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Bi-directional diffusion induced grain boundary motion with triple junctions
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We propose a multi-order parameter phase field system and a sharp interface model to describe bi-
directional diffusion induced grain boundary motion in the presence of triple junctions. Numerical
approximations of the models are presented together with some computational results.

1. Introduction

Diffusion of solute atoms along a grain boundary separating two crystals of different orientation
induces a transverse motion of the boundary (see [4, 17, 23]). This phenomenon is called diffusion
induced grain boundary motion (DIGM) and can be observed for several systems (see [17]). In
[4] a phase field model has been derived to describe DIGM and several subsequent theoretical
and numerical studies [6, 7, 9, 10] showed that this model is able to capture many experimentally
observed features of DIGM. Furthermore, it was shown that the phase field model allows for a free
boundary model in an appropriate sharp interface limit in which forced motion by mean curvature
(describing the movement of the grain boundary) is coupled to a quasi-static diffusion equation for
the concentration of the solute [10]. However both the phase field model and the free boundary
model are only able to describe uni-directional motion of grain boundaries between two different
types of grains. In experiments variable directions of motion within a single grain boundary and the
occurrence of triple junctions are observed.

In [11] and [9] models capable of describing bi-directional DIGM have been developed. The
former is based on a sharp interface approach allowing for forced motion by mean curvature in two
directions and assuming a thin film geometry in which the solute diffusion through the film is very
rapid. In [9] three different models have been proposed which all have the feature that the forcing
term is non-local. All proposed models are able to describe phenomena observed in bi-directional
DIGM such as the appearance of double seams.

One goal of this paper is to derive a general phase field model with the following properties:

• it describes bi-directional DIGM,
• triple junctions can be included,

†
Email: harald.garcke@mathematik.uni-regensburg.de

‡
Email: V.Styles@sussex.ac.uk

c© European Mathematical Society 2004



272 H. GARCKE & V. STYLES

• the evolution is formulated with the help of local quantities,
• it allows for thin as well as thick films,
• it is thermodynamically consistent in the sense that a free energy inequality is fulfilled.

We are going to derive a model with the above properties by similar ideas to the ones used in
the derivation of the model by Cahn, Fife and Penrose [4]. But as opposed to their approach we
will consider more than one phase field. We will use one phase field for each of the regions that can
be distinguished either by orientation or by chemical composition. Assume in the specimen under
consideration there are initiallyN different orientations present. When solute diffuses in along the
boundaries between these different grains the presence of the solute may induce a motion of the
boundary. In the trail of the moving grain boundary, solute is deposited and the orientation of the
lattice changes. The newly formed region can be distinguished from theN initially present regions
because solute is now present. We will therefore introduce anotherN phase fields for the regions in
which solute is present in order to distinguish them from the ones in which there is no solute (see
Figure 1).
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FIG. 1. DIGM at a triple junction.

In Figure 1 the dotted lines indicate the original positions of the grain boundaries. The solid
lines refer to the position of the grain boundaries after some timet > 0. The regions between the
solid and dashed lines are alloyed, i.e. they contain solute.

We proceed as follows. First of all we formulate a free energy which will be a functional of
the phase field vector and the concentration of the solute. The free energy will contain interfacial
energy contributions, chemical energy terms and coupling terms between the phase fields and the
concentration. The latter results from contributions to the free energy from elastic interactions. In
the spirit of Cahn, Fife and Penrose [4] we will then derive evolution equations as a gradient flow
of the free energy. Our model can be interpreted as a generalization of the model in [4] to situations
with a vector phase field. But there is a major difference in the formulation of the free energy and
we will discuss this issue further on.

By formally matched asymptotic expansions the phase field model can be related to a sharp
interface model. In a two-dimensional setting this leads to evolution of curves that move by forced
motion by mean curvature and that are coupled at triple junctions. We will discuss this model in
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Section 3 where in particular a new flux balance at triple junctions is considered. In Section 4 we
formulate discretizations of both the phase field model and the free boundary model and finally in
Section 5 we present numerical simulations obtained from both models.

