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We propose a multi-order parameter phase field system and a sharp interface model to describe bi-
directional diffusion induced grain boundary motion in the presence of triple junctions. Numerical
approximations of the models are presented together with some computational results.

1. Introduction

Diffusion of solute atoms along a grain boundary separating two crystals of different orientation
induces a transverse motion of the boundary (sege |4, 17, 23]). This phenomenon is called diffusion
induced grain boundary motion (DIGM) and can be observed for several system5 (see [17]). In
[4] a phase field model has been derived to describe DIGM and several subsequent theoretical
and numerical studie§][6] [7,[9,110] showed that this model is able to capture many experimentally
observed features of DIGM. Furthermore, it was shown that the phase field model allows for a free
boundary model in an appropriate sharp interface limit in which forced motion by mean curvature
(describing the movement of the grain boundary) is coupled to a quasi-static diffusion equation for
the concentration of the solute [10]. However both the phase field model and the free boundary
model are only able to describe uni-directional motion of grain boundaries between two different
types of grains. In experiments variable directions of motion within a single grain boundary and the
occurrence of triple junctions are observed.

In [11] and [9] models capable of describing bi-directional DIGM have been developed. The
former is based on a sharp interface approach allowing for forced motion by mean curvature in two
directions and assuming a thin film geometry in which the solute diffusion through the film is very
rapid. In [9] three different models have been proposed which all have the feature that the forcing
term is non-local. All proposed models are able to describe phenomena observed in bi-directional
DIGM such as the appearance of double seams.

One goal of this paper is to derive a general phase field model with the following properties:

e it describes bi-directional DIGM,
e triple junctions can be included,
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o the evolution is formulated with the help of local quantities,
o it allows for thin as well as thick films,
o itis thermodynamically consistent in the sense that a free energy inequality is fulfilled.

We are going to derive a model with the above properties by similar ideas to the ones used in
the derivation of the model by Cahn, Fife and Penrdse [4]. But as opposed to their approach we
will consider more than one phase field. We will use one phase field for each of the regions that can
be distinguished either by orientation or by chemical composition. Assume in the specimen under
consideration there are initially different orientations present. When solute diffuses in along the
boundaries between these different grains the presence of the solute may induce a motion of the
boundary. In the trail of the moving grain boundary, solute is deposited and the orientation of the
lattice changes. The newly formed region can be distinguished from tinéially present regions
because solute is now present. We will therefore introduce anttipdrase fields for the regions in
which solute is present in order to distinguish them from the ones in which there is no solute (see

Figure[]).

FiG. 1. DIGM at a triple junction.

In Figure[] the dotted lines indicate the original positions of the grain boundaries. The solid
lines refer to the position of the grain boundaries after some time0. The regions between the
solid and dashed lines are alloyed, i.e. they contain solute.

We proceed as follows. First of all we formulate a free energy which will be a functional of
the phase field vector and the concentration of the solute. The free energy will contain interfacial
energy contributions, chemical energy terms and coupling terms between the phase fields and the
concentration. The latter results from contributions to the free energy from elastic interactions. In
the spirit of Cahn, Fife and Penrose [4] we will then derive evolution equations as a gradient flow
of the free energy. Our model can be interpreted as a generalization of the madel in [4] to situations
with a vector phase field. But there is a major difference in the formulation of the free energy and
we will discuss this issue further on.

By formally matched asymptotic expansions the phase field model can be related to a sharp
interface model. In a two-dimensional setting this leads to evolution of curves that move by forced
motion by mean curvature and that are coupled at triple junctions. We will discuss this model in
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Sectior| 8 where in particular a new flux balance at triple junctions is considered. In Séction 4 we
formulate discretizations of both the phase field model and the free boundary model and finally in
Sectior] b we present numerical simulations obtained from both models.

