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The discrete Douglas problem:
theory and numerics
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We solve the problem of finding and justifying an optimal fully discrete finite element procedure for
approximating annulus-like, possibly unstable, minimal surfaces.

In this paper we introduce the general framework, some preliminary estimates, develop the ideas
used for the algorithm, and give the numerical results. Similarities and differences with respect to
the fully discrete finite element procedure given by G. Dziuk and J. Hutchinson in the case of the
classical Plateau problem are also addressed.

In a subsequent paper we prove convergence estimates.
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1. Introduction

The problem of showing the existence afénimal surfaceof a given topological type spanning a
collection of disjoint closed oriented rectifiable Jordan curves is known aBdliglas problem
Although in this work we study the specific problem of approximatargulus-like minimal
surfaces, we will often refer to it (with some abuse of notation) as the Douglas case, or Douglas
problem. Comprehensive references for the classical theory of minimal surfaces are the books by
Dierkes, Hildebrandt, Kster and Wohlraki [1]/]2], and by J. C. C. Nitsché [9]; more specifically,

the Douglas problem is considered in the works by J. Jost[8], [7], and the references given there.

In this paper and a subsequent ohel [10] we find and justify an optimal fully discrete finite
element procedure for approximating annulus-like, possibly unstable, minimal surfaces. This work
is a natural extension of the research done by G. Dziuk and J. Hutchinson, and the author, in the
case of the classical Plateau problem: sée([4], [5], and [11].

Unlike the Plateau case, where every disc-like surface is conformally equivalent to the unit disc,
in the Douglas problem every annulus-like surface is conformally equivalent to a unique cylinder of
radius one and length, for somei € (0, co). This means that when we look for a parametrisation
of our surface we have a one-parameter family of possible domains (i.e. the set of all cylinders
of radius one and length for » € (0, co)) as opposed to the fixed disc for the classical Plateau
problem.

Needless to say, the introduction of this a priori unknown parameter represents a major problem
in the study of the Douglas case.

The main results can be informally stated as follows. Cgt/> C R” be two disjoint closed
Jordan curves, rectifiable and with given orientation, and'set (I, I). Let C, be a cylinder
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of unit radius and length € (0, co). An equivalent formulation of the notion of an annulus-like
minimal surface which we will use is the following. L&t be the class of maps: C, — R", for

all possible choices of > 0, such thait|sc, : dC,, — I' is monotone and is harmonic The
functionu € F defined onC;, is said to be aninimal surfacef u is stationary inF for the Dirichlet
energyD(u) = %fck |Vu|?. Such a mam provides a harmonic ancbnformalparametrisation of
the corresponding minimal surface.

Following this characterisation, a first approximation to our numerical method is as follows.
For any.r > O, letG,;, be a quasi-uniform triangulation @, controlled by (in practice this is
done by considering’, as a rectangle on the plane with the two sides of leagttentified and by
triangulating the planar figure in the natural way). We can congiggias a one-parameter family
of triangulations corresponding to the one-parameter family of don@ind.et 7, be the class
of continuous piecewise linear mapg : C,, — R”, for all possible choices of > 0, which are
discrete harmoniend for whichu, (¢;) € I" whenevew; is a boundary node af; . Note that we do
not require the monotonicity ofy |5c, . A functionuy, € F;, defined onC,, is said to be aliscrete
minimal surfaceif u;, is stationary withinF;, for the Dirichlet energyD(u;) = %foh |Vuy 2.

A member ofF, is determined by its values at the boundary nodes and by the knowledge of the
length;, of its domain.

One of the main convergence results proved in [10] is that i€, — R”" is a “nondegenerate”,
harmonic and conformally parametrised minimal surface spanfirtgen there exist;, € (0, co)
and a discrete minimal surfaeg : C,, — R” such that if we denote by, the cylinder trans-
formation of the formo, : C1 — Cy, 0, (x, 0) = (ux, 6), then

o os —unoon,llgrcy < ch,  [A— il <ch, 1)

wherec depends on a fixed parametrisatiprof 1", A, and the nondegeneracy constantifdut is
independent of.
Under basically the same hypotheses it is proved furthermore that

luo s = un o op,ll oy < kA2, |1 =yl < ch?|Ink|¥2, (2)

where, as above,does not depend dn

Once a suitable framework is established (and this is a crucial pdiht), (1) is obtained by similar
arguments used to prove the analogous estimate for the case of the Plateau problem (see [4] and
[5]). We obtain [[2) by extending to the present situation the results given_in [11]. In both cases,
techniques are developed to deal with the parameter

In this paper we introduce the general framework and illustrate some of the techniques used
to treat the parametér. Furthermore we give a constructive way to find stationary points for the
Dirichlet energy: see Sectiqry 3, Propositjon]3.7. This proof is not needed theoretically, because
the existence of a solution to the Douglas problem has already been proved (see for example
[8, Theorem 1.2.1]) and extensive literature is available on this topic. However, Propfsiiion 3.7
motivates and justifies the construction of the so called “discrete sequence” (discussed iff $ection 5),
on which idea the algorithm used to solve the discretised Douglas problem is based. Last but not
least, this approach makes it easier to recognize differences and similarities between the Douglas
case and the classical Plateau problem.

Finally, we demonstrate numerically that the orders of convergence obtaingfl in (1)]and (2)
cannot generally be improved. We would like to point out that our numerical investigation does
not aim to be exhaustive but rather verify the results obtained theoretically.
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2. The smooth Douglas problem
2.1 Theoretical background

In this work we are interested in the study of annulus-like surfaces, i.e. surfaces of genus zero with
two boundary curves. We can word the problem as follows.

Given two disjoint oriented and rectifiable Jordan curygsand I in R” (n > 2),

find the area minimizer (or more generally, find a critical point for the area functional)
among all functions which have a cylindéy, (of finite length) for domain and map
dC, onto I'1 U I in a weakly monotone way and respecting the orientation of the
boundary.

It is of course not true that without further assumptions such a minimizer exists. A typical example
to keep in mind is that of a catenoid: given are two equal rings placed on parallel planes at a distance
d apart in such a way that one ring is the projection of the other in the direction perpendicular to
the planes. I/ is small enough, it can be shown that there exist two annulus-like minimal surfaces,
one of which is an absolute area minimizerd|éxceeds a critical valug¢ and we consider an area
minimizing sequence of annulus-like surfaces, it can be observed that an increasingly narrower neck
is developed and the surfaces degenerate in topological type by tending to two disjoint discs. In this
situation no annulus-like surface can absolutely minimize the area. The area minimizer is given
instead by the union of the two flat discs bounded by the two rings. But the topological type has
now changed: we have a minimizer of lower topological type.

This example shows that we need extra conditions to guarantee the existence of both minimal
surfaces and area minimizers of a given topological type: in this particular case, a bound on the
separation of the boundary curves would do. In general the so dafladglas conditioris usually
assumed to be true.

It is not our intention to go into more details about the Douglas condition and we refer the reader
to the classical books mentioned in the Introduction for more information about it. For the sake of
this paper the reader needs just to be aware that such an assumption is sufficient (but not necessary!)
to prove the existence of a minimal surface of given topological type. We state briefly the existence
theorem whose proof can be foundlin [8].

THEOREM 2.1 (Douglas Theorem) Let' = (I, I2) be two disjoint closed oriented rectifiable
Jordan curves ilR”. If the Douglas condition is satisfied, namely if

d(I',0) < d*(I',0), (3)

thenI” bounds a connected minimal surface (an area minimizer) of genus 0.

Intuitively, condition [3) guarantees the existence of an annulus-like surface whose area is
strictly less than the sum of the areas of the disc-like minimal surfaces for the two given Jordan
curvesl; and 5.

2.2 Formulation of the problem

Setl" = (I'1, I?) and defineC;, to be the cylinder

G i={(x,0)]0< x <A, 0 eS8
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We look at the maps

C'(N)={u:C,—R"|0< A< oo, umapsiCy, ontoI" in a weakly monotone
way and preserving orientatipm H(C;) N c%c;),

and we are interested in findimge C'(I") such that is stationaryfor the area functional. It is well
known that there is a one-to-one correspondence beteeeformalmaps that are stationary for

the area functional and maps that are stationary for the Dirichlet energy (see remark below). Since
a surface of genus zero with two boundary curves is conformally equivalent to a cyinder a
specifichA > 0, it is natural to give and use the following definition.

DerINITION 2.1 A minimal surfacds a map which is stationary for the Dirichlet functional.

Note that such a surface does not have to be an area minimizer. For later purposes we make the
following remark.

REMARK. The mapu (sometimes we will write(u, A) to remind us thait : C, — R")is
stationary for the Dirichlet functiondD if and only if

(D1) %L:OD(M +tv) = 0foralv e H&(CA) (stationarity with respect to variations of the
surface)

(D2) %L:op(” o o;) = 0 for every smooth family of diffeomorphismsg : C,, — C, with
op = id and, depending differentiably on(stationarity with respect to variations of and in
the domain)

In [8] we find the following important characterisation. A function that is stationary for the
Dirichlet energy must have a natural parametrisation, namely a conformal one. The fact that by
working with the Dirichlet functional we can control the parametrisation is one of the main reasons
for discarding the area functional and using the Dirichlet energy instead.