2. The phase field model

We assume that in the specimen under consideration there areN grain orientations present. For each
of theN grains we introduce a phase fieldϕi (i = 1, . . . , N). In addition we introduce phase fields
ϕN+1, . . . , ϕ2N , whereϕN+i (i = 1, . . . , N) represents a grain of orientationi that is alloyed (i.e.
that contains solute). We note that since the orientations of the grains do not change from un-alloyed
to alloyed no grain boundaries exist between grainsi andi + N . The fieldϕi should be interpreted
as an order parameter which locally gives the fraction of the un-alloyed graini if 1 6 i 6 N and
the fraction of the alloyed graini − N if N + 1 6 i 6 2N . The phase space for the vector field
ϕ = (ϕ1, . . . , ϕ2N ) is therefore defined as

Σ :=
{
ϕ ∈ R2N :

2N∑
i=1

ϕi = 1
}
. (2.1)

In view of this constraint, we define the projectionT onto the tangent spaceT Σ := {ϕ ∈ R2N :∑2N
i=1 ϕi = 0} by

(T ϕ)i := ϕi −
1

2N

2N∑
j=1

ϕj . (2.2)

Sinceϕi stands for a fraction, we ask all components of the order parameterϕ to be non-negative,
i.e. we wantϕ ∈ G, where

G := {ϕ ∈ Σ : ϕi > 0}

is the Gibbs simplex inR2N . Furthermore we introduce a dimensionless concentrationu which
represents the concentration of the solute.

We study a phase field model that is based on the free energy

E(ϕ, u) =

∫
Ω

(
1

2ε
u2

+ εF (ϕ, ∇ϕ) +
1

ε
Ψ (ϕ) + p(ϕ, u)

)
, (2.3)

whereΩ ⊂ Rd , d = 2, 3, denotes the region occupied by the specimen under consideration. The
first term in the free energy takes into account the chemical energy, the second and third represent
interfacial energy (cf. [19]) and the last term is an interaction term. We will always assume that
F is homogeneous of degree 2 in∇ϕ and thatΨ is non-negative and has minima at the corners
e1, . . . , e2N of the Gibbs simplex (ei := (δij )j=1,...,2N ). Recalling that there are no grain boundaries
between grainsi and i + N we propose two gradient energy terms (normalizing the interfacial
energy)

F(ϕ, ∇ϕ) :=
1

2

N∑
i=1

|∇(ϕi + ϕi+N )|2

and

F(ϕ, ∇ϕ) :=
N∑

i,j=1, i<j

σij |ϕi∇ϕj − ϕj∇ϕi |
2,
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where in the latter case we set the surface energyσij = 0 if j = i + N and for simplicity we
normalizeσij = 1 for all other cases. We refer to [13, 14] for more details on the second example of
the gradient energy. In the former case the choice ofF(ϕ, ∇ϕ) guarantees that there is no interfacial
energy for a transitioni → i + N because in this case it will turn out thatϕi + ϕi+N = 1.

The interaction termp(ϕ, u) is a coupling term betweenϕ andu and takes the form

p(ϕ, u) = f (u)

N∑
i=1

ϕi,

wheref (u) is a non-negative function withf (0) = 0. We note that a more physically realistic
choice for the chemical energy would be the ideal solution formula (see [4]) but for mathematical
simplicity we take a quadratic function as the first term in the free energy. To simplify presentation
we have set most of the material constants to be one.

The equations of motion forϕ are derived by considering the gradient flow of (2.3) giving an
Allen–Cahn type equation:

ε
∂ϕ

∂t
= −

∂E
∂ϕ

(ϕ, u)

= ε∇ · T FX − εT Fϕ −
1

ε
T Ψϕ(ϕ) − Tpϕ(ϕ, u) (2.4)

together with the natural boundary condition

T FX(ϕ, ∇ϕ) · ν = 0 on∂Ω. (2.5)

Here∂E/∂ϕ denotes a functional derivative,ν is the outer unit normal to∂Ω and the subscriptsϕ
andX denote differentiation with respect to the variables corresponding toϕ and∇ϕ respectively.
Since the concentrationu obeys a conservation law we couple (2.4) with, as in [4], a kinetic equation
with conserving dynamics foru:

γ
∂u

∂t
= ∇ ·

(
D(ϕ)∇

∂E
∂u

(ϕ, u)

)
in Ω,

which is equivalent to

γ ε
∂u

∂t
= ∇ · (D(ϕ)∇v) in Ω, (2.6)

together with the Newton flux boundary condition

D(ϕ)
∂v

∂ν
= αD(ϕ)(1 − u) on ∂Ω (2.7)

or the Dirichlet boundary condition

D(ϕ)u = D(ϕ) on ∂Ω. (2.8)

Hereγ is a kinetic coefficient,α is a large positive number and

v = u + εf ′(u)

N∑
i=1

ϕi
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is the scaled chemical potential. The diffusivity

D(ϕ) =

2N∏
i=1

(1 − ϕi)

is chosen such that diffusion is restricted to the interfacial regions, i.e. we assume that we can neglect
diffusion in the bulk. If the geometry is such that the specimen under consideration is thin it can be
assumed that the diffusion of solute atoms is rapid so that (2.6) is replaced by

u(x, t) =

{
1 ∀(x, t) such thatϕi(x, t) > 0 for anyi ∈ {N + 1, . . . , 2N} andt ∈ [0, t ],
0 otherwise.