2. The phase field model

We assume that in the specimen under consideration thelé gr@n orientations present. For each

of the N grains we introduce a phase fiedd(i = 1, ..., N). In addition we introduce phase fields
ON+1s - - > 028, Wherepyy; (i = 1, ..., N) represents a grain of orientationhat is alloyed (i.e.

that contains solute). We note that since the orientations of the grains do not change from un-alloyed
to alloyed no grain boundaries exist between graiasdi + N. The fieldyp; should be interpreted

as an order parameter which locally gives the fraction of the un-alloyed giaih < i < N and

the fraction of the alloyed graihn— N if N + 1 < i < 2N. The phase space for the vector field

@ = (1, ..., p2n) is therefore defined as

2N
E::{@ERZN:Zwizl}. 2.1)
i=1

In ;/iew of this constraint, we define the projecti@nonto the tangent spady = {¢ € R2V :
2 ¢i =0} by
(T)i =i — ﬁ;%- (2.2)

Sinceg; stands for a fraction, we ask all components of the order parampditmbe non-negative,
i.e. we wantp € G, where
Gi={peX g >0}

is the Gibbs simplex ifR?". Furthermore we introduce a dimensionless concentratiorhich
represents the concentration of the solute.
We study a phase field model that is based on the free energy

1 1
E(p,u) =/ <2—u2+8F(so, V) + =¥ (p) + plep, u)), (2.3)
2 & &

where2 c R?, d = 2, 3, denotes the region occupied by the specimen under consideration. The
first term in the free energy takes into account the chemical energy, the second and third represent
interfacial energy (cf.[[19]) and the last term is an interaction term. We will always assume that
F is homogeneous of degree 2Vhp and that¥ is non-negative and has minima at the corners

€1, ..., &y of the Gibbs simplexd; := (6;;);=1,....25). Recalling that there are no grain boundaries
between graing andi + N we propose two gradient energy terms (normalizing the interfacial
energy)

1 N
Fp, V) i= 53 IV (i +oien)l?
i=1

and
N

Flp, Vo)=Y aijleiVe — 9 Veil’,
i,j=1i<j
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where in the latter case we set the surface enefgy= 0 if j = i + N and for simplicity we
normalizes;; = 1 for all other cases. We refer {0 [13,14] for more details on the second example of
the gradient energy. In the former case the choicE@, V) guarantees that there is no interfacial
energy for a transition — i + N because in this case it will turn out that+ ¢; 1y = 1.

The interaction ternp (¢, u) is a coupling term betweep andu and takes the form

N
plp,u) = f@) ) oi,
i=1

where f(u) is a non-negative function wittf(0) = 0. We note that a more physically realistic
choice for the chemical energy would be the ideal solution formula (See [4]) but for mathematical
simplicity we take a quadratic function as the first term in the free energy. To simplify presentation
we have set most of the material constants to be one.
The equations of motion fop are derived by considering the gradient flow[of [2.3) giving an
Allen—Cahn type equation:
dp

. o
o _ 9
o 9o ¥

1
=&V -TFx —eTF,— ngIQP(cp) — Tpylep, u) (2.4)

together with the natural boundary condition
TFx(p,Ve)-v=0 0nos2. (2.5)

Hered&/d¢ denotes a functional derivative,is the outer unit normal t6£2 and the subscriptg
and X denote differentiation with respect to the variables correspondiggand V¢ respectively.
Since the concentratianobeys a conservation law we cougle {2.4) with, a5iin [4], a kinetic equation
with conserving dynamics far:

du < € ) .
Y- =V |\ D@V_—(p,u)] Ing2,
ot ou

which is equivalent to

E;—Lt‘ =V . (D(p)Vv) in 2, (2.6)

together with the Newton flux boundary condition

Yeé

D(go)g—s =aD(p)(1—u) onas (2.7)

or the Dirichlet boundary condition
D(p)u = D(p) 0nds2. (2.8)

Herey is a kinetic coefficienty is a large positive number and

N
v=u+ef'W)) ¢
i=1
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is the scaled chemical potential. The diffusivity