PROPOSITION2.2 (u, A) satisfies (D1) and (D2), i.e. : C,, — R”" is a minimal surface, if and
only if u is harmonic and conformal in the interior 6§, which means

(H1) Au=0in (i‘,\ (harmonicity)
(H2) |uy| = |lug| and{uy, ug) = 0 in C; (conformality)

Basically the following equivalences hold:
(D) & (H), (D2 < (H2).
In the proof of Jost, however, it becomes clear that we have something more, namely
(D2) 4+ (D3) & (H2),
where

(D2) %’r:OD(” o gy) = 0 for every smooth family of diffeomorphisms : C,, — C, such that
oo = id (stationarity with respect to variations on the fixed domain)

(D3) %L:OD(“ ooy) = 0 for a,‘l : C, — C,, a diffeomorphism of the forn€, > (x,6) —
(14 t)x,0).

Just to give an idea of the implications of each of these statements, let us recall the following
important lemma proved in[8].
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LEMMA 2.3 LetX be a compact Riemann surface with smooth bounda@yh € H1(X, R"),
and suppose

d

—| D(h =0

dr o (hooay)
for all smooth families of diffeomorphismsg : ¥ — X with og = id. Then, withz = x + iy a
local conformal parameter an,

9(2) de? 1= h2dz? = F(h2 — h2 — 2ihy - hy)(dx? — dy? + 2i dx dy)

is a holomorphic quadratic differential ot which is real org X

Thatg(z) dz2 is real ond X means the following: if we choose our local conformal parameter
z = x +iy neard X in such a way thad X is locally given byy = 0, then alond ¥, dy = 0; hence
if ¢(z) dz2 is real ond X, then

0=Im(pdz?) = —3h, - hy dx?,

i.e.h, andh, are orthogonal alongX.
On the unit disc, every holomorphic quadratic differential which is real on the boundary vanishes
identically, so conformality is immediately obtained.
On the other hand, on a cylinder the holomorphic quadratic differentials real on the boundary
are of the form
(real constant- dz?,

so conformality is not quite achieved yet. It is at this point that conditiorf)(Exmes into play.

These facts will actually become relevant at a later stage. At the moment it is sufficient to note
that from now on we will consider the Dirichlet energy and therefore we can restrict our class of
maps to

C(r=C((")N{u:Cy— R"|uharmonici € (0, c0)}.

The big advantage of working i6i(I") is that harmonic maps are uniquely determined by their
boundary values. So essentially each map C(I") is uniquely determined by andu|;c, . About
the boundary behaviour of a solution to the Douglas problem we have the following result.

THEOREM2.4 Letu be a minimal surface which maps an openArc 9C; into an open portion
I’ c I' and assume thdt’ € C*¢ for somek € N and some O< « < 1. Thenu € C5%(C, U A).

Proof. Seel2, §7.3]. O

2.3 Reformulation of the problem

Our approach to the problem uses the ideas presented in [13] and in [4] and [5]. The main goal is to
transfer the nonlinearity from the claSél™) of competing functions to the energy functional.
To do so, take a cylinde€; of radius and length 1 and fix : dC1 — ',y = (y1, ¥2),
yi : S1 — I fori =1, 2, to be aregulac”-parametrisation of” with r > 3.
If , : 0C, — 9Cy is the map that identifie8C, with 9C1, theny o m; acts ondC; exactly
like y onaCj. Thus, from now on we will identify these two maps and we will writ@lso when
we actually meary o ;.
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Givenu € C(I'), u : C, — R", thenu|yc, can be uniquely written in the form o s, where
s :9DUID — STUST (andU denotes the disjoint union). AlthougtD Ua D, STU St andaC,, are
naturally isomorphic, we will usually considét U St as the domain of théixedparametrisationy
of I" andd D U 3 D as the boundary of the parameter domaifgor various parametrised surfaces.
See Figurg]L.

I

5 =(5,5,) y(zym)') Y =72)

Fic.1

Amap f € C%@D, s1) is said to bemonotoneif f is positively oriented and~1(p) is
connected for alp € S1. Note that a monotong¢ need not be injective: as it moves once aroShd
it can pause but never retraces its path. We similarly define the notion of monotone magpfrom
to I7, fori = 1, 2. Since there is a one-one correspondence y o s; between monotone maps
in C(dD, 1) and monotone maps ii(dD, I}), i = 1, 2, there is also a one-one correspondence
s = (51, 52) < y os = (y1 051, 2 o s2) between monotone maps@? (3D, s1) U cO3D, 1) ~
c%@D U aD, sTU sY and monotone maps 88D, I't) U C%OD, o) ~ C%DC;y, IN).

Further note that any monotone mapaD U 3D — ST U §1 can be written in the form

s = (s1,52) = (id+ 01, id + 02) :=id + 0.

Hereid :9D — ST is the “identity” map id9) = 6 (with abuse of notation we will write id also
when we intendid, id)) ando = (o1, 02) € C%@D,R) U C%dD, R) is a 2r-periodic function
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defined up to a constant= (c1, c2) with ¢; = 2rk;, k; € Z,i = 1, 2. Addition of such maps is
performed modulo 2.

Forw e C%C;, R") we denote byp (w) the unique harmonic extension ofon C;.

We can now define thenergy functional E

DEFINITION 2.2 Fors € C%D U aD, ST U sty anda € (0, 00) let
1 2
E(s, 1) == > IV®(y 05)|”=D(P(y o5)). 4)
G,
ThusE((s, 1) is just the Dirichlet energy of the harmonic extensioryafs on C.

Norms and function spaces. For f : 9D — R the HY/? seminorm can be defined by
f@) — f@P . -
|f|Hl/2(3D) / ,/E;D |¢ ¢|2 d¢ dd’

and the corresponding norm is given by

1120y = 1125 + 1 2oy,

Let C denote a cylinder of radius one and fixed length. Fee (f1, f2) : 9C ~ dDUID — RUR,
with f; : 9D — R, i = 1, 2, we define théZ/?2 seminorm to be

| flireaey = (filfuegp + 12512007

and the norm
1 V2o = U FlGe g + 1205120 p) 7%

As a domain for the energy function&lone first chooses a suitable space= H x (0, oco) (see
the definitions below), which basically consists of pairsi), wherex is a positive real number and
sisanHY2 maps : 9D UJD — 351 U3S* which winds once around the boundary of the cylinder.
However to obtain a differentiable functional it will be necessary to resEi¢b the subspace
T x (0, co) of continuous members of.

DEFINITION 2.3 The Hilbert spacé/ is defined by
H:= HY?(3C,RUR) ~ HY2(3D,R) U HY?(3D, R).
The corresponding affine Hilbert spakis the space of maps: dDUaD — 851U 3S* such that
s=id+o

for someo € H. Note that we identifyo with its equivalence classs] = {0 | ¢ =
0 + 2k, 2wky), k1, k2 € Z}.

DEFINITION 2.4 The Banach spadeis defined by

T=HNCYIC,RUR)
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with norm

1§17 = €l gr2acy + 1€l coac)
(where we take|& || coyc) = (”51”%0(31)) + ”‘52”%0(31)))1/2)' The corresponding affine spaeis
defined by

T =Hncoac, stUsh.
DEFINITION 2.5 The Hilbert spac¥ is defined by

X =HxR

with norm

IE lix = NG 1200, + 1Y

The corresponding affine Hilbert space is giventy= H x (0, co).
DEFINITION 2.6 The Banach spader is defined by

TR:=T xR

with norm
IE, wlrr = (17 + 1>Y2.
The corresponding affine space is givenby (0, co).

The space of variations ate H,s € 7, (s,A) € X, and(s, 1) € 7 x (0, c0) is naturally
identified withH, T, X, andT R respectively.

Notation. For f,g:9C — RUR,s : dC — 3C, f = (f1, f2), g = (g1, g2), ands = (s1, 52)
we set

fg:=(f181, f282), f+g:=(fr+8g1 fa+82, [fos:=(fios1, f205s2),

i.e. all operations are always meant componentwise. Furthermore

IF1l = (LAl + 11 2132

for various norms. Finally fos = id +o¢ : 9D UdD — 351U a5t we write|s|| = 1+ ||o|| for
various norms ow . (Of course||s|| does not define a norm.)
For future references we note the following properties.

LEMMA 2.5 Suppose, g:dC — RUR ands : 9C — dC. Then

I fgll gz < cllflicligl g2, )
[ felpre < el fllcolgl iz + | flgzllgllco), (6)
g osllgre < cligllelislgie. (7)

Proof. Use the definitions of the norm and resultsini[13, Lemma Il 2.6] @hd [5, Prop. 3.14£3.2].

It is standard that for fixed, @ : HY2(3C;, R") — HY(C,, R") is a bounded linear map with
bounded inverse. Thereforeis well defined and finite fo¢s, A) € H x (0, oo). In fact we have
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PrROPOSITION2.6 E(-,A): H — Rand
E(s, 1) < ey 12alsZ,0-

Proof. From trace theory andf|(7) we get

1
e =5 [ 90w ool <clowonig,
A

< cWlly o532 < My I2allslF 2.

