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Modeling and simulation of sublimation growth of SiC bulk single crystals†
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We present a transient mathematical model for the sublimation growth of silicon carbide (SiC) single
crystals by the physical vapor transport (PVT) method. The model of the gas phase consists of
balance equations for mass, momentum, and energy, as well as reaction-diffusion equations. Due
to physical and chemical reactions, the gas phase is encompassed by free boundaries. Nonlinear
heat transport equations are considered in the various solid components of the growth system.
Discontinuous and nonlocal interface conditions are formulated to account for temperature steps
between gas and solid as well as for diffuse-gray radiative heat transfer between cavity surfaces. An
axisymmetric induction heating model is devised using a magnetic scalar potential. For a nonlinear
evolution problem arising from the model, a finite volume scheme is stated, followed by a discrete
existence and uniqueness result. We conclude by presenting and analyzing results of transient
numerical experiments relevant to the physical growth process.
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1. Introduction

Due to its advantageous physical properties, silicon carbide (SiC) is used in numerous industrial
applications. As a semiconductor substrate material, SiC is utilized in electronic and optoelectronic
devices such as MESFETs, MOSFETs, thyristors, P-i-N diodes, Schottky diodes, blue and green
LEDs, lasers, and sensors. Its chemical and thermal stability enables SiC to be used in high-
temperature applications as well as in intensive-radiation environments. Moreover, SiC is especially
suitable for usage in high-power and high-frequency applications.

The industrial use of SiC requires the availability of large-diameter, low-defect SiC boules.
Moreover, a high growth rate during the production process is desirable to reduce production time
and costs. Even though there has been substantial progress in SiC manufacturing in recent years,
satisfying all of the aforementioned demands remains challenging, as only partial solutions exist
(cf. e.g. [2, 7, 15]).
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We consider the production of SiC single crystals by sublimation growth viaphysical vapor
transport (PVT) (modified Lely method, see e.g. [13]). Typically, modern PVT growth systems
consist of an induction-heated graphite crucible containing polycrystalline SiC source powder and
a single-crystalline SiC seed (see Fig. 1). The source powder is placed in the hot zone of the growth
apparatus, whereas the seed crystal is cooled by means of a blind hole, establishing a temperature
difference between source and seed.
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FIG. 1. Setup of growth apparatus according to [17, Fig. 2].

To eliminate contaminants such as S, B, and metallic elements from the growth system in a
first heating stage, the apparatus is degassed at some 10−3 Pa and heated to about 1200 K. After
this contaminant bakeout phase has been completed, a high-purity argon atmosphere is established
at 105 Pa, and the temperature is further increased. At growth temperature, which can reach up to
3000 K for growth of the SiC polytype 6H, pressure is reduced to about 2· 103 Pa [1].

After growth temperature has been reached, the SiC source is kept at a higher temperature
than the cooled SiC seed, such that sublimation is encouraged at the source and crystallization
is encouraged at the seed, causing the partial pressures of Si, Si2C, and SiC2 to be higher in
the neighborhood of the source and lower in the neighborhood of the seed. As the system tries
to equalize the partial pressures, source material is transported to the seed which grows into the
reaction chamber.
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As the crystal’s quality and growth rate depend strongly on the evolution of the temperature
distribution [19, 20], mass transport, and species concentrations [21], control of these quantities
is essential. However, due to the high temperatures, experimental verification of the correlation
between the quantities to be regulated and control parameters such as apparatus configuration,
heating power, and argon pressure is extremely difficult and costly.

Thus, theoretical modeling and numerical simulation play a fundamental role in gaining
understanding of the relation between control parameters and favorable growth conditions. In
consequence, the development of numerical models and software and their application to PVT
growth of SiC crystals has been an active field of research in recent years. Recent papers on
stationary models include [9, 17]. Transient numerical results concerning the heat transfer during
PVT are considered in [3, 11, 16].

The paper is organized as follows: Section 2 covers the mathematical modeling of the process,
namely, the gas phase in Section 2.1, the free boundaries in Section 2.2, heat conduction in the
solid components in Section 2.3, interface and boundary conditions in Section 2.4, diffuse-gray
radiation in Section 2.5, and induction heating in Section 2.6. In Section 3, we consider numerical
solutions for the temperature evolution problem, formulating a finite volume scheme in Section 3.1,
followed by a discrete existence and uniqueness result (Theorem 1). Finally, in Section 3.2, we
discuss numerical results and their implications for the growth process.

2. Mathematical model

2.1 Gas phase

Our model of the gas phase is based on continuous mixture theory and Fick’s law. Neglecting
radiative contributions inside the gas phase, this leads to the following system (2.1), consisting
of balance equations for mass, momentum, and energy, as well as reaction-diffusion equations (see
[16, Section 2.1] for a detailed derivation):

• Mass Balance:
∂ρgas

∂t
+ div(ρgasvgas) = 0, (2.1a)

• Momentum Balance:
∂(ρgasvgas)

∂t
+ div(pgas1) = ρgasg, (2.1b)

• Energy Balance:

∂

∂t
(ρgasεgas) + div(ρgasεgasvgas+ qgas+ pgasvgas) = ρgasg • vgas, (2.1c)

• Reaction-Diffusion Equations (one for each gas speciesα, α ∈ {Ar, Si, Si2C, SiC2}):

dc(α)

dt
−

1

ρgas
div(ρgasc

(α)(D(α))−1(∇p(α)
− c(α)

