thatx € E,(0). The proof of Theorer|4 is now

complete. O

3. Implementation
In order to implement the algorithm, one needs to implement successively

o the computation of the (signed) distance function to the level set 0 of a fungtion
e the resolution of problenj |3).
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We will describe these two steps in dimension 2. The first step is done by using an implementation
of the fast marching algorithm, introduced by Tsitsiklis[in|[56]. We follow![52]. The second step is
done using the fixed-point dual algorithm bf [21].

3.1 The fast marching algorithm

Our implementation of the fast marching algorithm is the following. The idea is to solve the eikonal
equationVd| = 1 inside and outside the s&t with Dirichlet datad = 0 ondE.

The input of the algorithm is an array; ; of values that corresponds to the discretization of a
function w(x) defined on the open domai@ c R? and such thak = {w < 0}. To simplify, we
assume? is a rectangle, so that the array ; is defined for 1< i < N,1 < j < M. We also
assume that the discretization step is 1.

The output of the algorithm must be the valdgs of the signed distance function & .

In a first step, we compute a nonnegative distance function (that is, the actual distaie to
In what follows we still denote it by; ;. The principle of the fast marching algorithm is to compute
the distance/; ; starting from the points with smallest distance, and, at each step, to try to find the
position (i, j) such that the distaneg ; should be the smallest among all points where it has not
been computed yet (the actual implementatiori_in [56] is a bit more precise, we refer to that paper
for details). In order to do that we need to keep track of the order (determined by the digtance
of all the points that have already been processed: one way to do that is to maintain far ¢aeh
pointernext (i, j) to the position(i’, j') such thaw; ;» is minimal among all other points already
calculated, and where the distance is larger #an This arraynext (-) has to be updated each
time a new value of is calculated.

We introduce a threshold which is the maximum distance (in absolute value) that we want
to compute. We have observed experimentally that this does not change the output asdasg as
larger than the distance between the original c@reand the evolved curveT), (E) that will be
computed. If the curvature is very large, thehas to be increased. It can be chosen initially larger
than diangs2) so that no thresholding is done.

Initialization step. In the initialization step, we let firsi; ; = S for all i, j. A convenient way
to deal with the boundar§s2 is to let alsod; ; > S if (i, j) is at the boundary, that is, whenever
i € {1, N}orje {1, M}. Moreover, one decides never to change the points whgre- S. In this
way, no other precaution needs to be taken. On the other hand, the distance will not be computed
at these points, which is a minor drawback. Another possibility is to consider periodic boundary
conditions.

Thus, for each, j), one considers the following three (mutually exclusive) situations:

(i) w;,; = 0 (this in fact should almost never occur...), in which case wé;|et= 0.

(i) w; ; > 0:then we check whether one (or several) of the neighbouring paints 7, i, j £1
have nonpositivaw. In this case, the point is neaE. We evaluate the distance ¢f, ;)
to 9E. If w; j+1 > 0 thendE crosses only one of the segmenis + 1, j), (i, j)] and
[G, j), G+ 1, j)] (or both). If w;_1 ; < 0, we assume thalE crosses(i — 1, j), (i, j)]
at(i —wj j/(wij—wi-1;), j), hence at distanog,.,' =w; j/(w;j —wi_1;). If wit1,j <0,
then dE crosses (i, j), G + 1, j)] at (¢ + w; ;j/(w;; — wi+1,), j), that is, at distance
dijj = w;j/(wi; — wiy1, ;). If both wi-1; < 0 andwi+1,j <0, thend,»,j is taken to be
the minimum of the previous two values.
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On the other hand, ifv;+1; > O, thendE crosses the segment§,[j — 1), (i, j)] or/and
[@, /), G, j + D], and we compute the distandg; in the same way.
The last situation is whed E crosses both the horizontal and vertical axes néay).
Assume for instance;11,; < 0 andw; ;41 < 0. Then the distancé is zero at the points
(i+w; j/(wi j—wiq,;), j)and(i, j4+w; ;/(w; j—w; j+1)). In other words, the gradient af
at(i, j) is approximated byl; ; x (L—w;41,j/w; j, 1—w; j41/w; ;). The equationVd| = 1
gives the value of; ;: d; ; = 1/|(1 — wit1,j/wi j, 1 —w; j+1/w; j)|. If 9E crosses more
than one horizontal or vertical axis ne@r j), then we take fow; ; the minimum of all
possible values.