Note that the constant depends on the domain, i.@. on O

REMARK. In the case of the classical Plateau problem, the analogous function ghaxe
boundary maps is characterized by three additional integral conditions which correspond to the
so called “three-point condition”. Such a restraint is necessary to prove compactness results. In the
case of the Douglas problem we do not need such an assumption and convergence is ensured by the
Douglas condition.

Differentiability properties of E. We now want to investigate the differentiability properties of
E = E(s, ).

Conventions regarding derivativesDerivatives with respect to the functierin the directiort are
usually denotedE’ (s, A), £€) ord E (s, 1)(&). Derivatives with respect to the parametare usually
written %E(s, A). Derivatives afs, 1) in the direction(&, 1) are denotedE’(s, 1), (&, u)).

First let us fixA and compute formally the first and second derivative with respect to variations
of the boundary map. Using the notation

u=®(yos), v==>( osf), w=®d( os&?), (8)

for £ € H, we get from[(#) and formal computation

B =2 [ 19 9)
2 e,
(E'(s,1), &) = d E(s+t§,k)=/ VuVv, (10)
dt t=0 C;.
d2
E'(s, (.6 = — E(s+tg,)\)=f Vqu+/ V|2, (11)
dr*|,_o o Co

with an analogous expression f@&” (s, A)(¢, n) obtained by bilinearity in the case of distinct
variations.

Following the analysis of the differentiability properties of the energy functional for the classical
Plateau problem (sekl![4] arid [3]), it is not difficult to verify the following two propositions.

PROPOSITION2.7 Lets =id +o. ThenE(-, 1) : 7 — Ris C"~1. Moreover

|d7E(s, M)(EL -, DI < O Ny lleiens sl gy2) €T - 18 7

fori<j<r—1.
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These estimates cannot be improved by replagiig by ||£] ;1/2, unless the regularity ofis
increased.

PROPOSITION2.8 Ifs € CLthendE(s, 1) extends to a bounded linear operatorfrand
[dE(s, M)(E)] < ey 122lIs 1221 2.
If s € C2thend2E (s, 1) extends to a bounded bilinear operatorférnx H and

ld?E (s, 1)(E. m| < ey 12205122 1E 1 20l e

Now let us fix the boundary mapand compute the first and second derivativeEoE E (s, 1)
with respect to.. To do so, it is convenient to define the following function:

F:(0,00) > HY(C1), FQ) =u"=®(yos)ooy,

where® (y o s) is the harmonic extension ¢f o s on the domairC,, s € H, ando; : C1 — C,,
o, (x,0) = (Ax, 0), is the map that transforms the unit cylinder to a cylinder of length

LEMMA 2.9 F is smooth on(0, co). Each derivative is the unique weak solution of a partial
differential equation. In particulaf’ (1) € H(}(Cl) satisfies

1F/ / _ 1 A A
—F'(M)xwx +AF (Mowg | = U Wx — UG
C1 A Cq A

forall w € Hy(C1) and||F' (W)l y1(cp < cu? | gigep-
Proof. Sinceu” is a weak solution of

1
—— —A =0 inCy,

kuxx Upo 1 (12)
u=vyos onodCy,

we immediately obtain
1 u)»+h _ I/t)” u)»+h _ I/t)” 1 N N
)\- h —— = — J—
/cl (Hh( n >xwx+( " )( h )J”g) /cl(x(wh)”"w" ”9“’9)
forallw € H(}(Cl). Hence, for fixed:, W is the unique weak solution of

1
C O+ Mg = ——————
ran e T (R mvee = =
v=~0

A A
e Fuge InCy,
onodCy,

and||NT*”A||H&(C1) < c(A)|u’\|H1(C1) forall 2 < 1. It follows that there exists a functiaff (1) €
Hol(Cl) such that by passing to a subsequenck of 0,

T
p —~ F'(A) weaklyinH?,
bh A

— F'(A) strongly inL?,
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andF’(») is the weak solution of

1 / / 1 A s H
_XF (Mxx — AF (Mo = — 2l +ugy inCy,
F'(0) =0 onaCi.

Moreover || F' (M) || g1,y < c(A)|uk|H1(C1). Since the solution of such a PDE is unique, we infer
that the above convergences occur for all subsequendes-oD.

Moreover, by employing the same type of argument as in Lefnma 3.2, we can show that
Ah

|~ — F' Ml g1, — 0ash — O (i.e. F is Frechet differentiable at), and thatF’ is

continuous on0, co). Existence and continuity of higher derivatives are shown in a similar Way.

Now suppose that € 7 is fixed. By performing a change of variables, we can wiitas an integral
over a fixed domairCy, namely

1 1
E(s.2) =3 /C (;(F(A))i +x(m))5). (13)
1

Hence

aE(A—lf —1F(A)2+ F(\)2
ﬁ S7)—§Cl( ﬁ( )x ( )9

1
+/C (X(F(x))X(F’(A))X +)»(F(?»))9(F/()»))0)
1

and the second term cancels out duéte.) H&(Cl) andF (1) = u* satisfying ). Therefore
we can write
)

ad 1 1

HE(S’)\)ZE/;:L(_F (Q()/OS)OO’)L)
2
). (14)

9 2 13
a(@()/OS)OO’)L) +‘£

1
2 e,

2 1a
+ ‘@@(V os))

e
<— 75 (@ os))

In a similar way we calculate
2
A2

1 3 2 1, o
E(s,3) = F/q'g(@(yos)om —/Cl (X(F ()2 + A(F (x»@)

1
=3 .

9 2
‘a_x(‘p(y”” —/C Vo2, (15)

where¥ € H}(C,) solves

(L 9 _ 2 ds
/Ckvwg—k/cxax@(yos»ax ae@(’/”))ae) (16)

forall g € H}(Cy). Note that||¥ || y1.¢,) < c)IP (Y 09 g1c,)-
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For the mixed variations (where one variable is kept fixed at each step) we can show with the
same type of argument as above that

<(3E) (5, 1), s> 0 (B 5,1, 8)

1 : i o
= ng(_a@(y os))a(cb(y osé))+£(q§(y os))%(qu osg))) (17)

Finally, let us compute formally the first and second variationAolJsing again the notation
u=>o(yos), v=>0( osk), w=d( osEd),
and letting® e HE(C;) be a solution of (1I6), an¢. 1) € X, from (10) and[(14) we get

(E'(s.2), (& ))‘/VV-F— a—uz—a—uz (18)
s,,,/JL—CAuvz)\ 39 e
Furthermore using (11), (15), arfd {17) we can write
B0 w? = [ (Vo4 VuVu)
Cs.
dul?

—p? | VA (19)

dx C;.

2 dudv  dudv 2
Lo [ (_oudy  dudvy  (n f
A Jo,\ axdx 96 96 r) Je,
with an analogous expression fBf (s, A) (&, u)(n, o) obtained by bilinearity in the case of distinct

variations.
PROPOSITION2.10 The functionaE(s, A) : 7 x (0, o0) — R is C3. Moreover

(E(s, 4), (€, i) < e My Dz, sl ) IE, wllTr

and

|E" (s, (&, W), )| < O, Y lless sl g2 1GEs iRl (0, )R-

Proof. Through the previous analysis we were able to describe the variatiofs ef E(s, 1)
when fixing a variable. Roughly speaking we found the “gradient” and “HessianE fand used
these to formally derive an expression for the first and second variatiin By using Lemmé 3]2
below it can be checked directly in a routine manner thas three times Fachet differentiable,
its derivatives are continuous, afd](18) gnd (19) are the correct expressions for the first and second
variation respectively.
The last part of the proposition follows immediately by applying trace thedry, (7)[&nd (6) to the
expressiong (18) anf ({19).

PROPOSITION2.11 Ifs € Clandx € (0, co) thenE/(s, A) extends to a bounded linear operator
onX and

(E'(s, 1), (5, ) < eyl 2||S||%1”($v wlx-
If s € C2thenE” (s, 1) extends to a bounded bilinear operatorix X and

|E" (s, ))& w0, )| < cW Iy 1220512211 i llx [l (7. o)1 x.-
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Proof. The firstinequality follows by[(18), trace theory] (5), ahfl (7). The second inequality follows
by (19), trace theory| {5).[(7), and Proposition] 2.8. O

Definition of minimal surface in terms of E. Now we are ready to give the formulation of
minimal surface which we will use throughout this work.

DEFINITION 2.7 The harmonic function
u==®(yos)

defined onC, is aminimal surface spanning if s is monotone and the pais, ) € 7 x (0, c0)
is stationary forE, i.e. if the following two statements are true:

(E1) s is monotone and stationary f@r(-, A) in the sense that

(E'(s,2),) =0 V&eT, (20)
(E2) A is such that (what we could call) “equipartition of energy” holds, namely
2 2
/ du dx do =f du dx do. (21)
C;. 0x C 200

REMARK. Note that by[(IB) the pai¢s, ) € T x (0, c0) is stationary forE if and only if
(E'(s, ), (E,n))y =0forall(§,n) € T x R.

