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Uniqueness and error analysis for Hamilton–Jacobi equations with
discontinuities
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We consider the Hamilton–Jacobi equation of eikonal type
H(∇u) = f (x), x ∈ Ω,

whereH is convex andf is allowed to be discontinuous. Under a suitable assumption onf we prove
a comparison principle for viscosity sub- and supersolutions in the sense of Ishii. Furthermore, we
develop an error analysis for a class of finite difference schemes, which are monotone, consistent and
satisfy a suitable stability condition.
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1. Introduction

LetΩ ⊂ Rn be a bounded domain with a Lipschitz boundary∂Ω. We consider the Hamilton–Jacobi
equation

H(∇u) = f (x), x ∈ Ω, (1.1)

u(x) = φ(x), x ∈ ∂Ω, (1.2)

wheref andφ are given functions. The equation (1.1) occurs in a variety of applications including
geometrical optics, computer vision and etching. In order to motivate the link to propagating fronts,
let us suppose for a moment that such a front at timet can be described as thet-level set of an
auxiliary functionu : Ω̄ → R, i.e.Γ (t) = {x ∈ Ω | u(x) = t}. Then, formally, a unit normalν to
Γ (t) and the corresponding normal velocityV are given by

ν =
∇u(x)

|∇u(x)|
, V =

1

|∇u(x)|
, x ∈ Γ (t).

If in addition,u solves (1.1),f is positive andH is homogeneous of degree one, then

V =
1

|∇u(x)|
=

1

|∇u(x)|

H(∇u(x))

f (x)
=

1

f (x)
H(ν(x)), x ∈ Γ (t),
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i.e. the front moves with a normal velocity which depends on the properties of the underlying space
and the orientation of the front. Furthermore, we can interpretu(x) as the first arrival time at the
pointx of a front which was the zero level set ofu at the beginning of the evolution.

It is often desirable to consider situations in which the functionf is allowed to be discontinuous,
e.g. in geometrical optics, when light propagates through a layered medium. Thus, we shall be
concerned both with the well-posedness of (1.1), (1.2) in the case thatf is discontinuous and with
the convergence of numerical algorithms which approximate the corresponding solution.

Various ways of defining a solution of (1.1), (1.2) for discontinuousf have been suggested. First,
Ishii [8] (see §2 below) extended the concept of viscosity solution introduced in [5] to the case of
discontinuous Hamiltonians. He obtained existence and uniqueness results for an equation of the
form H(x, u(x),∇u(x)) = 0, in which the HamiltonianH(x, u, p) is allowed to be discontinuous
in u. Using this notion of solution, Soravia [15] studies a class of Hamilton–Jacobi equations
in a control-theoretic framework and gives necessary and sufficient conditions for uniqueness of
solutions of boundary value problems. In [10], Newcomb & Su introduce a concept of solution for
(1.1), (1.2) which is based on the optical length functionL(x, y) (see §2 below) and which they
term Monge solution. For lower semicontinuousf they prove a comparison principle as well as
existence and uniqueness for the Dirichlet problem. Recently, a further definition of solution was
suggested in [4] by Camilli & Siconolfi for Hamilton–Jacobi equations of the formH(x, Du) = 0.
They introduce a generalized notion of viscosity solution, which allows measurable dependence of
H on x. In the case of the eikonal equation, i.e.H(p) = |p|, this definition involves the measure-
theoretic notion of an approximate limit for a subsolution and an essential limit for a supersolution
and hence is not symmetric. Comparison and uniqueness results are provided.

Problem (1.1), (1.2) also occurs in shape-from-shading. In this case, the right hand sidef is
related to the light intensity which can be discontinuous. In [16], Tourin establishes a comparison
result for equations of the formH(x, Du) = 0, in whichH is allowed to be discontinuous along a
smooth surface. For the shape-from-shading problem, Rouy & Tourin [13] present a consistent and
monotone scheme along with numerical calculations. A related problem is studied in [12], where
the unique solution is obtained as the limit of sequences which arise from a suitable regularization
of the intensity function.

Our work is based on Ishii’s definition of solution, but let us emphasize that even though we
allow discontinuities off the solutions themselves will be Lipschitz continuous. In order to obtain
uniqueness for the solution of (1.1), (1.2) an assumption onf is needed: this condition (see (F2)
below) can be seen as a generalization of a condition which appears in [16], and it amounts to a
one-sided continuity constraint along a fixed direction at each point inΩ. Under this assumption
we are able to prove a comparison result in Theorem 2.3. In §3 we analyze a class of numerical
schemes which approximate the solution of (1.1), (1.2). Denoting byh the grid size we obtain an
orderO(

√
h) for finite difference schemes which are monotone, consistent and satisfy a suitable

stability condition. In §4 we present examples of schemes which satisfy the above requirements,
while §5 contains numerical tests.