(i) w; ; < 0:then we check whethes;+1 ; or w; ;+1 > 0. If so, we compute the distandg;
as in the previous case.

If the distance has been computed at pgin§), then we update the variablesext ”. We first find
the position of(i, j) in the array, by finding the first’, ;') for which dnex: 7,y > d; ;. We then
setnext (i, j) = next (i’, j/) andnext (i’, j) = (i, j).

We iterate this until all points with; ; = S are not neab E (we assume has not been chosen
too smalll, so that points in the neighbourhood@f are all at distance less thai.

Main iteration. Once the distance function has been calculated A&arthe “fast marching”
process can begin. For every poiit ) that has already been calculated (that is, whgre< ),
starting from the first (with least distance) and following the pointeext ”, we check the 4
neighboursi + 1, j) and (i, j + 1) of (i, j). If at one of these points, the distance has not been
calculated yet, we compute it. In order to compute the distance at some neighbouve use the
standard discretization of the eikonal equation (sek [50]):

|(maxX{d; jo — di—1,jr, dir jy — diya,jr, OF, maX{dy jy —dir jr1,dir j —dir 11, 0D =1 (7)
If the distance has been updated at some point, we also update th@extayaccordingly. If the
new distance was higher th&nwe truncate it ta5. The loop stops when it is impossible to compute
a new distance which is less th&r{or when all pointgi, j) have been updated).

In Sectiorf 4.B we explain how to adapt the method to compute anisotropic distances.

Post-treatment. Once the unsigned distance functiond& has been calculated, it remains to
changed; ; to —d; ; at each positiorti, j) wherew; ; < 0.

3.2 A numerical algorithm for the minimization of the total variation

In order to compute the minimizer df|(3), we use the algorithm proposeld_In [21]. Following the
notations of that paper, we l&f = RV*¥ y = X x X, and we define the gradient operator
V:X—>Yhby
(Vw)ij = (Vu)} ;. (Vu)Z))
with .
(Vu)il,j = {g”rl’l Ui, j I|fi z %:

2 _ w1 —ui ifj<M,
Vu)i ;= {0 ifj =M,
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fori=1,...,N,j=1 ..., M. We define the discrete total variation as
T w) = Z Z (V)i |-
i=1j=

In X andY we consider the standard scalar products, that is,
-3 Z% ey
i=1j=
for anyx, x’ € X, and
N M
/ n 2 2
=D D vij vy = ZZ(% jYi )
i=1j=1 i=1j=

for any y,y’ € Y. In order to find a definition of/¢ similar to @), we introduce the operator
div: Y — X, defined by div= —V*, that is, fors = (¢1,£2) e ¥,

Si:!'j _551_1,./' ifl<i<N, 5;'3]- _Si?j—l ifl<j<M,
(dive); = { & ifi =1, +1&4 if j =1,
51 1) ifi =N, 5”1 if j=M

It satisfies(divé, u) = —(&, Vu) for anyé € Y andu € X.
It is then not difficult to show that

Jw) = su(u, divé) : |& ;| < 1Vi, j}.
The discrete problem now consists in solving

lw —d||?

2n
where||x|| = (x, x) is the Euclidean norm and = (d; ;) is the signed distance function evaluated
by the algorithm of Section 3.1. In[21] it is shown that the solutioof (8) is given by

min J<(w) + (8)

w=d — mpk(d),
wherer;, g is the orthogonal projection onto the convex k&t,
={divE:|§ ;| <1Vi=1,...,N,j=1..., M}

being the closed convex set such tHé(u) = sup,cx (v, u). The difficulty is hence to compute
this nonlinear projection. One has to solve

min{lhdive —d|?: €€V, |& ;1 <1Vi=1,...,N, j=1..., M} 9)