(2.9)

ForΨ we take the classical obstacle potential (see [1, 14]) which is defined to be

Ψ (ϕ) =

{∑
i<j ϕiϕj =

1
2

∑2N
i=1 ϕi(1 − ϕi) for ϕ ∈ G,

∞ otherwise.

Noting (2.1) we have

E(ϕ, u) =

∫
Ω

(
1

2ε
u2

+ εF (ϕ, ∇ϕ) +
1

2ε

2N∑
i=1

ϕi(1 − ϕi) + p(ϕ, u) + IG(ϕ)

)
, (2.10)

whereIG(η) denotes the indicator function such that

IG(η) =

{
0 for η ∈ G,

∞ otherwise.

With this choice ofΨ we have to solve a variational inequality instead of the Allen–Cahn equation
(2.4), so that a solutionϕ has to satisfy

ε

(
∂ϕ

∂t
, η − ϕ

)
> −ε(FX, ∇(η − ϕ)) −

(
εFϕ +

1

ε

(
1

2
1 − ϕ

)
, η − ϕ

)
−(f (u)ẽ, η − ϕ) (2.11)

for all η : Ω × (0, T ) → G. Here1 = {1, . . . , 1} ∈ R2N andẽ = {ẽ1, . . . , ẽ2N } with

ẽi =

{
1 for i = 1, . . . , N,

0 for i = N + 1, . . . , 2N,

and(·, ·) denotes the standardL2 inner product overΩ. As initial data we set

ϕ(x, 0) = ϕ0(x), u(x, 0) = 0 ∀x ∈ Ω, (2.12)

which implies that initially no solute is present, but of course more general initial conditions foru

are possible.
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3. A sharp interface model

3.1 The singular limit of the phase field model

3.1.1 Equations at interfaces.Formal asymptotics asε → 0 similar to [2, 13] on the phase
field system shows that the domain will be split into time dependent phasesΩi whereϕ takes the
constant valueei . These domains are separated by interfacesΓ and since the problem deals with
multiple grains these interfaces may intersect at triple (or even multiple) junctionsm.

As in the phase field model we denote the concentration of solute inΩ by u(x, t) for all x ∈ Ω

and we denote the concentration at an interfaceΓi by ui so that

ui = u(x, t) ∀x ∈ Γi .

REMARK 3.1 It turns out that at an interface betweeni andi +N the phase fieldsϕi andϕi+N are
discontinuous. This is due to the fact that the gradient termF(ϕ, ∇ϕ) in E(ϕ, u) vanishes at such
an interface. Such an interface does not move because there is no term that could balance∂tϕi and
∂tϕi+N in the case of movement.

Furthermore formal asymptotics in the spirit of [2, 10, 13] gives that the governing equation for
an interfaceΓk separating bulk phasesΩi andΩj (if i < j andj 6= i + N ) is given by the kinetic
law

Vk = κk +
4

π
Fk, (3.1)

whereVk andκk denote the normal velocity and the curvature of the interfaceΓk with respect to the
normalνk pointing fromΩi to Ωj and

Fk =


0 if i, j ∈ [1, N ],

0 if i, j ∈ [N + 1, 2N ],

[f (u)]Γk
if i ∈ [1, N ], j ∈ [N + 1, 2N ], j 6= i + N.

(3.2)

Here [f (u)]Γk
denotes the jump inf (u) across the interface, so that for allx ∈ Γk,

[f (u)]Γk
= lim

δ→0
{f (u(x + δνk)) − f (u(x − δνk))} . (3.3)

As in [10], on an interfaceΓk the concentrationuk satisfies

−γVk [u]Γk
=

π

8
uk,ss, (3.4)

wheres denotes the arc length ofΓk and a subscript denotes differentiation with respect to arc
length.