∇pgas)) =
1

ρgas
ρ∗(α), (2.1d)

where

d

dt
:=

∂

∂t
+ vgas• ∇, (2.2a)
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pgas=

∑
α

p(α), εgas=

∑
α

c(α)ε(α), (2.2b)

qgas = −κgas∇ Tgas−
∑
α

(ρgasc
(α)ε(α)

+ p(α)) (D(α))−1(∇p(α)
− c(α)

∇pgas). (2.2c)

In (2.1) and (2.2), the subscript “gas” is used for quantities in the gas mixture, whereas superscripts
(α) indicate quantities in the gas speciesα. The meaning of the symbols is as follows:

ρgas– mass density, t – time,

vgas– local mean velocity of gas molecules, 1 – unit matrix,

pgas– total pressure, p(α) – partial pressure,

g – gravimetric acceleration,

εgas– total internal energy, ε(α) – partial internal energy,

qgas– heat flux, c(α) – mass concentration,

D(α) – diffusion coefficient,

ρ∗(α) – partial mass source (chemical reactions, phase transitions),

κgas– thermal conductivity, Tgas– absolute temperature.

Furthermore, Equations (2.1) are coupled through the following material laws, furnished by the
theory of ideal gases:

p(α)
= ρgasc

(α) R

M(α)
Tgas, ε(α)

= z(α) R

M(α)
Tgas, (2.3a)

ρ∗(α)
=

N∑
i=1

γ
(α)
i M(α)µHΛ(i) (2.3b)

for each gas speciesα, whereR is the universal gas constant,M(α) is the molecular mass,z(α)
= 3/2

for single-,z(α)
= 5/2 for double-, andz(α)

= 3 for multi-atomic gas molecules,N is the number of
chemical reactions and phase transitions,γ

(α)
i are the stoichiometric coefficients,µH is the hydrogen

molecular mass, andΛ(i) are rates of chemical reactions or phase transitions, respectively.
The unknown quantities in the above equations are

{ρgas, vgas, c
(α1), . . . , c(αA), Tgas}, (2.4)

whereA is the number of gas species considered, i.e.A = 4 in the case considered above. For each
time instant, the state of the gas mixture is determined by theA + 3 quantities in (2.4).

While, for temperatures above 2500 K, Si, Si2C, and SiC2 make up a significant portion of the
gas mixture, for lower temperatures only Ar is present, and, for higher temperatures, heat is mainly
transported via radiation. So, e.g. for the simulations of the temperature distribution and its evolution
considered in Section 3.2 below, assuming a pure Ar gas phase is a reasonable approximation. Then,
if we use the material laws (2.2b) and (2.3a), the energy balance in the gas phase (2.1c) simplifies
to

z(Ar)R

M(Ar)

∂

∂t
(ρgasTgas) + div

(
(z(Ar)

+ 1)R

M(Ar)
ρgasTgasvgas+ qgas

)
= ρgasg • vgas, (2.5)
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and the heat flux satisfies Fourier’s law, i.e.

qgas= −(κ(Ar)
∇Tgas). (2.6)

2.2 SiC growth and sublimation, free boundaries

Due to phase transitions and chemical reactions, all surfaces ambient to the growth chamber
constitute free boundaries. The occurring processes include the intended growth of the single crystal
and the sublimation of the source powder as well as unwanted processes such as graphitization of
seed and source or the decomposition of the graphite walls.

A natural numerical approach is to calculate the position of the free boundaries att = t1 = t0+δ,
for a small positiveδ, from its position att = t0. To proceed in this way, one needs to determine the
species mass flux at each point of the free boundary from the values of the fields (2.4) att = t0.

In a first, crude, approximation, instead of taking into account the gas constituents Si, Si2C,
and SiC2, one can consider a homogeneous “SiC-gas”, determining the partial pressurep(SiC-gas)

of the SiC-gas from a diffusion equation. Assuming that, at the boundary of the gas phase (crystal
surface, powder surface, or graphite wall, respectively),p(SiC-gas) is identical to the corresponding
temperature- and surface-dependent equilibrium pressurepeq (peq

= p
eq
crystal, p

eq
powder, or p

eq
wall,

respectively) yields Dirichlet boundary conditions for the diffusion problem forp(SiC-gas). The mass
flux j between gas and surface can then be computed from the solutionp(SiC-gas). However, this
approach supposes that the growth process is limited by the transport through the gas phase and it
omits the influence of the growth kinetics.

To take into account the influence of the growth kinetics, one can use a Hertz–Knudsen formula
to determine the mass fluxj :

j =
s

√

M(SiC)

√
2πRT

(p(SiC-gas)
− peq), (2.7)

which means replacing the Dirichlet conditions of the diffusion problem forp(SiC-gas) with a Robin
condition. In (2.7),s ∈ [0, 1] is a surface-dependent sticking coefficient, denoting the probability
for a molecule that collides with the surface to stick to that surface and be absorbed. At the graphite
wall and at the powder surface, the value ofs must also take into account that the surface is jagged
and porous.