Introducing the Lagrange multipliers ; associated to the constraigt ; |2 — 1 < 0, we obtain the
following Euler equation:
—(V(hdivé —d)); j +a; ;& ;=0
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for all i, j, with eithere; ; > 0 and|; ;| = 1, or|§; ;| < 1 ande;,; = 0. In the latter case, also
(V(hdivé — d));; = 0; hence in any case; ; = [(V(hdivé — d)); j|. The Euler equation is
therefore

—(V(hdivéE —d));; + |(V(hdivE —d)); jl& ;=0

for all i, j. The form of the Euler equation suggests the following iterative method: wé€ let 0,
and foreaclh = 1,2, ... we let

. § +T(VdivEt —d/h)); j (10)
5T x| (vavEnT= d/h))jl

wheretr > 0 is a fixed parameter.
Itis shown in[21] that as soon as< 1/8, the iteration converges, add- h div " goes to the
solutionw of (§) asn — oo.

Once this solution has been computed, one goes back to Secfion 3.1 to evaluate the new signed
distanced to the boundary ofw < 0}.

3.3 Examples

We just show two examples of evolutions computed with this algorithm. The initial curve is shown
on the left, and various steps of the evolution are shown on the right. In both examples the size of
the grid is 150x 150.

FIG. 2. Another example, showing iterationslD, 30, 50, 70, 90, 110, 116.
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4. The anisotropic case
4.1 Description of the Anisotropic Mean Curvature Motion

In this section we discuss the anisotropic situation. We first consider anisotropic variants of the total
variationJ. We assume is a convex, even, 1-homogeneous function, with < ¢(&) < b|&| for
everyé € RN (a, b > 0). We define/, by

Jo(u; 2) = sup{/ u(x)dive(x)dx : & € CH(2; RY), p(E(x)) < 1Vx € .Q}
2

Itis clear that/, (u; £2) < 400 iff u has bounded variation. Introducing the polar functiérgiven
b
g ¢°(n) = sup & -1,
p(§)<1

one shows thal, (u; 2) = ¢°(Du)(£2) = f_Q ¢°(Du/|Du|) d|Du|. The anisotropic perimeter of a
setF C Ris Jy(F; 2) = Jo(1r; 2) = [3 pro ¢°(vp) dHN 1 the quantityp® (vr) introduces a
weight on the surface that depends on its orientation.

Notice thatd, (x, y) = ¢(x — y) is a distance iR". Given the sef C £2 we introduce the
signed distance}, to 9 E by

@ i _ — —
dE(x)—ylgfiw(x y) }!Qw(x y)-

For a definition of the Mean Curvature Motion in the presence of anisotropy we reffei to [18]. The
anisotropic curvature dfE atx is given byk, = div Vg°(Vd%) (or is an element of digg°(Vdy)
whenevelrp°® is not smooth). The definition proposed in[18] assumes that the surfaces evolve with
velocity «, along the ¢-normal”n, = V<p°(Vd,‘§). The corresponding equation, in the viscosity
sense, is Iu

5 = ¢ (Vw0 divVe© (Vu). (11)

In order for the equation to be well defined one needs to assume thap ket ¢° are smooth
(away from 0). This excludes the so-called crystalline case, in which the boundary “Wulff shape”
{¢ < 1} may have flat parts or angles. Following [2], we will assume #fafwhich is @ in [2])
is C3 and elliptic (elliptic meaning that far # 0 ande € RY, (D%p°(x)e) - e vanishes only
whenever € Rx). This yields a similar smoothness fpr(see Remark 4]1 below).

Let us point out that equatiop ([L1) slightly differs from what is considered in Almgren, Taylor
and Wang'’s papel [2]. They consider the evolution

g—b: = |Vu|divVg°(Vu) (12)
that corresponds to the evolution with veloaity along the Euclidean normal vector to the surface.
It is not clear to us which point of view is more “natural”. In any case, as long°as smooth and
elliptic, the results established [ [2] for equatipn](12) are also valid for equg_i)n (11). See also [34].
Almgren, Taylor and Wang consider the evolution giveniby) = lim,_o Tht ](Eo) with the
operatorT;, defined by:F = T, (E) is a solution of

min J, (F; 2) + = / ldg ()] dx (13)
F h JraE

(in fact for 2 = RV). They use the Euclidean distance in the second term of the functional. Here
we chose to consider instead the problem
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min J,(F; ) + }/ ld% (x)| dx, (14)
F h JFaE
which is introduced in[18, §5.2]. The modification of our algorithm to the case ¢f (13) is obvious.
On the other hand, for the second problem, the fact that the evolution of the Wulff shape is self-
similar is quite obvious also in the crystalline case (since it can be transformed into a basic one-
dimensional problem exactly as in the Euclidean case). For the study of Alimgren, Taylor and Wang'’s
evolution in the crystalline case séeé [1].