2N
D(p)=[]A—¢)
i=1

is chosen such that diffusion is restricted to the interfacial regions, i.e. we assume that we can neglect
diffusion in the bulk. If the geometry is such that the specimen under consideration is thin it can be
assumed that the diffusion of solute atoms is rapid so[thgt (2.6) is replaced by

WX, 1) = 1 V(X 1) §uch thatp; (x, ) > Oforanyi e {N +1,...,2N}andr € [0, 1], 2.9)
0 otherwise
For ¥ we take the classical obstacle potential (5¢& [, 14]) which is defined to be
U(p) = Z:i<j Yigj = %Zizivl(ﬂi(l— i) forpeg,
o0 otherwise
Noting (2-1) we have
1 1 2N
E(p, u) :/ —u2+8F(‘P, V(P)"i__z(pi(l_(ﬂi)-i-p((p, w) + Ig(p) |, (2.10)
o \2¢ 2¢ s

wherelg(n) denotes the indicator function such that

_Jo fornpedg,
Ig(m) = {oo otherwise

With this choice of we have to solve a variational inequality instead of the Allen—Cahn equation
(2.4), so that a solutiop has to satisfy

ap 1/1
E\5, ¢ z—e(Fx,Vin—p)) —|eFp+-| 51— ).n—¢
t e\ 2
—(fw)e n— ) (2.11)
forallmp: 2 x (0,T) - G.Herel = {1,...,1} e R?%N and&= {éy, . .., oy} With

- )1 fori=1,...,N,
=10 fori=N4+1,...,2N,

and(., -) denotes the standafd inner product over2. As initial data we set
X, 0) =o(X), uix0 =0 Vxesf, (2.12)

which implies that initially no solute is present, but of course more general initial conditioms for
are possible.
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3. A sharp interface model
3.1 The singular limit of the phase field model

3.1.1 Equations at interfaces. Formal asymptotics as — 0 similar to [2,[13] on the phase
field system shows that the domain will be split into time dependent pliasederee takes the
constant value;. These domains are separated by interfaceend since the problem deals with
multiple grains these interfaces may intersect at triple (or even multiple) junetions

As in the phase field model we denote the concentration of soluteby u(x, 7) for all x € £2
and we denote the concentration at an interfgcby u; so that

ui =uX,t) Vxelj.

REMARK 3.1 Itturns out that at an interface betweéeand: + N the phase fieldg; andg, v are
discontinuous. This is due to the fact that the gradient tBxga, V) in £(p, u) vanishes at such
an interface. Such an interface does not move because there is no term that could hajcenne
d;p;+n in the case of movement.

Furthermore formal asymptotics in the spirit 0f[[2] 10} 13] gives that the governing equation for
an interfacel’; separating bulk phase2; and$2; (if i < j and;j # i 4+ N) is given by the kinetic
law 4
Vik = kx + ;.7:1(, (3.1)
whereV;, andk; denote the normal velocity and the curvature of the interfaceith respect to the
normalv; pointing fromg2; to £2; and

0 ifi, j e [1, N],
Fi=10 ifi, j € [N +1, 2N], 3.2)
[f@]y ifiell Nl je[N+L2N], j#i+N.

Here [f (u)] , denotes the jump irf () across the interface, so that for alE I,

[f@]p = Sli_r)no{f(u(x +3vp)) — fu(X —é8vi))}. (3.3)
As in [10], on an interfacd}, the concentration,, satisfies
T
AL [M]Fk = guk,sm (34)
wheres denotes the arc length df, and a subscript denotes differentiation with respect to arc

length.
Furthermore at such grain boundaries to leading order the profile of the transition layer is a
standing wave solution and we obtain
0 fork £iork # j,
(L +sinE), —m/2<&<m/2, fork =i,
$(L—sinEg)), -m/2<&<m/2, fork=j,