The above model of simple sublimation cannot describe and predict chemical effects such as the
observed graphitization of the powder source. In order to include such effects, one has to consider
several chemical reactions occurring at the surfaces, and one has to take into account at least the most
important constituents of the SiC-gas, i.e. Si, Si2C, and SiC2. Then, instead of equilibrium pressures
for the different components, one merely has relations between the different partial pressures in the
equilibrium, resulting from the mass action laws of the chemical reactions considered. For example,
from the reactions

2SiC→ Si + SiC2, SiC+ Si → Si2C,

involving solid SiC and the main gas species, the mass action laws imply that there are temperature-
dependent functionsKI andKII such that, for the partial pressures of a gas mixture in equilibrium
with the SiC crystal, we have

p(Si)p(SiC2) = KI(T ),
p(Si2C)

p(Si)
= KII (T ). (2.8)
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Then (2.8) must be used to determine suitable boundary conditions for the reaction-diffusion
equations (2.1d) above. Further research is ongoing to formulate such boundary conditions as well
as the mass action laws for reactions changing the composition of the surface, to model the kinetics
of the chemical reactions, and to determine the material parameters involved.

2.3 Heat conduction in solid materials

The PVT growth system comprises several solid material components (see Fig. 1).
Heat transport inside solid materials via conduction is considered in the current section.

Radiative heat transfer through the semi-transparent seed crystal is included using the band model
(see Section 2.5 below). Radiative heat transfer due to radiation which is both emitted and
absorbed inside the same solid materialβ is included in the current model by using an appropriate
temperature-dependent law for the thermal conductivity of the materialβ. However, the current
model neglects any mechanical or chemical interactions inside the solid materials. In particular,
it does not account for certain effects observed in real growth systems such as porosity changes,
sintering and graphitization of the source powder, and accumulation of Si in the graphite felt
insulation.

Heat conduction in the solid materialβ obeys

ρ[β]c[β]
sp

∂T [β]

∂t
+ div q[β]

= f [β], (2.9a)

q[β]
= −κ [β]

∇T [β], (2.9b)

whereT [β] denotes absolute temperature,ρ[β] mass density,c[β]
sp specific heat,q[β] heat flux,κ [β]

thermal conductivity, andf [β] power density (per volume) caused in conducting materialsβ due
to induction heating. The heat sourcesf [β] are determined according to the sinusoidal RF-heating
model in Section 2.6.

Heat conduction in the copper induction coil is not considered, as, in real growth systems, the
coil is cooled very effectively, e.g., by water flowing inside the coil rings. Thereby, the coil is kept
virtually at room temperature.

2.4 Interface, boundary, and initial conditions

To complete the heat transport model inside the entire growth apparatus, the heat equation of the gas
phase (2.1c) and the different heat equations (2.9) for the solid materialsβ need to be coupled by
appropriate interface conditions, and suitable outer boundary conditions have to be set. We assume
that the locations of all solid components of the growth apparatus do not change with time.

Let β andβ ′ denote different solid components of the growth apparatus. The normal heat flux
is assumed to be continuous on an interfaceγβ,β ′ between two solid materialsβ andβ ′, i.e. the
interface condition is given by (2.10a). If the solid materialβ is semi-transparent, or on an interface
γβ ′,gasbetween the solid materialβ ′ and the gas phase, one needs to account for radiosityR and for
irradiationJ , resulting in interface conditions (2.10b) and (2.10c), respectively. The modeling ofR

andJ is the subject of Section 2.5 below.
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q[β]
• n[β]

= q[β ′]
• n[β] onγβ,β ′ , (2.10a)

q[β]
• n[β]

− R + J = q[β ′]
• n[β] onγβ,β ′ , (2.10b)

qgas• ngas− R + J = q[β]
• ngas onγβ,gas, (2.10c)

wheren[β] is the outer unit normal vector to the solid materialβ, andngas is the outer unit normal
vector to the gas phase.

The temperature is always assumed to be continuous between solid materials, i.e., on an interface
γβ,β ′ between two solid materialsβ andβ ′, one has (2.11a). Even though, in reality, the temperature
is also continuous across an interfaceγβ,gasbetween a solid materialβ and the gas phase as stated in
(2.11b), the temperature gradient can be extremely steep inside an interface layer. If the size of the
interface layer is much less than typical lengths of the system to be modeled, then it is reasonable
to assume a temperature jump on the interface. In this case, if the heat flux in the gas phase satisfies
Fourier’s law (2.6), then the temperature discontinuity depends linearly on the normal heat flux
through the interface, with a positive factor of proportionalityξβ . Thus, (2.11b) is then replaced by
(2.11b′).

T [β]
= T [β ′] onγβ,β ′ , (2.11a)

T [β]
= Tgas onγβ,gas, (2.11b)

−(κgas∇Tgas) • ngas= ξβ(Tgas− T [β]) onγβ,gas. (2.11b′)

The Stefan–Boltzmann law together with (2.9b) provides the outer boundary condition

−(κ [β]
∇T [β]) • n[β]

= σε[β]((T [β])4
− T 4

room), (2.12)

whereσ = 5.6696· 10−8W/m2K4 denotes the Boltzmann radiation constant, andε[β] denotes the
(temperature-dependent) emissivity of the surface. Condition (2.12) means that the growth apparatus
is exposed to a black body environment (e.g. a large isothermal room) radiating at room temperature
Troom = 293 K.