PrROPOSITION2.12 Definitiong 21 and 2.7 are equivalent. In other wotds}) is stationary for
E ifand only ifu = @(y os) defined orC} is stationary for the Dirichlet functional (or equivalently
u is harmonic and conformal).

Proof. First note that (E2) and (DBare equivalent, then apply similar arguments to those used by
Struwe in the proof of[[13, Il Proposition 2.9]. The most difficult step consists in proving that
condition (E1) implies that € H?(C;). This regularity result is achieved by using the same
arguments applied by Struwe in 13, Il 85]. |

PROPOSITION2.13 Ify € Ck* wherek > 2,0< « < 1 and(s, 1) is stationary forE, then

Isllcre < ¢ = clllyllcre, 111y ze).
Proof. This follows directly from the regularity result given in Theorem 2.4 and Propositiofh 2112.

Nondegeneracy for the energy functioal We will need to consider the second order behaviour
of E near a stationary points, A) € 7 x (0,00). Fors € C2%, A € (0,00) andy € CZ2 (in
particular, by regularity theory, faw, 1) stationary forE andy e €3) let us consider the bilinear
form E”(s, 1) as given in[(1P). By Propositidn 211 we know tHt(s, 1) extends to a bounded
bilinear operator otX x X. Hence, by the Riesz representation theorem, we introduce the bounded
self-adjoint mapv2E(s, A) : X — X defined by

(V2E(s. ). 1), (0. 0))x = E" (s, M)(E. W) (. 0)
forall (n,0), (€, n) € X, where(., -)x is the inner product defined on the Hilbert spacenrite
X=X oXx°¢xt (22)
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for the orthogonal decomposition generated by the eigenfunctio’& Bis, A) having negative,
zero, and positive eigenvalues, respectively.
For (&, 1) € X, we will write

Emw=E,u)+E 0+ E" uh, (23)

where(6 =, n™) € X, €% 1% e X9 and(e™, uT) € XT.

DEFINITION 2.8 If (s, A) is a stationary point foE, we say that
(s, 1) isnondegenerate if X° = {0}

The corresponding minimal surfage= @ (y o s) is also said to beondegenerate

If (s, 1) is a nondegenerate stationary point foyit follows that the eigenvalues 6f2E (s, A)
are bounded away from zero aRd E (s, 1) is invertible with bounded inverse (séé [3, Proposition
4.9)). In particular there existsia> 0 such that

E'(s, ME mET =& ut —p)
=E"s. 0ET w2 = E's. DE . 1) 2 k(€15 + 15 (24)

We callx thenondegeneracy constafar (s, A).

3. The “smooth sequence”

In this section we are concerned with the problem of giving a constructive method for finding
stationary points of the energy functional

As mentioned in the Introduction this is not needed in order to establish the main error estimates
(@ and [2) discussed in [10]. However it motivates the construction of the so called “discrete
sequence” (see Sectiph 5) on which the numerical algorithm given in Sggtion 6 is based.

Let us build the following sequence of poir(ts, A,) € 7 x (0, co). Choosérg € (0, o), then
repeat the following two steps.

Step 1. Given A, find a monotone mag, € 7 such thats, is stationary forE(-, A,,). In other
words finds,, such that
(E'(Sp, n), §) =0, VEEeT. (25)

Using [10), we see thdt (R5) can be written as
f VO(y os)VO(y 0s5,6) =0 (26)
Con

forall§ € T, or equivalently

a

0
; 5 (D(y osp) 00y,) —(P(y 054 6)00;,)dvdo
n Jcy 0X ax

+)\"/ i(@(yosn)oo')m)i(@(y/osnf)oa)m)dxde=0 (27)
1 a0 20
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forall ¢ € T, whereo,, : C1 — C,, is the diffeomorphism of the form, , (x, 6) := (A,x, 0). For
later use, let us denote by
hy ‘= @(y osy)
the harmonic extension ¢fo s, onC;,,.
Step 2. Givensy, A,, andhy,, find,,1 € (0, co) such thah,, reparametrised to the domaip, _ ,
satisfies “equipartition of energy” (see Definitjon]2.7 again). Precisely this means that if we denote

by k.1 the functionk,, , 11 : Cy, , — C;, which maps(#, 0) to ()»::l—li’ 6) = (x,0), theni, 1
must be such that

n+1

3 2 3 -
/ =y oy 1)| i = / 2 o k)| dE . (28)
C)‘;H—l * C)‘n-%—l
Note that a change of variables [n[28) gives
A Oh, |2 A dh, |?
n / " dxdo = ”*1/ "1 dx do, (29)
)"I’H-l Cin dx An Cin a0

which is easily solved since, andh,, are known.
Let us first point out the following important fact.

LEMMA 3.1 Step 2 does not increase the Dirichlet energy. More precisely, we have
D(hy o kn,n+la kn+l) < D(hy, Ay),

with equality holding if and only i, = A, 41. (HereD(h,, A,) denotes the Dirichlet energy of the
maph, defined on the domaia@;,,.)

Proof. We can compute, ;1 directly from [29). (We are assuming here that Step 2 can be realized,
i.e. none of the integrals in expressipn|(29) vanishes.) Note also that the solution is unique.

To prove the assertion, let us recall that the Dirichlet enédgy, 1) for h : C;, — R” can be
written as

D(h, x) = [h(C)| + Ec(h, 1),

wherel|h(C;)| is the area of the image(C;,) and E¢ (k, A) is the conformal energy as defined in

[6], namely
2

dh  oh dr 6.

J(h)— — —
( )ax 20
Here J (h) is rotation throughr /2 in the oriented tangent plane to the imagé of
Since|h,(Cy,)| = |hy 0 kpny1(C,,,)|, all we have to prove is thac (h, o ky i1, Any1) <
Ec(hy, Ay). This follows by a direct computation. O

1
Ec(h,)) = E/

C.

ReEMARKS. 1) During the first step, we fix,, and we find a boundary map for which condition

(E1) of Definition[2.7 holds. This is very much like solving the classical Plateau problem. Bear
in mind that since we find a stationary map fBK-, 1,,), the functionalE need not decrease.
Furthermore the surface that we get, namely o s,,) (where the harmonic extension is taken over
C.,), generally fails to be conformal. Note that if we look back at Lemimé 2.3 and the comments
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there, and we consider again the proof of Proposftion|2.12, we come to realize(thats,) just
fails to be conformal.

In the second step, we fix the surface just computeddi(e. o s,), and parametrise it from a
different cylinderC;,,,, in such a way that the “equipartition of energy” (see (E2) in Definitiof 2.7
and [28)) holds. In other words, we are trying to make up for the lack of conformality. Note that
now we have the problem that is not necessarily stationary fét(-, A,+1), SO we need to “keep
going” with our construction.

Our wish is to derive a sequence of poings, A,) that will “approximate” conditions (E1) and
(E2) of Definition 2.7 more and more accuratelys:agcreases.

2) It is clear that if the constructed sequence stops for sereeN, then what we obtain is
exactly a stationary point faE, since (E1) and (E2) are satisfied at the same time.

3) Lemmd 3.1l is interesting because if we are able to decrease the Dirichlet energy also during
Step 1 for each (say, we find a Dirichlet energy minimizer for the fixed doméi) ), then we end
up with a sequence,,, 1,,) for which

E(sn—&-l’ An—&-l) < E(Sn, )\n)

is true for alln € N, i.e. the sequence is energy decreasing.

4) We pointed out in 1) that Step 1 is basically equivalent to solving the classical Plateau
problem. On the other hand, Step 2 is performed with a very easy computatign (see (29)). It becomes
clear then that since the problem of implementing a program that solves the Plateau problem has
already been solved by G. Dziuk and J. Hutchinson (see [4]), the investigation of the convergence
of the “smooth sequence” is appealing also from a computational point of view.

Motivated by the remarks just made, we now tackle the problem of finding under which
conditions we can ensure the convergence of the sequence to a stationary point for the energy
functional E.

Let us first give a few useful lemmas. The first establishes that if we take the harmonic extension
of the same boundary map on two different cylinders whose difference in length is small, then the
difference in thed ! norm of the rescaled maps is also small.

LEMMA 3.2 Forf € HY?(3C),0, : C1 — C, adiffeomorphism of the form, (x, 6) = (ux, 6)
for w > 0, andr, — A € (0, c0), we have

P (f)oon, —@(f)oonllgic,y —> 0
asn — oo. More precisely, we have
1P (f)oom, —P(f)ooullyicy < A=A |P(S) 0 oalpyicy-

REMARK. Note that® (f) oo, and® (f) o o, of Lemmg 3. are two different functions: the first
@ (f) is the harmonic extension gf on C;, whereas the secondl( f) is the harmonic extension
of the same boundary valugson C;,.