2

Pk

whereg = ¢~ dist(x, I (1)) with I} (¢) denoting the interface at timre
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At boundary pointsB where an interfacé; meets the boundary it must do so orthogonally (see
[12,121]). If the Newton flux conditiorf (2]7) is used the concentratipshould satisfy

uijs=al—u;) atB (3.5)
and for the Dirichlet boundary conditiopn (2.8) we get
uj=1 atB. (3.6)

3.1.2 Triple junction conditions. In the following we derive sharp interface equations for the
soluteu from the mass balance law and we prove free energy inequalities. We restrict ourselves
to the case of a triple junctiom where three interfacef;, I> and I3 ahead of alloyed regions

1, £2> and §23 respectively meet (see FigUrge 2). We note that the natural generalizations to more
complicated geometries are possible.

FiG. 2. Balance law

Formal asymptotics(([2, 12]) shows that the force balance
0171 + 0272 + 0313 =0 (3.7)

holds, wherer; is the tangent td7; (pointing in the direction of the triple junction) ard is the
surface energy associated with a transition acfpsk the case that none of the interfaces separate
regions of the same grain orientation all surface energies are equal and we obtain

1+ 12+ 13=0. (3.8)

REMARK 3.2 On an interfacd™ that separates regions of alloyed grain orientaticand un-
alloyed grain orientatiori, we assume that there is no surface energy and hence (3.7) we
conclude that

T2 = —13;

thus, at such a triple junction the interfadésandIs join to form aCl-curve.
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Further conditions at triple junctions have to hold for the solute concentration. The first one says
that
u is continuous through triple junctions (3.9)

which follows from the continuity of the chemical potential (see for examiplée [15]). The other one

IS
3

Y uis =0, (3.10)

i=1
which enforces the balance of mass for the solute. This condition can be derived by formal
asymptotics similar ta_[15]. We will not present this here, instead in the following subsection we
will derive the conditions for at the triple junction from general balance laws.

3.2 Balance law and equilibrium conditions

In the case of DIGM bulk diffusion can be neglected and diffusion of atoms is restricted to grain
boundaries. Thus the balance of mass has the form

TS|
| ou== ;N 3.11
dr Jg ; F,-maRq ( )

(settingy equal to 1 for simplicity of notation), wher® denotes any region if2, g; (x) denotes
a tangential vector field which is the mass flux within the interface at a pp@ndn; is the unit
vector tangential td; pointing outward ta’; N R (see Figurg]2). Under the constitutive assumption
that

0 =—-Vru (3.12)

(setting the mass diffusivity equal to 1) we obtain

d 3
d—/u:Z/ ui,ss—/ Vru-n;.
rJR =1 JLNR NN

Using a transport theorem (s€e][16]) one obtains (using also the fact that the concentration in front

of the interface is zero)
; / 3 /
dr Jr ; e

and hence in the case thRtintersects only one interface we have

/ Viui = / Uj ss-
AR iNR

Viui = u; gs. (3.13)
If R intersects a triple junction, using (3]13) we obtain

This implies (sinceR is arbitrary)

3

> uig(zi-ny) =0

i=1
and if the curves are parametrized so that;afloint away from the triple junction we obtain (3]10).
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REMARK 3.3 (i) The above derivation only uses the form of a mass balance givgn by (3.11)
and the constitutive assumptign (3.12) for the mass flux.

(ii) Inaclosed system, i.e.
0;=0<% u;s=0 ondal; NI

we obtain from([(3.111)

(iif) Postulating a free energy of the form

3
> (L,-u) - /Q f(u)),

whereL; () is the length off; (), we can derive[(3]1) in the spirit of the approach/of [16],
and [3.8) is the force balance at the triple junction (5ee[12, 18]).

The following theorem states growth properties for the free energy and also gives the existence of a
Lyapunov functional in the case that the system is closed.