On outer boundaries receiving radiation from other parts of the apparatus, the situation is more
complicated. On such boundaries, it does not suffice to use just the Stefan–Boltzmann law according
to (2.12), but, as in (2.10b) and (2.10c), one has to account for radiosityR and irradiationJ , leading
to the boundary condition

q[β]
• n[β]

− R + J = 0, (2.13)

where, as before, the modeling ofR andJ is deferred to Section 2.5.
Condition (2.13) is used on outer boundaries representing surfaces adjacent to the upper and

lower blind hole in Fig. 1. To allow for radiative interactions between such open cavities and the
ambient environment, including reflections at the cavity’s surfaces, black body phantom closures
are used, emitting radiation atTroom. In Fig. 1, the phantom closures are the dashed lines labeled
Γtop andΓbottom.

Finally, in the case of transient simulations, one needs to prescribe a temperature distribution at
the initial time. For the simulations presented in Section 3.2, it is assumed that the initial temperature
distribution is homogeneous atTroom.

2.5 Diffuse-gray radiation

The heat flux due to radiosityR and the heat flux due to irradiationJ had to be included in the
interface conditions between a solid and a semi-transparent material and between a solid material
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and the gas phase, resulting in the above interface conditions (2.10b) and (2.10c), respectively.
Similarly, the heat fluxes due toR andJ have to be taken into account on outer boundaries being
in mutual radiative interaction. The resulting outer boundary condition was stated as (2.13). The
subject of the present section is the modeling ofR andJ .

The model does not consider any interaction between gas and radiation. In particular, radiation
is assumed to travel unperturbed between surfaces of solid components throughout cavities inside
the growth apparatus. All solids except the SiC single crystal are treated as opaque media. For the
SiC single crystal, semi-transparency is included via the band approximation model.

Reflection and emittance are supposed to be diffuse-gray, i.e. independent of the angle of
incidence and independent of the wavelength. Since the solid surfaces inside the growth apparatus
(including the surface of the SiC single crystal) are generally non-smooth, the effect of specular
reflections is expected to be negligible.

The model employs the net radiation method as described in [8, Chapter 3.3] and, with a different
notation, in [5]. More general treatments of this standard model can be found in textbooks such as
[14] and [23]. We are first going to describe the opaque case, and, subsequently, we will indicate
modifications in the case of semi-transparency.

In the opaque case, no radiation is transmitted through a solid surfaceΓ , and at each point
x ∈ Γ , the radiosityR is the sum of the contribution from emitted radiationE and of the contribution
from reflected radiationJref:

R(x) = E(x) + Jref(x). (2.14)

It is convenient to write the material dependence of the emissivity as a dependence on the space
variable x: ε(Tsolid(x), x) := ε[β](Tsolid(x)) for each x in the domain of the solidβ, where
Tsolid denotes the absolute temperature in the solid material adjacent to the cavity considered.
While, due to the possible temperature jump between solid and gas (cf. (2.11b′)), one needs to
distinguish between the corresponding temperatures, such a distinction is not necessary between
the temperatures in different solids, as continuity is assumed on solid-solid interfaces.

According to the Stefan–Boltzmann law, the emitted radiation is given by

E(x) = σ · ε(Tsolid(x), x) · (Tsolid(x))4. (2.15)

The reflective term in (2.14) can be expressed using the reflectivity%, i.e. the ratio of reflected
radiation and irradiationJ :

Jref(x) = %(Tsolid(x), x) · J. (2.16)

If α denotes the absorptivity, i.e. the ratio of absorbed radiation and irradiation, then opaqueness
implies

α + % = 1, (2.17)

and by Kirchhoff’s law
α = ε. (2.18)

Due to diffuseness,J can be calculated using the integral operatorJ defined by

J (x) = J (R)(x) :=
∫

Γ

Λ(x, y)ω(x, y)R(y) dy, (2.19)

whereΛ is the visibility factor defined by

Λ(x, y) :=

{
1 if x, y are mutually visible,

0 if x, y are mutually invisible,
(2.20)
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and whereω is the view factor, forx 6= y, defined by

ω(x, y) :=
(ngas(y) • (x − y))(ngas(x) • (y − x))

π((y − x) • (y − x))2
. (2.21)

Combining Equations (2.14) through (2.19) provides the following nonlocal equation for the
radiosityR:

R(x) − (1 − ε(Tsolid(x), x))J (R)(x) = σ · ε(Tsolid(x), x) · (Tsolid(x))4. (2.22)

Finally, as it is needed in the interface conditions (2.10b) and (2.10c), and in the outer boundary
condition (2.13), the expression−R + J is computed from (2.22) and (2.19):

−R(x) + J (x) = ε(Tsolid(x), x) · (J (R)(x) − σ(Tsolid(x))4). (2.23)

The new formulation of (2.10b) and (2.10c) will be given after the discussion of the semi-transparent
case below (see (2.28)). However, the open cavities of the apparatus are typically not adjacent to the
seed crystal (see Fig. 1). This allows one to rewrite the outer boundary condition (2.13) as

q[β]
• n[β]

+ ε · (J (R) − σT 4
solid) = 0 (2.24)

on each outer boundary of solid materialβ adjacent to an open radiation region.
In the following, we describe the band approximation model to account for the semi-

transparency of the SiC single crystal.
According to the band approximation model, the spectrum decomposes into areflectiveband of

wavelengthsIr and atransmittiveband of wavelengthsIt. Radiation corresponding toIr interacts
with the surface of the semi-transparent material, i.e. it is emitted, reflected and absorbed by the
surface. Radiation corresponding toIt does not interact with the semi-transparent material at all,
i.e. it is transmitted unperturbed through the medium. Thus, the band model neglects radiation
transmitted between the interior and the exterior of the semi-transparent material. This is an accurate
approximation if the range of wavelengths in which the spectral optical thickness (penetration depth
divided by material thickness) is close to one, is sufficiently small [5, Section 3.4]. As mentioned
before, radiation-driven heat transport staying inside a solid component is assumed to be accounted
for by the corresponding temperature-dependent law of thermal conductivity.

