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An algorithm for Mean Curvature Motion
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We propose a new algorithm for computing the evolution by mean curvature of a hypersurface. Our
algorithm is a variant of the variational approach of Almgren, Taylor and Wang [2]. We show that
it approximates, as the time step goes to zero, the generalized motion (in the sense of barriers or
viscosity solutions). The results still hold for the Anisotropic Mean Curvature Motion, as long as the
anisotropy is smooth.

1. Introduction

In this paper, we propose a method for computing the evolutionE(t) of a volume inRN whose
boundary moves with a velocity equal to its mean curvature (in the normal direction). We also
consider the situation where the velocity is a function of the curvature tensor, corresponding to
the first variation of the “anisotropic” perimeter

∫
∂E
ϕ◦(νE)dHN−1, whereνE is the normal to∂E

andϕ◦ is a convex 1-homogeneous function. This kind of motion belongs to the class of so-called
“geometric” evolutions.

Classical (smooth) solutions to such evolution equations are shown to exist only up to some
finite time, past which they usually either disappear or form singularities. We refer to [34] for a
proof of existence of classical solutions for very general geometric motions, and to [2] for a proof
in the cases which are considered in this paper (see also [4]).

Among the attempts to understand the behaviour of solutions past singularities, various
definitions of generalized motion have been proposed. Apart from the approaches of Brakke [19] and
of Almgren, Taylor and Wang [2] and Luckhaus and Sturzenhecker [45], all other approaches, to our
knowledge, are based on an inclusion principle which is the geometrical equivalent of the maximum
principle for PDEs. It is well known that the Mean Curvature Motion is “monotone”, in the following
sense: if two solidsE(t) andF(t) evolve smoothly by Mean Curvature Motion fort ∈ (t0, t1),
then ifE(t0) ⊂ F(t0), this property is conserved for all subsequent times, andE(t1) ⊂ F(t1). This
observation leads to two different (but equivalent) theories for a generalized motion.

A first idea, of Osher and Sethian [48], is to consider the evolving hypersurface as the level set
of a functionu, and to find the corresponding PDE foru. It is not difficult to find thatu(t, x) must
solve the following degenerate elliptic equation:

∂u

∂t
= |∇u| div

∇u

|∇u|
. (1)

It is then shown that ifu0 is bounded and uniformly continuous, then equation (1) has a unique
viscosity solution, and all level sets ofu(t, x) evolve according to a motion that coincides with the
Mean Curvature Motion for smooth evolutions, and satisfies the inclusion principle. This problem
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has been studied by Evans and Spruck [28–31], and, for more general geometric evolution equations,
by Chen, Giga and Goto [22]. We refer to [23] for the general theory of viscosity solutions of second
order elliptic and parabolic PDEs, to [6] for the theory of discontinuous solutions, as well as to [8]
in the particular case of geometric motions.

Another approach to defining a generalized evolution is the notion of “minimal barriers” of
De Giorgi. The idea is to define the generalized motion of a set by comparison with smooth
evolutions inside and outside the evolving set. This approach has been studied in particular by
Bellettini, Novaga and Paolini [17, 11, 12, 14]. It is essentially equivalent to the viscosity approach,
as shown in [16, 13], but it seems sometimes more natural in the context of this paper.

On the other hand, Almgren, Taylor and Wang have proposed in [2] a variational approach
to constructing evolutions at all times. The same approach has been simultaneously proposed, in
the isotropic case, by Luckhaus and Sturzenhecker [45]. The idea of these authors follows the
framework of “Minimizing Movements” introduced by De Giorgi and described by Ambrosio in [3]
(with in particular a small chapter dedicated to Almgren, Taylor and Wang’s paper). It is based on
a discretization in time and on a minimization problem for computing the surface at time(k + 1)h
from the surface at timekh, k ∈ N, h > 0. The main drawback in their construction is the lack of
uniqueness of the solution of this minimization problem, and of the evolution, given an initial state;
this is related to the absence of comparison principle in their construction. On the other hand, they
are able to show the consistency of their evolution with the Mean Curvature Motion as long as it
remains smooth.

We propose here an approach that unifies the previous constructions. It is based on a new
algorithm which is relatively easy to implement, and provides a monotonous selection of Almgren,
Taylor and Wang’s evolution. The monotonicity, together with the consistency with smooth
evolutions proved in [2], allows us to conclude that our algorithm is an approximation of the
generalized motion, in the sense of minimal barriers or viscosity solutions. The proof of convergence
of our algorithm relies on the formalism of minimal barriers described in [13], which seemed to us
more suitable to tackle the problem, given the consistency result of [2]. However, it is very likely that
the setting of viscosity solutions and the approaches of Barles and Souganidis [9] and Leoni [44]
would have led to the same results.

Our algorithm is similar to other approaches that alternate the resolution of a PDE (or
convolution with a smoothing kernel) and truncation, following an initial idea of Merriman,
Bence and Osher [46, 47] (see [25, 42, 7, 20, 44, 43]). We point out however that our method,
although probably slightly more complicated than these approaches, is valid also in the case of the
“Anisotropic” Mean Curvature Motion, which is also considered in [2], as long as the anisotropy
remains “smooth” (in a sense made precise later on). Some sort of anisotropic diffusion-generated
curvature motion is introduced in [51] but it is different from what is usually understood by
Anisotropic Mean Curvature Motion. We refer to [41, 55] for the physical motivations of this
motion. We show that a simple anisotropic version of our algorithm converges to the generalized
motion by anisotropic mean curvature (we follow the definition in [18]), defined as before in
the sense of barriers or viscosity solutions. The proof is again based on the monotonicity of our
algorithm combined with the consistency of [2].

We have to mention other approaches to computing anisotropic curvature flows, which rely on
an Allen–Cahn approximation of the flow (see for instance [27, 49, 32]).

Of particular interest is the situation where the anisotropy is nonsmooth, that is, when the
above-mentioned convex functionϕ◦ is nondifferentiable (just Lipschitz). This leads to the so-called
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“Crystalline Curvature Motion” [54, 53, 5]. In this case, the equation becomes nonlocal and little is
known. In dimension two, however, a principle of comparison is shown in [35] and M.-H. Giga and
Y. Giga can define a generalized evolution (see [33] and the references herein), based on a variant
of the classical viscosity solutions. It is likely that our algorithm still converges to this generalized
motion, since in the planar crystalline case, Almgren and Taylor [1] still can show the consistency
of the “flat curvature flow” with the crystalline motion; however, we have not investigated this
situation in the present paper. In dimension three, Giga, Gurtin and Matias [36] consider a movement
of crystals in which all facets evolve with uniform velocity. This movement should not coincide
with the crystalline motion for all initial shapes. They show short-time existence and a principle of
inclusion but no notion of generalized motion is known. A major difficulty in the study of crystalline
curvature motion comes from the phenomenon of “facet-breaking” pointed out in [15], and which is
not taken into account in [36]. We conjecture that our selection of Almgren, Taylor and Wang’s
algorithm still converges to a reasonable evolution. Other algorithms for computing crystalline
flows in 2D are proposed by Girão and Kohn [37–39]. A proof of convergence of an Allen–Cahn
approximation is found in [10].

2. A new algorithm

2.1 Description

Throughout the paper,Ω is a bounded open subset ofRN . All that follows can easily be adapted to
the caseΩ = TN = (R/Z)N , which is also interesting. LetJ (u;Ω) denote the total variation of
the functionu ∈ L1

loc(Ω):

J (u;Ω) = sup

{ ∫
Ω

u(x)div ξ(x)dx : ξ ∈ C1
c (Ω; Rd), |ξ(x)| 6 1 ∀x ∈ Ω

}
, (2)

with |·| the Euclidean norm inRN . It is clearly a convex and lower semicontinuous functional
(as a supremum of continuous linear functionals). It is well known thatJ (u;Ω) < +∞ if and
only if the distributional derivativeDu of u is a finite Radon measure inΩ, in which case we
haveJ (u;Ω) = |Du|(Ω) and we say thatu hasbounded variationin Ω. The space of functions
u ∈ L1(Ω) with J (u;Ω) < +∞ is denoted byBV (Ω). We refer to [40], or to [26, 57], for the
properties ofJ and of functions with bounded variation. Throughout the paper, when no ambiguity
can arise, we will often writeJ (u) instead ofJ (u;Ω).

ForE ⊂ Ω, we define thesigned distancedE by

dE(x) = d(x,E)− d(x,RN \ E).

Here,Ec denotes the setΩ \ E andd(x,E) = infy∈E |x − y|. It is clear thatE = {dE 6 0} while
E̊ = {dE < 0}. Leth > 0 andw be the unique solution of

min
w∈L2(Ω)

∫
Ω

(w(x)− dE(x))
2

2h
dx + J (w;Ω). (3)

We define the transformationTh : P(Ω) → P(Ω) by lettingTh(E) = {w < 0} = {x ∈ Ω :
w(x) < 0}. We also defineT ′

h(E) = {w 6 0}; unless otherwise mentioned, all the statements we
will make aboutTh are also valid forT ′

h.
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GivenE0 ⊂ Ω andh > 0, we define, for everyt > 0,

Eh(t) = (Th)
[t/h](E0), (4)

where [·] is the integer part. We claim that∂Eh(t) is a time-discrete approximation of the Mean
Curvature Motion starting from∂E0. The reason for which it is reasonable to believe so is that if
∇w is not zero in the neighbourhood ofx ∈ Ω, then nearx the Euler equation for (3) is

w − dE

h
− div

∇w

|∇w|
= 0.