THEOREM1 Let (u1, u2, uz) and (1, Iz, I'z) be solutions of[(311)[ (3]2)[ (3.4) arld (B.§)—(3.10)
with geometry as in Figuig 2. Then

d 3 3
2 2
_f u Z_Z/ ”i,s"‘Z/ ui s (ti - N;)
dr Jo N o Jarnase
and

d 3 3 )
a(;Li(t)—Lf<u>)=—;fn%-

For a closed system, i.g; ; = 0 ondI; N 32, we obtain

d 2 : 2
e u = — uis.
dt/Q ;/p ’

In the case thaf (1) = u? we have

d 3L. ~ 3 , ”
EZ ,(t)_—i;(/nui,ﬁfn ,.).

i=1

Proof. Using [3.4),[(3.I0) and transport theorems (5eé [16]) we obtain

d 2_d 2. 2 2
YRS P of KT o NS
rJa T I i=171i i=17Ti
3 3
2
RO NS B TR
=171 i=170iNs2
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We denote byé(r) the velocity of an endpoing(r) of I;. Using the fact thaE?zl n =0ata
triple junction (se€f(3]8)) and thatr) - n; = 0 at boundary points (which follows from the fact that
e(t) € 982) we obtain

d/<S 3 |
E(;Ll(l)_/fzf(u)>:;(__/I’;Kl‘/l—i_/an ni.e(t)_Lf(ui)w)
3 3
=3 [ vt ran=-Y [ vz o
i=1 71 ey

3.3 Initial data

Noting (3.1)4(3.4) we see that suitable initial data for the concentration need to be imposed in order
for alloyed regions to nucleate. In particular to obtain a jump in concentration across an infgrface
we need to introduce a small strip in which solute is already present. We adapt the techniques used
in [Q] and set

1 Vxe Ag,

u(X,O):{O VX 25 Ap, (3.14)

whereAs = Ufi’l A; and A; denotes a strip of width <« 1 lying on either the positive or the
negative normal side af;. This gives a non-zero jump if (3.3) and hence a driving forcg i (3.1).

4. Numerical discretizations

In this section we present numerical discretizations of the phase field and sharp interface models
derived in Sectioris|2 afd 3 respectively.

4.1 Phase field discretization

Let 7, be a quasi-uniform triangulation of a polyhedral approximatien of 2 with 7 =
maxy <7, diam(T). The finite element spac, is defined by

Spi={x € C%(R2) | x is linear on each’ € 7}
and we set

2N
G = {n e Y =14 >0Vi e {1, ...,2N}}.
i=1
We denote byV;, = {x1,..., Xy} the set of nodes of the triangulation and gy, ..., £y} the
corresponding standard basis$f Finally, let A+ > 0 be a time step angg = kAz, k > 0. For
more details on finite element methods we refef io [5].

We discretize@l) using an explicit Euler scheme in time and a finite element approximation
with elements in(S,)" in space. Knowing the squtio:p’;, andu’;l at timer, we determine,oﬁfrl

such that for ally,, : [0, T] — Gp,
I
(E(«D’Z*l — by n— ¢ﬁ+1> > —e(Fx (). V). Vn — @)
h

1/1 N
- (st(cp’,‘,, Veh) + g<§n - so’;) + fuf)em — sa’,;“) NN
h
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Here (n, x)n = f-Qh I(nx) denotes the discreté? inner product overn2, with I, being the
node-wise interpolant operator. The above variational inequality can be solved by setting, for
i=1,...,Mandj=1,...,2N,

@ €0 = (DF, &0 — AT Fx (k. Vi), VE i

At (1 (1 ~
_ AI(TFc,a(SOIZs Vb, & — ?<ET<§H - cpﬁ)h + Tf(uh)@, Eij) ,
h

whereg;; = &;€;, and then defining at each mesh potnte N, the value Of(PI;l+l(Xj) to be the

projection OfL,_OI;lJrl(XJ') onto the Gibbs simpleg (see for example [8] and [20] for the scalar case).