4.2 The algorithm

Let us briefly describe our algorithm in the anisotropic case. Instedd of (3), givers2, we now
sone (w(x) = df(x))?
. wx) — E X .
wer?ygm/g o dx + J, (w; £2). (15)
again, the solutiow is unique, and we It (E) = {w < 0}.

The evolution starting from a séy is defined as in Sectign 2.1, Ky} (4). Then Lenjma 2.1 also
holds (the algorithm is monotone), as also does the counterpart of Proppsition 2.2, ThéEisis
a solution of [(TH).

As long asp°® is smooth (meaning, as inl[20;%* off 0 for somea > 0) and elliptic, the other
results in Sectiop]2 still hold, including Theoréin 4, witlhe viscosity solution of (11). The only
difference in the proof is that in Lemrpa 2.6, the inequalily (6) must be replaced with the anisotropic
version

ad?
8—;(“) > D2p°(Vd{(t,x)) : D%dY(t, x). (16)

REMARK 4.1 Observe that ip° is C*, k > 1, and elliptic, then alsg is CX¢ (off 0) and the
Wulff shape{¢ < 1} is smooth and uniformly convex. This can been shown by using the fact that
9(x)%/2 = (9°2/2)**(x) = max,(x - y — ¢°(y)?/2). The maximum is reached atsuch that

x = @°(y)Ve°(y) := T°(y), andy # 0if x # 0. The ellipticity implies thaty is unique, and by

the local inversion theorem, there exigts= (7°)~! which isC? off 0. Then one shows easily that

T is Ck12 sothaip(x)?/2 = x - T (x) — ¢°(T (x))?/2 has the same regularity, and tiat ¢V,

so thatVeg has the same regularity. The uniform convexity of the Wulff shape follows from the
regularity ofp° (one shows that if it were not uniformly conveXyp° would not be continuous).

4.3 Implementation

The algorithm is implemented in the same way as in the isotropic case. The computation of the
anisotropic distance is just as easy, except for minor modifications that we explain below. The
algorithm for minimizing the anisotropic total variation is also implemented in the same way.
Unfortunately, the convergence seems very slow in this case, and we could not find any proof of
convergence.

4.3.1 The anisotropic distance.In order to compute the anisotropic distanat% for E =
{w < 0}, we adapt the fast-marching algorithm described in Se¢tion 3.1 to the computation of
the solution of the eikonal equatiapf’(Vdfg) = 1. Everything is the same except that in the
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initialization step, items (ii) and (iii) have to be modified, as well as equafipn (7) in the main
iteration. For the sake of simplicity, we consider only anisotropies that are even in both directions
(p(x,y) = p(Ex,y) = ¢(x, £y) for all (x, y) € R?).

In item (ii) of the initialization, we proceed almost as in the isotropic casev;lf > 0
andw;_1; < 0 we assume again thatZ crosses({ — 1, j), (i, )l at ( — h~, j) for h~ =
w;, j/(w;, j — w;_1,;), on the other hand, ifv;_1 ; > 0, we leth™ = +oo. Similarly, we define
ht = w; /(Wi j — wiy1,j) if wit1,j <0, ht = +o0 otherwise, and® = w;, /(Wi j — wj j+1) if
w;, j+1 < 0, and+oo otherwise. Then we lét = min{x™, A~} andv = min{v*, v~}, and when at
least one of these values is finite, we assume that the gradigfitaif(i, ;) is (d"’ /h, d"’ /v). The
eikonal equation |mpI|es“’ = 1/¢°(1/h, 1/v). Item (iii) is treated in the same way.

