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Convergence for stabilisation of degenerately convex minimisation problems
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Degenerate variational problems often result from a relaxation technique in effective numerical
simulation of nonconvex minimisation problems. The relaxed energy density is the convex
envelope of the original one and so convex but not strictly convex. Hence strong convergence
of straightforward finite element approximations cannot be expected but is relevant in many
applications. This paper establishes a modified discretization by stabilisation and proves its
convergence in strong norms.
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1. Motivation and introduction

The relaxation procedure in the calculus of variations allows the direct macroscopic simulation of
models with finer and finer oscillations [LI1, 12, BP]. For the discrete problem this means that the
nonconvex energy density is removed and replaced by some guasiconvex envelope or—in some
applications—even the convex envelope; we refer to Exafnple 1.1 for an illustration. The resulting
discrete problem is then degenerate in the sense that it is convenobsitrictly convex and so

the Newton solver faces situations where the Hessian matrix for the tangential stiffness matrix is
not positive definite and may be singular. Standard numerical regularisations are analysed in this
paper as stabilisation techniques. Exanfiplé 1.1 illustrates that the stabilisation allows less Newton
iterations than the original relaxed problem. We prove for relevant examples that proper stabilisation
maintains the convergence rates of the discrete problem, and, what came much to a surprise, yields
even strong convergence of the strain variables in certain circumstances.
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ExAMPLE 1.1 (3-Well Problem) Giver2 = (0, 1)? and boundary datap (x) = vo(x1) + vo(x2)
for x = (x1, x2) € 2 and

(t—1/43%/64 (t —1/4)/8 forr < 1/4,

volt) = {-(r —1/4°/40— (1 — 1/4%/8  forr > 1/4,

the relaxationw** (i.e. the lower convex envelope) of the 3-well energy density
W(F) = min{|F|%, |F — (1, 0)], |F — (0, 1))
leads to the energy minimisation problem

mnNEw) for A={veW"?Q):v=upond2} and

ue

E(u):/ W**(Du)dx+f |uD—u|2dx+/ fodx
2 2 2

with f = divDW**(Dup). The exact solution of the relaxed minimisation problem reads
u(x) = up(x) for x € £. Its finite element approximation is computed on a sequence of
uniform triangulations7” of 2 with mesh sizeh = 1/2,1/4,...,1/32 and degrees of freedom
N =1,9,49 225 961 into triangles which are translated copies of ¢¢dw0), (0, i), (h, )} and
conv{(0, 0), (h, h), (h, 0)}. Notice thatW** vanishes identically in cor¥0, 0), (1, 0), (0, 1)} C R?

and hence stabilisation is in order. The resulting discrete problem reads

min E,(up) for En(up) = E(up) + hV—1/ | Duj|? dx
UpeAn 2
and A, = {v, € SKT) : v, = up ondR) whereSY(7) € W2(2) is the lowest order finite
element space related ¥oandup ;(z) = up(z) for all nodes; on 9£2.

For the exponentg = 0,1/2,1,2 andy = oo (y = oo meansE;, = E, i.e. no stabilisation)
we run a nested Newton—Raphson scheme. The termination criterion wAs@amn of the residual
less than 10°. TabIeD. displays the history of iteration numbéfsas a function ofy andh. This
experimental result supports our strategy to approximate a degenerate convex problem by a slightly
strictly convex one.

The paper is concerned with the convergence behaviour of the perturbed discrete solutions. The
class of problems analysed in this paper is as follows. A natural finite element discretization of the
Euler—Lagrange equations of a degenerately convex minimisation problem

(P) Seeku € A with / S(Du) : Dvdx + J(u;v) =0 forallve Ap
2

(colon denotes the scalar produciiifi *”*) with discrete spaced;, = up ,+.Ap, andAp , € Ap

reads

(P,) Seekuy € Ap with / S(Duyp) : Dvp dx + Jp(up; vp) =0 forallv, € Ap j.
2

Typically, the nonlinear stress-strain functioh: R™*" — R™*" js the derivativeS = Dg
of an energy density functiop that is (quasi-) convex but not strictly (quasi-)convex. Lacking
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TABLE 1
Iteration numbersK required in the relaxed 3-well problem of
Examplg 1.1 as a function of uniform mesh sgizand parametery.
A minus sigh means no convergence wiiiditeration steps.