It turns out that the expression div(∇w/|∇w|)(x) is the mean curvature atx of the level hypersurface
{w = w(x)}. Hence, ifx ∈ ∂Th(E), then (forw continuous)

dE(x) = −h curv∂Th(E)(x).

If x0 is the projection ofx on ∂E andν(x0) = ∇dE(x0) is the exterior normal to the setE at x0,
one hasx = x0 + dE(x)ν(x0). The equation then reads

x = x0 − h curv∂Th(E)(x) ν(x0).

This is clearly a discretization for the Mean Curvature Motion, with time steph. If E is locally
convex aroundx0, and if we assume that alsoTh(E) is convex nearx, then curv∂Th(E)(x) is positive
and the movement goes in the direction opposite to the outer normal toE, that is, towards the
interior. This is the expected behaviour.

Let us consider the special case whereΩ = B(0, R) andE = B(0, r), with 0 < r < R. Then
dE(x) = |x| − r andw(x) = |x| − r +h(N − 1)/|x|, except near|x| = 0 and|x| = R. If h is small
enough, one checks that{w = 0} = {|x| = r(1 +

√
1 − 4h(N − 1)/r)/2}. If we fix ε and takeh

small enough, we getr−(1+ε)h(N−1)/r 6 |x| 6 r−h(N−1)/r on∂Th(E), and this estimate is
locally uniform inr. One easily deduces that ash → 0, the limit of the motionEh(t) starting from
a ballE0 = B(0, r0) is B(0, r(t)), with ṙ(t) = −(N − 1)/r(t), that is,r(t) =

√
r2
0 − 2(N − 1)t

if t 6 r2
0/(2(N − 1)) and 0 if t is larger. This happens to be the solution of the Mean Curvature

Motion starting fromE0.

2.2 Two essential properties

2.2.1 The algorithm is monotone.Let us now state one of the two key properties of the
operatorTh.

LEMMA 2.1 If E ⊆ E′, thenTh(E) ⊆ Th(E
′).

Proof. The proof is quite straightforward. IfE ⊆ E′, thendE > dE′ . One checks that the mapping
dE 7→ w given by the solution of (3) is monotone (see the sketch of proof below). Hence,w > w′

(wherew′ is the solution of (3) withdE′ ). We deduce that{w < 0} ⊆ {w′ < 0}, which proves the
lemma.

It remains to show that wheneverf 6 g, the minimizerwf of
∫
Ω

|w− f |
2/(2h)+ J (w) is less

than the minimizerwg of
∫
Ω

|w − g|2/(2h)+ J (w). From the inequalities

1

2h

∫
Ω

|wf ∧ wg(x)− f (x)|2 dx + J (wf ∧ wg) >
1

2h

∫
Ω

|wf (x)− f (x)|2 dx + J (wf ),
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1

2h

∫
Ω

|wf ∨ wg(x)− g(x)|2 dx + J (wf ∨ wg) >
1

2h

∫
Ω

|wg(x)− g(x)|2 dx + J (wg),

and (see [40])
J (wf ∧ wg)+ J (wf ∨ wg) 6 J (wf )+ J (wg),

one deduces easily that
∫
{wf>wg}

(wf − wg)(f − g) > 0. Hence iff < g, thenwf 6 wg a.e.

in Ω. By continuity of the mappingf 7→ wf (in L2(Ω); indeed, iff1, f2 ∈ L2(Ω), taking the
difference of the Euler equations forwf1 andwf2 and multiplying bywf1 −wf2 one finds easily that
‖wf1 − wf2‖L2(Ω) 6 ‖f1 − f2‖L2(Ω)), this remains true whenf 6 g. 2

2.2.2 The algorithm implements Almgren, Taylor and Wang’s flat curvature flow.We now show
that our method is just another way to compute the algorithm introduced by Almgren, Taylor and
Wang in [2] and by Luckhaus and Sturzenhecker in [45]. Another nice presentation of the approach
is given by Ambrosio in [3]. In [2], the evolution of a finite-perimeter setE ⊂ Ω across a time step
h > 0 is computed by solving the problem

min
F
J (F ;Ω)+

1

h

∫
F4E

|dE(x)| dx. (5)

Here,J (F ;Ω) is a simplified notation forJ (1F ;Ω), where1F (x) = 1 if x ∈ F , 0 otherwise, is
the indicator function ofF . The minimum is taken over all subsetsF of Ω with finite perimeter,
that is, such thatJ (F ) < +∞, andF 4 E denotes the symmetric difference(F \ E) ∪ (E \ F).
In [2], Ω = RN (while in our problem the energy becomes unbounded ifΩ = RN ). We have the
following proposition.

PROPOSITION2.2 The setTh(E) is a solution of (5).

Before proving this result, let us recall some properties ofJ that are standard facts in convex
analysis. We refer to [24] for a good introduction to convex analysis. HereJ is viewed as a convex
l.s.c. functional mappingL2(Ω) to [0,+∞]. Given any convex functionalJ over the Hilbert space
L2(Ω), one defines itssubgradient∂J (u) atu by

∂J (u) =

{
p ∈ L2(Ω) : J (v) > J (u)+

∫
Ω

p(v − u) ∀v ∈ L2(Ω)

}
.

One also defines theLegendre–Fenchel transformJ ∗ which is the convex and l.s.c. function given
by

J ∗(p) = sup
u∈L2(Ω)

∫
Ω

p(x)u(x)dx − J (u).

It is well known thatJ ∗∗ is the convex l.s.c. envelope of the functionalJ , in particular,J ∗∗
= J

wheneverJ is already l.s.c. and convex. In our case,J is also 1-homogeneous, that is,J (tu) =

tJ (u) for all u and all t > 0. One deduces easily thatJ ∗(p) is thecharacteristic functionof a
closed and convex setK ⊂ L2(Ω):

J ∗(p) = χK(p) =

{
0 if p ∈ K,

+∞ otherwise,

where the setK is {p :
∫
Ω
pu 6 J (u) ∀u} = ∂J (0).
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The identityJ ∗∗
= J yields

J (u) = sup
p∈K

∫
Ω

p(x)u(x)dx.

From the definition (2), one deduces thatK is the closure inL2(Ω) of

{div ξ : ξ ∈ C1
c (Ω; RN ), |ξ(x)| 6 1 ∀x ∈ Ω}.

Another well known identity is the Fenchel identity:

p ∈ ∂J (u) ⇔ u ∈ ∂J ∗(p) ⇔ J (u)+ J ∗(p) =

∫
Ω

p(x)u(x)dx

from which one deduces easily that for anyu ∈ L1(Ω),

∂J (u) =

{
p ∈ K :

∫
Ω

p(x)u(x)dx = J (u)

}
.

We can now give the proof of Proposition 2.2.

Proof of Proposition 2.2.The Euler equation for problem (3) is

w − dE

h
+ ∂J (w) 3 0.

Setp = (w − dE)/h ∈ −∂J (w). Let alsoM = diamΩ. Since|dE | 6 M, from the maximum
principle also|w| 6 M a.e. inΩ. For everys ∈ [−M,M], let Fs := {w < s} (so that in particular
Th(E) = F0). SinceJ (w) < +∞, Fs has finite perimeter for almost everys.

One hasJ (w) = −
∫
Ω
pw. By the coarea formula,

J (w) =

∫ M

−M

J (Fs)ds.

On the other hand, sincew(x) = M −
∫M
w(x)

ds = M −
∫M
−M

1Fs (x)ds for everyx, one has

−

∫
Ω

p(x)w(x)dx =

∫
Ω

∫ M

−M

p(x)1Fs (x)ds dx −M

∫
Ω

p(x)dx.

One easily shows that
∫
Ω
p = 0 (sincep ∈ K), so that∫ M

−M

J (Fs)ds =

∫ M

−M

∫
Ω

p(x)1Fs (x)dx ds.

But sincep ∈ K,
∫
Ω
p1Fs 6 J (Fs) for everys. It follows that for almost everys, J (Fs) =

∫
Ω
p1Fs ,

that is,p ∈ ∂J (1Fs ). Let now

I = {s ∈ [−M,M] : J (Fs) < +∞ andp ∈ ∂J (1Fs )}.
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Then|[−M,M] \ I | = 0. Lets ∈ I , andF ⊂ Ω have finite perimeter. One has

J (F ) > J (Fs)+

∫
Ω

(1F − 1Fs )p = J (Fs)+

∫
Ω

(1F − 1Fs )
w − dE

h

= J (Fs)+

∫
Ω

(1F − 1Fs )
s − dE

h
+

∫
Ω

(1F − 1Fs )
w − s

h
.

Now, sinceFs = {w < s}, we have
∫
Ω
(1F − 1Fs )(w − s) > 0. We deduce that

J (F )−

∫
Ω

1F
w − s

h
> J (Fs)−

∫
Ω

1Fs
w − s

h
,

that is,Fs is a solution to the problem

min
F
J (F )+

1

h

∫
F

(dE(x)− s)dx.

If we now letEs := {dE < s}, then for allF we have∫
Es4F

|dE − s| =

∫
F

(dE − s)−

∫
Es

(dE − s).

Since
∫
Es
(dE − s) does not depend onF , we deduce thatFs is also a solution of

min
F
J (F )+

1

h

∫
F4Es

|dE(x)− s| dx.