The contributions from the two bands of wavelengths are computed separately. While the
radiation region for the reflective band consists of the actual cavity, the radiation region for the
transmittive band is made up of the cavity united with the semi-transparent body. Consequently, the
boundaryΓt of the transmittive radiation region is different from the boundaryΓ of the opaque
case,Γt containing the interfaces between semi-transparent material and opaque solids instead of
interfaces between semi-transparent body and gas.

OnΓ , letRr, Er, andJref,r denote the respective contributions to the radiosity, emitted radiation,
and reflected radiation stemming from wavelengths in the reflective bandIr. These quantities satisfy
(2.14), whereas Planck’s law of black body radiation implies that, forEr, the emissivityε written in
(2.15) has to be replaced by

εr(Tsolid(x), x) =

∫
Ir

ε(Tsolid(x), x, λ) Ib,λ(Tsolid(x)) dλ , (2.25)

Ib,λ(T ) :=
15C4

π4λ5T 4(eC/λT − 1)
, (2.26)
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λ denoting the wavelength,ε(Tsolid(x), x, λ) denoting the emissivity for monochromatic radiation
of wavelengthλ, andC := 1.4388· 10−2 mK.

Moreover, using Planck’s and Kirchhoff’s laws to determine the absorptivity ofΓ with respect
to the reflective band, one can show that (2.16) also holds forRr andJref,r if %(x, T (x)) is replaced
by

%r(Tsolid(x), x) = 1 −
εr(Tsolid(x), x)∫

Ir
Ib,λ(Tsolid(x)) dλ

. (2.27)

As in the opaque case, one can now derive a nonlocal equation forRr, similar to (2.22).
Let Rt, Et, Jref,t, εt, and %t denote the quantities with respect to the transmittive band,

corresponding toRr, Er, Jref,r, εr, and%r, respectively. The procedure to compute the transmittive
contributions is analogous to the reflective case, withΓt used instead ofΓ . By Jt, we denote the
operator corresponding toJ with Γ replaced byΓt; εt and%t are computed by replacingIr with It
in both (2.25) and (2.27).

One is now in a position to rewrite (2.10b) and (2.10c) depending on which of the following
three cases occurs at the respective interface:

Case (i): The interface is part ofΓt \ Γ , i.e. it is an interface between the semi-transparent
SiC single crystal and an opaque solidβ. Let the interface be denoted byγSiC-Crystal,β . Since only
transmittive contributions are present onγSiC-Crystal,β , the interface condition reads

q[SiC-Crystal]
• n[SiC-Crystal]

+ εt · (Jt(Rt)− σT 4
solid) = q[β]

• n[SiC-Crystal] onγSiC-Crystal,β . (2.28a)

Case (ii): The interface is part ofΓt ∩Γ , i.e. it lies between an opaque solidβ and the gas phase.
Let the interface be calledγβ,gas. On γβ,gas, one obtains contributions from both bandsIr andIt,
which are then incorporated additively into the corresponding interface condition, yielding

qgas• ngas+ εr · (Jr(Rr) − σT 4
solid) + εt · (Jt(Rt) − σT 4

solid) = q[β]
• ngas onγβ,gas. (2.28b)

Case (iii): The interface is part ofΓ \ Γt, i.e. the interface is between the SiC crystal and the
gas phase. Hence, it will be denoted byγSiC-Crystal,gas. On γSiC-Crystal,gas, only contributions from
the reflective band are present, resulting in

qgas• ngas+ εr · (Jr(Rr) − σT 4
solid) = q[SiC-Crystal]

• ngas onγSiC-Crystal,gas. (2.28c)

2.6 Induction heating

The goal of the present section is to determine the heat sourcesf [β] occurring in (2.9a), that are due
to the radio frequency (RF) induction heating of the PVT growth system. The model presented in
the following assumes an axisymmetric growth apparatus and takes its basic ideas from [4] and [18].

To be able to consider the problem in an axisymmetric setting, the actual coil is replaced by
N cylindrical rings with a sinusoidal alternating voltage imposed in each ring. Thus, the voltage
imposed in thek-th ring has the complex representation

vk(t) = vk,0e
iωt , (2.29)

wherei denotes the imaginary unit,ω is the angular frequency, andv1,0, . . . , vN,0 are complex-
valued voltages. Let(r, ϑ, z) denote cylindrical coordinates. It is shown in [4] and [18] that, given
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the total voltage in each coil ringvk,0, k = 1, . . . , N , there is a complex-valued magnetic scalar
potentialφ such that the following holds for the current densityj (cf. [18, Eq. (28)]):j = j0e

iωteϑ ,
with

j0 =

{
−iωσcφ +

σcvk,0
2πr

in thek-th coil ring,

−iωσcφ in all other conducting materials,
(2.30)

whereσc denotes the electrical conductivity. The heat sourcesf [β]
= f (r, z) can then be computed

from

f (r, z) =
|j0(r, z)|

2

2σc(r, z)
. (2.31)

All solid materials in the growth system are considered as potential conductors, whereas the
gas phase is treated as a perfect insulator. We assume that displacement currents as well as surface
currents can be neglected.