To discretize the equation for the soluteve use an implicit Euler scheme in time and discretize
the weak formulation of (2]6) anl (2.7) in the following way. We sefk" such that for al < Sj,

£
Y2 WEH — s 0n + DGV Vi +a / LD — Dy =0, (4.2)
a2y

where
N

ot =t e ™ Y of (4.3)
i=1
For the case of thin specimens we couple|(4.1) with the node-wise approximation| of (2.9) such that
for all nodesj,

[ Visuchthatpf’j > Oforanyi e {N +1,...,2N}and 0< k <k,

F= . (4.4)
0 otherwise

For initial datay) (x) andu§(x) we interpolate](2.12).

4.2 Sharp interface discretization

In order to discretize the sharp interface model we consider a parametric formulation.

4.2.1 Parametric formulation. In the following we consider the situation of three interfa¢ges
i =1, 2, 3, that meet at a triple junction with prescribed angles and that evolve with velocity laws

4
Vi=wki+=F, i=123
T

If we use a parametrizatioX; (p, t) = (x;(p, 1), y;(p, t)) of I;(z), wherep is a spatial parameter
andr is time, equationg (3]1) and (3.4) yield

Xi,pp ﬁ (Xi,p)J_

. ’ (4.5)
L IXi, 12 o Xipl
T Ui
—yXia - Kip) T lulp = 2 ) *
YAt ( 1,17) [M]F’ 8<|Xi,p|)p ( )

where
X; :[0,1] x [0, T] = R2,  (p.1) — Xi(p, 1),
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and (a1, a2)™ = (a2, —a1) (compare([7]). To be precise let us mention that a solutio@ (4.5)
leads to a parametrization which fulfil[s (8.1). But (3.1) only determines the normal velociy, of
while the tangential velocity of; is determined by (4]5) and in principal other choices are possible
(seell8)).

Denote the angle betwedn and I by 6; and the angle betweef, and I'z by 6,. Then the
triple point condition[(3.8) may be written as

Xl.p XZ 2p

: = cog6), (4.7)
|Xl,p| |X2 p|
Xop Xzp

. — = Cc096?). (4.8)
|X2,p| |X3,p|

The balance law (3.10) for the concentration takes the form

3

u
Z | (4.9)

l=1| lp

We letb(s) denote the domain boundary in terms of an arc length parameldren the junction
conditions at the physical boundary are given by

Xi(0,1) = b(si(r)), wi(0,1)=1, =123, (4.10)

for somes; (¢), and
X,-,p(O, 1) -b'(s; (1)) =0, (4.11)

where’ denotes differentiation with respectso

4.3 Discretization of parametric formulation

To d|scret|ze@]5) anc[@ 6) we follow the ideas presented|in [9] where the discrete approximation
to u is defined on a “background” fine, uniform mesH, with grid size/. In particular we let
up (X) = up ()™, 1), forallt € [nAt, (n+1) Ar) and all(x)™ € M, be a discrete approximation of
the concentration such that for any € £2 we defingx)™ to be its nearest node owvit. Furthermore
we deflne)(” = X;(sj,1) andu” =u;(sj,t) forallt € [nAt, (n+1)At), j=(0,..., M), tobe
discrete apprOX|mat|ons of; andu, respectively.

To solve [(4.5) we adapt the techniques<iri[3.17, 8] to obtain the following approximatipn pf (4.5)
for any grid pointj € [1, M — 1]:

1 .
§<(h‘,~+1)2 + (h)?Xij = Kijyr— 2Kij +Xij-1)

2F;
+ ﬂ” (hj1((Xi jrD) T — i ) + hi (Xt — Kij—) ). (4.12)

Hereh; = [X;—X;_1], andF; ; which is defined later is an approximation(to {3.2). For the boundary
dataX; o, it suffices to set
X,"o =2B; — Xi,l fori=1,2,3,
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whereB; is the point on the boundary with minimum distance{a (see[[3] for more details). We
approximate[(4]7) an{l (4.8) by

