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An efficient solution to the eikonal equation on parametric manifolds$
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We present an efficient solution to the eikonal equation on parametric manifolds, based on the fast
marching approach. This method overcomes the problem of a non-orthogonal coordinate system on
the manifold by creating an appropriate numerical stencil. The method is tested numerically and
demonstrated by calculating distances on various parametric manifolds. It is further used for two
applications: image enhancement and face recognition.

1. Introduction

The viscosity solutio (x, y) of the eikonal equation
Vol = F (1)

is a weighted distance map from a set of initial points, where the valugsud# given. The weights

are given by the scalar positive functi@f(x, y). Efficient solutions to the eikonal equation on the
plane parameterized by a regular (orthogonal) numerical grid were introduced by Sethian [12] and
by Tsitsiklis [20]. Sethian’s fast marching method was extended by Kimmel and Sethian [7] to the
solution of the eikonal equation on triangulated manifolds,

IVuoll = F, )

with M the manifold andVvy¢ the gradient on the manifold. This extension enables a fast
calculation of geodesic paths| [7], Voronoi diagrams, and offséts| [8, 9] on triangulated manifolds.
Sethian and Vladimirsky [15] presented Ordered Upwind Methods (OUM) for static Hamilton—
Jacobi equations. These methods enable the solution of equations where the directions of the
characteristics are different from those of the gradientg.ofAs an example, they demonstrate
the solution of the eikonal equation for manifolds which are function graphs. Also Tsailetlal. [19]
solved the equation on function graphs, but they used an iterative sweeping method. A similar
sweeping approach was previously used by Danielson [3] to compute Euclidean distance maps on
flat domains with regular grids. &mnoli and Sapird [10] calculated distances on implicit manifolds
by using orthogonal fast marching in a thin offset band surrounding the manifold.

We present here an efficient solution to the eikonal equation on parametric manifolds, based
on the fast marching approach. A parametric manifold consists of a parameterizatiorUpkane

TAn early version of the paper was presented at the INTERPHASE 2003 meeting at the Newton Institute during the 2003
Programme Computational Challenges in PDES [17].
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{ul, u?} € R?, which is mapped by :R%2— R" to the parametric manifol& (U) = {x1(ul, u?),
x2ut, u?), ..., xN @l u?)} € RV. In this method the calculations are done on the 2-dimensional
uniform Cartesian grid of the parameterization plane and not on the manifold as in Kimmel and
Sethian’s method or iiRY according to Mmoli and Sapiro. The numerical stencil at each grid
point is calculated directly from the metric and there is no need for the “unfolding” procedure
of Kimmel and Sethian or for finding the “near front” as done by Sethian and Vladimirsky. The
proposed method solves the equation in one sweep of the numerical grid as opposed to Tsai et al.’s
method, which is an iterative approach that performs several sweeps in every iteration. Furthermore,
the number of iterations required for the convergence of their method depends on the anisotropy of
the equation. The presented method is first order accurate as that of Kimmel and Sethian, but may
be extended to higher orders by using Sethian and Vladimirsky’s higher order directional derivative
approximations [14]. The error of &noli and Sapiro’s method isv/).

The derivatives ofX with respect ta,’ are defined a&; £ 3X/du’, and they constitute a non-
orthogonal coordinate system on the parametric manifold. See Figure 1. The distance element on

the manifold is
ds =,/ gijduidu/, 3

where we use Einstein’s summation convention, and the metric tensor of the magifakl
calculated by
g11 812 X1-X1 X1-Xp
) — — . 4
(8i)) <g21 gzz) <X2-X1 X2- X2 @
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FIG. 1. The orthogonal grid on the parameterization plane is transformed into a non-orthogonal one on the manifold.

This paper is organized as follows. The second section describes the non-orthogonality of the
coordinate system on the manifold and the resulting problem. Section 3 introduces the construction
of a numerical stencil which overcomes this problem. Section 4 presents the numerical scheme, and
Section 5 the marching method for solving the eikonal equation on the manifold. The performance
and accuracy of the numerical scheme is tested in Section 6. Section 7 demonstrates applications
of the numerical scheme in image processing and computer vision. The conclusions appear in
Section 8.

2. The non-orthogonal coordinate system on the manifold

The power of the fast marching algorithm lies in its ability to solve the eikonal equation in one sweep
without iterations. The algorithm takes advantage of the upwind nature of the eikonal equation in
order to update the value of each grid point by a number of times bounded by the number of its
neighbors. We would like to devise a similar algorithm for Equatign (2).
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FIG. 2. The numerical stencil for the orthogonal fast marching algorithm is a right triangle.