2. Existence and uniqueness

Let us start by defining a viscosity solution of (1.1), (1.2). As already mentioned above, we use a
concept which was introduced by Ishii in [8] and which is based on upper and lower semicontinuous
envelopes. For a given functionv : Ω → R let
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v∗(x) := lim sup
r→0

{v(y) | y ∈ Br(x) ∩ Ω},

v∗(x) := lim inf
r→0

{v(y) | y ∈ Br(x) ∩ Ω}.

DEFINITION 2.1 A functionu ∈ C0(Ω̄) is called aviscosity subsolution(resp.supersolution) of
(1.1) if for eachζ ∈ C∞(Ω): if u − ζ has a local maximum (resp. minimum) at a pointx0 ∈ Ω,
then

H(∇ζ(x0)) 6 f ∗(x0) (resp. > f∗(x0)).

A viscosity solutionof (1.1), (1.2) is then a functionu ∈ C0(Ω̄) which is both a viscosity sub- and
supersolution and which satisfiesu(x) = φ(x) for all x ∈ ∂Ω.

Assumptions on the data.We shall assume thatH : Rn
→ R satisfies:

(H1) H(0) = 0 andH(p) > 0 for all p ∈ Rn
\ {0}.

(H2) H is convex.

(H3) H(p) → ∞ as|p| → ∞.

Concerning the right hand side we make the following assumptions:

(F1) f : Ω → R is Borel measurable and there exist 0< m 6 M < ∞ such that

m 6 f (x) 6 M ∀x ∈ Ω. (2.1)

(F2) For everyx ∈ Ω there existεx > 0 andnx ∈ Sn−1 so that for ally ∈ Ω, r > 0, d ∈ Sn−1

with |d − nx | < εx andy + rd ∈ Ω we have

f (y + rd) − f (y) 6 ω(|y − x| + r), (2.2)

whereω : [0, ∞) → [0, ∞) is a continuous, nondecreasing function withω(0) = 0.

For later purposes we shall also formulate a stronger version of this assumption, namely

(F2)∗ There existε > 0 andK > 0 such that for allx ∈ Ω there is a directionn = nx ∈ Sn−1 with

f (y + rd) − f (y) 6 Kr (2.3)

for all y ∈ Ω, d ∈ Sn−1, r > 0 with |y − x| < ε, |d − n| < ε andy + rd ∈ Ω.

Clearly, (F2) holds at all pointsx at whichf is continuous, but it also allows for certain types of
discontinuous behavior as shown by the following

EXAMPLE . Suppose that a surfaceΓ splitsΩ into two subdomainsΩ1 andΩ2 such thatf|Ω1 ∈

C0(Ω̄1), f|Ω2 ∈ C0(Ω̄2) and

lim
y→x, y∈Ω1

f (y) < lim
y→x, y∈Ω2

f (y) for all x ∈ Γ.

In addition, assume that the following uniform cone property holds: for everyx ∈ Γ there exists a
neighborhoodUx and a coneCx (which is congruent to a fixed given coneC0) such thaty ∈ Ux∩Ω̄1
implies thaty + Cx ⊂ Ω1. Then (F2) holds withn = nx given by the direction of the coneCx .
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To see this, observe that the cone condition prevents a situation wherey ∈ Ω̄1, y + rd ∈ Ω2,
which would lead to a violation of (F2) (cf. [16], whereΓ is assumed to be smooth).

One can also consider e.g. a two-dimensional domainΩ, where three curves of discontinuity
meet at a triple junction. A suitable modification of the above also yields an example for (F2)∗.

In order to describe our assumptions onφ let us defineL : Ω̄ × Ω̄ → R by

L(x, y) := inf

{ ∫ 1

0
N(f ∗(γ (t)), γ ′(t)) dt

∣∣∣∣ γ ∈ W1,∞((0, 1); Ω̄) with γ (0) = x, γ (1) = y

}
,

where
N(r, ζ ) := sup{−(ζ, p) | H(p) = r}.

We then suppose the following compatibility condition for the boundary data,

(C) φ(x) − φ(y) 6 L(x, y) for all x, y ∈ ∂Ω.

We shall assume (H1)–(H3) throughout the paper, while the corresponding assumptions onf andφ

will be stated explicitly.

THEOREM 2.2 Assume that (F1) and (C) hold. Then there exists a viscosity solutionu ∈ C0,1(Ω̄)

of (1.1), (1.2).

Proof. We regularizef using the sup-convolution, i.e.

fε(x) := sup
y∈Ω

{
f (y) −

1

ε
|x − y|

2
}
, ε > 0.

Clearly,fε is continuous and satisfiesf ∗(x) 6 fε(x) for all x ∈ Ω. In view of assumption (C) and
the monotonicity ofN in the first variable we deduce that

φ(x) − φ(y) 6 Lε(x, y) ∀x, y ∈ ∂Ω,

where

Lε(x, y) := inf

{ ∫ 1

0
N(fε(γ (t)), γ ′(t)) dt

∣∣∣∣ γ ∈ W1,∞((0, 1); Ω̄) with γ (0) = x, γ (1) = y

}
.