Proof. Setu” := @(f) ooy, andu := & (f) o 0. Thenu” € H(Cy) is the unique solution of

L'v=0 inCy,
v=f onaCy,
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whereL"v = —ﬁvxx — Anvge. The mapu € H1(Cy) is the unique solution of
Lv=0 inCy,
{v =f o0naCi, (30)

whereLv = —%vxx — Avgg. By subtraction we get

1 1 .
L"(u" —u) = ()»_ - x)uxx + Ay — Mugs = fu InCy,
n

u" —u=0 onacCy.

Letus writev” ;= u" —u € Hol(Cl). By definition,v" is such that

1 n n 1 1
—viwy + Avjwy | = — — — Juywy + (A — Ay)ugwy
C )Vn Cq1 A )Wz

forallw e H&(Cl). Choosew = v". Then forn sufficiently large,

VY1220, < CONA =l 1Vl 2ey IV 2y

which implies
™ = ull gy < €A = Anl lul e,y — 0

asn — oo. Note that by extending canonically to a mapf € H(Cy) so thatf|3cl = f

and ||f||H1(C1) < cllfllgzpcey), BY using f to reduce ) to a system with homogeneous
boundary conditions and by applying arguments similar to those above, it is not difficult to show
that||ull g1, < cllfllprzpcy)- 0

Next we derive a Poincartype inequality.

PROPOSITION3.3 Assume thal/ is an open bounded subset®f with 98U e C1. Then for every

g e HY(U), ,
/|g|2<c/ |Vg|2+C(f g) (31)
U U oU

with C independent of. In particular
I8l gy < CUGI Wy + 1181 L200)-

Proof. Suppose tha@l) is not true. Then there exjst H1(U) such that

2
l=/ Ign|2>n/ IVgn|2+n</ gn> vn € N. (32)
U U U

Since(g,)nen is @ bounded sequence Hl(U), there existg € H(U) to which g, converge
weakly in HY(U) and strongly inL?(U). In particular||gll .2, = 1. On the other hand2)
implies thatg, — 0 in the LY(3U) norm andVg, — 0 strongly inL?(U), henceg = 0. This
yields a contradiction. O
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Keeping in mind the notation used so far (see definitio,0fs,, &,, 0;, given in Steps 1 and 2 at
the beginning of Sectidn 3), let us start with some basic observations.

LEMMA 3.4 Suppose thalth,,||H1(CM) < Cforalln e Nandx, — A € (0, 00). Then

Iy o O\, ||Hl(c1) < C(A), |Sn|Hl/2(ac) <C@,p).

Proof. The first estimate follows fronjx,, ||H1(an) < C by a change of variable and the fact that
the sequence df, is bounded. The second follows from the first one and the regularity of [

If in addition we know that, = s uniformly, then in particular we havgs, |l 25¢) < C(lIs|lco)
and||s, | g12;cy < C(A, ¥, lIslico). Therefore

s, —~ s weakly in HY2(d0).

One way to guarantee the uniform convergence of the majssto require that, together with
the assumptiolk (s,,, A,) < C, the map4g:,, satisfy thecondition of cohesignwhich means that

there exists a real number > 0 independent of such that each closed curve lying
on h,(C,,) whose diameter does not exceedan be continuously shrunk to a point
(insideh, (Cy,)).

Furthermore, under these same conditions, it can proved that (a subsequencemiyerges to
somex € (0, 0o). For more details se&l[9, §8559-560].
Let us define

h:=®(yos)

to be the harmonic extension gfo s on C, and leto, : C1 — C, be the usual cylinder trans-
formation (replace., with A in the definition ofo;, on pagg 233).

LEMMA 3.5 Suppose that, = s uniformly, A, — A € (0, o0) and ||hn||H1(c~An) < C for all
n € N. Then

hy ooy, — hoo, weaklyinH(Cy).
Proof. From||h, o o3, |l g1(c,y) < C (1) it follows that there exists a function e H(C1) to which,

by passing to a subsequenag o o3, converges weakly in th&/! norm. Forf € H}(C1) we have

1 0 af d af
= 2L T i | Zan 9 _g
o | oo ot /C Sy 003,) o

for all n. Lettingn — oo and using the weak convergence we obtain

1 dg o ol
_/ _g_f+A/ _gg:o’
’Je, 9x ox c, 86 30

which implies thatg o 0;1 is harmonic onC, and therefore fully determined by its value on the
boundary. Set := @ (%) o 03, whereg = g o 0, Yac, -
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For f € H?(C;) harmonic onC; we have

1 0 d 0 o)

= —@ — A —(h —

" Clax(nom)ax(foax)+ nfclaguo%)ae(fom
1

0 0
= [ Zfoovihuoo, +An/ 9 (foon)vahmooy,
)"n 9C, Bx aCq 89

19 92
+/C1<_)L_8_(f 0).) — 02(f°“k)>h11 o0y,

wherev = (v1, v2) is the outward unit normal vector field defined@®;. Again by lettingn — oo,
using the weak convergenceiof o o;, and uniform convergence of we obtain

S LIy LI
o axax O 2690 ° 7

1
=—/ —(foo,\)vlyos()\x,e)—l-k'/ —(fook)vzyos()»x 0)
0C1 d

x Joe, ax ¢, 90
[ eteonsLreon+i [ Sthoo (s om)
= - —((hooy) —(foo —(hooy) —(f ooy),
e ox T ax * o, 00 96 *

where the last equality is obtained by integrating by parts again and using the harmonjtitgyf
a change of variables we have

0
/vaab(g)—h):/ Lg—yosn=
C)L BCA v

forall f € H%(C,) harmonic orC;. Since we are able to solve the Neumann problem

Af:O in Cy,
af/ov=h 0nadC,,

forallh € C*°(3C;) such tha‘gfac h = 0, it follows easily thag = y o s.
Finally, it is not difficult to see that the whole sequeligeo 0;, converges weakly té o o, in
the H* norm. O

Now we can use the tools developed so far to prove the following statement.

LEMMA 3.6 Suppose that, = s uniformly, A, — A € (0, c0) and ||h,,||H1(CM) < C for all
n € N. Then
sy — s strongly inHY2(30).

Proof. First note that for each boundary component we can write
Sn Sn
Y(sn) =y () =y (s2) (50 — 5) — / / y" (i) dit du
N u
= y,(sn)(sn —8)+ 1,
and as shown in[13, 11 2.11],

[ Ll gz < Clls — spllco(snl gz + 5| gas2).
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Recall that any weakly convergent sequence is bounded, hence this inequality is meaningful. Since
by its definitionZ, converges also to zero in ti@& topology, it follows that in particular

1,1l g2 — 0 asn — oo.

Now consider

f V(@ (y 05,) — D(y 05))|?

G n

(note that the harmonic extension is taken@®n !)

0
/ L@ 05 (sn) ~ 7 (6) —/ VO (y 0$)VO(y 055 — v 05)
aCy, 9V

Cin

= J1+ Jo.

But

a
J1= / 3_1)(¢(y o Sn)))//(Sn)(Sn —5)+ / VO (y osy)VO(Iy).

An Com

The first term is zero because of the stationarity,ofrecall Step 1 in the definition of the “smooth
sequence”). Hence

111 < nll s, 1D U e,y < COall gz — O

asn — oo. With the usual change of variable we can write

1 9 5
—J . a_(d’()/ 0s)oay,) —(@(y(sn) —y(s)ooy,)
n JCq X ox
9 9
+ Ay /Cl ﬁ(@()/ 0s§)o0y,) @(@(y(sn) —y(s) ooy,

Let us look at the first term of the above expression:

0 0
f8—(95(1/OS)OOA,I)—(d)()/(Sn)—)/(S))OO"A,,)
c, 0x ax

0 0
= / ™ (P(yos)ooy, —P(yos)ooy) —(P(yosy) ooy, —P(yos)ooy)
c, 0x ox

+/ D @y 05)00) 2@y osn) 0os, — By 05)00)
c, 0x ax

—i—/ i(<1§()/ 0s)ooy,) i(<1§()/ os)ooy —P(yos)ooy,).
c, 0x ax
Using Lemmag 314, 35 and 8.2 we see that each term goes to zeronwdpmroaches infinity.
Using the same arguments also for the other tern¥s,iwe deduce thal, — 0 asn — oo. Hence
we have shown that

|¢('}/ OSn) — @(]/ [e] s)|Hl(CAn) d 0
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By PropositiorEP ang, = s it follows that||®(y os,) — @(y o a1,y = 0, which implies
ly osp, —yo s”Hl/Z(ac) — 0.