[ h [ v2 [ y4 | 18 | 116 | 1/32 |
y=0 4 4 5 7 8
y=1/2 4 4 5 10 9
y=1 4 4 5 13 16
y=2 4 6 10 29 -

y =00 4 10 98 - -

uniform convexity ofg and so lacking uniform monotonicity of we cannotgenerally expect
strong convergence of the er@r= u — uy, namely

}!@0 [ DellLr2) =0, (1.1)

if an underlying mesty;, becomes finer and finer such that the maximal mesh size tends to zero
ash — 0. Instead of[(I]1), one can merely expect weak convergénge — Du in LP($2)

or convergence in weaker norms, e.g./Jiny |u — ux| (@) = 0. It turns out that the continuous
lower order term/ : WP (2; R™) — WLP(£2; R™)* as well as boundary conditions.if:= {v €
WLP(2;: R™) : v =up onIp} for some partp of the boundarys2 of the domains2 determine
whether solutions or u;, are unique or not; we refer to Section 2 for detailed assumptions. A typical
time step in evolution of phase transitions lead&Ro with an L2-uniformly convex low-order term

J (see, e.g.[ICR3]) and requires strong convergence of gradients.

It is the aim of this paper to introduce stabilisation strategies to guargni¢e (1.1). For a mesh-
dependent bilinear forma;, : X, x ¥4, — R such that4, € X, and Ap, < Y, we set
Jn(uy, vp) = J(up, vy) +ap(uy, vy). For relaxed nonconvex minimisation problems the additional
term ay, (uy,, v,) allows a physical interpretation of a discrete surface energy. Provided Rhat
exhibits sufficient convexity, e.g. if is uniformly monotone with respect to d’ norm (on low-
order terms) ang is convex, there exists a unique solutioof (P). Then ifu € H3%(2; R™)
for somes > 0 we prove[(L]L) for the unique discrete solutignof (Py).

In order to illustrate some of the arguments in the proof of| (1.1) we avoid in this introduction
any technicalities through the (unrealistic) assumptign.Ap ;, € H?(£2; R™) and consider only
one stabilisation term

Jn(up; vy) = J(up; vp) + hZ/ Aup - Avy dx (1.2)
2

(dot denotes the scalar productif). Suppose furthermore that the low-order tefris uniformly
monotone such that standard arguments with the Galerkin orthogonality yield

W1 AelZyq) + llelFa g, < CH? (1.3)



256 S. BARTELS ET AL.
foru € H2(£2; R™) N A. Then an integration by parts aad= 0 onds2 lead to

”De”iz(ﬂ) = /;2 De: Dedx = —/Qe - Ae dx.
Cauchy’s inequality, Young'’s inequality in the resulting upper bound, (1.3) in the final step

prove
-1

h h
IDel2q) < llellza) 1 dellLzg) < 5l Aelzz g + =5 llellZzg, < Ch.

Hence we have strong convergence of gradignts (1.1pfer 2 if u € H?(2; R™). Since this
argument require€'* conforming finite elements the practical use of stabilisafion] (1.2) is limited.
Therefore, this paper establishes three discrete stabilisations which I¢ad to (1.1) dy,cats
are lowest order finite element spaces.

It should be stressed that stabilisation is in fact equivalent to that of [NW] stated for = 1
and for a numerical modification that replacédy a lumped versiow;,. The proof of [I.1) in
[NW] employs specific one-dimensional arguments for a particular model example. In contrast,
stabilisation as introduced in this paper, and(ih [P] in the context of micromagnetism, appears
to be a robust and flexible tool for a large class of degenerately convex minimisation problems.
Convergence rates for the gradient error, however, require strong regularity conditions of the exact
solution along with its uniqueness.

This paper is organised as follows. The general setting and the main results are presented in
Section 2. A collection of examples férandJ that meet the abstract framework(if) are given
in Section 3. In Section 4 we prove the main result. Notation and basic results related to finite
element discretizations are introduced and recalled in Section 5. Sections 6—8 are devoted to three
different stabilisations that defir{@,) and lead to[(1]1) via the abstract result of Section 2. Section 9
discusses strong convergence for a 2-well problem which results from a model for phase transitions
in crystalline solids. Numerical examples are reported in [Ba].

2. General setting and main result

This section is devoted to a general framework that allows several particular choices of the
stabilisation termuy, for a large class of examples indicated below. For this sectipnis quite
general and could model a numerical quadrature/fas well.

Given a bounded Lipschitz domai@ c R” with polygonal (forn = 2) or polyhedral (for
n = 3) boundanyR and 1< ¢ <2< p < o0, 1/p + 1/q = 1. Givenup € WHP(2; R™) set

Ap =Wyl (@2;R"),  A:=up+Ap,

with W&”’(.Q; R™) = {v e WhP(£2; R™) : v|yo = 0}; moreover, lef - lwir (o) denote the semi-

nOrm|vlyp gy i= DVl Lr(2) of v € WP (2; R™). For a discrete spacép ; € Wol*”(.(z; R™),
spacesX;, andY;,, and an approximatiomp , of up we merely suppose

An=upn+Apnr S Xn, Apn C Y.
The stress functiof : M™"*" — R and the low-order terms

JWEP(Q;R™) — (WEP(2;R™), Uy X — Y
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of the continuous and discrete level, respectively, are supposed to satisfy the following hypotheses
(H1)—(H3) for the exact and the discrete solutioe A andu;, € Aj, respectively. A collection of
examples follows below in Sectidn 3.