In particular, observe thatJ (Fs) 6 2M|Ω|/h.
If 0 ∈ I we are done. Indeed, the problem thatF0 = Th(E) solves is the same as (5), although

the integral is taken onF 4 E0, instead ofF 4 E in (5); but the difference between these two sets
isE0 \ E, on whichdE ≡ 0. Let us show that 0∈ I . Observe first that

F0 = {w < 0} =

⋃
s<0

{w < s} =

⋃
s∈I, s<0

Fs .

In particular, if (sk)k>1 is an increasing sequence of negative numbers inI that converge to 0,
then1Fsk → 1F0 in L1(Ω) ask → ∞. We deduce thatF0 has finite perimeter, sinceJ (F0) 6
lim inf k→∞ J (Fsk ) 6 2M|Ω|/h < +∞. Moreover,

∫
Ω
p1Fsk →

∫
Ω
p1F0 6 J (F0) ask → ∞.

Since
∫
Ω
p1Fsk = J (Fsk ), we deduce that

∫
Ω
p1F0 = J (F0). Thereforep ∈ ∂J (1F0), that is, 0∈ I .

(In fact, one shows easily in the same way thatI = [−M,M].)
HenceF0 = Th(E) is a solution of (5) and the proof of the proposition is complete. 2

2.3 The algorithm converges to the generalized Mean Curvature Motion

Everything that follows comes from the two essential properties that have been shown in Lemma 2.1
and Proposition 2.2. The key is thatTh provides amonotoneimplementation of Almgren, Taylor and
Wang’s algorithm. We recall Almgren, Taylor and Wang’s results first on the setTh(E), then on the
evolutionEh(t). Notice that the original functional of Almgren, Taylor and Wang is not defined on
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an open bounded setΩ but on all ofRN . Hence the problems will be really equivalent only when
E ⊂ Ω and when the minimizer of (5) is also strictly insideΩ.

As soon asTh(E) lies strictly insideΩ, its perimeterHN−1(∂∗Th(E)) coincides with
J (Th(E);Ω) and is independent ofΩ (otherwise,J (Th(E);Ω) = HN−1(∂∗Th(E) ∩ Ω); here
∂∗X denotes the measure-theoretic boundary of the setX, that is, the complement of the set of
points whereX has Lebesgue density 1 or 0). ThenTh(E) is the minimizer of (5) among all other
competitorsF ⊂ RN . In fact, Remark A.3 in Appendix A shows that in this situation, the set
Th(E) = {w < 0} for a solutionw of (3) is “independent ofΩ” and would be identical if computed
in any larger setΩ ′

⊇ Ω.
In particular, ifcoE ⊂⊂ Ω, and if one can establish thatTh(coE) ⊂⊂ Ω for h small enough,

then, using [2, 3.1.9], one deduces that for such anh, Th(coE) ⊂ coE. This allows us to conclude
thatT nh (E) ⊂ coE ⊂⊂ Ω for everyn > 0.

In what follows, we will assume for simplicity thatΩ is either a hypercube (or rectangle) or
the ballB(0, R) in RN . In the latter case, as soon asδ = dist(E, ∂Ω) > 0, one shows that
also dist(Th(E), ∂Ω) > δ whenh is small enough (of the order ofδ2). This is easily shown by
comparison (using Lemma 2.1) with the setTh(B(0,M − δ)), which can be explicitly computed. If
Ω is a hypercube, the same property is true by Corollary A.7 and Remark A.8.

REMARK 2.3 In fact, we conjecture that as soon ascoE ⊂ Ω, thenTh(E) ⊂ coE for h small
enough—so that all the results that follow should hold in any open setΩ, as soon as it contains the
closed convex envelope of the initial set.

For suchΩ, the following results (shown first in [2] by Almgren, Taylor and Wang, but we quote
here the statements of Ambrosio [3]) are true.

THEOREM 1 ([3, Cor. 3.6, Teo. p. 228], [2, 3.4–3.7]) AssumeE ⊂⊂ Ω andTh(E) ⊂⊂ Ω. Then
the setTh(E) coincides a.e. with an open set andHN−1(∂Th(E) \ ∂∗Th(E)) = 0. Moreover, there
exists a closed subsetC of ∂Th(E) of dimension less than or equal toN−8 (hence empty ifN < 8)
such that∂Th(E) \ C is aC2,α hypersurface for someα > 0.

Notice that Corollary A.9 in Appendix A implies thatw is Lipschitz in a neighbourhood of
Th(E), showing again thatTh(E) = {w < 0} is open. (In fact, the statements of the theorem also
hold true for∂∗Th(E) ∩Ω even whenTh(E) is not strictly insideΩ, since the proofs rely on local
arguments that are also true in the neighbourhood of eachx ∈ ∂∗Th(E) ∩Ω.)

THEOREM 2 ([3, pp. 230–232], [2, Thm. 4.4]) AssumeE0 ⊂⊂ Ω (hencecoE0 ⊂⊂ Ω since our
choice ofΩ is convex),coE0 has diameterD and|∂E0| = 0. There existsΓ , depending only onN ,
such that for everyt > s > 0, |t − s| 6 1,

|Eh(s)4 Eh(t)| 6 (Γ +D)J (E0)

([
t

h

]
h−

[
s

h

]
h

)1/(n+1)

.

In particular, there existsE ⊂ Ω × R+ and a subsequence(Ehk )k>1 such that for anyT > 0,
Ehk → E in L1(Ω × (0, T )) (in the sense of convergence of the indicator functions), andE

satisfiesE(0) = E0 and

|E(s)4 E(t)| 6 (Γ +D)J (E0)|t − s|1/(n+1)

for everyt > s > 0, |t − s| 6 1.
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Here we view the setsEh, E as subsets ofΩ × R, with Eh =
⋃
t∈R E

h(t) × {t} while E(t)
denotes the section{x ∈ Ω : (x, t) ∈ E}. More precisely, the convergence ofEhk to E is in
L∞(0, T ;L1(Ω)).

The following fundamental consistency result is shown by Almgren, Taylor and Wang:

THEOREM 3 ([2, Thm. 7.4]) Suppose thatL(t) is such thatL(t) ⊂⊂ Ω for all 0 6 t < t0 and
∂L(t) is a smooth hypersurface evolving by mean curvature on the interval [0, t0). LetE0 = L(0),
Eh(t) be defined by (4). ThenEh → L in L1(Ω × (0, t0)) ash ↓ 0.

REMARK 2.4 In fact, the proof of Almgren, Taylor and Wang shows that∂Eh goes to∂L in the
Hausdorff distance, inΩ × [0, t ] for all t < t0 (andEh → L, (Eh)c → (L̊)c).

A consequence of all these results is the following.

THEOREM 4 AssumeE0 ⊂⊂ Ω satisfies|∂E0| = 0 and is such that the viscosity solutionv of (1)
starting from1Ec0 −1E0 is unique [6, 8]. LetEh be defined by (4). ThenEh → E in L1(Ω× [0, T ])
for everyT > 0, with v(x, t) = 1E(t)c (x)− 1E(t)(x).

Proof. The proof of this result is a “straightforward” application of the results of Bellettini and
Novaga [13], once the properties in Lemma 2.1 and Theorem 3 hold. We fixT > 0, and choose
a subsequence of(Eh)h>0 (that we still denote by(Eh)) such that the Hausdorff limits ofEh and
of (Eh)c both exist inΩ × [0, T ]. We letE∗

= limh↓0E
h while Ec∗ = limh↓0(E

h)c. We can also
assume (by Theorem 2) thatEh converges to someE in L1(Ω × [0, T ]). ThenE∗ ⊂ E ⊂ E∗,
the first one being an open set while the last one is closed. We will show (in Lemma 2.6) thatE∗

is a “barrier” in the sense of Bellettini and Novaga [13, Defs. 2.1 and 2.5] for the mean curvature
evolution equation. Next, letu∗

= 1Ec∗ − 1E∗
(x, t) for 0 6 t 6 T andx ∈ RN (u∗ is naturally

extended by 1 outsideΩ). The functionu∗ is u.s.c. (sinceE∗ is open), and for allλ ∈ R, the
sets{u∗(·, t) < λ} are eitherRN , E∗(t) or ∅, so that they are always a “barrier”. Hence, by [13,
Thm. 5.1]1, u∗ is a viscosity subsolution of (1) inΩ × (0, T ). In the same way, we deduce that
u∗ = 1(E∗)c − 1E∗ , which is l.s.c., is a viscosity supersolution of (1).

We denote byv = 1F c − 1F the unique viscosity solution of (1) starting from1Ec0 − 1E0. The
assumption that this solutionv is unique yields (by [8, Thm. 1.3 and the proof of Thm. 2.1]) thatv∗

(the u.s.c. envelope ofv) is the maximal subsolution of (1) (with initial data1Ec0 −1E0), whilev∗ (the
l.s.c. envelope ofv) is the minimal supersolution. Hence, if we show thatu∗(·,0) 6 1

(E̊0)
c − 1

E̊0
=

v∗(·,0) andu∗(·,0) > 1(E0)
c − 1E0

= v∗(·,0), we will deduce thatv∗ 6 u∗ 6 u∗ 6 v∗. In other

words,F ⊆ E∗
⊇ E∗ ⊇ F̊ . But the uniqueness ofv also yields|F \ F̊ | = 0, henceF = E (up to a

negligible set).

REMARK 2.5 The uniqueness of the limit evolutionE(t) shows that the whole family(Eh)h>0
converges (inL1(Ω×[0,+∞))) toF (whereasEh goes toF in the Hausdorff sense inΩ×[0,+∞),
and(Eh)c goes to(F̊ )c.)