If we write y os —y o5, = y'(s)(s —sn) + I,, thenl, behaves likd,,, i.e. ||, || yjy2 — 0asn — oo
and

||V/(S)(S - Sn)”Hl/Z(ac) — 0.
For each boundary component we have

Y ()G = )25

1Y/ ()(s — s) (@) — ¥/ (5)(s —s)(D)I? | -
= & do d
/aD /az) 6 — 2 i
_ / / Iy (5)(@) — ¥ ($)@)](s — 52)(@) — ¥’ (s)(D(s — 5) (@) — (5 — s2)(P)]I?
ap Jap lp — 9|2
’ . 7712 _ 2
_ / / ' O@) = v Q@G =@ s
ap Jap lp — @2
/ T\ 2 _ N _ 2
+/ / Y O@VA6 =)@ = 6 =@F s
ap Jap |¢ —_¢|2
-2 f / W O@) =y OGN = 0@ 16y G5 — 5@ — (5 — 50 (6)] dp dlp
ap JoD ¢ — @l

= B1+ B2 + Bs.
Now, sinces, = s,
|B1| < lisn — sl120ll¥ l c2Is15,12 — O.
Furthermore
|B3| < 2|lsp — sllcolly Il et
. f / [y'(5)(@) — ¥/ () @][(s — 5:) (@) — (s — 5,)(9)]
ap Jap ¢ — |2

!/
< 250 = slicolly llerly (DN guzls — salg2.

de dog

Since the weak convergencesgfimplies that|s — s,| 412 < C, alsoBz goes to zero. Finally, due
to the regularity ofy,
By > C)z,|s - Sn|,2v.11/2,

and the statement follows. O
We are finally able to prove the following proposition.

PROPOSITION3.7 Following the notation used so far, suppose that the mgpsatisfy the
condition of cohesion ankuh,,qu(cM) < C for all n € N. Then there exists a monotone 7 and
A € (0, o0) such that (by passing to a subsequence)

s, — s strongly inHY2, s, = s uniformly, A, — A,

and
(s, A) is stationary forE.
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Proof. The condition of cohesion together with the assumption fat,, 1,,) < C implies the
uniform convergence of the maps and the existence of & € (0, co) such that, by passing to a
subsequence,, — A. Hence the first statement follows from Lemna 3.6.

It remains to check the second statement. Let us work on the stationarity dsrexpressed in
(27). Consider the first term:

a d
/ P (@(y osp) 003,) =—(®(y 05, &) 0 03,)
c, 0x ax

] a
=f a—(fp(yosn)oaxn)—@(V’OSnS)OGxn—‘P()/Osné)oax)
cy 9% ax

0 0
+/ L@ 05) 001,) =@ 05 8) 00— DG 058) o)
c, 0x ax

0 0
+/ (@ os1) 0, — Dy 05)00) = (@( 05E) 03)
c, 0x ax

0 0
+/ Py (@(y 0s)003) —(P(y 0s&)ooy)
cy 0x dax

0 0
= 11+12+13+/ —(P(yos)o0y) —(P(y 0sE) oom).
0x 0x

C1
Now, /; goes to zero by Lemnja 3.2 and the boundedness of the ljapemmdg 3.5 implies that
I3 goes to zero. Finally,

11l S CONPG 05,8 00s — D 05E) 00l ey
<CWIY osuk =y osEllge < COY 050 —y oslrlElr,

which also goes to zero by Lemrpa3.6. Applying the same arguments to the second in (27)
and lettingk,, — A we obtain

}/ i(<1>( ) )i@( ' )0 03)
% o, ox Yy 08) 00, ™ y os&) ooy

] 0
+Af L@y 05)003) = (@ 058)003) =0 VE T,

c, 80 30
i.e.s is stationary forE (-, 1). Now let us consider equatidn (28). The left hand side can be written as

J =
Cins1 )"VH-]. C1

1 0 0
= / (—(hnotm)—(fp()/osn)omn — @ (y osy) 00y)
C1 ax

a
X

9 2
—(hn @) U)»,,) dx do

2 ~
dxdd =
0x

(hy o kn,n+1)

An+1 ox
0 0 0 ]

+—(hn00,) —(P(y osy) ooy — P(y 05)00;) + —(hy00y,) —(P(y 05)00y)
0x 0x 0x 0x
! I1 + = I+ 1 I

= 1 2 3.
Antl Ant1 Ant1
We have

e 1 — Oby Lemmdz]z anflhy, o oy, gicy) < CA),
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e L CW Iy osy—yoslyyzpcy) — 0by Lemmdzp,
o I3 [o | (®(y 0s)00)? by Lemm.

Therefore ag — oo,

J

Applying the same arguments to the right hand sidé df (28) we get

2
_ oh
ﬁ%:/
C,

2 ~
dx do —

2 ~
di df.

d
—(hy 0 kn,n—i—l)
ax

0x

Mgl G

2

ah ~
— dx db.

Jola

This concludes the proof. |

a0

X

REMARKS. Proposition 3.7 gives an alternative proof for the existence of an annulus-like minimal
surface. Note that it does not necessarily yield the existence of an area minimizer as opposed to
Theorenj 2.1 (for a proof see![8]).

In [9, 88556-566] another existence proof of an area minimizer for the Douglas problem is
given. The proof is quite similar to that of Theorem|2.1, the main difference being that the Douglas
condition (see[(3)) is replaced by the condition of cohesion. It is also shown that the latter is a
weaker assumption (i.e. if the Douglas condition is satisfied, so is the condition of cohesion): in
practice the Douglas condition is usually preferred since the condition of cohesion is rather hard to

verify.

4. The discrete Douglas problem
4.1 Discrete function spaces

It is well known that every cylinde€; is locally isometric to a rectangle on the plane with sides
of length 2r andx, where the two sides of lengthare identified. In the attempt to discretize the
problem, the identification af’; with a flat figure in the real plane turns out to be very useful. Thus
we will use the latter as domain of parametrisation. Note that the two sides of ledgthot count

as boundary, and that functions are identified with periodic functions.

Let G, be a quasi-uniform triangulation @f, controlled by, i.e. each triangl&s € Gy, has
diameter at mogsi and at least i for someos > 0 independent of, and has angles bounded away
from zero independently di. We can consideg,;, as a one-parameter family of triangulations
corresponding to the one-parameter family of doméips

Define

Ly = | J(E) | E; a boundary interval
Bun = {¢1, ..., ¢u} is the set of boundary nodes
N = {v1, ..., vy} is the set of all nodes, whetg = ¢; for j =1,..., M.

Supposef € C%(0C;, R"), f = (f1, f2), fi : 9D — R" fori = 1, 2. Then the continuous and
piecewise linear interpolard}, f is defined ordC; by I, f = (I f1, Iy f2), where

In fi(@ FDUHOR)) = (L= 1) fi (&) + (')
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fori = 1,2 and¢;, ¢;4+1 are consecutive nodes @D. Note that the image of,(y o s) is a
polygonal approximation té'.

As in the smooth case, instead of working directly with mgpsoC, — I', we work with the
corresponding maps: 4D U 3D — ST U S, wheref =y os.

Before introducing some discrete function spaces, let us make the following important remark.

If we take a quasi-uniform triangulatia, on the unit cylindelC1 and then rescale it for various
values ofA, the triangles degenerate very easily (and hence the quasi-uniformity is lost). So in
general, for the same parameteand different lengtha ando, G,;, andg,;, will not be obtained
from each other by a rescaling process, but will be generated independently. Howéver, df|
is sufficiently small, one grid can be rescaled to generate the other and the significant properties of
the triangulation are not destroyed. In this case, the main advantage is that the triangulations of the
boundarie®C, andaC, coincide.

DEFINITION 4.1 Suppose that a fixed set of boundary noded®mas been given (with the size
of the boundary intervals controlled y. Then we can define

Hy = {& € C°OC,RUR) | & € Pi(E)) Vj},

Hy, = {sp € COODUID, STUSY) | s, = id + oy, for someoy, € Hy,).
Here we intentionally omit the length of the cylinder because of the case in which we are looking
at a family of cylinders that have equal triangulation of the boundaries (this is the case for example
if the triangulations of the cylinders can be obtained from one another by rescaling as discussed
above).

Note thatH, ¢ T C H andH, is an M-dimensional vector space. Moreovef, C 7 C H,

H;, is an affine space of dimensiaWl, and the space of variations at any € H;, is naturally
identified with Hy, .

Sometimes itis important to stress the choice of domain. We also need some notation for discrete
maps which map int®”.

DEFINITION 4.2

X! = {up € COUCy, R™) | up, € P1(G) for G € G,
X = {fn € C°BC,, R"UR") | f;, € Pi(E))).

Takingn = 1 we similarly defineX;;, andx;,.

For f;, € x,; thediscrete harmonic extensiaby, f, € X, is defined by

AnPnfn=0 in Cy, (33)
Dnfn=fn 0NIC,, (34)

whereA, is the discrete Laplacian. Thus {33) is interpreted in the weak sense, namely
/ V(@u fr)Vn =0
C;.

for all v, in X;;, such thaty, = 0 0onaCyy. If f, € x}, the discrete harmonic extensidn, fj, is
defined componentwise.
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4.2 The discrete energy functional,
DEFINITION 4.3 Given(sy, Ap) € Hy x (0, 00), the discrete energy functional is defined by
1
Ep(sp, An) = 5/; V@)1 (y 0 sp)[% = D(®yI(y o sp)). (35)
An

That is, Ej (sy,, An) = D(uy), whereuy, is the discrete harmonic extensiong{y o s;) taken
overC,,. We first applyl, to y o s, since the latter is not piecewise linear.

Note that for a fixed parametrisationand a fixedhy,, E; (si, Ay,) is completely determined by
the nodal values;, (¢;). Finally, note thatZ, is notthe restriction ofE to H;, x (0, 00).