(H1) There exist positive constanisr,s with 1 < r < 2,0 < s < oo, and a functions :
M*n — M™*" such that, for ald, B € M™*",

1S(A) = S(B)" < a(1+ A" +|BI*)(S(A) — S(B)) : (A — B).

Here,M™*" denotes the reat x n matrices, and- | the Frobenius norm related to the scalar
product

m n
A:BZZZAkEBké for A, B in M"™*",
k=1¢=1
(H2) There exist solutions and u; of (P) and (P), respectively. [Their uniqueness is not
assumed explicitly; at this stage, any choice will do. However, the uniquenessdater

a consequence of our strong regularity assumption.] That is, suppose that4d with
o := S(Du) anduy € Ay, with oy, := S(Duy,) satisfy

/ o:Dvdx+ J(u;v) =0 forallve Ap,

2

/ op - Dvpdx + Jp(up; vp) =0 forallv, € Ap .
2

Throughout this paper, set
e.=u—uy, ©6.=0—o0p.

(H3) There exist a constamt > 0, a strictly convex functiop : [0, co) — [0, co) with 8(0) = 0,
and seminormgl - | x, and|| - ||y, on the function spaceX, andY, with A, € X, <
WLr(2; R™) andAp C ¥, € WHP(2; R™) such thak € X;,, e — Ap,, € Y5, and

Bllellx,) < Jn(u; e) — Jp(up; e),
Inu, v) = Jy G v) < Bllellx, vy,
for the exact and discrete solutienand u;, with the errore = u — uj; from (H2), and
veEe— AD,h-

THEOREM2.1 Suppose (H1)—(H3) hold and I8t denote the dual functional 16, i.e. 8*(r) =
sup{st — B(s) : s > 0}. Then, for alle, € Ap ,

1- 1/V)/Q5 t Dedx + (1/c1) 181742y + Blellx;)

r—1
< cale — el o) + B*(2Blle = enlly,) + 2001 (u; en) — J s en).

The constants; andc, depend or, p, r, s, and upper bounds fo# |y 1., o) and|us |y, o)

REMARK 2.1 It follows from (H1) that O< 8 : De almost everywhere of2; hence all the terms
on the left-hand side in the estimate of the theorem are nonnegative.
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REMARK 2.2 It is known thatg* : [0, c0) — [0, o0) is a convex function with8*(0) = 0. In
particular, forB(r) = 12/2 one finds8*(r) = r2/2.

REMARK 2.3 The bounds ofu|y 1.,y and|un|y1r o) may follow from further natural growth
conditions onsS, J, andJ;, which we have not stated here.

Throughout this paper we considéf = J|x,xy, + ax for a continuous bilinear forma;, :
X, x Y, — R. Then we can replace (H3) by the following hypothesis.

(H4) LetO<m < M < oo satisfy
MIIelliz(m SJwe) —Jupse),  Ju;v) —Jupsv) < Mllellpzo)llvlizze)
forallv e WP (2; R™).

PROPOSITION2.2 Suppose (H4) holds, and, < X, € WLP(2;R™) andAp, C Yy C
wLr(2; R™) are such that € X, ande — Apn C Y,. Assume thaty, : X, x Y, — Risa

continuous bilinear formj - % = - I}, = Il - ”22(9) +ap(-,-), andJ, = Jl|x,xy, + ap. Then
(H3) holds withA(r) = min{1, m} 1?2 and B := max1, M}.

Proof. This follows directly from the definitions ofy,, || - llx,, Il - ly, - |
3. Examples

ExAMPLE 3.1 (p-Laplacian) An energy minimisation ofDu|”/p leads to thep-Laplacian
problem withS(F) = |F|P~2F and 2< p < oo. Since (e.g. by a combination of Lemmas 2.1-2.3
in [CK]) for any distinctA, B € R” anda = 1+ max(1, p — 22,
1S(A) = S(B)I?

(S(A) —S(B)) : (A—B)
it follows that (H1) is valid withr = 2,5 = p — 2. See[[CM|_LB] for further results.
ExampLE 3.2 (Optimal Design) The relaxed model for an optimal design problem derived in
[GKR] leads to a minimisation problem with energy dengty) = v (|F|) andS(F) = Do(F).