The proof of Theorem 4 will thus be complete if we show the following two assertions:

• E∗ and (E∗)c are “barriers” in the sense of [13] for the mean curvature evolution (see in
particular [13, Defs. 2.1 and 2.5, and the proof of Prop. 2.2]), so thatu∗ andu∗ are respectively
viscosity sub- and supersolutions of equation (1);

1 In this particular case Proposition 5.2 of [13] also yields the conclusion.
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• u∗ andu∗ are viscosity sub- and supersolutions of (1)with initial data1Ec0 −1E0. In the theory
of discontinuous viscosity solutions, this is expressed by the fact thatu∗ has to be not greater
than the upper semicontinuous envelope of1Ec0 − 1E0, whereasu∗ must be not less than its
lower semicontinuous envelope.

The first assertion will be consequence of the next Lemma 2.6, whereas the second one is proved in
Lemma 2.7.

LEMMA 2.6 Let t1 > t0 > 0 and∂L(t) be a smooth evolution at a speed larger than the mean
curvature on [t0, t1], in the sense of [13, Def. 2.5]:L(t) is compact for anyt ∈ [t0, t1], there exists
an open setA ⊂ RN such that(t, x) 7→ dL(t)(x) ∈ C∞([t0, t1] × A), ∂L(t) ⊂ A for anyt and

∂dL

∂t
(t, x) > ∆dL(t, x) (6)

for anyt ∈ [t0, t1] andx ∈ ∂L(t). ThenL(t1) ⊂ E∗(t1) if L(t0) ⊂ E∗(t0), whereasL(t1) ⊂ E∗(t1)
c

if L(t0) ⊂ E∗(t0)
c.

Proof. First of all, by [2, Thm. 7.1], there exists a duration timeτ > 0 such that for anyt ∈ [t0, t1],
a smooth evolution by mean curvatureFt (s) starting fromL(t) exists fort 6 s < t + τ . One has
Ft (t) = L(t) and one can check that dist(∂Ft (s), ∂L(s)) is (strictly) increasing, so thatL(s) ⊂⊂

Ft (s) for eachs ∈ (t, t + τ). Then [2, Thm. 7.4] shows that if for eacht ∈ [t0, t1], s > t , and
h > 0, one definesF ht (s) = T

[s/h]−[t/h]
h L(t), then fors ∈ [t, t + τ) the evolutionF ht (s) converges

to Ft (s) ash → 0, with (in particular) convergence of∂F ht (s) to ∂Ft (s) in the Hausdorff sense (cf.
Theorem 3 and Remark 2.4).

AssumeL(t0) ⊂ E∗(t0). Let us show that fort > t0, if L(t) ⊂ E∗(t), thenL(s) ⊂ E∗(s) for
everys ∈ [t, t + τ), s 6 t1. This will clearly implyL(t1) ⊂ E∗(t1). If L(t) ⊂ E∗(t), then forh
small enough,L(t) × {t} = {(x, t) : x ∈ L(t)} ⊂⊂ Eh. By Lemma 2.1, this shows that ifh is
small enough, thenF ht (s) = T

[s/h]−[t/h]
h L(t) ⊂ Eh(s) for eachs > t , that is,Eh(s)c ⊂ F ht (s)

c.
SinceF ht (s)

c converges in the Hausdorff sense toFt (s)c for eachs ∈ [t, t + τ), it follows that
E∗(s)

c
⊂ Ft (s)c for t < s < t+τ , henceF̊t (s) ⊂ E∗(s). ButL(s) ⊂⊂ Ft (s), so thatL(s) ⊂ E∗(s).

This shows the first part of the lemma. The proof of the symmetric statement is similar. 2

LEMMA 2.7 u∗(·,0) 6 1
(E̊0)

c − 1
E̊0

andu∗(·,0) > 1(E0)
c − 1E0

.

Proof. We only prove the first assertion. It is enough to show that ifx ∈ E̊0, thenu∗(x,0) = −1,
that is,x ∈ E∗(0). Let ε > 0 be such thatB = B(x, ε) ⊂⊂ E̊0. We deduce thatT [t/h]

h (B) ⊂ Eh(t)

for everyt . By arguments similar to those invoked in the proof of the previous lemma, we find that
{(y, t) : |y − x|2 < ε2

− 2(N − 1)t} ⊂ E∗, so thatx ∈ E∗(0). The proof of Theorem 4 is now
complete. 2

3. Implementation

In order to implement the algorithm, one needs to implement successively

• the computation of the (signed) distance function to the level set 0 of a functionw;
• the resolution of problem (3).
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We will describe these two steps in dimension 2. The first step is done by using an implementation
of the fast marching algorithm, introduced by Tsitsiklis in [56]. We follow [52]. The second step is
done using the fixed-point dual algorithm of [21].

3.1 The fast marching algorithm

Our implementation of the fast marching algorithm is the following. The idea is to solve the eikonal
equation|∇d| = 1 inside and outside the setE, with Dirichlet datad = 0 on∂E.

The input of the algorithm is an arraywi,j of values that corresponds to the discretization of a
functionw(x) defined on the open domainΩ ⊂ R2 and such thatE = {w < 0}. To simplify, we
assumeΩ is a rectangle, so that the arraywi,j is defined for 16 i 6 N , 1 6 j 6 M. We also
assume that the discretization step is 1.

The output of the algorithm must be the valuesdi,j of the signed distance function to∂E.
In a first step, we compute a nonnegative distance function (that is, the actual distance to∂E).

In what follows we still denote it bydi,j . The principle of the fast marching algorithm is to compute
the distancedi,j starting from the points with smallest distance, and, at each step, to try to find the
position(i, j) such that the distancedi,j should be the smallest among all points where it has not
been computed yet (the actual implementation in [56] is a bit more precise, we refer to that paper
for details). In order to do that we need to keep track of the order (determined by the distancedi,j )
of all the points that have already been processed: one way to do that is to maintain for each(i, j) a
pointernext (i, j) to the position(i′, j ′) such thatdi′,j ′ is minimal among all other points already
calculated, and where the distance is larger thandi,j . This arraynext (·) has to be updated each
time a new value ofd is calculated.

We introduce a thresholdS which is the maximum distance (in absolute value) that we want
to compute. We have observed experimentally that this does not change the output as long asS is
larger than the distance between the original curve∂E and the evolved curve∂Th(E) that will be
computed. If the curvature is very large, thenS has to be increased. It can be chosen initially larger
than diam(Ω) so that no thresholding is done.

Initialization step. In the initialization step, we let firstdi,j = S for all i, j . A convenient way
to deal with the boundary∂Ω is to let alsodi,j > S if (i, j) is at the boundary, that is, whenever
i ∈ {1, N} or j ∈ {1,M}. Moreover, one decides never to change the points wheredi,j > S. In this
way, no other precaution needs to be taken. On the other hand, the distance will not be computed
at these points, which is a minor drawback. Another possibility is to consider periodic boundary
conditions.

Thus, for each(i, j), one considers the following three (mutually exclusive) situations:

(i) wi,j = 0 (this in fact should almost never occur...), in which case we letdi,j = 0.
(ii) wi,j > 0: then we check whether one (or several) of the neighbouring pointsi± 1, j , i, j ± 1

have nonpositivew. In this case, the point is near∂E. We evaluate the distance of(i, j)
to ∂E. If wi,j±1 > 0 then∂E crosses only one of the segments [(i − 1, j), (i, j)] and
[(i, j), (i + 1, j)] (or both). If wi−1,j 6 0, we assume that∂E crosses [(i − 1, j), (i, j)]
at(i−wi,j/(wi,j −wi−1,j ), j), hence at distancedi,j = wi,j/(wi,j −wi−1,j ). If wi+1,j 6 0,
then ∂E crosses [(i, j), (i + 1, j)] at (i + wi,j/(wi,j − wi+1,j ), j), that is, at distance
di,j = wi,j/(wi,j − wi+1,j ). If both wi−1,j 6 0 andwi+1,j 6 0, thendi,j is taken to be
the minimum of the previous two values.
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On the other hand, ifwi±1,j > 0, then∂E crosses the segments [(i, j − 1), (i, j)] or/and
[(i, j), (i, j + 1)], and we compute the distancedi,j in the same way.
The last situation is when∂E crosses both the horizontal and vertical axes near(i, j).
Assume for instancewi+1,j 6 0 andwi,j+1 6 0. Then the distanced is zero at the points
(i+wi,j/(wi,j−wi+1,j ), j) and(i, j+wi,j/(wi,j−wi,j+1)). In other words, the gradient ofd
at(i, j) is approximated bydi,j ×(1−wi+1,j/wi,j ,1−wi,j+1/wi,j ). The equation|∇d| = 1
gives the value ofdi,j : di,j = 1/|(1 − wi+1,j/wi,j ,1 − wi,j+1/wi,j )|. If ∂E crosses more
than one horizontal or vertical axis near(i, j), then we take fordi,j the minimum of all
possible values.

(iii) wi,j < 0: then we check whetherwi±1,j or wi,j±1 > 0. If so, we compute the distancedi,j
as in the previous case.

If the distance has been computed at point(i, j), then we update the variables “next ”. We first find
the position of(i, j) in the array, by finding the first(i′, j ′) for which dnext (i′,j ′) > di,j . We then
setnext (i, j) = next (i′, j ′) andnext (i′, j ′) = (i, j).