Furthermore at such grain boundaries to leading order the profile of the transition layer is a
standing wave solution and we obtain

ϕk ≈


0 for k 6= i or k 6= j,

1
2(1 + sin(ξ)), −π/2 < ξ < π/2, for k = i,

1
2(1 − sin(ξ)), −π/2 < ξ < π/2, for k = j,

whereξ = ε−1dist(x, Γk(t)) with Γk(t) denoting the interface at timet .
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At boundary pointsB where an interfaceΓi meets the boundary it must do so orthogonally (see
[12, 21]). If the Newton flux condition (2.7) is used the concentrationui should satisfy

ui,s = α(1 − ui) atB (3.5)

and for the Dirichlet boundary condition (2.8) we get

ui = 1 atB. (3.6)

3.1.2 Triple junction conditions. In the following we derive sharp interface equations for the
soluteu from the mass balance law and we prove free energy inequalities. We restrict ourselves
to the case of a triple junctionm where three interfacesΓ1, Γ2 andΓ3 ahead of alloyed regions
Ω1, Ω2 andΩ3 respectively meet (see Figure 2). We note that the natural generalizations to more
complicated geometries are possible.

Ω

Ω

Ω2

1

3

R

n1

1n

1τ

Γ1

Γ3

Γ2

FIG. 2. Balance law

Formal asymptotics ([2, 12]) shows that the force balance

σ1τ1 + σ2τ2 + σ3τ3 = 0 (3.7)

holds, whereτi is the tangent toΓi (pointing in the direction of the triple junction) andσi is the
surface energy associated with a transition acrossΓi . In the case that none of the interfaces separate
regions of the same grain orientation all surface energies are equal and we obtain

τ1 + τ2 + τ3 = 0. (3.8)

REMARK 3.2 On an interfaceΓ1 that separates regions of alloyed grain orientationi and un-
alloyed grain orientationi, we assume that there is no surface energy and hence from (3.7) we
conclude that

τ2 = −τ3;

thus, at such a triple junction the interfacesΓ2 andΓ3 join to form aC1-curve.
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Further conditions at triple junctions have to hold for the solute concentration. The first one says
that

u is continuous through triple junctions, (3.9)

which follows from the continuity of the chemical potential (see for example [15]). The other one
is

3∑
i=1

ui,s = 0, (3.10)

which enforces the balance of mass for the solute. This condition can be derived by formal
asymptotics similar to [15]. We will not present this here, instead in the following subsection we
will derive the conditions foru at the triple junction from general balance laws.

3.2 Balance law and equilibrium conditions

In the case of DIGM bulk diffusion can be neglected and diffusion of atoms is restricted to grain
boundaries. Thus the balance of mass has the form

d

dt

∫
R

u = −

3∑
i=1

∫
Γi∩∂R

qi · ni (3.11)

(settingγ equal to 1 for simplicity of notation), whereR denotes any region inΩ, qi(x) denotes
a tangential vector field which is the mass flux within the interface at a pointx, andni is the unit
vector tangential toΓi pointing outward toΓi ∩R (see Figure 2). Under the constitutive assumption
that

qi = −∇Γi
u (3.12)

(setting the mass diffusivity equal to 1) we obtain

d

dt

∫
R

u =

3∑
i=1

∫
Γi∩R

ui,ss −

∫
Γ1∩Γ2∩Γ3

∇Γi
u · ni .

Using a transport theorem (see [16]) one obtains (using also the fact that the concentration in front
of the interface is zero)

d

dt

∫
R

u =

3∑
i=1

∫
Γi∩R

Viui

and hence in the case thatR intersects only one interface we have∫
Γi∩R

Viui =

∫
Γi∩R

ui,ss .

This implies (sinceR is arbitrary)
Viui = ui,ss . (3.13)

If R intersects a triple junction, using (3.13) we obtain

3∑
i=1

ui,s(τi · ni) = 0

and if the curves are parametrized so that allτi point away from the triple junction we obtain (3.10).
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REMARK 3.3 (i) The above derivation only uses the form of a mass balance given by (3.11)
and the constitutive assumption (3.12) for the mass flux.

(ii) In a closed system, i.e.
qi = 0 ⇔ ui,s = 0 on∂Γi ∩ ∂Ω

we obtain from (3.11)
d

dt

∫
Ω

u = 0.

(iii) Postulating a free energy of the form

3∑
i=1

(
Li(t) −

∫
Ωi

f (u)

)
,

whereLi(t) is the length ofΓi(t), we can derive (3.1) in the spirit of the approach of [16],
and (3.8) is the force balance at the triple junction (see [12, 18]).

The following theorem states growth properties for the free energy and also gives the existence of a
Lyapunov functional in the case that the system is closed.