The potentialφ is determined from the system of elliptic partial differential equations [18, (22),
(29)], which we rewrite in the following divergence form (2.32) which is more suitable for our
numerical approach via a finite volume discretization:

− ν div
∇(rφ)

r2
= 0 in the gas phase, (2.32a)

−ν div
∇(rφ)

r2
+

iωσcφ

r
=

σcvk,0

2πr2
in thek-th coil ring, (2.32b)

−ν div
∇(rφ)

r2
+

iωσcφ

r
= 0 in other conducting materials, (2.32c)

whereν denotes the magnetic reluctivity, i.e. the reciprocal of the magnetic permeability. Bothν

andσc can vary in space, but they are supposed to be constant in time.
The system (2.32) is completed by interface and boundary conditions. Owing to the assumption

of no surface currents, we have the interface conditions [18, (30)]:(
ν�Material1

r2
∇(rφ)�Material1

)
• nMaterial1 =

(
ν�Material2

r2
∇(rφ)�Material2

)
• nMaterial1 (2.33)

on interfaces between Material1 and Material2, where � denotes the restriction to the respective
material, andnMaterial1 denotes the outer unit normal vector to Material1. It is also assumed thatφ
is continuous throughout the whole domain and thatφ = 0 both on the symmetry axisr = 0 and
sufficiently far from the growth apparatus. For the apparatus of radius 13.6 cm (including coil) and
of height 25 cm used for the numerical simulations discussed in Section 3.2 below, we found from
numerical experiments that using a domain radius and height of 1.2 m and 1.8 m, respectively, is
sufficiently accurate for our purposes.

Let Ωk denote the two-dimensional domain of thek-th coil ring. The total current in thek-th
ring is then given byeiωtJk, with

Jk :=
∫

Ωk

j0(x) dx . (2.34)

Since the coil rings constitute the approximation of a single, connected coil, the total current must
be the same in each coil ring, i.e.

Jk = Jk+1 for k = 1, . . . , N − 1. (2.35)
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One can now set up a linear system forv1,0, . . . , vN,0 such that (2.35) is satisfied, and one has the
freedom to prescribe a total current or a total voltage or (as we do for our simulations in Section
3.2) a total power (see [10] for more details).

The assumption of a sinusoidal form of the eletromagnetic quantities is only admissible if the
material parameters involved are constant in time, and if there is no movement. Thus, to account for
the temperature dependence of the electrical conductivity during the transient simulations in Section
3.2, the quasi-stationary electromagnetic problem presented above is solved in each time step of the
transient computations for the heat evolution problem.

3. Numerical solutions

3.1 Finite volume scheme

In the following Section 3.2, we will present results of numerical simulations for the temperature
evolution in the growth system. Simplifying assumptions, as explained in Section 3.2.1, lead to a
coupled system of equations of the form

∂εj (T , x)

∂t
− div(κj (T )∇T ) − fj (T , t, x) = 0 (3.1)

for the unknown continuous temperature functionT . Here, each equation (3.1) is considered on a
time space cylinder [0, tf ]×Ωj , whereΩj is a two-dimensional polytope (a bounded polyhedral set),
representing either a solid component of the growth apparatus or the gas phase. The goal is now to
discretize the system and to state a discrete existence and uniqueness result that was proved in [16].
Here, for simplicity, we restrict ourselves to the continuous interface conditions for temperature and
heat flux and to the outer boundary condition (2.12). For the general case, including discontinuous
and nonlocal interface and boundary conditions as well as convective contributions, we refer to [16].

Time discretization is performed using the implicit Euler scheme, where 0= t0 < · · · < tN = tf ,
N ∈ N. For subsequent use, letkn := tn − tn−1, ∆ := max{kn : n = 1, . . . , N}. The space
domainΩ :=

⋃
j Ωj is discretized into sufficiently benign control volumes, e.g., by the following

procedure: LetΩc denote the convex hull ofΩ, and consider a constrained Delaunay triangulation
of Ωc. Such a triangulation must satisfy the constrained Delaunay criterion, i.e. it must consist of
triangles such that the sum of two angles opposite the same connecting edge can be at most 180◦,
and angles opposite boundaries or interfaces must be at most 90◦ (see Fig. 2).

∂Ωc

Ωc

(a)

α

(b)

βα

FIG. 2. The situation in (a) violates the constrained Delaunay criterion, asα > 90◦. For the situation in (b),α = 110◦ and
β = 60◦, i.e. the constrained Delaunay criterion is violated if and only if the dashed line constitutes not only a common edge
of two triangles, but also an interface between different domainsΩj1 andΩj2.
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Moreover, each interface must be discretized into triangle edges (see [22] for further information
on two-dimensional Delaunay triangulation). IfV denotes the (finite) set of vertices of the constraint
Delaunay triangulation, then, for eachv ∈ V ,

ωv :=
{
x ∈ p : ‖x − v‖2 < ‖x − w‖2 for eachw ∈ V \ {v}

}
(3.2)

is the Voronöı box centered atv. For eachj and eachv ∈ V , let ωj,v := ωv ∩ Ωj . Now, for each
j , Ωj =

⋃
v∈Vj

ωj,v, whereVj := V ∩ Ωj , is the desired discretization ofΩj into control volumes

ωj,v. Finally, lettingVΩ := V ∩ Ω, we are in a position to formulate the finite volume scheme for
the unknown temperature: One is seeking a nonnegative solution(T0, . . . , TN ), Tn = (Tn,v)v∈VΩ ,
to