We iterate this until all points withdi,j = S are not near∂E (we assumeS has not been chosen
too small!, so that points in the neighbourhood of∂E are all at distance less thanS).

Main iteration. Once the distance function has been calculated near∂E, the “fast marching”
process can begin. For every point(i, j) that has already been calculated (that is, wheredi,j < S),
starting from the first (with least distance) and following the pointer “next ”, we check the 4
neighbours(i ± 1, j) and(i, j ± 1) of (i, j). If at one of these points, the distance has not been
calculated yet, we compute it. In order to compute the distance at some neighbourdi′,j ′ , we use the
standard discretization of the eikonal equation (see [50]):

|(max{di′,j ′ − di′−1,j ′ , di′,j ′ − di′+1,j ′ ,0},max{di′,j ′ − di′,j ′−1, di′,j ′ − di′,j ′+1,0})| = 1. (7)

If the distance has been updated at some point, we also update the arraynext accordingly. If the
new distance was higher thanS we truncate it toS. The loop stops when it is impossible to compute
a new distance which is less thanS (or when all points(i, j) have been updated).

In Section 4.3 we explain how to adapt the method to compute anisotropic distances.

Post-treatment. Once the unsigned distance function to∂E has been calculated, it remains to
changedi,j to −di,j at each position(i, j) wherewi,j < 0.

3.2 A numerical algorithm for the minimization of the total variation

In order to compute the minimizer of (3), we use the algorithm proposed in [21]. Following the
notations of that paper, we letX = RN×M , Y = X × X, and we define the gradient operator
∇ : X → Y by

(∇u)i,j = ((∇u)1i,j , (∇u)
2
i,j )

with

(∇u)1i,j =

{
ui+1,j − ui,j if i < N,

0 if i = N,

(∇u)2i,j =

{
ui,j+1 − ui,j if j < M,

0 if j = M,
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for i = 1, . . . , N , j = 1, . . . ,M. We define the discrete total variation as

J d(u) =

N∑
i=1

M∑
j=1

|(∇u)i,j |.

In X andY we consider the standard scalar products, that is,

〈x, x′
〉 =

N∑
i=1

M∑
j=1

xi,jx
′

i,j

for anyx, x′
∈ X, and

〈y, y′
〉 =

N∑
i=1

M∑
j=1

yi,j · y′

i,j =

N∑
i=1

M∑
j=1

(y1
i,jy

′1
i,j + y2

i,jy
′2
i,j )

for any y, y′
∈ Y . In order to find a definition ofJ d similar to (2), we introduce the operator

div : Y → X, defined by div= −∇
∗, that is, forξ = (ξ1, ξ2) ∈ Y ,

(div ξ)ij =


ξ1
i,j − ξ1

i−1,j if 1 < i < N,

ξ1
i,j if i = 1,

− ξ1
i−1,j if i = N,

+


ξ2
i,j − ξ2

i,j−1 if 1 < j < M,

ξ2
i,j if j = 1,

− ξ2
i,j−1 if j = M.

It satisfies〈div ξ, u〉 = −〈ξ,∇u〉 for anyξ ∈ Y andu ∈ X.
It is then not difficult to show that

J d(u) = sup{〈u,div ξ〉 : |ξi,j | 6 1 ∀i, j}.

The discrete problem now consists in solving

min
w∈X

J d(w)+
‖w − d‖2

2h
, (8)

where‖x‖ = 〈x, x〉 is the Euclidean norm andd = (di,j ) is the signed distance function evaluated
by the algorithm of Section 3.1. In [21] it is shown that the solutionw of (8) is given by

w = d − πhK(d),

whereπhK is the orthogonal projection onto the convex sethK,

K = {div ξ : |ξi,j | 6 1 ∀i = 1, . . . , N, j = 1, . . . ,M}

being the closed convex set such thatJ d(u) = supv∈K 〈v, u〉. The difficulty is hence to compute
this nonlinear projection. One has to solve

min{‖hdiv ξ − d‖2 : ξ ∈ Y, |ξi,j | 6 1 ∀i = 1, . . . , N, j = 1, . . . ,M}. (9)

Introducing the Lagrange multipliersαi,j associated to the constraint|ξi,j |
2
− 1 6 0, we obtain the

following Euler equation:
−(∇(hdiv ξ − d))i,j + αi,j ξi,j = 0
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for all i, j , with eitherαi,j > 0 and|ξi,j | = 1, or |ξi,j | < 1 andαi,j = 0. In the latter case, also
(∇(hdiv ξ − d))i,j = 0; hence in any caseαi,j = |(∇(hdiv ξ − d))i,j |. The Euler equation is
therefore

−(∇(hdiv ξ − d))i,j + |(∇(hdiv ξ − d))i,j |ξi,j = 0

for all i, j . The form of the Euler equation suggests the following iterative method: we letξ0
= 0,

and for eachn = 1,2, . . . we let

ξni,j =
ξn−1
i,j + τ(∇(div ξn−1

− d/h))i,j

1 + τ |(∇(div ξn−1 − d/h))i,j |
, (10)

whereτ > 0 is a fixed parameter.
It is shown in [21] that as soon asτ 6 1/8, the iteration converges, andd − hdiv ξn goes to the

solutionw of (8) asn → ∞.

Once this solution has been computed, one goes back to Section 3.1 to evaluate the new signed
distanced to the boundary of{w < 0}.

3.3 Examples

We just show two examples of evolutions computed with this algorithm. The initial curve is shown
on the left, and various steps of the evolution are shown on the right. In both examples the size of
the grid is 150× 150.

FIG. 1. An original curve (left), and its evolution for timest = 1,30,70,100,140 (right), as computed by the algorithm.

FIG. 2. Another example, showing iterations 1,10,30,50,70,90,110,116.
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4. The anisotropic case

4.1 Description of the Anisotropic Mean Curvature Motion

In this section we discuss the anisotropic situation. We first consider anisotropic variants of the total
variationJ . We assumeϕ is a convex, even, 1-homogeneous function, witha|ξ | 6 ϕ(ξ) 6 b|ξ | for
everyξ ∈ RN (a, b > 0). We defineJϕ by

Jϕ(u;Ω) = sup

{ ∫
Ω

u(x)div ξ(x)dx : ξ ∈ C1
c (Ω; Rd), ϕ(ξ(x)) 6 1 ∀x ∈ Ω

}
.

It is clear thatJϕ(u;Ω) < +∞ iff u has bounded variation. Introducing the polar functionϕ◦ given
by

ϕ◦(η) = sup
ϕ(ξ)61

ξ · η,

one shows thatJϕ(u;Ω) = ϕ◦(Du)(Ω) =
∫
Ω
ϕ◦(Du/|Du|)d|Du|. The anisotropic perimeter of a

setF ⊂ Ω is Jϕ(F ;Ω) = Jϕ(1F ;Ω) =
∫
∂∗F∩Ω

ϕ◦(νF )dHN−1; the quantityϕ◦(νF ) introduces a
weight on the surface that depends on its orientation.

Notice thatdϕ(x, y) = ϕ(x − y) is a distance inRN . Given the setE ⊂ Ω we introduce the
signed distancedϕE to ∂E by

d
ϕ
E(x) = inf

y∈E
ϕ(x − y)− inf

y 6∈E
ϕ(x − y).

For a definition of the Mean Curvature Motion in the presence of anisotropy we refer to [18]. The
anisotropic curvature of∂E atx is given byκϕ = div ∇ϕ◦(∇d

ϕ
E) (or is an element of div∂ϕ◦(∇d

ϕ
E)

wheneverϕ◦ is not smooth). The definition proposed in [18] assumes that the surfaces evolve with
velocity κϕ along the “ϕ-normal” nϕ = ∇ϕ◦(∇d

ϕ
E). The corresponding equation, in the viscosity

sense, is
∂u

∂t
= ϕ◦(∇u)div ∇ϕ◦(∇u). (11)

In order for the equation to be well defined one needs to assume that bothϕ andϕ◦ are smooth
(away from 0). This excludes the so-called crystalline case, in which the boundary “Wulff shape”
{ϕ 6 1} may have flat parts or angles. Following [2], we will assume thatϕ◦ (which isΦ in [2])
is C3,α and elliptic (elliptic meaning that forx 6= 0 ande ∈ RN , (D2ϕ◦(x)e) · e vanishes only
whenevere ∈ Rx). This yields a similar smoothness forϕ (see Remark 4.1 below).

Let us point out that equation (11) slightly differs from what is considered in Almgren, Taylor
and Wang’s paper [2]. They consider the evolution

∂u

∂t
= |∇u| div ∇ϕ◦(∇u) (12)

that corresponds to the evolution with velocityκϕ along the Euclidean normal vector to the surface.
It is not clear to us which point of view is more “natural”. In any case, as long asϕ◦ is smooth and
elliptic, the results established in [2] for equation (12) are also valid for equation (11). See also [34].
Almgren, Taylor and Wang consider the evolution given byE(t) = limh→0 T

[t/h]
h (E0) with the

operatorTh defined by:F = Th(E) is a solution of

min
F
Jϕ(F ;Ω)+

1

h

∫
F4E

|dE(x)| dx (13)

(in fact forΩ = RN ). They use the Euclidean distance in the second term of the functional. Here
we chose to consider instead the problem
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min
F
Jϕ(F ;Ω)+

1

h

∫
F4E

|d
ϕ
E(x)| dx, (14)

which is introduced in [18, §5.2]. The modification of our algorithm to the case of (13) is obvious.
On the other hand, for the second problem, the fact that the evolution of the Wulff shape is self-
similar is quite obvious also in the crystalline case (since it can be transformed into a basic one-
dimensional problem exactly as in the Euclidean case). For the study of Almgren, Taylor and Wang’s
evolution in the crystalline case see [1].