Then, in the main |terat|on we must replace equafin (7) with
oo (maxdy , —df_y . df , —df ., 0nmaxd] , —df ., _j.dfl ,—df , ,,0)=1 (17)
This means that given four real numbersh, c, d, we need to be able to solve the equation
p°(maxx —a,x — b,0},max{x — c,x — d,0} = 1. If (for instance)a < b andc < d, this
equation clearly reduces {6 ((x —a)™, (x —¢)™) = 1 (wherer™ = max{z, 0} denotes the positive
part).

If a =c,thenclearlyx =a + 1/¢°(1, 1).

If a < ¢, thenx can be between andc, in which case the equationds (x — a, 0) = 1 so that
x =a+ 1/¢°(1, 0). If the latter value is larger thaf) thenx is not betweem andc, that is,x > ¢,
and the equation ig°(x —a, x —c¢) = 1. Lettingt = x — ¢, t9o = ¢ — a, we must findt > 0 solving
@°(to+1t,1) =1, 0rp°(1+t/to, t/10) = 1/10. This means that we must find some efficient way to
invert the functions — ¢°(1+ s, s), s > 0. There are many ways to do this (which might depend
on the particular functiop®) and we do not want to discuss this point here.

If a > ¢ the situation is the same. ifis betweeru andc, thenx = ¢ + 1/¢°(0, 1), otherwise,
if the latter value is greater than thenx > a > ¢ and the equation ig°(x — a, x — ¢) = 1, this
time, if we letr = x — a andrg = a — ¢ we have to find > O that solvesp°(¢,10 +¢) = 1, or
@°(t/t0, 1+ 1t/10) = 1/10.

The rest of the algorithm is as in the isotropic case.

4.3.2 Anisotropic total variation minimization. The discrete total variation is, in the anisotropic

case,
Jeu) = ZZ‘/’ ((Vu)i, ),

i=1j=
and one hasl(j(u) = SUR,ck, (v, u) with K, given by

K,={divE @& ) <1Vi=1,....,N, j=1,..., M},

Once the distance functiaff has been numerically computed by the algorithm in the previous
section, the discrete problem consists in solving

lw—a%|?

2h ' (18)

min J< (w) +
weX

and again the solution is given by
w =d¥ — g, (d?).
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One has to solve[lg) with the constraint on #g replaced withp(; ;) < 1 for everyi, j (and

d replaced withd?). We introduce the operatof and 7° defined byl = 98(¢?/2) = ¢d¢ and
T° = 3(¢°2/2) = ¢°3¢°. In the smooth case, the subgradients are in fact gradients énd=
p(E)Ve(§), etc., but we will perform computation also in the nonsmooth case (wiind/or¢°
just Lipschitz) wherd and7° can be multivalued. Notice that in any case, the functigf)@ and
(p°2/2 are Fenchel conjugates, so that 7 (&) iff £ € T°(x).

As in the isotropic case, we introduce Lagrange multipkers > 0 associated to the constraints

¢(& ;)% — 1 < 0, and find the following Euler equation:

—(V(hdivE —d¥))j+ o T ) > 0

for all i, j. Here,o; ; > 0 only wheng(§; ;) = 1, and since in this case®(; ;T (&) =
o j9(&i e Be(& ) = a; j, we find that

o j =¢°((V(hdivE —d®)); ;).

We choose, as in the isotropic cag8,= 0. Then the counterpart of the iterative method of [21],
given by the formuIO), consists in updatiflg ! by means of the semi-implicit scheme

g =& = t[—(V(ivE T —d? /b)) j + °(V(diVE" T —d? /1)) )T (E] )]
This leads to the iteration
&= +7e°(VAVE"™ —a?/ )i NT) T E T + o (VdivE —a? /)i ). (19)

We recall that for any > 0, the operatot/ +s7) 1 is singlevalued, so that the iteration (19) is well
defined. Infact, forany € R2, (I+sT)~1¢ is the unique minimizer iR of & > (§—¢)°+s@(£)2.

We have no proof of convergence for this algorithm. In practice, we found that for thersame
as in the isotropic case (= 1/8), it seems tha#l¥ — h divE”™ goes tow, although quite slowly,
asn — oo. We performed our computations in the cases where< 1} (the Wulff shape) is an
equilateral hexagon and a square. In the next section we show some results.