T0,v = Troom (v ∈ VΩ), (3.3a)

Hn,v(Tn−1, Tn) = 0 (v ∈ VΩ , n ∈ {1, . . . , N}), (3.3b)

where for eachn ∈ {1, . . . , N}:

Hn,v(Tn−1, Tn)

:= k−1
n

∑
j

(εj (Tn,v, v) − εj (Tn−1,v, v)) · vr · λ2(ωj,v)

−

∑
j

∑
w∈nbj (v)

κj (Tn,v) · vr + κj (Tn,w) · wr

2
·
Tn,w − Tn,v

‖v − w‖2
· λ1(ωj,v ∩ ωj,w)

+

∑
j

σεj (Tn,v) · (T 4
n,v − T 4

room) · vr · λ1(∂ωj,v ∩ ∂Ω)

−

∑
j

fj (Tn,v, tn, v) · vr · λ2(ωj,v). (3.4)

In (3.4),λ2 andλ1 denote 2-dimensional and 1-dimensional Lebesgue measure, respectively, and
nbj (v) := {w ∈ Vj \ {v} : λ1(ωj,v ∩ ωj,w) 6= 0} is the set ofj -neighbors ofv. Note that the
occurrence ofvr andwr in (3.4) is due to the use of cylindrical coordinates, wherev = (vr , vz),
w = (wr , wz).

THEOREM 1 Assume (i)–(iv):

(i) εj > 0, κj > 0, εj > 0, andf (0, t, x) > 0.
(ii) εj (·, x) is increasing, and there isL > 0 such that|εj (T , x) − εj (T̃ , x)| > L |T − T̃ | for each

x ∈ Ωj .
(iii) κj , εj , andfj are locally Lipschitz inT .
(iv) fj is bounded from above.

Then there isM > 0 (independent of the time discretization) and∆M such that, for∆ < ∆M , the
finite volume scheme (3.3) has a unique solution(T0, . . . , TN ) ∈ ([0, M]VΩ )N+1.

Proof. See [16, Theorem 3.8.35], where Theorem 1 has been proved in a more general context.2
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3.2 Numerical experiments

3.2.1 General setting. In Sections 3.2.2 and 3.2.3 below, we present results of numerical
simulations that give insight into transient temperature phenomena relevant to the PVT growth
process. All numerical simulations presented in the following were performed for the growth system
[17, Fig. 2] displayed in Fig. 1, consisting of an axisymmetric container having a radius of 8.4 cm
and a height of 25 cm placed inside of 5 hollow rectangular-shaped copper induction rings. The
geometric proportions of the coil rings are provided in Fig. 3. It is assumed that all relevant physical
quantities are axisymmetric.

1 cm

8 mm4.2 cm

1 cm

1.8 cm2 cm

turns of copper
induction coil

growth
container

FIG. 3. Geometric proportions of induction coil rings.

All simulations presented in this article were performed for an idealized growth apparatus,
treating all solid materials as homogeneous and pure. The material data used for the following
numerical experiments are precisely the data provided in the appendices of [11] and [12],
respectively.

Furthermore, it is assumed that the gas phase is made up solely of argon, which is a reasonable
assumption for simulations of the temperature distribution evolution, as was described at the end
of Section 2.1. Since we are neglecting convective contributions inside the gas phase for simplicity
(see [12] for numerical simulations including convection), the energy balance in the gas phase is
(2.5) withvgas= 0.

In absence of data on transition coefficientsξβ (cf. (2.11b′)), for the presented simulations, the
temperature is assumed to be continuous throughout the whole apparatus.

Discretization is performed using a finite volume scheme as described in Section 3.1 above,
where additional terms arise from the nonlocal radiation operators. The resulting nonlinear discrete
systems are solved by Newton’s method.

The finite volume discretization of the nonlocal radiation terms according to Section 2.5 involves
the calculation of visibility and view factors according to (2.19) – (2.21). Even for an axisymmetric
configuration, in general, this is a complicated task. The method used is based on [5] and is described
in [12, Sec. 4].
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The angular frequency used for the induction heating isω = 2πf , wheref = 10 kHz. The
average total powerP is prescribed according to the following linear ramp:

P(t) :=

{
Pmax
tramp

· t for 0 6 t 6 tramp,

Pmax for t > tramp,
(3.5)

where tramp = 2 h. Moreover,Pmax = 7 kW, except for the experiments depicted in Fig. 5.
The distribution of the heat sources is redetermined in each time step of the transient problem
for the temperature evolution to account for the time-dependent prescribed power as well as for the
temperature dependence of the electrical conductivity.

Each simulation starts atTroom = 293 K, computing and monitoring the evolution of the
temperature distribution in the growth apparatus.

r = 8.4 cm r = 0 cm
z = 25 cm

z = 16 cm

z = 2 cm

z = 25 cm

z = 14 cm

z = 0 cm

r = 8.4 cm r = 0 cm

-300

-200

-100

0

100

200

0 2000 4000 6000 10000 12000

T [K]

t [s]tramp

?