Therefore, the problem

H(∇uε) = fε(x), x ∈ Ω,

uε(x) = φ(x), x ∈ ∂Ω,

has a unique viscosity solutionuε , which is given by the formula

uε(x) = inf
y∈∂Ω

{Lε(x, y) + φ(y)}.

It is not difficult to verify that

‖uε
‖C0,1(Ω̄) 6 C(M, Ω) uniformly in ε > 0.
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Thus, there exists a sequence(εk)k∈N with εk ↘ 0 ask → ∞ andu ∈ C0,1(Ω̄) such that

uεk → u ask → ∞ uniformly in Ω̄. (2.4)

Clearly,u = φ on ∂Ω. We claim thatu is a viscosity solution in the sense of Definition 2.1. Let
ζ ∈ C∞(Ω) and suppose thatu − ζ has a local maximum atx0 ∈ Ω. In view of (2.4) there exist
xk ∈ Ω such thatxk → x0 ask → ∞ anduεk − ζ has a local maximum atxk. Then

H(∇ζ(xk)) 6 fεk
(xk), (2.5)

and taking into account (2.1) we obtain

fεk
(xk) = sup

|xk−y|6
√

Mεk

{
f (y) −

1

εk

|xk − y|
2
}

6 sup{f (y) | |y − x0| 6 |xk − x0| +

√
Mεk},

which implies by passing to the limit in (2.5)

H(∇ζ(x0)) 6 lim sup
k→∞

fεk
(xk) 6 f ∗(x0).

On the other hand, ifu − ζ has a local minimum atx0, there exist̃xk ∈ Ω with x̃k → x0 ask → ∞

such thatuεk − ζ has a local minimum at̃xk. Thus,

H(∇ζ(x̃k)) > fεk
(x̃k) > f∗(x̃k).

Sincef∗ is lower semicontinuous, we deduce that

H(∇ζ(x0)) > f∗(x0).

In conclusion,u is a viscosity solution of (1.1), (1.2). 2

Uniqueness of the viscosity solution is a consequence of the following comparison result.

THEOREM 2.3 Assume that (F1), (F2) hold, thatu ∈ C0(Ω̄) is a subsolution of (1.1),v ∈ C0(Ω̄)

is a supersolution of (1.1) and that at least one of the functions belongs toC0,1(Ω̄). If u 6 v on∂Ω

thenu 6 v in Ω̄.

Proof. Let us assume thatv ∈ C0,1(Ω̄). We shall use the approach presented in [9] (see also [16]).
Fix θ ∈ (0, 1) and defineuθ (x) := θu(x). Next, choosex0 ∈ Ω̄ such that

uθ (x0) − v(x0) = max
x∈Ω̄

(uθ (x) − v(x)) =: µ, (2.6)

and suppose thatµ > 0. Upon replacingu, v by u + k, v + k, we may assume thatu > 0 in Ω̄,
so thatuθ 6 u in Ω̄. In particular,uθ 6 v on ∂Ω, which implies thatx0 ∈ Ω. Let ε = εx0 and
n = nx0 ∈ Sn−1 be the quantities which appear in (F2). It is not difficult to verify that (F2) implies

f ∗(y + rd) − f∗(y) 6 ω(|y − x0| + r) (2.7)

for all y ∈ Ω, r > 0 andd ∈ Sn−1, |d − n| < ε.
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Let us define forλ > 0, L > 1 the functionΦ : Ω̄ × Ω̄ → R by

Φ(x, y) := uθ (x) − v(y) − Lλ

∣∣∣∣x − y −
1

λ
n

∣∣∣∣2 − |x − x0|
2.

Let (xλ, yλ) ∈ Ω̄ × Ω̄ be such that

Φ(xλ, yλ) = max
(x,y)∈Ω̄×Ω̄

Φ(x, y). (2.8)

Sincex0−
1
λ
n ∈ Ω for largeλ, the relationΦ(xλ, yλ) > Φ(x0, x0−

1
λ
n) implies together with (2.6)

that

Lλ

∣∣∣∣xλ − yλ −
1

λ
n

∣∣∣∣2 + |xλ − x0|
2 6 uθ (xλ) − v(yλ) − uθ (x0) + v

(
x0 −

1

λ
n

)
= (uθ (xλ) − v(xλ)) − (uθ (x0) − v(x0)) + v(xλ) − v(yλ) − v(x0) + v

(
x0 −

1

λ
n

)
6 lip(v)|xλ − yλ| + lip(v)

1

λ

6 lip(v)