Given positive parameters @ 11 < o and 0 < up < ug with f1u1 = tauo, the ¢1 function
Y 1 [0, 00) — [0, 00) is defined by (0) = 0 and

<a(AIP72 4 |BIP7?)

uit if0 <t <,
V() = Jrpr =topp if 11 <1 <1,
Ut if rp <t

The functionS(F) satisfies (H1) withr = 2,5 = 0, ande = u1 ([CP1]; cf. alsol[F]).
ExampLE 3.3 (Scalar 2-Well Problem) Given distinct welig, F»> € R", the relaxed scalar 2-well
problem leads to a convexified minimisation problem with energy density

o(F) = max|F — B> — |A]%, 0} + 4(|A*|F — B> — [AT(F - B)]?), (3.1)

whereA = (Fo — F1)/2 andB = (Fy + F»)/2, and (H1) is satisfied with = 2, s = 2, and

o = 4max2, |F1 — F»|?} [CP1,[F]. This scalar problem can be deduced from the Ericksen—-James
energy density in an anti-plane shear model; the version ferl, due to O. Bolzd [Bo], serves as

a master example in nonconvex minimisation [Y].
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ExampLE 3.4 (Compatible Vectorial 2-Well Problem) Given two symmetric matrifgsE> €

Mgy, real numberdv?, W2 e R, and a positive definite fourth order tengor Mgym — Mg,
let

1
Wj(E) = S(E — Ej) : C(E — Ej) + w?

for E € Mgy andj =1,2. ThenifE1 = E>+ (a®b+b®a)/2fora, b € R" the quasiconvex
hull of W : Mgy — R, E — min{W1(E), W2(E)}, is convex and (see [K]) given by

Wi(E) for Wa(E) +y < Wa(E),
1 1 4

@(E) = E(Wz(E) + Wi(E)) - @(WZ(E) — Wi(E))® - " for [Wi(E) — Wa(E)| < v,
W2(E) for Wi(E) +y < Wa(E),

forE € Mgym andy = %(El — E») : C(E1— E). Then (H1) holds foS(A) = De((A+ AT)/2),
A e M"™" withr = 2,5 = 0, and a constant & « that depends o [CPZ].

More physical examples in the context of nonconvex minimisation are includedlin [IL1, L2, R].

ExampPLE 3.5 (Linear Right-Hand Side) Given functiorfse L7(£2; R™) andg € LY(I'y; R™) a
typical linear right-hand side is, for, v € W17 (2; R™),

J(u;v):/ f-vdx+/ g-vds,
Q Ty

where 'y is a (possibly empty) part afs2. Note that/ is independent ofi and hence does not
satisfy (H4).

ExAaMPLE 3.6 (Linear Low-Order Terms) The derivatije= DW of a strictly convex low-order
termy in a model situation of [CR1] reads, forv € wlr(Q; Rm),

J(u;v):[ u-vds
Q

and satisfies (H4) fon = M = 1.

4. Proof of Theorem[2.1

The proof of Theorem 2|1 extends a technique from [CP1]. From that paper we quote the first
lemma.

LEMMA 4.1 Suppose (H1)—(H2) hold ane@|*/? + |u| + |up| < c1a. Then

N s
Wir(Q) wir(Q)

181150y < 61/98 : Ded.

Proof. The proof follows (with different notation) the arguments that lead to formula (3.7).inl[CP1]
and is hence omitted. O

Direct algebra and (H3) imply the following result.
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LEMMA 4.2 Suppose (H2)—(H3) hold arg € Ap . Then

2/95 i Dedx + B(Jle]lx,) < 2/93 : D(e — ep) dx + B*(2Blle — exlly,)
+ 2(Jp(u; en) — J (u; ep)).

Proof. The two identities in (H2) withy = ¢, = v, € Ap ;, € Ap yield
/ 8: Dedx + J(u;e) — Jy(up; e) :/ S:D(e—ep)dx + J(u;e—ep) — Jn(up; e —ep).
2 2

The differences on the left- and right-hand side are estimated by means of the first and second
inequality of (H3) after insertindy, (u; ¢) andJy, (u; e — ep,), respectively, where = ¢ — ¢;,. Hence,

f 81 Dedx + B(llellx,) + (J(u; e) — Jn(u; e)) < / 8:D(e—ep)dx
2 2

+ Bllelix,lle —enlly, + (J(u; e —en) — Jn(u; e — ep)).
The definition of8* showsst < B(s) + *(¢), which, fors = |le||x, ands = 2B|le — ey ||y, , results