THEOREM 1 Let (u1, u2, u3) and(Γ1, Γ2, Γ3) be solutions of (3.1), (3.2), (3.4) and (3.8)–(3.10)
with geometry as in Figure 2. Then

d

dt

∫
Ω

u2
= −

3∑
i=1

∫
Γi

u2
i,s +

3∑
i=1

∫
∂Γi∩∂Ω

ui,s(τi · ni)

and
d

dt

( 3∑
i=1

Li(t) −

∫
Ω

f (u)

)
= −

3∑
i=1

∫
Γi

V 2
i .

For a closed system, i.e.ui,s = 0 on∂Γi ∩ ∂Ω, we obtain

d

dt

∫
Ω

u2
= −

3∑
i=1

∫
Γi

u2
i,s .

In the case thatf (u) = u2 we have

d

dt

3∑
i=1

Li(t) = −

3∑
i=1

( ∫
Γi

u2
i,s +

∫
Γi

V 2
i

)
.

Proof. Using (3.4), (3.10) and transport theorems (see [16]) we obtain

d

dt

∫
Ω

u2
=

d

dt

∫
⋃3

i=1 Ωi

u2
=

3∑
i=1

∫
Γi

u2
i Vi =

3∑
i=1

∫
Γi

uiui,ss

= −

3∑
i=1

∫
Γi

u2
i,s +

3∑
i=1

∫
∂Γi∩Ω

ui,s(τi · ni).
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We denote bẏe(t) the velocity of an endpointe(t) of Γi . Using the fact that
∑3

i=1 ni = 0 at a
triple junction (see (3.8)) and thatė(t) · ni = 0 at boundary points (which follows from the fact that
e(t) ∈ ∂Ω) we obtain

d

dt

( 3∑
i=1

Li(t) −

∫
Ω

f (u)

)
=

3∑
i=1

(
−

∫
Γi

κiVi +

∫
∂Γi

ni · ė(t) −

∫
Γi

f (ui)Vi

)

= −

3∑
i=1

∫
Γi

Vi(κi + f (ui)) = −

3∑
i=1

∫
Γi

V 2
i . 2

3.3 Initial data

Noting (3.1)–(3.4) we see that suitable initial data for the concentration need to be imposed in order
for alloyed regions to nucleate. In particular to obtain a jump in concentration across an interfaceΓi

we need to introduce a small strip in which solute is already present. We adapt the techniques used
in [9] and set

u(x, 0) =

{
1 ∀x ∈ Λδ,

0 ∀x ∈ Ω \ Λδ,
(3.14)

whereΛδ =
⋃2N

i=1 Λi andΛi denotes a strip of widthδ � 1 lying on either the positive or the
negative normal side ofΓi . This gives a non-zero jump in (3.3) and hence a driving force in (3.1).

4. Numerical discretizations

In this section we present numerical discretizations of the phase field and sharp interface models
derived in Sections 2 and 3 respectively.

4.1 Phase field discretization

Let Th be a quasi-uniform triangulation of a polyhedral approximationΩh of Ω with h :=
maxT ∈Th

diam(T ). The finite element spaceSh is defined by

Sh := {χ ∈ C0(Ω) | χ is linear on eachT ∈ Th}

and we set

Gh :=
{
η ∈ (Sh)

2N :
2N∑
i=1

ηi = 1, ηi > 0 ∀i ∈ {1, . . . , 2N}

}
.

We denote byNh = {x1, . . . , xM} the set of nodes of the triangulation and by{ξ1, . . . , ξM} the
corresponding standard basis ofSh. Finally, let∆t > 0 be a time step andtk = k∆t, k > 0. For
more details on finite element methods we refer to [5].

We discretize (2.11) using an explicit Euler scheme in time and a finite element approximation
with elements in(Sh)

2N in space. Knowing the solutionϕk
h anduk

h at timetk we determineϕk+1
h

such that for allηh : [0, T ] → Gh,(
ε

∆t
(ϕk+1

h − ϕk
h), η − ϕk+1

h

)
h

> −ε(FX(ϕk
h, ∇ϕk

h), ∇(η − ϕk+1
h ))h

−

(
εFϕ(ϕk

h, ∇ϕk
h) +

1

ε

(
1

2
1 − ϕk

h

)
+ f (uk

h)ẽ, η − ϕk+1
h

)
h

. (4.1)
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Here (η, χ)h =
∫
Ωh

Ih(ηχ) denotes the discreteL2 inner product overΩh with Ih being the
node-wise interpolant operator. The above variational inequality can be solved by setting, for
i = 1, . . . ,M andj = 1, . . . , 2N ,