4.2 The algorithm

Let us briefly describe our algorithm in the anisotropic case. Instead of (3), givenE ⊂ Ω, we now
solve

min
w∈L2(Ω)

∫
Ω

(w(x)− d
ϕ
E(x))

2

2h
dx + Jϕ(w;Ω). (15)

again, the solutionw is unique, and we letTh(E) = {w < 0}.
The evolution starting from a setE0 is defined as in Section 2.1, by (4). Then Lemma 2.1 also

holds (the algorithm is monotone), as also does the counterpart of Proposition 2.2, that is,Th(E) is
a solution of (14).

As long asϕ◦ is smooth (meaning, as in [2],C3,α off 0 for someα > 0) and elliptic, the other
results in Section 2 still hold, including Theorem 4, withv the viscosity solution of (11). The only
difference in the proof is that in Lemma 2.6, the inequality (6) must be replaced with the anisotropic
version

∂d
ϕ
L

∂t
(t, x) > D2ϕ◦(∇d

ϕ
L(t, x)) : D2d

ϕ
L(t, x). (16)

REMARK 4.1 Observe that ifϕ◦ is Ck,α, k > 1, and elliptic, then alsoϕ is Ck,α (off 0) and the
Wulff shape{ϕ 6 1} is smooth and uniformly convex. This can been shown by using the fact that
ϕ(x)2/2 = (ϕ◦2/2)∗∗(x) = maxy(x · y − ϕ◦(y)2/2). The maximum is reached aty such that
x = ϕ◦(y)∇ϕ◦(y) := T ◦(y), andy 6= 0 if x 6= 0. The ellipticity implies thaty is unique, and by
the local inversion theorem, there existsT = (T ◦)−1 which isC1 off 0. Then one shows easily that
T isCk−1,α, so thatϕ(x)2/2 = x ·T (x)−ϕ◦(T (x))2/2 has the same regularity, and thatT = ϕ∇ϕ,
so that∇ϕ has the same regularity. The uniform convexity of the Wulff shape follows from the
regularity ofϕ◦ (one shows that if it were not uniformly convex,∇ϕ◦ would not be continuous).

4.3 Implementation

The algorithm is implemented in the same way as in the isotropic case. The computation of the
anisotropic distance is just as easy, except for minor modifications that we explain below. The
algorithm for minimizing the anisotropic total variation is also implemented in the same way.
Unfortunately, the convergence seems very slow in this case, and we could not find any proof of
convergence.

4.3.1 The anisotropic distance.In order to compute the anisotropic distancedϕE for E =

{w < 0}, we adapt the fast-marching algorithm described in Section 3.1 to the computation of
the solution of the eikonal equationϕ◦(∇d

ϕ
E) = 1. Everything is the same except that in the
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initialization step, items (ii) and (iii) have to be modified, as well as equation (7) in the main
iteration. For the sake of simplicity, we consider only anisotropies that are even in both directions
(ϕ(x, y) = ϕ(±x, y) = ϕ(x,±y) for all (x, y) ∈ R2).

In item (ii) of the initialization, we proceed almost as in the isotropic case. Ifwi,j > 0
andwi−1,j 6 0 we assume again that∂E crosses [(i − 1, j), (i, j)] at (i − h−, j) for h−

=

wi,j/(wi,j − wi−1,j ), on the other hand, ifwi−1,j > 0, we leth−
= +∞. Similarly, we define

h+
= wi,j/(wi,j −wi+1,j ) if wi+1,j 6 0,h+

= +∞ otherwise, andv±
= wi,j/(wi,j −wi,j±1) if

wi,j±1 6 0, and+∞ otherwise. Then we leth = min{h+, h−
} andv = min{v+, v−

}, and when at
least one of these values is finite, we assume that the gradient ofdϕ at (i, j) is (dϕi,j/h, d

ϕ
i,j/v). The

eikonal equation impliesdϕi,j = 1/ϕ◦(1/h,1/v). Item (iii) is treated in the same way.
Then, in the main iteration, we must replace equation (7) with

ϕ◦(max{dϕ
i′,j ′ − d

ϕ

i′−1,j ′ , d
ϕ

i′,j ′ − d
ϕ

i′+1,j ′ ,0},max{dϕ
i′,j ′ − d

ϕ

i′,j ′−1, d
ϕ

i′,j ′ − d
ϕ

i′,j ′+1,0}) = 1. (17)

This means that given four real numbersa, b, c, d, we need to be able to solve the equation
ϕ◦(max{x − a, x − b,0},max{x − c, x − d,0} = 1. If (for instance)a 6 b and c 6 d, this
equation clearly reduces toϕ◦((x−a)+, (x− c)+) = 1 (wheret+ = max{t,0} denotes the positive
part).

If a = c, then clearlyx = a + 1/ϕ◦(1,1).
If a < c, thenx can be betweena andc, in which case the equation isϕ◦(x − a,0) = 1 so that

x = a + 1/ϕ◦(1,0). If the latter value is larger thanc, thenx is not betweena andc, that is,x > c,
and the equation isϕ◦(x− a, x− c) = 1. Lettingt = x− c, t0 = c− a, we must findt > 0 solving
ϕ◦(t0 + t, t) = 1, orϕ◦(1 + t/t0, t/t0) = 1/t0. This means that we must find some efficient way to
invert the functions 7→ ϕ◦(1 + s, s), s > 0. There are many ways to do this (which might depend
on the particular functionϕ◦) and we do not want to discuss this point here.

If a > c the situation is the same. Ifx is betweena andc, thenx = c + 1/ϕ◦(0,1), otherwise,
if the latter value is greater thana, thenx > a > c and the equation isϕ◦(x − a, x − c) = 1; this
time, if we let t = x − a andt0 = a − c we have to findt > 0 that solvesϕ◦(t, t0 + t) = 1, or
ϕ◦(t/t0,1 + t/t0) = 1/t0.

The rest of the algorithm is as in the isotropic case.

4.3.2 Anisotropic total variation minimization. The discrete total variation is, in the anisotropic
case,

J dϕ (u) =

N∑
i=1

M∑
j=1

ϕ◦((∇u)i,j ),

and one hasJ dϕ (u) = supv∈Kϕ 〈v, u〉 with Kϕ given by

Kϕ = {div ξ : ϕ(ξi,j ) 6 1 ∀i = 1, . . . , N, j = 1, . . . ,M}.

Once the distance functiondϕ has been numerically computed by the algorithm in the previous
section, the discrete problem consists in solving

min
w∈X

J dϕ (w)+
‖w − dϕ‖2

2h
, (18)

and again the solution is given by
w = dϕ − πhKϕ (d

ϕ).
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One has to solve (9) with the constraint on theξi,j replaced withϕ(ξi,j ) 6 1 for everyi, j (and
d replaced withdϕ). We introduce the operatorsT andT ◦ defined byT = ∂(ϕ2/2) = ϕ∂ϕ and
T ◦

= ∂(ϕ◦2/2) = ϕ◦∂ϕ◦. In the smooth case, the subgradients are in fact gradients andT (ξ) =

ϕ(ξ)∇ϕ(ξ), etc., but we will perform computation also in the nonsmooth case (withϕ and/orϕ◦

just Lipschitz) whereT andT ◦ can be multivalued. Notice that in any case, the functionsϕ2/2 and
ϕ◦2/2 are Fenchel conjugates, so thatx ∈ T (ξ) iff ξ ∈ T ◦(x).

As in the isotropic case, we introduce Lagrange multipliersαi,j > 0 associated to the constraints
ϕ(ξi,j )

2
− 1 6 0, and find the following Euler equation:

−(∇(hdiv ξ − dϕ))i,j + αi,jT (ξi,j ) 3 0

for all i, j . Here,αi,j > 0 only whenϕ(ξi,j ) = 1, and since in this caseϕ◦(αi,jT (ξi,j )) =

αi,jϕ(ξi,j )ϕ
◦(∂ϕ(ξi,j )) = αi,j , we find that

αi,j = ϕ◦((∇(hdiv ξ − dϕ))i,j ).

We choose, as in the isotropic case,ξ0
= 0. Then the counterpart of the iterative method of [21],

given by the formula (10), consists in updatingξn−1 by means of the semi-implicit scheme

ξni,j = ξn−1
i,j − τ [−(∇(div ξn−1

− dϕ/h))i,j + ϕ◦((∇(div ξn−1
− dϕ/h))i,j )T (ξ

n
i,j )].

This leads to the iteration

ξni,j = (I + τϕ◦((∇(div ξn−1
− dϕ/h))i,j )T )

−1(ξn−1
i,j + τ(∇(div ξn−1

− dϕ/h))i,j ). (19)

We recall that for anys > 0, the operator(I+sT )−1 is singlevalued, so that the iteration (19) is well
defined. In fact, for anyζ ∈ R2, (I+sT )−1ζ is the unique minimizer inR2 of ξ 7→ (ξ−ζ )2+sϕ(ξ)2.

We have no proof of convergence for this algorithm. In practice, we found that for the sameτ

as in the isotropic case (τ = 1/8), it seems thatdϕ − hdiv ξn goes tow, although quite slowly,
asn → ∞. We performed our computations in the cases where{ϕ 6 1} (the Wulff shape) is an
equilateral hexagon and a square. In the next section we show some results.