in
2B|lellx, lle — enlly, < Blellx,) + B*(2Blle — enlly,)-

The combination of the last two estimates proves the lemma. O

LEMMA 4.3 Suppose (H1)—(H2) hold, and let:= 2”'c ~1//". Then

2/ BZD(e—eh)dxg(l/r)/ 8:Dedx+cz|e—eh|;;/lp(9).
2 2

Proof. Holder's and Young'’s inequalities show

2/ 8:De —en) dx < 1810/ (rer) + 27} le = enliy o /7
2

The assertion then follows from Lemima}4.1. O

Proof of Theorerp 2]1. This follows from Lemmag 4]1—4.3. O

5. Finite element discretization

Let 7 be a regular triangulation af into triangles £ = 2) or tetrahedran = 3) in the sense
of [BS], i.e. no hanging nodes, the domain is matched exa@tlys | ;.7 7, and7 satisfies the
maximum angle condition. The extremal pointsTo& 7 are callechodesand\ denotes the set of
all such nodesk := N\ 942 is the subset of free nodes. The set of edges @) or faces g = 3)
E = conv{zy, ..., z,} € 0T for pairwise distinct1, ...,z, € N andT < 7 is denoted ag. By
Eq we denote the set of interior edges or fadgs,= {(F € £ : AT, To € T, E = T1 N Tz}. We
assume thai 2 is matched exactly by edges 8w, which impliesd 2 = (¢, E for the set of
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boundary edge8p := {E € £ : E C 0£2}. Let P(w) denote the set of algebraic polynomials of
(total) degree< k regarded as scalar functions @nThe set

Pi(T) :={v, € L®°(R2) : VT € T, vy|r € P(T)}
consists of all (possibly discontinuoug}elementwise polynomials of degree at mbstVe define
SHT):=PUT)NCR). Apn=SHTy":=SHT)" N Wy 2(2; R™).

Supposing that p is continuous ord$2 we choose:p j, € SY(T)y™ with up 1, (z) = up(z) for all
z € NNas2 and set
Ap=upn+ S&(T)m.

Let (¢, : z € N) be the nodal basis &(7), i.e.¢, € S1(T) satisfiesp, (x) = 0if x € N'\ {z} and
¢0;(z) = 1. We sethy := diam(T) forall T € 7 andhg := diam(E) for all E € £ and define a
functionhs € £O(T) by hr|r := hr for T e T. Abbreviateh := lh7 || Lo 2y We will frequently
assume thaf is quasiuniform, which implies that ~ ||h}l||zolo(m.

We write H* (U; R™) for W*2(U; R™) for an open set/ € R" and
HS(T; R™) = {v e LA(2; R™) : VT € T, v|r € H*(int(T); R™)}.

The elementwise application of the differential operatér$ (the matrix of all second order
derivatives) andA (the Laplace operator) to a functiane H2(7; R™) is denoted byDZTv and
ATv, respectively.

For each edgé& < £, we choose a vectary € R” (with selected and then fixed orientation)
with Jvg| = 1 orthogonal taE.

Assumev € HY(2; R™)N H?(T; R™),letE € £, besuchthak = T, NT_forT,,T_ €T
and supposez points from7. to 7_. Then define Pv] € L2(E; M"™*") by

[Dv] := (Dvi|r,)|E — (Dvlr))|E.

For a functiong € C(3£2; R™) such thatp|z € H(E;R™) for all E € &p, 33¢/ds? is the
edgewise second derivative ¢falongo$2; H?(Ep; R™) denotes the set of all such functiopis

Throughout this paper we abbreviate inequalities< CB with an k-independent constant
C >0byA < B,andA ~ B replacesA < B < A. The constanC may well depend on the
shape of the elements; elgg ~ hy for E € £ andT € 7 with E C aT. For instance, the
well-established trace inequality reads

16112257y S B 101327y + AT 1 DD 1727, (5.1)
foranyT € 7 andg € HY(T; R™).

6. Stabilisation via jumps of gradients

This section is devoted to the discrete probl@tp) with J, := J + a;, for the bilinear form

ap Xy x Y, >R, (v,w) Z hé / [Dv] : [Dw]ds. (6.2)
Ec€o E
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Here, the spacek; andY}, are arbitrary with
Xn =Y, € WhP(2: R™) N HY2 (T, R™) (6.2)

for somes with 0 < ¢ < 1/2. Then the traces ddv andDw on|J &g, for v, w € X, = Y), belong
to LZ(U £2). Notice thatSY(7)” C X, bute € X, is an additional (and strong) hypothesisign
and that we will even supposec H2(£2; R™).

THEOREMG6.1 Suppose (H1), (H2), and (H4) hold ang € H?(Ep; R™). Moreover, assume that
u € H3(2; R™) N WlP(2;R™) andT is quasiuniform. Then

lim ”Dbt — DMh”LZ(_Q) =0 for-1< y < 3,
h—0
llu — ”h”W1~2(9) < C3hl/2 fory = 1.