∣∣∣∣xλ − yλ −
1

λ
n

∣∣∣∣ + 2 lip(v)
1

λ
,

where lip(v) denotes the Lipschitz constant ofv. Therefore,

Lλ

∣∣∣∣xλ − yλ −
1

λ
n

∣∣∣∣2 + |xλ − x0|
2 6 C(lip(v))

1

λ
, (2.9)

so that

xλ, yλ → x0 asλ → ∞, (2.10)

λ

∣∣∣∣xλ − yλ −
1

λ
n

∣∣∣∣ 6
C

√
L

<
ε

2 + ε
(2.11)

provided thatL is sufficiently large. Next, (2.8) implies thatu −
1
θ
ζ has a local maximum atxλ

whereζ(x) = ṽ(yλ) + Lλ|x − yλ −
1
λ
n|

2
+ |x − x0|

2. Therefore,

H

(
1

θ

(
2Lλ

(
xλ − yλ −

1

λ
n

)
+ 2(xλ − x0)

))
6 f ∗(xλ), (2.12)

and similarly,

H

(
2Lλ

(
xλ − yλ −

1

λ
n

))
> f∗(yλ). (2.13)

Combining (2.12) and (2.13) and using assumptions (H1), (H2) we obtain

f∗(yλ) 6 θH

(
1

θ
2Lλ

(
xλ − yλ −

1

λ
n

))
(2.14)

6 θ

(
H

(
1

θ
2Lλ

(
xλ − yλ −

1

λ
n

))
− H

(
1

θ

(
2Lλ

(
xλ − yλ −

1

λ
n

)
+ 2(xλ − x0)

)))
+ θf ∗(xλ).
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Note thatH is locally Lipschitz continuous (since it is convex) so that we may deduce from (2.11)∣∣∣∣H(
1

θ
2Lλ

(
xλ − yλ −

1

λ
n

))
− H

(
1

θ

(
2Lλ

(
xλ − yλ −

1

λ
n

)
+ 2(xλ − x0)

)))∣∣∣∣ 6 C|xλ − x0|.

Inserting this inequality into (2.14) we arrive at

(1 − θ)f∗(yλ) 6 C|xλ − x0| + θ(f ∗(xλ) − f∗(yλ)). (2.15)

In order to treat the second term we writexλ = yλ + rλdλ with

dλ =
n + wλ

|n + wλ|
, rλ =

1

λ
|n + wλ|, wλ = λ

(
xλ − yλ −

1

λ
n

)
.

Now, (2.11) implies

|dλ − n| 6
2|wλ|

1 − |wλ|
6

2ε
2+ε

1 −
ε

2+ε

= ε (2.16)

so that (2.7) yields

f ∗(xλ) − f∗(yλ) = f ∗(yλ + rλdλ) − f∗(yλ) 6 ω(|yλ − x0| + rλ).

If we insert this estimate into (2.15) and recall (2.1) the result is

m(1 − θ) 6 C|xλ − x0| + ω(|yλ − x0| + rλ).

Sendingλ ↗ ∞ yieldsm(1 − θ) 6 0 in view of (2.10), which is a contradiction. Thus,uθ 6 v for
all θ < 1 and sendingθ ↗ 1 finally yields the result. 2

3. Numerical scheme and error analysis

Numerical schemes on uniform grids for Hamilton–Jacobi equations have been developed on the
basis of an upwind discretisation of the gradient; see [11], [14] for an outline of the underlying
ideas. It is possible to derive these schemes as well as methods on unstructured grids by interpreting
the corresponding viscosity solution as the value function of an optimal control problem and by
using the dynamic programming principle. We refer to Appendix A, written by M. Falcone, in [1]
for a description of basic results together with a comprehensive list of references.

There is a close connection between the static Hamilton–Jacobi equation (1.1) and time-
dependent problems of the form

ut + H(∇u) = 0. (3.1)

Error estimates for finite difference approximations of (3.1) have been proved in [6], while [7]
introduces a class of semi-Lagrangian schemes which are strongly related to Godunov methods in
one space dimension.

We shall start from a class of finite difference schemes which are monotone and consistent
and which satisfy a suitable stability condition. In order to keep the presentation simple we shall
from now on assume thatΩ =

∏n
i=1(0, bi). Let h > 0 be such that there existNi ∈ N with

bi = Nih, i = 1, . . . , n, and define

Ωh := Zn
h ∩ Ω, ∂Ωh := Zn

h ∩ ∂Ω, Ω̄h := Ωh ∪ ∂Ωh,
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whereZn
h = {xα = (hα1, . . . , hαn) | αi ∈ Z, i = 1, . . . , n}. We shall approximate the viscosity

solutionu by a grid functionU : Ω̄h → R, Uα = U(xα), α = (α1, . . . , αn) ∈ Zn. For xα ∈ Ωh

andk ∈ {1, . . . , n} let

D−

k Uα :=
Uα − Uα−ek

h
, D+

k Uα :=
Uα+ek

− Uα

h

be the usual backward and forward difference quotients. The numerical scheme now reads: find
U : Ω̄h → R such that