4.3.3 Two examples. We performed numerical calculations with a nonsmooth anisotropy,
although the consistency and convergence theorems are not true in this case. However, the examples
show that the algorithm computes what is expected to be the correct motion. As pointed out in the

FIG. 3. The evolution at iterations 1,4,8,12,16,20 and 20,40,60,80,88 (square Wulff shape).
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FIG. 4. The evolution at iterations 1,4,8,12,16,20 and 20,40,60,80,100 (hexagonal Wulff shape).

introduction, it is likely that the consistency result in [1] yields the convergence of our algorithm to
the generalized motion defined in [33].

The initial curve is the same as in Figure 2. Figure 3 shows the evolution at different times with
a square Wulff shape (the initial curve is also plotted in light grey). Figure 4 shows the evolution
with a hexagonal Wulff shape. Again, in both cases the size of the grid is 150× 150.

A. Some properties of the minimizer of (3)

We state and prove in this section some properties of the solution of (3). All these properties also
hold in the anisotropic case, for the solution of (15), with identical proofs.

LEMMA A.1 Letw be the (unique) solution of (3). Then, for anyt > 0,w ∧ t is also the unique
solution of

min
w6t a.e.

∫
Ω

(w(x)− dE(x))
2

2h
+ J (w). (20)

Proof. First, we notice that for everyt andw, ∂J (w) ⊂ ∂J (w ∧ t): in the proof of Proposition 2.2,
it is established that ifp ∈ ∂J (w), thenp ∈ ∂J (1{w>t}) for a.e.t ∈ R. Now,

J (w ∧ t) =

∫ t

−∞

J ({w > s})ds =

∫ t

−∞

∫
Ω

p(x)1{w>s}(x)dx ds =

∫
Ω

p(x)(w(x) ∧ t)dx.

We deduce thatp ∈ ∂J (w ∧ t).
Since−(w − dE)/h ∈ ∂J (w) ⊂ ∂J (w ∧ t), for allw we have

J (w) > J (w ∧ t)−

∫
Ω

w − dE

h
(w − w ∧ t)

= J (w ∧ t)−

∫
Ω

w ∧ t − dE

h
(w − w ∧ t)−

∫
Ω

w − w ∧ t

h
(w − w ∧ t)

= J (w ∧ t)−

∫
Ω

w ∧ t − dE

h
(w − w ∧ t)−

∫
{w>t}

w − t

h
(w − t).

If w 6 t a.e. inΩ, then−
∫
{w>t}

(w − t)(w − t) > 0, hence

J (w) > J (w ∧ t)−

∫
Ω

w ∧ t − dE

h
(w − w ∧ t).
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As
∫
Ω
(w − dE)

2 >
∫
Ω
(w ∧ t − dE)

2
+ 2

∫
Ω
(w ∧ t − dE)(w −w ∧ t), we obtain the assertion.2

COROLLARY A.2 Let E ⊂⊂ Ω ⊆ Ω ′ and letw be the minimizer of (3) inΩ while w′ is the
minimizer of (3) inΩ ′. Let δ = dist(E, ∂Ω) = min∂Ω dE > 0 and assume that for somet < δ,
{w < t} ⊂⊂ Ω. Thenw ∧ t = w′

∧ t .

Proof. Let w̃ be the function given byw∧ t inΩ andt inΩ \Ω ′. We wish to show that̃w = w′
∧ t .

We have

J (w̃;Ω ′)+

∫
Ω ′

(w̃(x)− dE(x))
2

2h
dx

= J (w ∧ t;Ω)+

∫
Ω

(w(x) ∧ t − dE(x))
2

2h
dx +

∫
Ω ′\Ω

(t − dE(x))
2

2h
dx

6 J (w′
∧ t;Ω)+

∫
Ω

(w′(x) ∧ t − dE(x))
2

2h
dx +

∫
Ω ′\Ω

(t − dE(x))
2

2h
dx

where the second inequality follows from Lemma A.1 (inΩ). Now, onΩ ′
\ Ω, dE > δ > t , so

that(t − dE(x))
2 6 (w′(x)∧ t − dE(x))

2 a.e. inΩ ′
\Ω. Also,J (w′

∧ t;Ω) 6 J (w′
∧ t;Ω ′). We

deduce that

J (w̃;Ω ′)+

∫
Ω ′

(w̃(x)− dE(x))
2

2h
dx 6 J (w′

∧ t;Ω ′)+

∫
Ω ′

(w′(x) ∧ t − dE(x))
2

2h
dx,

and by Lemma A.1 (inΩ ′) it follows thatw̃ = w′
∧ t . 2

REMARK A.3 Taking t = 0 in Corollary A.2 we deduce that as soon asTh(E) ⊂⊂ Ω, it is the
same set, whether computed relative toΩ or toΩ ′

⊇ Ω (that is,{w < 0} = {w′ < 0}).

PROPOSITIONA.4 AssumeΩ is the torusTN = (R/Z)N . Then the solutionw of (3) is Lipschitz.
In fact, |∇w| 6 1 a.e. inΩ.

Proof. Consider a sequenceψn : RN → [0,+∞) of smooth convex Lagrangians such that
(D2ψn(p)ξ) · ξ > (1/n)|ξ |2 for everyp, ξ ∈ RN ,ψn(p) > |p| for eachp andn, andψn(p) → |p|

asn → ∞ (locally uniformly). One shows that the solutionswn of

min
w∈H1(Ω)

∫
Ω

(w(x)− dE(x))
2

2h
dx +

∫
Ω

ψn(∇w(x))dx (21)

converge (at least, weakly inL2(Ω)) to the solutionw of (3) asn → ∞. Indeed, ifw is the weak
L2-limit of a subsequence ofwn (still denotedwn), andv ∈ C∞(Ω), one has∫

Ω

(w − dE)
2

2h
+ J (w) 6 lim inf

n→∞

∫
Ω

(wn − dE)
2

2h
+ J (wn)

6 lim inf
n→∞

∫
Ω

(wn − dE)
2

2h
+

∫
Ω

ψn(∇wn)

6 lim inf
n→∞

∫
Ω

(v − dE)
2

2h
+

∫
Ω

ψn(∇v) =

∫
Ω

(v − dE)
2

2h
+

∫
Ω

|∇v|.
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But since anyv ∈ BV (Ω) can be approximated by functionsvj ∈ C∞(Ω), with
∫
Ω

|∇vj | → J (v)

asj → ∞ (see [40]), this shows thatw solves (3).
Now, the Euler equation for (21) is

wn(x)− dE(x)− hdiv ∇ψn(∇wn(x)) = 0.

Differentiating in the directione ∈ SN−1 (we set∂e = e · ∇), we find

∂ewn(x)− ∂edE(x)− hdivD2ψn(∇wn(x))∇(∂ewn)(x) = 0.

SinceD2ψn(∇wn(x)) > (1/n)I for a.e.x ∈ Ω, we deduce by the maximum principle that
‖∂ewn‖L∞(Ω) 6 ‖∂edE‖L∞(Ω). Since this is true for anye ∈ SN−1, it shows that|∇wn| 6 1
a.e. inΩ. Hence also|∇w| 6 1. (Notice thatwn converges uniformly tow.) 2

REMARK A.5 We had to assumeΩ is a torus in order to get rid of the problems at the boundary
in the proof. However, we believe thatw should be Lipschitz continuous as soon asΩ is convex (in
which case we probably still have|∇w| 6 1 a.e.) or∂Ω is smooth enough. See also Corollary A.7.

REMARK A.6 In the anisotropic case (ifw solves (15)), one deduces in the same way that
ϕ◦(∇w) 6 1 a.e. in the torus.

COROLLARY A.7 AssumeΩ is the cube(0,1)N ⊂ RN (or, more generally, of the form(0, L1)×

· · · × (0, LN )), andwh solves (3). Then|∇wh| 6 1 a.e. inΩ. In particular, ash → 0, wh goes
uniformly todE in Ω.

Proof. The problem in a hypercube is equivalent to the problem in a torus of period twice that of
the cube. Indeed, we can first symmetrize the data (dE) across the boundaries ofΩ = (0,1)N , and
then periodize it (with period 2 in each direction). It is straightforward to check that the solution of
the periodized problem is the same as the original functionwh. The conclusion follows by Ascoli–
Arzelà’s theorem. In the anisotropic case again we getϕ◦(∇wh) 6 1 a.e. inΩ.

REMARK A.8 We immediately see that ifE ⊂⊂ Ω, then in this caseTh(E) ⊂⊂ Ω for h small
enough, sincewh has to be larger than dist(E, ∂Ω)/2 for h small enough in a neighbourhood of
∂Ω.

COROLLARY A.9 AssumeE ⊂⊂ Ω and{w < t} ⊂⊂ Ω for somet < δ = dist(E, ∂Ω). Then
|∇w| 6 1 a.e. in{w < t}.