4.3.3 Two examples. We performed numerical calculations with a nonsmooth anisotropy,
although the consistency and convergence theorems are not true in this case. However, the examples
show that the algorithm computes what is expected to be the correct motion. As pointed out in the

FIG. 3. The evolution at iterations 4, 8, 12, 16, 20 and 2040, 60, 80, 88 (square Wulff shape).



AN ALGORITHM FOR MEAN CURVATURE MOTION 213

FIG. 4. The evolution at iterations 4, 8, 12, 16, 20 and 2040, 60, 80, 100 (hexagonal Wulff shape).

introduction, it is likely that the consistency resultlin [1] yields the convergence of our algorithm to
the generalized motion defined in [33].

The initial curve is the same as in Fig{ife 2. Figure 3 shows the evolution at different times with
a square Wulff shape (the initial curve is also plotted in light grey). Figlire 4 shows the evolution
with a hexagonal Wulff shape. Again, in both cases the size of the grid is 15ED.

A. Some properties of the minimizer of [3)

We state and prove in this section some properties of the solutigr of (3). All these properties also
hold in the anisotropic case, for the solution|of|(15), with identical proofs.

LEMMA A.1 Letw be the (unique) solution of (3). Then, for any- 0, w A ¢ is also the unique

solution of 5
min / W) —dpC)” | J(w). (20)
o 2

w<r a.e. h

Proof. First, we notice that for everyandw, 3. (w) C 8J(w A t): in the proof of Propositioh 2|2,
it is established that ip € 9J(w), thenp € 3J(1;,~1) for a.e.r € R. Now,

t t
JwAL) = / J{w > s} ds = [ / )Ly (x) dx ds = / px)(w(x) At)dx.
—00 —00 J 2 2

We deduce thap € 0J (w A t).
Since—(w — dg)/h € 3J(w) C 3J(w A t), for all w we have

J(w)}](ﬁ/\t)—/ w—de
P

_ wAt—dg _ W —w At _
=J(w/\t)—/—(w—w/\t)—/—(w—w/\t)
Q 2

(w—wAt)

h h
_ wAt—dg _ w—t
=JWAt)— | ———Z(w—wAL)— —(w—1).
fo) h @>1y h

If w < ta.e.ing, then— f{w»}@_ )(w —1t) > 0, hence

o WAt —dg o
J(w) = J(wAt)—/—(w—wAt).
o h
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As [o(w—dp)? > [@At—dE)?+2 [, (WAt —dg)(w—w At), we obtain the assertioh]

COROLLARY A.2 LetE cC 2 C £’ and letw be the minimizer of[(8) in2 while w’ is the
minimizer of @) in2’. Let§ = dist(E, 952) = minyo dg > 0 and assume that for some< §,
{w<t}Ccc 2. Thenw At =w At.

Proof. Let w be the function given bw A ¢ in £2 andr in £2\ 2. We wish to show thalb = w’ At.
We have

- ((x) — dg(x))?
“W9)+Lﬁ__57__“
B _ (w(x) At —dp(x))? (t — dE(x))?
;o (w'(x) At —dp(x))? (t — dp(x))?
§J(w AI,Q)+L 2]’1 d.x+ Q/\Qde

where the second inequality follows from LemmalA.1 ). Now, on£2’ \ 2,dg > 8§ > ¢, SO
that(r — dp(x))2 < (W' (x) At —dp(x))%a.e.in2’ \ 2. Also, J(w' At; 2) < J(w At; 27). We
deduce that

(@(x) — dp(x))? S (Ww'(x) At —dg(x))?
Q/degj(w At 2) + - o dx,

and by Lemm@ Al (in2’) it follows that® = w’ A 1. O

J(w; 2 +

REMARK A.3 Takings = 0 in Corollary{A.2 we deduce that as soonTasE) CC £2, itis the
same set, whether computed relativezmr to 2’ 2 §2 (thatis,{w < 0} = {w’ < 0}).

PROPOSITIONA.4 Assumes is the torusT’ = (R/Z)N. Then the solutiom of @) is Lipschitz.
In fact, |[Vw| < 1 a.e. ing2.