The orthogonal fast marching algorithin_[12] solves the eikonal equation for an orthogonal
coordinate system. In this case, the numerical stencil for the update of a grid point consists of
one or two points out of its four neighbors. The first point is one of the top/bottom pair and the
second is one of the left/right pair. The two grid points in the stencil, together with the updated grid
point, compose the vertices of a right triangle. See Fighre 2.

X2

Xi

FiG. 3. Two acute angles and two obtuse angles for a non-orthogonal coordinate system on the manifold.

This is not the case for manifolds withi» # 0, where we get a non-orthogonal coordinate
system on the manifold (see Fig{ife 3). The resulting triangles are not right triangles. Each grid point
is the origin of two acute angles and two obtuse angles. If a grid point is updated by a stencil with
an obtuse angle, a problem may arise. Depending on the direction of the advancing “update front”,
the value of one of the points of the stencil might not be set in time and cannot be used properly
for supporting the updated vertex. There is a similar problem with fast marching on triangulated
domains which contain obtuse angles [7].

3. Splitting obtuse angles

Our solution to obtuse angles is similar to that[df [7] with the exception that there is no need for
the “unfolding” step. We perform a pre-processing stage for the grid, in which we split every obtuse
triangle into two acute ones (see Figfite 4). The split is performed by adding an additional edge,

FiG. 4. The numerical stencil for the non-orthogonal coordinate system. Triangle 1 gives good numerical support to the
black grid point, but triangle 2 includes an obtuse angle. It is replaced by triangle 3 and triangle 4.
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connecting the updated grid point with a non-neighboring grid point. The distant grid point becomes
part of the numerical stencil.

The need for splitting is determined according to the angle between the non-orthogonal axes at
the grid point. It is calculated by

X1-X2 812
Xl X2l /811822

If cos(a) = 0, the axes are perpendicular, and no splitting is required. Ifegos: 0, the
two angles with an angle ef should be split. Otherwise, the other two angles should be split. The
denominator of Equatiof|(5) is always positive, so we need only check the sign of the nurperator

In order to split an angle, we should connect the updated grid point with another point, located
m grid points from the point in the direction &f; andn grid points in the direction ok, (m andn
may be negative). The point provides a good numerical support if the obtuse angle is split into two
acute ones. For c@s) < 0 this is the case if

coqa) =

(5)

X1-(mX1+nX2) mgi1+ngi2

cogp1) = =
IXallmX1+nXall  \/g11(m2g11 + 2mngi2 + n2g20)

> 0, (6)

and
Xo-(mX1+nX2) mgi2 + ngz2

IX2lllmX1+nXal — /g(mg1s + 2mngia + n2g22)

Also here, it is enough to check the sign of the numerators. F@egos 0, the equation for c@go)
changes its sign and the constraints are

cogp2) = > 0. 7

mgi1+ ngiz2 > 0, (8)
mgiz2 +ngz2 < 0. 9)
Equations|(d, ]1.]8.]9) give together the condition
8121 < m < |22 (10)
811 812

and we would like to find the minimat andn that satisfy this condition. We define = |g12|/g11
andQ = g22/|g12|. The problem is solved by the following algorithm:

fP>1,p=P—|PJandg=Q — | P].Else,p = P andg = Q.

Start withn = 1.

P,=p-n, 0,=q-n.

If [P,] < Qn,thenm = [P,]. Else, sek = n + 1 and return to the previous step.
fP>21lm=m+|P]- n.

If cos(a) > O, thenn = —n.

If we defineL = [1/(Q — P)] = [|g12l811/¢] With ¢ = det(g;j) = g11822 — g%,, then|n]| is
bounded by, because for = L we haveQ, — P, > 1, and there will be am that complies to

the condition in[(IP). We could use binary search and the bdutadget a complexity oD (log L)

for this algorithm, but because the bound is not a tight one, we use the algorithm as is. It should be
noted thatg;; and thereford. are parameterization dependent. If we have a parameterization with
regions whereX1 and X, are almost parallel, the resultimg and»n might be large, affecting the
accuracy and efficiency of the numerical scheme.
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4. The numerical scheme

Once the pre-processing stage is over, we have a suitable numerical stencil for each grid point and
we can solve the eikonal equation numerically. The stencil is composed of the vertices of an acute
angle (see Figufg 5), where the vert@is updated according to the verticésandB. If the triangle

was originally acute, we have= ,/g11, b = ./g2zandd = a. Ifitis atriangle created by splitting,

we haver = ,/g110ra = /822, b = \/m2g11+ 2mng1s + n2go> andé = B1 ord = Bo. Next, we

want to findz such thatz —u)/h = F.

t
C
B B
a
A C 0 A
b

FiG. 5. Two views of the numerical stencil.