The constants > 0 depends om1, c2, and upper bounds fdfu|l y2(c), [unlwire) [Ulwir ),
and||02up /0352l 2 0)-

REMARK 6.1 Ifu € (H2(T;R™) N WLP(£2; R™)) \ H2(2; R™) thenay, (u, -) # 0. In that case,
for y = 5/2, the proof of Theorem 6.1 below can be modified to obtain the estimate

1/8
lu — unllwizegy < 0Y°.

The proof of the theorem follows from the abstract estimate of Theprem 2.1 and the following
lemmas. Throughout this section, abbreviate

. 2 2 2 . 2 2
vl = (1Y [Dv]ll2yegy: Ik, = Iy, = IvllT2q) + IVl

forv e H32te(T, R™).
LEMMA 6.1 If ¢, is the nodal interpolant af € C(£2; R™) then

14+y)/2 ~2
le —enlly, S 1KS772D2 el 200,

Proof. This is an immediate consequence of the trace inequflity (5.1) and standard error estimates
of nodal interpolation. |

Propositior] 2.2 and Lemnja 6.1 allow for the application of Thedrein 2.1. The strong convergence,
however, is obtained by a combination with the following argument.

LEMMA 6.2 We have

1-y)/2 —(1+y)/2
el 1200y S lellpze 1ATell 20y + el (IAG T 2Dell 20y + 1h7 7 el 2(0))

—-1/2
+ 11h2-82up /95?1 1200y (1 2y + 12 Dunll 2@y

Proof. We perform an integration by parts on edthe 7, use the estimatefDu - vl 250, S
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lull 2(y @nd|| Dup - vl 25) < ||h,}1/2Duh||Lz(_Q), and employ the Cauchy inequalities to verify

||De||§2(m= / (De - v) - eds— /(Ae) edx
TeT TeT

f([De] VE) - eds—/(ATe) edx+/ (De -v) -eds

Eckq

(X maipeizz,,) " ( Z nelelagy,)

Ec&p

N

+ 1ATell 2oy llell 2oy + (ull g2y + ||h7~ Duh”LZ(Q))”e”LZ(ag)

_ 1/2
=leli( Y i llela) " + el eyl ATell 2o
Ec€o
-1/2
+ (lull g2y + 1hy " " Dunli 2@y llell L2 0)-
The trace inequality (5]1) yields
_ —(1+y)/2 1-y)/2
> hgl N2z S WhF T2 el2, o) IR Del2, g .
Ee&q
Nodal interpolation estimates on eakEhe £p show
lell 2@y S 1h5-0%up /352l 250,
The combination of the last three estimates concludes the proof. d

Proof of Theorer 6]1. Notice that Du]|z = 0 for all E € &g, so thata, (u, e) = 0. It follows
from Theoreni 211 and Lemrha 6.1 that

-1
lelZ2.g) + lelf S le = enlyyd ) + B*(2Blle = enlly,) + 2a1(u. ex)

-1 +1)/2 _
< b D3ellfNigy + IhY T2 D3el?, ) < 17/ 4 h7H =i RHSY.

The combination of this with Lemm@.z anfidzellr2.q). [l g2e). 103up/352 2¢30)
[ Dunlip 2oy < 1yields
|€|le(9) SRHSH 5% 1oy 17 2l L)
1 1-
+ RHS(1h 72| oo ) RHS+ 1107211 1) [ Dell 12(a)-

Young's inequality allows us to absoftDel|;2(;) = lely1r2.,) On the right-hand side and hence
shows

1 1-y)/2
lel12.) S RHSERHS IS 2 oo )+ RHS AT 212 0 )+ 1 e () 117 2 2.

Sincer < 2,1"/C~Y < h2. From|lh; | L 0) ~ ||h7||LOO(Q) we deduce

lel3aiq) S h 4+ R THZ 4 T2 L gADIZ 377 g 2y 32,

This andllell 2oy < 7%+ h?*1 prove Theore@l. O
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REMARK 6.2 If boundary conditions are imposed only on some partof 352 (and not on the
entire boundary £2) one obtains an additional term

/ (De -v) -eds
A\Ip

which we have been unable to control.