Proof. Consider a sequencg, : RY — [0, +00) of smooth convex Lagrangians such that

(D?y,(p)E)-& > (1/n)|€|? for everyp, £ € RN, ,,(p) > |p| for eachp andn, andy, (p) — |p|
asn — oo (locally uniformly). One shows that the solutiong of

/(Mﬂ—@uw
o 2h

min
weHL(2)

dx +/ Y, (Vw(x)) dx (22)
2

converge (at least, weakly ib?(£2)) to the solutiorw of @) asn — oo. Indeed, ifw is the weak
L2-limit of a subsequence af,, (still denotedw, ), andv € C*®(£2), one has

(w — dg)? o (wy — dp)?
/QT +J(w) < Ilnrglorlf/Q — + J(wy)

PRY:
< Iiminff MJr/ Y (Vwy)
2 2h 2

n—o0

- (v —dg)? [ (w—dE)?
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But since any € BV (£2) can be approximated by functions e C*°(£2), with fg [Vvj| — J(v)
asj — oo (see([40]), this shows that solves|(B).
Now, the Euler equation fof (21) is

wn(x) — dp(x) — hdivVi, (Vw,(x)) =0
Differentiating in the directior € SN~ (we setd, = ¢ - V), we find
dewn (x) — Bedp (x) — b div D2, (Vw, (X)) V(3ewy) (x) = 0

Since D2y, (Vw,(x)) > (1/n)l for a.e.x € 2, we deduce by the maximum principle that
10ewnllLo(2) < I19.dEllL>(2). Since this is true for any < SN-1 it shows that|Vw,| < 1
a.e. inf2. Hence alsdVw| < 1. (Notice thatw, converges uniformly ta.) O

REMARK A.5 We had to assum® is a torus in order to get rid of the problems at the boundary
in the proof. However, we believe thatshould be Lipschitz continuous as soonfass convex (in
which case we probably still hay®w| < 1 a.e.) 0rd§2 is smooth enough. See also Corollary]A.7.

REMARK A.6 In the anisotropic case (i solves [(I5)), one deduces in the same way that
¢°(Vw) < 1 a.e. in the torus.

COROLLARY A.7 Assume is the cubg0, 1)V c RY (or, more generally, of the for®, L1) x
- x (0, Ly)), andwy, solves[(B). ThenVw;| < 1 a.e. inL2. In particular, as: — 0, w;, goes
uniformly todg in £2.

Proof. The problem in a hypercube is equivalent to the problem in a torus of period twice that of
the cube. Indeed, we can first symmetrize the déid &cross the boundaries of = (0, 1)V, and

then periodize it (with period 2 in each direction). It is straightforward to check that the solution of
the periodized problem is the same as the original funatipnThe conclusion follows by Ascoli—
Arzela’s theorem. In the anisotropic case again wegdéVwy,) < 1 a.e. ins2.

REMARK A.8 We immediately see that £ CcC $2, then in this cas@,(E) cc $2 for h small
enough, sincev, has to be larger than digt, 0£2)/2 for h small enough in a neighbourhood of
d952.

COROLLARY A.9 AssumeE ccC 2 and{w < t} CcC £2 for somer < § = dist(E, 952). Then
IVw| < la.e.infw < t}.

Proof. ConsiderL large enough so thae cc (L, L)N. LetT), = (R/(2LZ))N be the torus
of period 2, and define? as the periodization a2 in ’H“ L (x € Q iff 7=1(x) N 2 # ¥, where
7:RN > TN is the canonical projection). Defirfe C 2 in the same way.

It is clear thatw 2 — R defined byw (7 (x)) = w(x) whenx e £2 is the unique solution
of problem 3) in&2, with E replaced withE. By CoroIIary- WAt =uw At wherew isthe
solution of the minimization probIe@ 2 but this time in the whole toﬁi@é By the previous
proposition,|Vw’| < 1 a.e. in the torus. Hence algéw| < 1 a.e. in{w < t}, or, which is the same,
[Vw| < la.e.infw < t}. O
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Note added in proof. It has been observed by Pierre Cardaliaguet that the construction in this paper,
together with the semigroup property of the generalized mean curvature flow, implies that under the
same assumptions as in Theorem 4, the perimet&rofis nonincreasing (see [31, Thm. 6.3]).
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