DiXym-1  DiXom-1
Dy X1 m-1l 1D+ Xz m-1l
DiXom-1  DiXgm-1
IDi+ X2 m-1  [D+X3 m-1l

= cog61),

= Ccog6>),

whereD X; ; = (X; j+1—X; ;)/h. We see from[3] that by simple geometric formulas it is possible
to uniquely determin; s from X; p—1 fori =1, 2, 3.
We approximatd (3]2) by

0 ifi,je[l, N,
Fij=40 ifi,j €[N +1,2N],
[f@Dlx,, ifie[l.N], je[N+L2N], j#i+N,

where
[f @lx;; = fup((Xij+8vi j))™) — fup((Xij —8vi j)™))

anqu',j = (X, )5 /1%, j)s] With (X, ) = (vi,j+1 — ¥i,j—1, Xi,j—1 — Xij+1). We choosé to be
O(h) so that we test the values of on either side of the interface. We approxim(4.6) for any
je[l,M—1]by

y(XIL X (DTt Dottt
o (T KR [, = §( M. W 1)’ @19
where[uh]xn. = up (X} 4 8v ™) — up (X}, — v} )™). To approximate the boundary data
(33) and [Eb) we set
D+un—ci)—l
— = a(l—u'”l) and u'tt=1
|D+Xn+1| i,0

junction (3.9), i.ex] 1} = u* fori = 1, 2,3 and that a discrete version of the force balance law

(3:109) holds:

respectivﬁ Lastly we require that the concentration of the solute is continuous across the triple

n+1

Z D+M1M 1
|D+Xn |

We update/‘*l(x) for all x € M in the following way:
1ty : .
0 = 2( ”+ +uit) fxeS;, j=0...,M-1i=123,
uj (x) otherwise

wheres; ; denotes the region enclosed by the four lines that join the p(ﬁﬁ@;)m and(X;f“J.Ll)’”,

X100 AOKE 1, O ) ndX 10" and ) and(x) 1, see Fgurs
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X)) X
N

N
IR Y0 %

FiG. 3. Updating.j .

5. Numerical results

In this section we present phase field and sharp interface simulations using the numerical
discretizations derived in Sectigrj 4. For the phase field simulations we used a Gauss—Seidel
algorithm to solve[(4]2) and for the sharp interface simulations we used a fourth-order Runge—Kutta
algorithm (with the forcing ternf; ; taken at the old time level) to solje (4]12) and a Gauss-Seidel
algorithm to solve[(4.73). We display the values of the parameteks etc. that were used in each
simulation in TableE]1 arld 2.

TABLE 1
Parameters used in phase field simulations

Figure h At 3

4 0.005| h2/40 | 0.025
5 0.03 | #n?/40 | 0.16
6and 7| 0.01 | #2/100 | 0.05
gand 9| 0.025| #2/40 | 0.0125

TABLE 2
Parameters used in sharp interface simulations

Figure N h At h
10and 11| 100 | 0.02 | #2/40 | 0.005
12 and 18| 200 | 0.005| 4#2/80 | 0.0025

1200 0.1 | #?/40| 0.3

For all of the phase field simulations we took

1 N
Fp, Vo) =33 IVigi +givn) .
i=1
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The simulations correspond to two types of experimental set-ups, which henceforth we will
refer to asthin film andthick film In the thin film set-up the domaif2 c R? corresponds to a
horizontal cross section through the film and the concentration of solute which is assumed to be
constant through the film satisfigs (2.9). In the thick film set-up the doain R? corresponds
to a vertical cross section through the film with the concentration satisfying the diffusion equation
(2.8) or [3.4) withy = 0.25. We do not display any plots of the concentration in the thin film
simulations since it only takes the values zero or one, instead regions of positive concentration are
denoted by hashed areas. For the thick film simulations we display plots of the grain boundaries
evolving in time together with plots of the concentration at the final evolution times.