HN (D−

1 Uα, D+

1 Uα, . . . , D−
n Uα, D+

n Uα) = f (xα), xα ∈ Ωh, (3.2)

Uα = φ(xα), xα ∈ ∂Ωh, (3.3)

whereHN : R2n
→ R, (p1, q1, . . . , pn, qn) 7→ HN (p1, q1, . . . , pn, qn) is the numerical Hamil-

tonian. It is convenient to also introduceFN : R2n+1
→ R, a = (a0, a1, a2, . . . , a2n−1, a2n) 7→

FN (a), as
FN (a) := HN (a0 − a1, a2 − a0, . . . , a0 − a2n−1, a2n − a0). (3.4)

In what follows we shall assume thatHN is locally Lipschitz continuous and has the following
properties:

(HN1) Consistency:

HN (p1, p1, . . . , pn, pn) = H(p1, . . . , pn) for all p = (p1, . . . , pn) ∈ Rn. (3.5)

(HN2) Monotonicity:

a0 7→ FN (a) is increasing, (3.6)

ak 7→ FN (a) is decreasing fork = 1, . . . , 2n. (3.7)

(HN3) Stability: there exists a functionZ : Ω̄h → R which satisfies

HN (D−

1 Zα, D+

1 Zα, . . . , D−
n Zα, D+

n Zα) > f (xα), xα ∈ Ωh, (3.8)

Zα = φ(xα), xα ∈ ∂Ωh, (3.9)

|D−

k Zα|, |D+

k Zα| 6 R, xα ∈ Ωh, (3.10)

whereR is independent ofh.

The functionZ which appears in (HN3) will act as a discrete supersolution for solutions of (3.2),
(3.3). We shall examine some examples of choices ofHN in §4.

REMARK 3.1 Note that the functionZ in (HN3) above satisfies

Zα > φmin := min
x∈∂Ω

φ(x), xα ∈ Ω̄h. (3.11)

To see this, letZβ = minxα∈Ω̄h
Zα and assume thatxβ ∈ Ωh. Then, (2.1), (3.8) and (3.7) would

imply

m 6 f (xβ) 6 HN (D−

1 Zβ , D+

1 Zβ , . . . , D−
n Zβ , D+

n Zβ)

= FN

(
Zβ

h
,
Zβ−e1

h
,
Zβ+e1

h
, . . . ,

Zβ−en

h
,
Zβ+en

h

)
6 FN

(
Zβ

h
,
Zβ

h
,
Zβ

h
, . . . ,

Zβ

h
,
Zβ

h

)
= HN (0, . . . , 0) = H(0) = 0

in view of (H1), a contradiction. Thus,xβ ∈ ∂Ωh and (3.11) follows.
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Next, let us prove an auxiliary result which yields a kind of diagonal coercivity for the numerical
Hamiltonian.

LEMMA 3.2 For(a1, a2, . . . , a2n−1, a2n) ∈ R2n,

lim
t→∞

FN (t, a1, a2, . . . , a2n−1, a2n) = ∞.

Proof. Using the defintion ofFN along with (3.5)–(3.7) we deduce fort > r := max(a1, a2, . . . ,

a2n−1, a2n) that

FN (t, a1, a2, . . . , a2n−1, a2n) > FN (t, r, r, . . . , r, r) = HN (t − r, r − t, . . . , t − r, r − t)

= FN (t − r, 0, 0, . . . , 0, 0)

> FN (t − r, 0, 2(t − r), . . . , 0, 2(t − r))

= HN (t − r, t − r, . . . , t − r, t − r) = H(t − r, . . . , t − r)

→ ∞ ast → ∞,

which proves the lemma. 2

LEMMA 3.3 Assume that (HN1)–(HN3) and (F1) hold. Then there exists a solutionU of (3.2),
(3.3), which satisfiesφmin 6 Uα 6 Zα for all xα ∈ Ω̄h.

Proof. We consider the following iteration: letU0 := Z and givenU k : Ω̄h → R, let

U k+1
α = inf

{
t

∣∣∣∣ FN

(
t

h
,
U k

α−e1

h
,
U k

α+e1

h
, . . . ,

U k
α−en

h
,
U k

α+en

h

)
> f (xα)

}
, xα ∈ Ωh,

U k+1
α = φ(xα), xα ∈ ∂Ωh.

We claim that the sequence(U k)k∈N is well defined and that

φmin 6 U k 6 U k−1 6 Z for all k ∈ N. (3.12)

To see this, assume that (3.12) holds for all 16 j 6 k and consider, forxα ∈ Ωh,

η(t) := FN

(
t

h
,
U k

α−e1

h
,
U k

α+e1

h
, . . . ,

U k
α−en

h
,
U k

α+en

h

)
, t ∈ R.