For later use set

up = Gulp(y osp), v = Sply(y osnén),  wh = Puly(y” o sy &), (36)

and lety, € X7, with ¥, = 0 ondC,, be the discrete solution of

1 duy 0 dup 0
/ VU, Ve = (ﬂﬁ _ ﬂﬁ) (37)
i, A iy, ox 0dx a0 a9
forall g, € thh with g5, = 0 onaCj,,. Similarly to the smooth case we compute
(E(sn M) G 10n) /vv + L Dy *_ |9 (38)
Sh, ) ) = v A oA I N )
nSh &) (She B o vt o Je s ox
Ah *h
and
E"(sp M) Eno ) = | (IVonl® + Vup V)

Ci,
2 dup dvp  dup v 2

LA <__h_h+_h_h>+<&>/

o Je, \ dx ox 06 96 ) Je

with an analogous expression 8 (s, A4) (&, r) (ni, 07,) obtained by bilinearity in the case of

distinct variations.
We are now ready to give the formulation of the discrete problem.

uy,
0x

2
—u%/ V2, (39)
A

h

A

DEFINITION 4.4 The discrete harmonic function

up = Pply(y osp)

defined onC;,, is adiscrete minimal surface spanning if the pair (sp, Ap) € Hy x (0, 00) is
stationary forEj, i.e. if the following two statements are true:

(Eh1) sy, is stationary forEy, (-, A,) in the sense that

(E},(sn, An). €n) =0, V&, € Hy,
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(Eh2) Ay is such that “equipartition of energy” holds, namely

2
/ mw=/
C}‘h C

REMARK. Note that we do not require monotonicity of, as in the case of in Definition[2.7.
Also observe thats,, A;) € Hy, x (0,00) is a discrete stationary point fat;, if and only if

(E},(sns M)y (Ens wn)) = O for all (&x, 1) € Hyp x R.

oup

a6

oup

0x

2
dx do.

M

5. The “discrete sequence”

For the energy functiondl we have shown that under suitable conditions it is possible to construct
sequences converging to stationary points (see Propdsitipn 3.7). A similar thing can be done in the
discrete setting. More precisely, let us define the so called “discrete sequence” in the following way.
First choosé.p € (0, oo) and then repeat the following two steps.

Step 1. Givena,, find sy, € H; such thaty, is stationary forEy, (-, A,,). In other words, findy,,
such that
(E},(Shns n), &n) =0, V&, € Hp (= xp,n).

Note that for each,, a different triangulation (controlled b)) has to be determined. For later use
let us denote by
hy == Pplp(y o spn)

the discrete harmonic extension§i(y o su,) onC,,,.

Step 2. Givensy,, A,, andh,, find A,4+1 such that

2 ~
/ szf
C C

where again we denote by, ,1 the functionk, ,+1 : C)
= j

()\n+il.x7 9)

ProPOSITIONS.1 Using the notation above, suppose that (by passing to a subsequgnee)

A € (0,00) for n — oo and||spsllco < C for all n sufficiently large. Then a subsequence of
{(shn> An)lnen cONverges to a discrete stationary point £y,

9 2 B
9 dx dd, (40)

d
po = (hn o kn,n+l)
ax

(hn o kn,n+1)

At ]

w2 — Ci, which maps(, 6) to

Proof. Suppose that, — A, € (0, o0). Forn sufficiently large A, will be so close toy;, that we

can fix a quasi-uniform triangulatiog,,;, of C,, controlled by. and get all other triangulations

Gy,n Of C,, by rescalingg,, . In this situation the triangulations @iC,, andaC,, will be the

same. Sincdd), is a finite-dimensional space atig,||-o < C for all n sufficiently large, there
existss; € H such that, by passing to a subsequesge— s in the C% norm (and with respect to

every norm that can be defined on the space of piecewise linear functions). It remains to check that
(sn, Ap) is stationary forEj. This is done as in the analogous Proposifiof) the only differences

being that, to evaluate the integrals, only Lemin&setd 5.2 are used. Note that the fixed cylinder

C1 naturally inherits the (rescaled) triangulation®y, . Also it is necessary to show that the norms
@nIn(y © snn) © os, I g1cyy ANANPLIL(Y" © spnén) o o, || y1(c,) are uniformly bounded for alt
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sufficiently large and a fixed, € Hj. This follows from the boundedness §pf || -1 and from the
fact that whert,, is sufficiently close ta.;, the stiffness matrices relative to the Poisson problem on
C,, are comparable to the one relative to the Poisson proble@pn 0

In the next lemma we show that a control on the boundary npfpi o for f;, € Hj induces a
control on theC® norm of the discrete harmonic extensi®p( f3).

LEMMA 5.2 Suppose that a triangulatiéty, on a cylinderC, and a sequence of mags € Hj
are given, withf, — f € Hj, in the C% norm. Then, by passing to a subsequerggf, — @, f
in the €% norm (and hence in any other suitable norm).

Proof. Write v, = &, (f, — f). Theny, is such that
Ahl//n =0 in C)H
wn :fn_f Onac)\.v

and ||V llcoc,) < C, sincell fu — fllcogsc,) is also uniformly bounded.
To prove that| ¥ || co(c,) < C, let us denote by

AlB
B|C
the stiffness matrix relative t@,;, whereA is the block relative to the internal nodes, ahdhe

block relative to the internal/boundary nodes. Then we can write the above PDE in the matrix form

A-Yint=—B Yoy, Ybdry= fu— 1

whereyr = (Yint, ¥bdry) iS the vector of components gf with respect to the nodal basis. Then
[WintllRe < IATH B [[¥bdryllrn, and the statement follows.

Since X, is a finite-dimensional space, passing to a subsequences> ¥ € XY, with ¢
discrete harmonic. But,, — 0 on the boundary, henale = 0. O

The discrete sequence proves to be interesting because it gives an alternative to the use of the Newton
method (as used in][4],[5] for the Plateau problem) to find stationary points for the discrete energy
functional. Basically what Propositipn 5.1 tells us is that if we implement the discrete sequence and

it happens to converge, then what we find is a discrete stationary poifaj, for

6. The numerical algorithm

We now describe the algorithm used for the computation of discrete minimal surfaces. We want to
solve the equation

E},(sp, An) =0
in the discrete spack), x (0, co). This is equivalent to computin@;,, A;) such that

(Ep(sny M)y Gny i) =0, V(& ) € Hy x R.

The algorithm used is based on the idea of the so called “discrete sequence” described iff Section 5
(in particular see Propositign 5.1 and the remarks that follow).
We can now sketch the algorithm as follows.
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ALGORITHM 6.1 Given tolerances, ¢. > 0:

1. The user gives an initial andhg, wherea is the length of the first cylinder in the “discrete
sequence” andg is the maximum allowed size for a triangle in the various triangulations.

2. Atriangulation for the cylinder of lengthis created.

3. Asolutions;, of E; (-, 2) = 0is found and

up = Pply(y osp)

is computed orT},.
4. I || Ej, (sp, Ml xRy < € and

A
then stop.

5. Computernew as described in “The discrete sequence, Step 2” (see SEEtion 5)=S&hew
and go to step 2.

2

duy

a0

ouy

— < €.
0x

2
)dxde

Let us now have a closer look at each step in the algorithm and give a few more details.
Algorithm[6.], Step 2. Given, a triangulation of the cylindef), is created in two steps:

1. A macro triangulation (i.e. an initial coarse grid) is createdfprThis is done in accordance
with the ratio between. and 2r. If A > 27 (resp.A < 27), andn = [A/27] (resp.n =
[27 /)]), where [] denotes the greatest integer function, thenrigiht angled triangles are
created. These triangles have the property that the ratio of base to height is close to one (more
precisely base/height [1, 2) or (1/2, 1], depending on which side of the triangle we take to
be the base).

2. The macro triangulation is refined until the diameter of the triangles is lesshtharhe
algorithm is based on bisection of triangles. The refinement edges chosen on the macro
triangulation prescribe the refinement edges for all simplices created during mesh refinement.
For more details se€ 12, 8§1.1.1].

For differenti’s different triangulations are given and a different number of triangles is created each
time, although all triangulations share the property that their triangles’ diameters do not éxceed
However ifA;, 1; > 27 and P;/2n] = [;/27] (or if A;,A; < 27 and [27/X;] = [27/4;]) and

|A; — ;| is small then the number of triangles is the same and the decompositions of the boundary of
the cylinders coincide. This ensures that if the sequenaé&aonverges to a (in a monotone way

if » = 2kz for some integek), then during the last few iterations the triangulation of the boundary

of the cylinders will stay the same and Proposifior] 5.1 applies.

Algorithm[6.], Step 3. The computation ofj,, a stationary point foE (-, 1), is done by means of
the Newton method as follows.

ALGORITHM 6.2 Given an initial parametrisation € H;, and a tolerancé > O:

1. ComputeE; (sp, A).
2. If | E;, (shs k)||H,; < §, then go to step 5 in this algorithm.
3. Solve the linear problem

E} (sn, M), &n) = —(E},(sh, A), &n) V&, € Hy.
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4. Update the solutiony, = s, + n;, and go to step 1 in this algorithm.
5. Compute the discrete harmonic extensign= @, I, (y o s;) onC; and stop.