(ϕ̄k+1
h , ξij )h := (ϕk

h, ξij )h − ∆t(T FX(ϕk
h, ∇ϕk

h), ∇ξij )h

− ∆t(T Fϕ(ϕk
h, ∇ϕk

h), ξij )h −
∆t

ε

(
1

ε
T

(
1

2
1 − ϕk

h

)
h

+ Tf (uk
h)ẽ, ξij

)
h

,

whereξij = ξiej , and then defining at each mesh pointxj ∈ Nh the value ofϕk+1
h (xj ) to be the

projection ofϕ̄k+1
h (xj ) onto the Gibbs simplexG (see for example [8] and [20] for the scalar case).

To discretize the equation for the soluteu we use an implicit Euler scheme in time and discretize
the weak formulation of (2.6) and (2.7) in the following way. We seekuk+1

h such that for allχ ∈ Sh,

γ ε

∆t
(uk+1

h − uk
h, χ)h + (D(ϕk

h)∇vk+1
h , ∇χ)h + α

∫
∂Ωh

Ih(D(ϕk
h)(u

k+1
h − 1)χ) = 0, (4.2)

where

vk+1
h = uk+1

h + εf ′(uk+1
h )

N∑
i=1

ϕk
h,i . (4.3)

For the case of thin specimens we couple (4.1) with the node-wise approximation of (2.9) such that
for all nodesj ,

uk
i =

{
1 ∀i such thatϕk

i,j > 0 for anyi ∈ {N + 1, . . . , 2N} and 06 k 6 k,

0 otherwise.
(4.4)

For initial dataϕ0
h(x) andu0

h(x) we interpolate (2.12).

4.2 Sharp interface discretization

In order to discretize the sharp interface model we consider a parametric formulation.

4.2.1 Parametric formulation. In the following we consider the situation of three interfacesΓi ,
i = 1, 2, 3, that meet at a triple junction with prescribed angles and that evolve with velocity laws

Vi = κi +
4

π
Fi, i = 1, 2, 3.

If we use a parametrizationXi(p, t) = (xi(p, t), yi(p, t)) of Γi(t), wherep is a spatial parameter
andt is time, equations (3.1) and (3.4) yield

Xi,t =
Xi,pp

|Xi,p|2
+

4Fi

π

(Xi,p)⊥

|Xi,p|
, (4.5)

−γ Xi,t · (Xi,p)⊥ [u]Γi
=

π

8

(
ui,p

|Xi,p|

)
p

, (4.6)

where
Xi : [0, 1] × [0, T ] → R2, (p, t) 7→ Xi(p, t),
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and (α1, α2)
⊥

= (α2, −α1) (compare [7]). To be precise let us mention that a solution of (4.5)
leads to a parametrization which fulfills (3.1). But (3.1) only determines the normal velocity ofXi ,
while the tangential velocity ofXi is determined by (4.5) and in principal other choices are possible
(see [8]).

Denote the angle betweenΓ1 andΓ2 by θ1 and the angle betweenΓ2 andΓ3 by θ2. Then the
triple point condition (3.8) may be written as

X1,p

|X1,p|
·

X2,p

|X2,p|
= cos(θ1), (4.7)

X2,p

|X2,p|
·

X3,p

|X3,p|
= cos(θ2). (4.8)

The balance law (3.10) for the concentration takes the form

3∑
i=1

ui,p

|Xi,p|
= 0. (4.9)

We letb(s) denote the domain boundary in terms of an arc length parameters. Then the junction
conditions at the physical boundary are given by

Xi(0, t) = b(si(t)), ui(0, t) = 1, i = 1, 2, 3, (4.10)

for somesi(t), and
Xi,p(0, t) · b′(si(t)) = 0, (4.11)

where′ denotes differentiation with respect tos.

4.3 Discretization of parametric formulation

To discretize (4.5) and (4.6) we follow the ideas presented in [9] where the discrete approximation
to u is defined on a “background” fine, uniform meshM, with grid sizeh̃. In particular we let
un

h(x) = un
h((x)m, t), for all t ∈ [n∆t, (n+1)∆t) and all(x)m ∈ M, be a discrete approximation of

the concentrationu such that for anyx ∈ Ω we define(x)m to be its nearest node onM. Furthermore
we defineXn

i,j = Xi(sj , t) andun
i,j = ui(sj , t) for all t ∈ [n∆t, (n + 1)∆t), j = (0, . . . ,M), to be

discrete approximations ofXi andui respectively.
To solve (4.5) we adapt the techniques in [3, 7, 8] to obtain the following approximation of (4.5)

for any grid pointj ∈ [1, M − 1]:

1

2
((hj+1)

2
+ (hj )

2)Ẋi,j = (Xi,j+1 − 2Xi,j + Xi,j−1)

+
2Fi,j

π
(hj+1((Xi,j+1)

⊥
− (Xi,j )

⊥) + hj ((Xi,j )
⊥

− (Xi,j−1)
⊥)). (4.12)

Herehj = |Xj−Xj−1|, andFi,j which is defined later is an approximation to (3.2). For the boundary
dataXi,0, it suffices to set

Xi,0 = 2Bi − Xi,1 for i = 1, 2, 3,
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whereBi is the point on the boundary with minimum distance toXi,1 (see [3] for more details). We
approximate (4.7) and (4.8) by

D+X1,M−1

|D+X1,M−1|
·

D+X2,M−1

|D+X2,M−1|
= cos(θ1),

D+X2,M−1

|D+X2,M−1|
·

D+X3,M−1

|D+X3,M−1|
= cos(θ2),

whereD+Xi,j = (Xi,j+1−Xi,j )/h. We see from [3] that by simple geometric formulas it is possible
to uniquely determineXi,M from Xi,M−1 for i = 1, 2, 3.

We approximate (3.2) by

Fi,j =


0 if i, j ∈ [1, N ],
0 if i, j ∈ [N + 1, 2N ],
[f (un

h)]Xi,j
if i ∈ [1, N ], j ∈ [N + 1, 2N ], j 6= i + N,

where
[f (un

h)]Xi,j
:= f (un

h((Xi,j + δνi,j )
m)) − f (un

h((Xi,j − δνi,j )
m))

andνi,j = (Xi,j )
⊥
s /|(Xi,j )s | with (Xi,j )

⊥
s =

(
yi,j+1 − yi,j−1, xi,j−1 − xi,j+1

)
. We chooseδ to be

O(h̃) so that we test the values ofuh on either side of the interface. We approximate (4.6) for any
j ∈ [1, M − 1] by

−
γ (Xn+1

i,j − Xn
i,j )

2∆t
· ((Xn+1

i,j+1)
⊥

− (Xn+1
i,j−1)

⊥)
[
un

h

]
Xn

i,j
=

π

8

(
D+un+1

i,j

hn
j+1

−
D+un+1

i,j−1

hn
j

)
, (4.13)

where
[
un

h

]
Xn

i,j
:= un

h((X
n
i,j + δνn

i,j )
m) − un

h((X
n
i,j − δνn

i,j )
m). To approximate the boundary data

(3.5) and (3.6) we set
D+un+1

i,0

|D+Xn+1
i,0 |

= α(1 − un+1
i,0 ) and un+1

i,0 = 1

respectively. Lastly we require that the concentration of the solute is continuous across the triple
junction (3.9), i.e.un+1

i,M = un+1
M for i = 1, 2, 3 and that a discrete version of the force balance law

(3.10) holds: ∑
i

D+un+1
i,M−1

|D+Xn+1
i,M−1|

= 0.

We updateun+1
h (x) for all x ∈ M in the following way:

un+1
h (x) =

{
1
2(un+1

i,j + un+1
i,j+1) if x ∈ Si,j , j = 0, . . . ,M − 1, i = 1, 2, 3,

un
h(x) otherwise,

whereSi,j denotes the region enclosed by the four lines that join the points(Xn
i,j )

m and(Xn+1
i,j )m,

(Xn
i,j+1)

m and(Xn+1
i,j+1)

m, (Xn
i,j )

m and(Xn
i,j+1)

m and(Xn+1
i,j )m and(Xn+1

i,j+1)
m; see Figure 3.
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FIG. 3. Updatingun
h
.

5. Numerical results

In this section we present phase field and sharp interface simulations using the numerical
discretizations derived in Section 4. For the phase field simulations we used a Gauss–Seidel
algorithm to solve (4.2) and for the sharp interface simulations we used a fourth-order Runge–Kutta
algorithm (with the forcing termFi,j taken at the old time level) to solve (4.12) and a Gauss–Seidel
algorithm to solve (4.13). We display the values of the parametersε, h, etc. that were used in each
simulation in Tables 1 and 2.