Clearly,η is continuous and increasing. Lemma 3.2 implies thatη(t) → ∞ ast → ∞ so thatU k+1
α

is well defined. SinceU k > φmin by our induction hypothesis, (3.7), (3.5) and (H1) yield

η(φmin) = FN

(
φmin

h
,
U k

α−e1

h
,
U k

α+e1

h
, . . . ,

U k
α−en

h
,
U k

α+en

h

)
6 FN

(
φmin

h
, . . . ,

φmin

h

)
= H(0) = 0 < f (xα), (3.13)

which implies thatU k+1
α > φmin. Also, asU k 6 U k−1, (3.7) yields

φ(U k
α) = FN

(
U k

α

h
,
U k

α−e1

h
,
U k

α+e1

h
, . . . ,

U k
α−en

h
,
U k

α+en

h

)
> FN

(
U k

α

h
,
U k−1

α−e1

h
,
U k−1

α+e1

h
, . . . ,

U k−1
α−en

h
,
U k−1

α+en

h

)
> f (xα)
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by the definition ofU k
α . ThusU k+1

α 6 U k
α . Using similar arguments and recalling (3.11) we infer

that (3.12) holds fork = 1, so that we finally obtain (3.12) for allk ∈ N. Note also that

FN

(
U k+1

α

h
,
U k

α−e1

h
,
U k

α+e1

h
, . . . ,

U k
α−en

h
,
U k

α+en

h

)
= f (xα), xα ∈ Ωh, k ∈ N. (3.14)

From (3.12) we infer thatU k
α → Uα for all xα ∈ Ω̄h ask → ∞. Clearly,Uα = φ(xα) for xα ∈ ∂Ωh.

Letting k → ∞ in (3.14) and using the continuity ofFN finally implies thatU satisfies (3.2). The
bounds onU follow from (3.12). 2

Our main result of this paragraph is an error bound between a discrete solutionU and the viscosity
solutionu. It is natural to model the error analysis on the uniqueness proof, but in our case a closer
inspection of the proof of Theorem 2.3 shows that it is not obvious how to control the difference
between the viscosity solutionu and an approximationU . Therefore we recall a different approach
to prove uniqueness, namely to apply the Kruzhkov transform. The advantage is that the equation
satisfied by the transformed function contains an additional term of zero order (cf. (3.15)), which is
subsequently exploited.

THEOREM 3.4 Assume that (F1), (F2)∗, (C) as well as (HN1)–(HN3) hold. Letu be the viscosity
solution of (1.1), (1.2) andU a solution of (3.2), (3.3) which satisfiesφmin 6 U 6 Z. Then there
exists a constantC, which is independent ofh, such that

max
xα∈Ω̄h

|u(xα) − U(xα)| 6 C
√

h.

Proof. As mentioned above we introduce the Kruzhkov transform ofu andU , i.e. ũ : Ω̄ → R,
Ũ : Ω̄h → R which are defined by

ũ(x) := −e−u(x), x ∈ Ω̄, Ũα := −e−Uα , xα ∈ Ω̄h.

Clearly,ũ(x) = −e−φ(x) for x ∈ ∂Ω and one verifies (cf. [5]) that̃u is a viscosity supersolution of

f (x)ũ − ũH

(
−

1

ũ
∇ũ

)
= 0 (3.15)

in the sense that ifζ ∈ C∞(Ω) andũ − ζ has a local minimum at a pointx0 ∈ Ω, then

f∗(x0)ũ(x0) − ũ(x0)H

(
−

1

ũ(x0)
∇ζ(x0)

)
> 0. (3.16)

Note also that

H̃ (x, r, p) := f (x)r − rH

(
−

1

r
p

)
, (x, r, p) ∈ Ω × R \ {0} × Rn,

satisfies in view of (2.1) and the convexity ofH (cf. [5])

∂H̃

∂r
(x, r, p) = f (x) − H

(
−

1

r
p

)
+

(
DH

(
−

1

r
p

)
, −

1

r
p

)
> f (x) > m (3.17)

uniformly in (x, r, p).
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Next, letxβ ∈ Ω̄h be such that

|ũ(xβ) − Ũβ | = max
xα∈Ω̄h

|ũ(xα) − Ũα|

and assume that̃Uβ > ũ(xβ), the casẽu(xβ) > Ũβ being treated in a similar way.
Let us first consider the situation when

(xβ)i 6
√

h or (xβ)i > bi −
√

h for somei ∈ {1, . . . , n}. (3.18)

In the first case, letxβ0 = (β1h, . . . , βi−1h, 0, βi+1h, . . . , βnh) ∈ ∂Ω andZ̃α := −e−Zα . Since
ũ(xβ0) = −e−φ(xβ0)

= Z̃β0 we deduce with the help of (3.10) that

Ũβ − ũ(xβ) = (Ũβ − ũ(xβ0)) + (ũ(xβ0) − ũ(xβ)) 6 (Z̃β − Z̃β0) + (ũ(xβ0) − ũ(xβ))

6 (C(R) + lip(ũ))|xβ − xβ0| 6 (C(R) + lip(ũ))
√

h.