The first two simulations, Figurgd 4 apdl 5, are two thin film phase field computations that
reproduce numerical simulations presented_in [9] and [11] using our new model. The remaining
figures display a combination of phase field and sharp interface simulations that show the evolution
of three grain boundaries meeting at triple junctions.

5.1 Phase field simulations

5.1.1 Thin film. The first two thin film phase field simulations (Figufgs 4 and 5) reproduce
numerical simulations presentedinl[9] 11], where an initially straight grain boundary that separates
two grain orientations evolves in time to form

(i) a stationary solution of two circular arcs with radius 1 (Fidure 4).
(if) a double seam, where the grain boundary doubles back on itself (figure 5).

When we compared the solutions in Figufés 4 ahd 5 with solutions using the phase field model
presented ir [9] the grain boundary evolution for the two models was graphically indistinguishable.

The remaining two thin film simulations show the evolution of three initially straight grain
boundaries in a circular domain. The three boundaries meet at a triple junction and are separated by
angles of /3. In Figure[$ all boundaries move in an anti-clockwise direction while in Figure 7
two boundaries move in anti-clockwise directions while the third moves in a clockwise direction.

In the symmetric case of Figufeé 6 although the grain boundaries migrate the triple junction
remains fixed, while in the non-symmetric case of Figure 7 the triple junction also migrates.

5.1.2 Thick film. We display two thick film phase field figures; the first (Fighie 8) shows the
evolution of three grain boundaries meeting at a triple junction, while the second (Figure 9) shows
the concentration in this simulation at the final time 0.04.

5.2 Sharp interface simulations

The sharp interface simulations displayed in Figlirgs T0-13 reproduce the phase field simulations
(Figureg B[P). In each subplot the initial positions of the grain boundaries are represented by dashed
lines, while the positions of the grain boundaries after time0 (displayed at the top of the subplot)

are represented by solid lines.

5.3 Comparison of phase field and sharp interface simulations

In Figures[ T#-16 we display comparisons between phase field and sharp interface solutions in
which a “” is plotted at every 20th node of the sharp interface discretization. Figlre 14 displays
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t=0 t=0.5

t=2

FiG. 4. Thin film phase field solutions solution.

t=0 t=4

FiIG. 5. Thin film phase field solutions.
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FiG. 7. Phase field solutions of a nonsymmetric triple junction.
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t=0.04 A
1 1 M
A
0.5 0.5
c B
0 0
0 0.5 1 0 0.33 0.66
B C

0.5 0.5

0 0.23 0.45 0 0.23 0.45

FiG. 16. Comparison of thick film sharp interface and phase field concentration solutions.

t=0,1,2,3,4,5 t=5
150 150
100 1001
50 50
0 0
60 120 180 60 120 180

FIG. 17. Thin film sharp interface solutions.
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comparisons between the thin film solutions shown in Figufes ¢ and 10, while Fidure 15 displays
comparisons of the interfacial positions in the thick film simulations shown in Figlires[8 &and 12. In
order to compare the concentratiog(x, ¢) in the phase field model with the concentratiens, )

in the sharp interface model we defiiags, 1) = u, (I (s, 1), t), wherel; (-, r) is a parametrization

of Ii(1) = {x € 2 : ¢;(x, 1) = 0.5} ands is the arc length of } (r) measured from the boundary. In
Figure] 16 we showvi; (bold line) andu; (‘*’) plotted against arc length.

5.4 A more complicated structure

We conclude our simulations with Figyre] 17 in which we attempt to simulate a situation that appears
in real microstructure formation (see [17, Figure 3, p. 249]). The simulation is obtained by using the
sharp interface thin film model with the lefthand plot showing six grain boundaries evolving in time
from r = 0 (dashed lines) to = 5 (solid lines), while the righthand plot shows the alloyed region
attimer = 5.
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