The numerical scheme accordinglto [7] is:

o u=¢(B)—¢(A).
e Solve the quadratic equation

(a® + b? — 2ab c0s0)1? + 2bu(a cosh — b)t + b>(u? — F?a®sirt6) = 0. (11)

o If u < tandacosd < bt —u)/t < a/cosh, theng(C) = min{¢p(C),t + ¢(A)}. Else,
¢(C) =min{p(C),bF + ¢(A),aF + ¢(B)}.

5. Marching on manifolds
After the pre-processing stage, the eikonal equation is solved by the following algdrithm [13].
Initialization :

e The initial points are defined @scceptedand given their initial values.
o All the other grid points are defined &ar and given the value infinity.

Iterations:

1. Far “neighbors” ofAcceptedoints are defined &lose

2. The values of th€losepoints are updated according to the numerical scheme.
3. TheClosepoint with the minimal value becomes acceptedooint.

4. If there remain anyar points, return to step 1.

We used the term “neighbors” above to describe grid points that belong to the same triangular
numerical stencil. These points are not necessarily neighboring points on the original grid. We find
these “neighbors” during the pre-processing stage described in the previous section.
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The complexity of the algorithm is upper bounded®yN - max(log L, log N)), whereN is the
number of points in the grid. The ldg results from using a min-heap data structure for sorting the
Closepoints [13].

6. Testing the numerical scheme

The algorithm was tested for parametric manifolds with non-orthogonal coordinate systems. In
Figure[§ it is implemented on the tilted plane= 3x + 2y, with the initial point at(x = 0.5, y =
0.5). In this figure and the ones to follow, lower values are assigned brighter shades of gray and black
curves are used to indicate the level curves. The correctness of the distance map is evident from the
resulting level curves, which are concentric circles on the manifold. In F[gure 7 the algorithm is
implemented for the manifolgd = 0.5 sin(4r x) sin(4s y) with the same initial point. The proposed
algorithm can work also for parametric manifolds that are not function graphs. In Figure 8 the
algorithm is implemented for the sphefre = cog0) cog¢), y = sin(@) cog¢), z = sin(¢)}. In
this case, the initial points form a square on the parameterization plane?} = {6, ¢}. The range
of the parameters in the figure is54° < 6, ¢ < 54°. In Figure[9 the algorithm is implemented
on the tilted plane. = 2x + 2y. This time, F on the right hand side of the eikonal equatiph (2)
changes abruptly on the parameterization plane. Its val#e is 10 forx > 0.5,y > 0.5 and
F = 1 otherwise. This figure shows that the numerical scheme can handle a sharply chfanging

The accuracy of the algorithm is measured by running the algorithm on the manifeld
0.5 sin(4r x) sin(4ry) with one initial point at(x = 0.5, y = 0.5). Table[] gives the estimated

FiG. 6. Fast marching on the manifoid= 3x + 2y. Left: implemented on the parameterization plane. Right: projected on
the manifold.
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«? X 10 y

FIG. 7. Fast marching on the manifoid= 0.5 sin(4x x) sin(4ry). Left: implemented on the parameterization plane. Right:
projected on the manifold.
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Yy

FIG. 8. Fast marching on a sphere. Left: implemented on the parameterization plane. Right: projected on the manifold.

errors of the algorithm on various grid sizes and estimations of the order of accuracy. The normalized
L error at grid size:? is e5=|lv— u'||2/n?, whereu” is the result of the algorithm on a grid of
sizen? andv is the correct solution. Thé, error for this grid ises, = llv — u"]|«. Sincev is
unknown, we estimate it by the result of the algorithm on a grid of size 20%&uming thav is

of the formv = u” + Ch" + O (W t1), whereh = 1/(n — 1), the order of accuracy of the numerical
scheme according to thie, norm at grid sizex? can be estimated according fo[11] by

n e
Ty =|ng 6_2" . (12)

k



322

@

FiG. 9. Fast marching with a non-constafit Left: implemented on the parameterization plane. Right: projected on the
manifold.

A. SPIRA & R. KIMMEL

TABLE 1
The estimated errors and orders of accuracy of the algorithm as a function of grid size

size:| 17 3% 657 129 257 51
eh: | 62-103|23.103| 84.10% | 30-10% | 41.10° | 57-10°°
r5i | 143 1.45 1.50 2.86 2.85

et | 04425 | 0.2702 | 0.1746 | 0.0977 | 0.0277 | 0.0101
ri | 071 0.63 0.84 1.82 1.46

7. Applications in image processing and computer vision

The solution to the eikonal equation on parametric manifolds has many applications. In this section
we demonstrate its use in the areas of image processing and computer vision. The first application
consists of the acceleration of the image enhancing Beltrami filter[6, 16] by using a short time kernel
[18]. Calculating the kernel requires the solution to the eikonal equation on the image manifold.
The second application is the implementation of face recognition [1] by geometric invarignts [4, 5]
without reconstruction of the facial surface [2]. In this case a signature of the face is computed from
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geodesic distances between points on the facial manifold. The geodesic distances are calculated
from the surface metric using our method.