Arguing in a similar way if(xβ)i > bi −
√

h we conclude that

max
xα∈Ω̄h

|ũ(xα) − Ũα| = Ũβ − ũ(xβ) 6 C
√

h (3.19)

if (3.18) holds. Now we consider the case

√
h < (xβ)i < bi −

√
h for i = 1, . . . , n. (3.20)

Let ε > 0, K > 0, n = nxβ be the quantities appearing in (2.3) and defineΦ : Ω̄ × Ω̄h → R by

Φ(x, xα) := Ũα − ũ(x) −
L1
√

h
|xα − x −

√
h n|

2
− L2

√
h |xα − xβ |

2,

whereL1, L2 > 0 are constants that do not depend onh and which will be chosen later. There exists
(xh, xαh

) ∈ Ω̄ × Ω̄h such that

Φ(xh, xαh
) = max

(x,xα)∈Ω̄×Ω̄h

Φ(x, xα).

In view of (3.20) we havexβ −
√

h n ∈ Ω̄ and therefore

Φ(xh, xαh
) > Φ(xβ −

√
h n, xβ)

or equivalently

Ũαh
− ũ(xh) −

L1
√

h
|xαh

− xh −
√

h n|
2
− L2

√
h |xαh

− xβ |
2 > Ũβ − ũ(xβ −

√
h n). (3.21)
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This implies

L1
√

h
|xαh

− xh −
√

h n|
2
+ L2

√
h |xαh

− xβ |
2

6 ũ(xβ −
√

h n) − ũ(xh) + Ũαh
− Ũβ

6 ũ(xαh
) − ũ(xh) + ((Ũαh

− ũ(xαh
)) − (Ũβ − ũ(xβ))) + ũ(xβ −

√
h n) − ũ(xβ)

6 lip(ũ)|xαh
− xh| +

√
h lip(ũ)

6 lip(ũ)|xαh
− xh −

√
h n| + 2

√
h lip(ũ)

6
L1

2
√

h
|xαh

− xh −
√

h n|
2
+

√
h

2L1
lip(ũ)2

+ 2
√

h lip(ũ),

and therefore,

1

h
|xαh

− xh −
√

h n|
2 6

1

L2
1

lip(ũ)2
+

4

L1
lip(ũ) <

(
ε

2 + ε

)2

(3.22)

|xαh
− xβ |

2 6
1

2L1L2
lip(ũ)2

+
2

L2
lip(ũ) < ε2, (3.23)

provided thatL1, L2 are sufficiently large.
Let us first consider the case that(xh, xαh

) ∈ Ω × Ωh. We infer from (3.16) that

f∗(xh)ũ(xh) − ũ(xh)H

(
−

1

ũ(xh)

2L1
√

h
(xαh

− xh −
√

h n)

)
> 0. (3.24)

In order to derive a corresponding relation for the discrete solution, we consider the inequality
Φ(xh, xαh

) > Φ(xh, xα) for all xα ∈ Ω̄, which translates into

Ũα 6 Ũαh
+

L1
√

h
(|xα − xh −

√
h n|

2
− |xαh

− xh −
√

h n|
2)

+ L2
√

h (|xα − xβ |
2
− |xαh

− xβ |
2)

=: Ṽα. (3.25)

Note first that

D−

k Ṽα =
2L1
√

h
(xα − xh −

√
h n, ek) + 2L2

√
h(xα − xβ , ek) − L1

√
h − L2h

3/2,

D+

k Ṽα =
2L1
√

h
(xα − xh −

√
h n, ek) + 2L2

√
h(xα − xβ , ek) + L1

√
h + L2h

3/2,

and therefore by (3.22),

|D−

k Ṽαh
|, |D−

k Ṽαh
| 6 C,∣∣∣∣D±

k Ṽαh
−

2L1
√

h
(xαh

− xh −
√

h n, ek)

∣∣∣∣ 6 C
√

h, k = 1, . . . , n,
(3.26)
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uniformly in h. Recalling thatU 6 Z we also deduce from (3.9) and (3.10) that

Ṽαh
= Ũαh

= −e−Uαh 6 −e−Zαh 6 −c̄, (3.27)

wherec̄ > 0 depends onφ andR. Furthermore, (3.26) implies

Ṽαh±ek
6 −

1

2
c̄ for h sufficiently small. (3.28)

Thus we can defineVα := − log(−Ṽα) for α = αh, αh ± ek and the mean value theorem yields