For more details see the numerical algorithm developed for the Plateau problem in [4, §5].

Algorithm, Step 5. If || E},(sn, Ml <ry > € orif | [o. (|2 2 EZ 2)\ > €., then we
compute the nexk in the discrete sequence as described in “The discrete sequence, Step 2" in
Sectior] b (see alsp (R9)). This amounts to calculating

9 2
2 _)Lz fo ‘%
new — - 2
fC}L }%

whereuy, is the piecewise linear function computed in Step 3.

REMARK. Algorithm[6.1 was implemented for the case in which the two given Jordan cilifyes
I» lie in R® and are such that, y, z) € I'1 if and only if (—x, y,z) € I'>. In this particular case
it is not hard to prove the existence of a symmetric minimal surface, so that we can assume that for
the boundary map = (s1, s2) we haves; = s>.

Such a simplification decreased the programming workload and is justified by the fact that the
main intention here is to verify the theoretical results rather than to give an exhaustive numerical
investigation.

7. Implementation and numerical results

The catenoid is a good test example because here the exact solution(s) for the minimal surface(s)
can be computed. Let
Nn={x=d/2,y=sin@),z=cog0) | 0< 0
In={x=-d/2,y=sin@®),z =co90) | 0 <
be the two boundary curves.

For d small enough there exist two catenoids, sjyand $2, with areasA(S3) < A(S?).
Precisely we have the following situation (seg [9, §515]):

m},

<2
0 < 27}

e ford < dq1 ~ 1.055396 there exist two minimal surfaces, an absolute mininﬂjwith area
A(S}) < 27 and an unstable catenaid;
e for d = dy, both catenoids exist and(SU}l) = 2m;

e fordy < d < d» ~ 1.325487, both catenoids exist aﬂlﬁ whose area is now bigger than 2
represents a strong relative minimum;

o ford = dy, S;, = S7,, i.e. only one unstable solution exists;

e ford > dp, no minimal surface of the topological type of the annulus exists.

Fix d = 1, and denote bP(u, C;) and.A(u, C,) the Dirichlet and area energy of the map
defined onC;. An easy computation gives the following results.

Stable catenoid: A harmonic and conformal parametrisation is given by
G1:[—s1/2,51/2] x [0, 27] — R3,

x 1 . 1
G1(x,0) = (; o cosh(x) sin(9), o cosh(x) cos(@)),
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wheres; ~ 1.178775527. We havP(G1, Cs,) = A(G1, Cs;) =~ 5.991796978< 2.

Unstable catenoid: A harmonic and conformal parametrisation is given by

Ga:[—52/2,52/2] x [0, 21] — R,

Go(x. ) = (:—2 é cosh(x) sin(6). é cosh(x) cos(@)),

wheres, ~ 4.253599783. We havP (G2, Cy,) = A(G2, Cy,) =~ 6.845655397.
The choice of initial. = 1 and different:g gives the following results.

Stable catenoig = 109

ho (final) A EnergyE), L2-error Hl-error

0.8 0.628318548 1.13947593 5.9664446 0.0514679054 0.624718504
0.6 0.427655043 1.16063973 5.99257619 0.017768278 0.336564961
0.35 0.314159274 1.16756642 5.98581048 0.0126773946 0.313185911
0.3 0.214951172 1.17384821 5.99218485 0.0046370298 0.168648153
0.2 0.157079637 1.17586513 5.99032695 0.00316071535 0.156642544
0.1 0.0785398185 1.17804075 5.99143122 0.000789723004 0.0783249433

We can now display graphically the behaviour of both errors (see Higure 2).

Stable Catenoid

5+

-6

7+

H1-Error

L2—-Error

line with slope equal 2 : -— == =

line with slope equal 1 :

-1.5
Inh

FIG.2

-1 -0.5 0
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Denote bye;, the error between the continuous solution and the discrete one. For two successive
grids with grid sizesi1 andh, the experimental order of convergence is

h
eoc=In eﬂ/ln -1 (41)
en, ho

If, of the previous grid sizes, we consider only thaseuch that:; 1 ~ h; /2, then we obtain:

Stable catenoid

h L2-eoc Hl-eoc L%-error

0.628318548  — - 0.00490793974
0.314159274 2.0214148 0.99618694 0.00150622474
0.157079637 2.0039354 0.99954321 0.000398596735
0.0785398185 2.0008323 0.99993237 0.000101131735

This particular choice of grid sizes is motivated by the fact that it has been observed experimentally
that smaller error enters the formufaj41) if we start with a grid 8iaed keep halving it.

As we can see from the displayed tables, these results confirm the accuracy of the convergence
rate given in[(ll) and {2). The convergence rateXipgiven in [2) can also be readily checked.

Let us now have a look at the case of the unstable catenoid. Here the choice of thi pribiads
to be crucial. Even a very small variation can make the sequence go in the “wrong” direction, either
towards the absolute minimum or towards cylinder-like surfaces with increasingly thinner neck. The
“good” choices of the initiak’s were made after several trials, starting first the program with the
exacth = so ~ 4.253599783 and then damping the-Step” (i.e. choosing the new lambda to be
say 5% or more away fromin the direction ofiney).

Unstable catenoick = 104

ho (final) & A=A, EnergyE, L2-error H-error

0.4 0.392699093 4.368 6.77898654 0.0403238796 0.594916311
0.2 0.196349546 4.279 6.82879917 0.00954042252 0.293771424
0.1 0.0981747732 4.259 6.84142998 0.00217344382 0.146426251

With the shown choice of initial’s, we achieve an accuracy of

/(j( 2>dxd0

whereas the accuracy 9 (s, A)||H,; and of the boundary mag, is of the order of 10°. The

latter can also be improved, but no major changes occur in the value of the dngegy.). An
improvement in the accuracy df (42), and a subsequent improvement in the determination of all
other variables (i.ex;, Ep, ||E, |, etc.), proves however to be very difficult because of xlse

moving away very quickly from the significant region. Also a dampgetep” does not seem to

help much, unless one is lucky enough to choose exactly the right step. With the discussed accuracy
we get the following results.

2

ouy,

Bx

duyp

59 <103%= €c, (42)
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Unstable catenoid

h L2-eoc Hl-eoc L%-error
0.392699093 - - 0.017907561
0.196349546 2.0795094 1.018533 0.00430210466
0.0981747732 2.1340708 1.0039795 0.000985368115

Let now
I'n={x=05y=aco960),z=»bsin0) | 0< 6 < 21},

2
In={x=-05y=aco960),z=>bsin®) | 0< 0 < 27}

be the two boundary curves, where= 0.85 andb = 1. Although the ellipse’s eccentricity is close
to zero, a few difficulties arise and the discrete sequence does not converge as easily as in the case
of the stable catenoid. Experiments show that the sequence obnverges smoothly towards the
solution. More problems arise instead in the calculation of the boundary e veryi-iteration:
the best accuracy that can be achieved with the Newton method is ofsozed0~° (and of order
8 = 1074 for the finest grid). This forces a choice of= 1074 (¢ = 1072 in the case of the
finest grid). As fore., it has been found convenient to choose it of the same orderTaf achieve
convergence for the boundary map it is also very useful to damp the Newton s-step by 50%.

For initial A = 1.331 (orx around this value) we get:

Elliptic boundary ¢ = 104

ho (final) 1 A EnergyEj, L2-error Hl-error
0.4 0.392699122 1.3205351 5.47144538 -
0.2 0.196349561 1.33184676 5.48461626 0.0179903008 0.36860177
0.1 0.0981747806 1.33490395 5.48787707 0.00455446958 0.18774433
0.05 0.0490873903 1.33553536 5.48869045 0.00128944176 0.0939547043

Note also that since exact smooth solutions are no longer known, the order of convergence is
calculated by

en; hi

eoc= In —i /In——

. 43
hiq hit1 (43)

whereh; andh; 1 are two consecutive grid sizes, = |lu; — uy, |l anduy, denotes the discrete
solution calculated on a grid with grid size. Again it is common practice to choose; 1 ~ h; /2.
The analysis of the eoc gives:

Elliptic boundary

h L2-eoc Hl-eoc
0.392699122
0.196349561 - -
0.0981747806 1.9818645 0.97329366
0.0490873903 1.8205371 0.99873202

We finish this section with a few graphical examples.
In Figure[3 the given boundary curves are two unit circles (the picture on the right is that of an
unstable catenoid with 1024 triangles).
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In Figure[4 the boundary curves are

I = (2, (4—25sin(20)) sing, (4 — 2siN(20)) COSH),
I = (=2, (4—25sin(20)) sind, (4 — 2sin(20)) cosh),

for the dumb-bell-like minimal surface (left), and

It = (2, (5—sin(60)) sind, (5 — sin(60)) cosy),
o = (=2, (5—sin(60)) sind, (5— sin(60)) cosy),

for the “six-leaves catenoid” (right).
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