7. Stabilisation via distances to averages of gradients

This section is devoted to a stabilisatidh= J + a; with distances to averages of gradients, i.e.
ap (v, w) == Lhé‘l(pu — ADv) : (Dw — ADw) dx (7.1)
fory e R, v, w € WL-7(£2; R™), and for the averaging operator
A LP(2; M) — SYT)Y™ ", pr> Api= ) |a)z|_1/ pdx g,
;

zeN

Here, for each node e NV, w, = {x € 2 : ¢,(x) > 0} denotes its patch of area or volurhe |.
Let X;, = Y, be as in Sectiop]6. Far € X, we abbreviate

2 (y=1/2 2
vl = an(v, v) = |hf (Dv = ADV) 725,
and define| - [lx, = Il - lly, by
lol%, = Ilvlg, = 101720, + VIl

THEOREM7.1 Under the hypotheses of Theoren 6.1,

lim ”DM — DMh“LZ(Q) =0 for-1< Yy < 3,

h—0

||M — Mh”wl.Z(_Q) < C4hl/2 for Yy = 1.

REMARK 7.1 Provided: € (H3(T;R™) N WP (£2; R™)) \ H%(2; R™) andy = 5/2, one can
prove

1/8
lu —unllwrzgy Sh /8,

The following lemma shows that the stabilisation defined[by](7.1) is equivalent to the one
discussed in the previous section and will be used to reduce the proof of THeofem 7.1 to the one of
Theoren 6.]L. The seminorm |, is defined as in the previous section.

LEMMA 7.1 ([C]) Forv, € SX(T)™ we havelv, |, ~ [l|lvallls- O
Proof of Theorerh 7]1. Let ¢, denote the nodal interpolant efe C(s2; R™). Theorem[ 21 and
Propositiorf 2. show

-1
lelZ o, + el < le = enlyydrp, + lle = enllZ2 ) + lle = enllf + 2an(u, en).
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Lemmd_Z.1l shows
leln < lenln +le —enln S llenlln + le — enln < lllellln + llle — enllln + le — enln-
Nodal interpolation estimates and continuity4dthen imply
lelfy S Ml + A7+

We employ Hdlder’s inequality, Young’s inequality, and nodal interpolation estimates to verify that
forpo > 0,

an(u, en) S Mull + olllenlls < Nlull2 + olllell? + ollle — enllz < Null + olllell + 1Y +2.
Using ..\ . = 1, we deduce
-1
il = Y [ 15 eDu — poDu— D)
eN V82

1/2

-1)/2 1/2 -1)/2

< (XS 1R Du = p)l2ag)) WY VA (DU~ ADW 2,
zeN

wherep, = |w.|1 fwz Du dx for all z € N. Poincaé’s inequality andg, | < 1 show

-1/2 1/2 2 +1)/2 ~2
Z/jvuh(% 2022 (Du = p)l12ag, < 1KY VD
Z€E

The combination of the preceding three estimates proves

2
u ”Lz(.Q)

lell2 g + lelf S A%+ h7HE

The assertions of the theorem then follow from Lenimg 6.2 and the arguments of the proof of
Theorem 6.11. O

8. Stabilisation via gradients

This section is devoted to a stabilisatidh= J + a;, with gradients, i.e. with
ap(v, w) = hV/ Dv : Dwdx (8.1)
2

for somey > Oand allv, w € Xj, = ¥, = WhP(2; R™). Forv € X, we define

2

oI, = 1015, == 1101Z2.g, + A 1DVIZ g -

THEOREM8.1 Suppose (H1), (H2), and (H4) hold. Assume tfiais quasiuniform and: <
wir(Q;R™) N HY5(£2; R™) for somes € (1/2, 1]. Then

lim [[Du — Duyll 2oy =0 fory e (2(1—s), 2s),
h—0
[|lu — Mh”le(_Q) < C5hs71/2 fory =1

The constants > 0 depends ony, cz, and upper bounds faju (| 1+ (@), lunlwir (o) Ulwir o)
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Proof. Propositioff 2. and Theorgm P.1 prove

r/(r—=1)

2
+hV ”De”LZ(_Q) S |e_ehlwl.p(9)

lell?2 g +lle—enlla gy +h 1D(e—en) 122 g +an(u, en)  (8.2)

for the nodal interpolant;, € S&(T)m of e € C(£2; R™). Standard estimates on nodal interpolation
in H15(2) andr/(r — 1) > 2 imply
-1
le = enly e + lle = enllZz ) +HY 1D (e = en)|2 ) S h2 + hZF2 4 hVH2,

If u e H?(£2; R™) then integration by parts arg = 0 onds2 show
hy/. Du : Dehdx < hy”u”[—IZ(Q)”eh”LZ(Q)
2

Holder’s inequality and an elementwise inverse estimate imply
hY /Q Du : Dey dx < hY Hiull gago llenll 2c)-
Interpolation of the last two estimates yields
an(u, ep) = th Du: Dedy < 0™V lufl s o lenll 2y -
2