Tbottom− Ttop

6

Tsource− Tseed

-300

-200

-100

0

100

200

0 2000 4000 6000 10000 12000

T [K]

t [s]tramp

�
��	

Tbottom− Ttop

6

Tsource− Tseed

(a)

(b)

FIG. 4. The evolution of the temperature differencesTbottom−Ttop andTsource−Tseedis compared for two different positions
of the induction coil. The respective positions of the induction coil are given by the specifications on the left-hand side. For
the locations ofTbottom, Ttop, Tsource, andTseed, we refer to Fig. 1. The heating power is increased linearly according to
(3.5) withPmax = 7 kW.
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All simulations were performed using theWIAS Hi gh TemperatureNumerical Induction
HeatingSimulator (WIAS-HiTNIHS ), which is a software based on the program packagepdelib
being developed at the Weierstrass Institute of Applied Analysis and Stochastics (WIAS), Berlin [6].

3.2.2 Temperature differences.In a series of four numerical experiments, we investigate the
relation between the temperature differencesTbt := Tbottom − Ttop andTss := Tsource− Tseed(cf.
Fig. 1): We consider two different positions for the induction coil, and, for the lower coil position,
three different values ofPmax (cf. (3.5)). The relation betweenTbt andTss is of importance, as in
physical growth experiments,TbottomandTtop are measured, andTbt is often used as an indicator for
Tss which is not accessible to direct measurements, but crucial for the growth process.

For the two simulations usingPmax = 7 kW, the results for the respective evolutions ofTbt and
Tssare depicted in Fig. 4. In Fig. 4(a), the coil is in the higher position, between vertical coordinates
z = 2 cm andz = 16 cm, and in Fig. 4(b), the coil is in the lower position, betweenz = 0 cm and
z = 14 cm.

-300

-200

-100

0

100

200

0 2000 4000 6000 10000 12000

(a)
T [K]

t [s]tramp

?

Tbottom− Ttop

6

Tsource− Tseed

-300

-200

-100

0

100

200

0 2000 4000 6000 10000 12000

(b)
T [K]

t [s]tramp

�
�

�	

Tbottom− Ttop

6

Tsource− Tseed

FIG. 5. As in Fig. 4(b), the evolution of the temperature differencesTbottom − Ttop andTsource− Tseed is depicted for
numerical experiments using the lower coil position. In contrast to Fig. 4(b), the powerPmax in (3.5) is set to 5.5 kW in
Fig. 5(a) and to 8.5 kW in Fig. 5(b).
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FIG. 6. The evolution ofTinSourceis compared to the evolutions ofTtop, Tbottom, andTsourcefor two different amounts of
the powder charge. In comparison with (a), the amount of the powder is 5-fold in (b). For the locations ofTtop, Tbottom, and
Tsource, see Fig. 1. The heating power is increased linearly according to (3.5) withPmax = 7 kW.

TABLE 1
Time lag betweenTtop reaching 1200 K andTinSourcereaching 1200 K for the
numerical experiments considered in Fig. 6

t1 := t (Ttop = 1200 K) t2 := t (TinSource= 1200 K) t2 − t1
[min] [min] [min]

Fig. 6(a) 70 75 5
Fig. 6(b) 63 155 92
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Figure 4 shows that the evolution ofTss is almost identical for the two coil positions, whereas the
behavior ofTbt changes drastically. In both cases,Tbt is no indicator forTssbeforeTsshas reached its
quasi-stationary final state, but, more importantly, even in the stationary state at growth temperature,
Tss andTbt are of comparable magnitude only for the lower coil position. In Fig. 4(a), not even the
signs ofTss andTbt agree in the final state.

Moreover, the good agreement ofTssandTbt in the final state of Fig. 4(b) is merely coincidental
in the sense that the agreement is lost for other values ofPmax. For the same coil position as in
Fig. 4(b), Fig. 5 shows thatTbt is almost three times as large asTss in the final state ifPmax is
reduced to 5.5 kW (Fig. 5(a)), and thatTbt and Tss have different signs ifPmax is increased to
8.5 kW (Fig. 5(b)).

The numerical experiments show that for the configuration considered, there is generally no
easy relation betweenTss andTbt. Even though there might be configurations where the situation
is better, for each real growth system, the validity of usingTbt as an indicator forTss needs to be
verified by some other method (e.g. numerical simulation).

3.2.3 Heating of SiC source powder.In two numerical experiments, we investigate the evolution
of the temperature at the center of the SiC powder source in comparison with the temperature
evolutions ofTtop, Tbottom, and Tsource (cf. Fig. 1). We consider two different quantities of the
powder charge. In comparison with the experiment depicted in Fig. 6(a), the amount of SiC powder
is fivefold in Fig. 6(b).

The low coil position of Fig. 4(b) was used for the simulations considered in the following.
However, we note that we found similar results for the higher coil position used in Fig. 4(a).

Figure 6 shows that for the configuration considered, there is a time lag between the heating
of the bulk of the apparatus and the heating of the interior of the SiC powder charge. While the
evolution ofTtop, Tbottom, andTsource is almost independent of the relevant powder quantities, the
heating of the powder’s center is significantly more delayed in Fig. 6(b).

As described in the Introduction, the growth system is usually kept at some 1200 K and at
low pressure for a certain time, to bake out contaminants from the source powder. Table 1 shows
that while the time lag betweenTtop reaching 1200 K andTinSourcereaching 1200 K is merely 5
minutes for the smaller powder charge, it increases to 1.5 hours for the larger powder charge. Thus,
depending on the configuration of the growth system, it can be of paramount importance to take into
account this time lag, in order to allow sufficient time for the contaminant bake-out phase.
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