TABLE 1
Parameters used in phase field simulations

Figure h ∆t ε

4 0.005 h2/40 0.025

5 0.03 h2/40 0.16

6 and 7 0.01 h2/100 0.05

8 and 9 0.025 h2/40 0.0125

TABLE 2
Parameters used in sharp interface simulations

Figure N h ∆t h̃

10 and 11 100 0.02 h2/40 0.005

12 and 13 200 0.005 h2/80 0.0025

17 1200 0.1 h2/40 0.3

For all of the phase field simulations we took

F(ϕ, ∇ϕ) =
1

2

N∑
i=1

|∇(ϕi + ϕi+N )|2.



GRAIN BOUNDARY MOTION 285

The simulations correspond to two types of experimental set-ups, which henceforth we will
refer to asthin film and thick film. In the thin film set-up the domainΩ ⊂ R2 corresponds to a
horizontal cross section through the film and the concentration of solute which is assumed to be
constant through the film satisfies (2.9). In the thick film set-up the domainΩ ⊂ R2 corresponds
to a vertical cross section through the film with the concentration satisfying the diffusion equation
(2.6) or (3.4) withγ = 0.25. We do not display any plots of the concentration in the thin film
simulations since it only takes the values zero or one, instead regions of positive concentration are
denoted by hashed areas. For the thick film simulations we display plots of the grain boundaries
evolving in time together with plots of the concentration at the final evolution times.

The first two simulations, Figures 4 and 5, are two thin film phase field computations that
reproduce numerical simulations presented in [9] and [11] using our new model. The remaining
figures display a combination of phase field and sharp interface simulations that show the evolution
of three grain boundaries meeting at triple junctions.

5.1 Phase field simulations

5.1.1 Thin film. The first two thin film phase field simulations (Figures 4 and 5) reproduce
numerical simulations presented in [9, 11], where an initially straight grain boundary that separates
two grain orientations evolves in time to form

(i) a stationary solution of two circular arcs with radius 1 (Figure 4).
(ii) a double seam, where the grain boundary doubles back on itself (Figure 5).

When we compared the solutions in Figures 4 and 5 with solutions using the phase field model
presented in [9] the grain boundary evolution for the two models was graphically indistinguishable.

The remaining two thin film simulations show the evolution of three initially straight grain
boundaries in a circular domain. The three boundaries meet at a triple junction and are separated by
angles of 2π/3. In Figure 6 all boundaries move in an anti-clockwise direction while in Figure 7
two boundaries move in anti-clockwise directions while the third moves in a clockwise direction.

In the symmetric case of Figure 6 although the grain boundaries migrate the triple junction
remains fixed, while in the non-symmetric case of Figure 7 the triple junction also migrates.

5.1.2 Thick film. We display two thick film phase field figures; the first (Figure 8) shows the
evolution of three grain boundaries meeting at a triple junction, while the second (Figure 9) shows
the concentration in this simulation at the final timet = 0.04.

5.2 Sharp interface simulations

The sharp interface simulations displayed in Figures 10–13 reproduce the phase field simulations
(Figures 6–9). In each subplot the initial positions of the grain boundaries are represented by dashed
lines, while the positions of the grain boundaries after timet > 0 (displayed at the top of the subplot)
are represented by solid lines.

5.3 Comparison of phase field and sharp interface simulations

In Figures 14–16 we display comparisons between phase field and sharp interface solutions in
which a “∗” is plotted at every 20th node of the sharp interface discretization. Figure 14 displays
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FIG. 8. Phase field thick film solutions.

FIG. 9. Concentration of solute in phase field thick film simulation.
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FIG. 13. Concentration of solute in above sharp interface thick film simulation.
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comparisons between the thin film solutions shown in Figures 6 and 10, while Figure 15 displays
comparisons of the interfacial positions in the thick film simulations shown in Figures 8 and 12. In
order to compare the concentrationuh(x, t) in the phase field model with the concentrationsui(s, t)

in the sharp interface model we defineũi(s, t) = uh(Γ̃i(s, t), t), whereΓ̃i(·, t) is a parametrization
of Γ̃i(t) = {x ∈ Ω : ϕi(x, t) = 0.5} ands is the arc length ofΓ̃i(t) measured from the boundary. In
Figure 16 we show̃ui (bold line) andui (‘∗’) plotted against arc length.

5.4 A more complicated structure

We conclude our simulations with Figure 17 in which we attempt to simulate a situation that appears
in real microstructure formation (see [17, Figure 3, p. 249]). The simulation is obtained by using the
sharp interface thin film model with the lefthand plot showing six grain boundaries evolving in time
from t = 0 (dashed lines) tot = 5 (solid lines), while the righthand plot shows the alloyed region
at timet = 5.
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