We further estimate
an(, en) Sh TN ul gaes o) llenll 120
< "I ull gres oy lle — enll 2y + B~ lull gres @) llel L2(q)-
Nodal interpolation estimates and Young’s inequality imply thatfor O,
an(u, en) < py—A=9)+l4s | p2y—21-s) 4 9”6”22(9)_

The combination with[ (8]2) shows, after absorbjieg, >, on the right-hand side,

”e”iz(Q) + hy”De”iz(Q) § hZS + hzy—Z(l—s). 0

The following theorem states that the stabilisation schémég (8.1) is in fact the schémelof [NW] in 1D
(up to a lumped integration of the right-hand sifle

THEOREMS8.2 lLetn=m=1,2:=(0,1), A= Ap = Wol”’(o, 1),

1
1
S = [Cuvde o) =5 3 han @
0 2zelC

foru,v e Wol’p(o, 1D andup, vy, € Ay = Apj = Sé(T). Then, for alluy,, v, € Ay,

1 1
TnGans o) = J (s vy) + 6/ 13 Dup Doy, dr.
0
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Proof. Let0 = z9 < z1 < -+ < zm+1 = 1 be such thatV'- = {z0,z1, -+, zm+1} and set
hj = zj —zj—aforj =1,...,m+ 1sothath;, = h; + hji1for j = 1,..., m. Elementary
calculations withvy, (zo) = vj,(zm+1) = 0 show

1m+l
Jns i) = =D hjQun(zi-1)vn(zj-1) + un(zi-1)vn())
=1
+ un(zj)vn(zj—1) + 2un(zj)vn(z))),
1m+1
Jn(up; vp) = > Z hj(up(zj—1)vp(zj—1) + up(zj)va(z;)).
=1

Hence,
m+1
TnCauns vn) = J s vp) = 2 ,; hj (un(zj-1)va(2j-1) — un(zj-1)va(z))
—up(zj)vn(zj-1) + un(z;)vn(z;))

1m+l
= & 2 i) — (2 -0) (n(z)) = va(zj-1)
j=1

1 1
= é,/o h%—DuhDvh dx. O

The parametey = 2 is critical in Theorer 8]1 and excluded in our analysis. In fact, the arguments
in [NW] are quite different and restricted to a model scenario in 1D.

9. Strong convergence in the scalar 2-well problem

In the case of the 2-well energy from Example]|3.3 andl 2, m = 1 we can weaken (H4), i.e. the
uniform monotonicity of/ can in fact be replaced by monotonicity.

(H5) There exist®3 > 0 such that, fov € W17 (£2),
0< J(use) — J(upse),  J(u;v) — J(un; v) < Bllell2¢) vl L2(0)-

We suppose thak, := J + a;, with a; asin [6.1),[(7.1), o (8]1).

THEOREM9.1 Suppose > 2 andm = 1. LetS = D¢ with ¢ as in Examplé 3]3. Suppose (H5)
holds and«p € H?(Ep; R). Assume thafl is quasiuniform and € H2(22) N W17 (£2). Then

lu —unllwrzgy < ceht’?  for y =1

The constants > 0 depends om1, cz, and upper bounds fdfull y2o), [urlwir(g) [Ulwir o),
and||92up /92l 2y c)-

The proof of the theorem follows from the following lemma and the estimates of the previous
sections.
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LEMMA 9.1 Letn > 2 and lep be as in Example 3.3 ari= Dg. Suppose;, € H(£2) satisfies
e, =00nds2. Then

lell?2 o) S /Q 8 Dedx + lle = enll 72 + 1D = en) 172
Proof. Proposition 3 in[[CP1] ensures the existence of sameR” with |a| = 1 such that

la - Del? 5/8-Dedx.
L@~ |

A fine version of the Friedrichs inequality (which follows from the one-dimensional Friedrichs
inequality) proves

||eh||L2(Q) S lla- Deh||L2(Q)~
Two applications of the triangle inequality and the last two estimates prove the lemma. O

Proof of Theorer@l. Proposition 2 and Theorem 2 in [CP1] prove (H1)—(H2). Setuinmf(h =

||v||§h = ayp(v, v) we observe that the first estimate in (H3) is satisfied. Instead of the second
estimate in (H3) we have

Jnu; v) = Jp(un; v) < llell i) lIvlizz) + lellx, vy,
forall v € Y. This and Lemmp 9]1 imply the estimate of Theofen 2.1. Hence,

2 -1 2
lelZ2 g, +ante, ) S le —enlys o + e —enll?2 g

+1D(e = en) 132 + anle — en, e — en) + 2an(u, en)

forey € S&(T). The estimate of the theorem then follows as in the proofs of The@@.l, 7.1, and
[8.1 foray, defined by[(6.11)[(7]1), anfi (8.1), respectively. a
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