7.1 A short time kernel for the Beltrami filter

The Beltrami filter [6,[ 16] results from the minimization of the area of the 2-dimensional
Riemannian image manifol# embedded in the space-feature manif@i, whereN = 3 for
gray scale images and = 5 for color images. For gray scale images we have

X @t u?) = {uh u?, 1t u?), (13)

whereu!, u? are the space coordinates ahis the intensity component. We use a Euclidean space-
feature manifold with the metrik;; given by

1 0 O
0 0 p?

whereg is the relative scale between the space coordinates and the intensity component. The metric
gij of the image manifold is derived by the pullback procedure

o 1+ﬂzlf ﬂzlllz
(glj) - ( ﬁ211]2 1+ﬂ2122 ) (15)

wherel; £ 91/0u’. A similar derivation is applicable for color images.
The Beltrami filter results from minimizing the area of the image manifold

S = //@dulduz, (16)

with respect to the embedding. The corresponding Euler—Lagrange equations as a gradient descent
process are -
Xj = —g V285 /5X" = g7V20;(gV2g" 5;X), (17)

with g’/ the contravariant metric of the image manifold. For gray scale images we get
I = g 729, (e"%g" 1) = Aul. (18)

Using the short time kerne[ [18], we replace the partial differential equafioh (18) with a
convolution-like process

Tur u? t0+1) = /f 1L, 72, 1)K (ut, u?, @t a%; 1) dat di? | (19)

where

@hia? y.\2
H (f ds)
K@t u? it i% ) = 70 eXp( - %) (20)
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and Hy is taken such that the integral of the kernel equals one. The operand of the exponent in this
equation includes the geodesic distance between the filtered pixel and its neighboring pixels. Its
calculation necessitates the solution to the eikonal equation on the image manifold.

Figure[ 10 shows the result of applying the short time kernel Beltrami filter to a gray scale image.
In this cased = 3, the time step taken was= 0.5, and only grid points with a kernel value above
0.01 were used for the filtering. The time difference between the images is 1.

FIG. 10. Application of the short time kernel Beltrami filter to a gray scale image. The original image is in the top left. The
order of the images is from top to bottom and left to right.
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7.2 Face signature without reconstruction of the facial surface

Face recognition by geometric invariants [1], which is an application of the bending invariant
canonical forms[4.15], relies on a signature of the face computed from geodesic distances between
points on the facial manifold. This use of geodesic distances makes this method highly robust to
isometric deformations of the face, such as those resulting from facial expressions.

The face manifold is given by

Xt u?) = {uh u?, 2t u?), (21)

and its metric can be acquired by photometric stereo, which requires at least three images of the face
using independent illumination directions. Assuming a Lambertian reflection model, the generated
images are

I'wh u?) = pt, u>) Nt u?) - LY, (22)

wherep (ul, u?) is the albedo at each poin¥;(ul, «2) is the normal to the facial surface afd is
the illumination direction for theé image. The normal is given by

NG, u?) = et ), —awh ). 1) (23)
V1t IVzul, u?)|?

wherez; £ 3z/du’.
Given at least three images with independent illumination directidhgu?, u?) can be
extracted by Least Squares. The facial surface metric is

1+z§ 2122
) = , 24
(817) < 2122 1+725 24)

and it enables the calculation of geodesic distances on the facial surface by our method for the
solution of the eikonal equation on such manifolds. Figurie 11 shows distance maps calculated by
our method from the metric of a face manifold. Note that the manifold ifsélfu?, z(u?, u?)} need

not be reconstructed.

The calculation of geodesic distances enables the use of the bending invariant canonical forms
framework [4] 5] to produce a face signature. In this framework, the face manifold is sampled and
a matrix of the geodesic distances between the points is produced. Using multidimensional scaling
(MDS) the points are embedded¥, where they tend to form a 2-dimensional function. The face
signature is then constructed from this function. Because the geodesic distances are invariant under
isometric deformations, this signature is robust to such deformations, which are frequent in face
manifolds. For details on the quality and characteristics of this face signatuié see [1, 2].

8. Conclusions

A new efficient method for solving the eikonal equation on parametric manifolds was introduced.
The method requires only the metric tensor at each grid point in order to determine the numerical
stencil and execute the numerical scheme. This method enables a fast calculation of distances on
manifolds, needed in many applications.
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