Proof. ConsiderL large enough so thatΩ ⊂⊂ (−L,L)N . Let TN2L = (R/(2LZ))N be the torus
of period 2L, and defineΩ̃ as the periodization ofΩ in TN2L (x ∈ Ω̃ iff π−1(x) ∩ Ω 6= ∅, where

π : RN → TN2L is the canonical projection). DefinẽE ⊂ Ω̃ in the same way.
It is clear thatw̃ : Ω̃ → R defined byw̃(π(x)) = w(x) whenx ∈ Ω is the unique solution

of problem (3) inΩ̃, with E replaced withẼ. By Corollary A.2,w̃ ∧ t = w′
∧ t , wherew′ is the

solution of the minimization problem A.2 but this time in the whole torusTN2L. By the previous
proposition,|∇w′

| 6 1 a.e. in the torus. Hence also|∇w̃| 6 1 a.e. in{w̃ < t}, or, which is the same,
|∇w| 6 1 a.e. in{w < t}. 2
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37. GIRÃO, P. M. Convergence of a crystalline algorithm for the motion of a simple closed convex curve by
weighted curvature.SIAM J. Numer. Anal.32 (1995), 886–899. Zbl 0830.65150 MR 96c:65144

http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0834.35062&format=complete
http://www.ams.org/mathscinet-getitem?mr=96h%3A35083
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0944.53039&format=complete
http://www.ams.org/mathscinet-getitem?mr=97b%3A49038
http://www.ams.org/mathscinet-getitem?mr=1976356
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0873.53011&format=complete
http://www.ams.org/mathscinet-getitem?mr=97i%3A53079
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0386.53047&format=complete
http://www.ams.org/mathscinet-getitem?mr=82c%3A49035
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0920.35040&format=complete
http://www.ams.org/mathscinet-getitem?mr=99m%3A35097
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0696.35087&format=complete
http://www.ams.org/mathscinet-getitem?mr=93a%3A35093
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0755.35015&format=complete
http://www.ams.org/mathscinet-getitem?mr=92j%3A35050
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0322.90046&format=complete
http://www.ams.org/mathscinet-getitem?mr=57%20%233931b
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0802.65098&format=complete
http://www.ams.org/mathscinet-getitem?mr=95d%3A58023
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0804.28001&format=complete
http://www.ams.org/mathscinet-getitem?mr=93f%3A28001
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0801.35045&format=complete
http://www.ams.org/mathscinet-getitem?mr=93g%3A35064
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0726.53029&format=complete
http://www.ams.org/mathscinet-getitem?mr=92h%3A35097
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0776.53005&format=complete
http://www.ams.org/mathscinet-getitem?mr=92f%3A58050
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0768.53003&format=complete
http://www.ams.org/mathscinet-getitem?mr=93d%3A58044
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0829.53040&format=complete
http://www.ams.org/mathscinet-getitem?mr=96a%3A35077
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0946.58014&format=complete
http://www.ams.org/mathscinet-getitem?mr=99k%3A58040
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1004.35075&format=complete
http://www.ams.org/mathscinet-getitem?mr=2002h%3A53117
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0771.35027&format=complete
http://www.ams.org/mathscinet-getitem?mr=94g%3A35226
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0862.35047&format=complete
http://www.ams.org/mathscinet-getitem?mr=97m%3A80012
http://www.ams.org/mathscinet-getitem?mr=99h%3A73008
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0830.65150&format=complete
http://www.ams.org/mathscinet-getitem?mr=96c%3A65144


218 A . CHAMBOLLE
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Zbl 0545.49018 MR 87a:58041

41. GURTIN, M. E. Thermomechanics of Evolving Phase Boundaries in the Plane. Oxford Math.
Monographs, Clarendon Press (1993). Zbl 0787.73004 MR 97k:73001

42. ISHII, H. A generalization of the Bence, Merriman and Osher algorithm for motion by mean curvature.
Curvature Flows and Related Topics (Levico, 1994), GAKUTO Internat. Ser. Math. Sci. Appl. 5,
Gakk̄otosho, Tokyo (1995), 111–127. Zbl 0844.35043 MR 96m:35121

43. ISHII, H., PIRES, G. E., & SOUGANIDIS, P. E. Threshold dynamics type approximation schemes for
propagating fronts.J. Math. Soc. Japan51 (1999), 267–308. Zbl 0935.53006 MR 2000j:65016

44. LEONI, F. Convergence of an approximation scheme for curvature-dependent motions of sets.SIAM J.
Numer. Anal.39 (2001), 1115–1131. Zbl 1008.65067 MR 2002j:65093

45. LUCKHAUS, S. & STURZENHECKER, T. Implicit time discretization for the mean curvature flow
equation.Calc. Var. Partial Differential Equations3 (1995), 253–271. Zbl 0821.35003 MR 97e:65085

46. MERRIMAN, B., BENCE, J. K., & OSHER, S. J. Diffusion generated motion by mean curvature.
Computational Crystal Growers Workshop, J. E. Taylor (ed.), Amer. Math. Soc. (1992), 73–83.

47. MERRIMAN, B., BENCE, J. K., & OSHER, S. J. Motion of multiple functions: a level set approach.J.
Comput. Phys.112(1994), 334–363. Zbl 0805.65090 MR 95a:65169

48. OSHER, S. & SETHIAN , J. A. Fronts propagating with curvature-dependent speed: algorithms based on
Hamilton–Jacobi formulations.J. Comput. Phys.79 (1988), 12–49. Zbl 0659.65132 MR 89h:80012

49. PAOLINI , M. & PASQUARELLI, F. Numerical simulation of crystalline curvature flow in 3D by interface
diffusion. Free Boundary Problems: Theory and Applications, II (Chiba, 1999), GAKUTO Internat. Ser.
Math. Sci. Appl. 14, Gakk̄otosho, Tokyo (2000), 376–389. Zbl 0979.53076 MR 2001i:74062

50. ROUY, E. & TOURIN, A. A viscosity solutions approach to shape-from-shading.SIAM J. Numer. Anal.
29 (1992), 867–884. Zbl 0754.65069 MR 93d:65019

51. RUUTH, S. J. & MERRIMAN, B. Convolution-generated motion and generalized Huygens’ principles
for interface motion.SIAM J. Appl. Math.60 (2000), 868–890. Zbl 0958.65021 MR 2001c:35107

52. SETHIAN , J. A. Fast marching methods. SIAM Rev.41 (1999), 199–235. Zbl 0926.65106
MR 2000m:65125

53. TAYLOR , J. E. Motion of curves by crystalline curvature, including triple junctions and boundary points.
Differential Geometry: Partial Differential Equations on Manifolds (Los Angeles, CA, 1990), Proc. Sym-
pos. Pure Math. 54, Amer. Math. Soc., Providence, RI (1993), 417–438. Zbl 0823.49028 MR 94c:53012

54. TAYLOR , J. E. Surface motion due to crystalline surface energy gradient flows.Elliptic and Parabolic
Methods in Geometry (Minneapolis, MN, 1994), A. K. Peters, Wellesley, MA (1996), 145–162.
Zbl 0915.49024 MR 97h:49054

55. TAYLOR , J. E., CAHN , J. W., & HANDWERKER, C. A. Geometric models of crystal growth.Acta
Metall. 40 (1992), 1443–1474.

56. TSITSIKLIS, J. N. Efficient algorithms for globally optimal trajectories.IEEE Trans. Automat. Control
40 (1995), 1528–1538. Zbl 0831.93028 MR 96d:49039

57. ZIEMER, W. P. Weakly Differentiable Functions. Springer, New York (1989). Zbl 0692.46022
MR 91e:46046

http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0791.65063&format=complete
http://www.ams.org/mathscinet-getitem?mr=94m%3A65138
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0869.65075&format=complete
http://www.ams.org/mathscinet-getitem?mr=97h%3A49053
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0545.49018&format=complete
http://www.ams.org/mathscinet-getitem?mr=87a%3A58041
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0787.73004&format=complete
http://www.ams.org/mathscinet-getitem?mr=97k%3A73001
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0844.35043&format=complete
http://www.ams.org/mathscinet-getitem?mr=96m%3A35121
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0935.53006&format=complete
http://www.ams.org/mathscinet-getitem?mr=2000j%3A65016
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1008.65067&format=complete
http://www.ams.org/mathscinet-getitem?mr=2002j%3A65093
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0821.35003&format=complete
http://www.ams.org/mathscinet-getitem?mr=97e%3A65085
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0805.65090&format=complete
http://www.ams.org/mathscinet-getitem?mr=95a%3A65169
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0659.65132&format=complete
http://www.ams.org/mathscinet-getitem?mr=89h%3A80012
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0979.53076&format=complete
http://www.ams.org/mathscinet-getitem?mr=2001i%3A74062
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0754.65069&format=complete
http://www.ams.org/mathscinet-getitem?mr=93d%3A65019
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0958.65021&format=complete
http://www.ams.org/mathscinet-getitem?mr=2001c%3A35107
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0926.65106&format=complete
http://www.ams.org/mathscinet-getitem?mr=2000m%3A65125
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0823.49028&format=complete
http://www.ams.org/mathscinet-getitem?mr=94c%3A53012
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0915.49024&format=complete
http://www.ams.org/mathscinet-getitem?mr=97h%3A49054
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0831.93028&format=complete
http://www.ams.org/mathscinet-getitem?mr=96d%3A49039
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0692.46022&format=complete
http://www.ams.org/mathscinet-getitem?mr=91e%3A46046

	Introduction
	A new algorithm
	Description
	Two essential properties
	The algorithm is monotone
	The algorithm implements Almgren, Taylor and Wang's flat curvature flow

	The algorithm converges to the generalized Mean Curvature Motion

	Implementation
	The fast marching algorithm
	A numerical algorithm for the minimization of the total variation
	Examples

	The anisotropic case
	Description of the Anisotropic Mean Curvature Motion
	The algorithm
	Implementation
	The anisotropic distance
	Anisotropic total variation minimization
	Two examples


	Some properties of the minimizer of (3)