D−

k Ṽαh
= e−ξ−

k D−

k Vαh
, D+

k Ṽα = e−ξ+

k D+

k Vα, k = 1, . . . , n, (3.29)

whereξ−

k lies betweenVα, Vα−ek
andξ+

k lies betweenVα, Vα+ek
. In particular,

eξ±

k 6 max(eVαh±ek , eVαh ) = max

(
−1

Ṽαh±ek

,
−1

Ṽαh

)
6

2

c̄
(3.30)

by (3.28). Thus, (3.29), (3.26), (3.22), (3.27) together with the fact thatφmin 6 U 6 Z imply

|D±

k Vαh
| 6 C, k = 1, . . . , n,

∣∣∣∣− 1

Ũαh

2L1
√

h
(xαh

− xh −
√

h n)

∣∣∣∣ 6 C. (3.31)

Next, we deduce from (3.25) that

Uαh
= Vαh

, Uα 6 Vα, α = αh ± ek, k = 1, . . . , n,

so that the monotonicity property (3.7) and (3.2) imply

f (xαh
) = HN (D−

1 Uαh
, D+

1 Uαh
, . . . , D−

n Uαh
, D+

n Uαh
)

> HN (D−

1 Vαh
, D+

1 Vαh
, . . . , D−

n Vαh
, D+

n Vαh
).

Multiplying the above inequality bỹUαh
< 0, using (3.5) along with (3.31) and the local Lipschitz

continuity ofHN we infer

f (xαh
)Ũαh

− Ũαh
H

(
−

1

Ũαh

2L1
√

h
(xαh

− xh −
√

h n)

)
6 Ũαh

(
HN (D−

1 Vαh
, D+

1 Vαh
, . . . , D−

n Vαh
, D+

n Vαh
) − H

(
−

1

Ũαh

2L1
√

h
(xαh

− xh −
√

h n)

))

6 C max
k=1,...,n

∣∣∣∣D±

k Vαh
+

1

Ũαh

2L1
√

h
(xαh

− xh −
√

h n, ek)

∣∣∣∣
6 C max

k=1,...,n

(
eξ±

k

∣∣∣∣D±

k Ṽαh
−

2L1
√

h
(xαh

− xh −
√

h n, ek)

∣∣∣∣
+ |eξ±

k − eVαh |

∣∣∣∣2L1
√

h
(xαh

− xh −
√

h n, ek)

∣∣∣∣)
6 C

√
h + Ch. (3.32)
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Note that the last estimate is a consequence of (3.26) and (3.30). If we combine (3.24) with (3.32)
and use the definition of̃H we obtain

H̃

(
xαh

, Ũαh
,

2L1
√

h
(xαh

− xh −
√

h n)

)
− H̃

(
xαh

, ũ(xh),
2L1
√

h
(xαh

− xh −
√

h n)

)
6 C

√
h + e−u(xh)(f (xαh

) − f∗(xh)).

Note first that

Ũαh
− ũ(xh) = Φ(xh, xαh

) +
L1
√

h
|xαh

− xh −
√

h n|
2
+ L2

√
h |xαh

− xβ |
2

> Φ(xβ , xβ) = Ũβ − ũ(xβ) − L1
√

h.

Thus, in view of (3.17),

m(Ũβ − ũ(xβ)) 6 e−u(xh)(f (xαh
) − f∗(xh)) + C

√
h. (3.33)

Let us writexαh
= xh + rhdh with

dh =
n + wh

|n + wh|
, rh =

√
h |n + wh|, wh =

1
√

h
(xαh

− xh −
√

h n).

Note that (3.23) implies that|xαh
− xβ | < ε; (3.22) and a similar argument as in (2.16) yield

|dh − n| < ε, so that (2.3) gives

f (xαh
) − f∗(xh) 6 f ∗(xh + rhdh) − f∗(xh) 6 Krh 6 C

√
h. (3.34)

Combining (3.33) and (3.34) finally yields

max
xα∈Ω̄h

|ũ(xα) − Ũα| = Ũβ − ũ(xβ) 6 C
√

h. (3.35)

It remains to consider the case whenxαh
∈ ∂Ωh or xh ∈ ∂Ω. If xαh

∈ ∂Ωh, it follows from (3.21),
the fact that̃u(xαh

) = Ũαh
and (3.22) that

Ũβ − ũ(xβ) 6 ũ(xβ −
√

h n) − ũ(xβ) + ũ(xαh
) − ũ(xh)

6 lip(ũ)(
√

h + |xαh
− xh|)

6 lip(ũ)(2
√

h + |xαh
− xh −

√
h n|) 6 C

√
h.

Let us finally assume thatxh ∈ ∂Ω. Sinceũ(xh) = φ(xh) = Z̃xh
andŨ 6 Z̃ we obtain

Ũβ − ũ(xβ) 6 Ũαh
− ũ(xh) + ũ(xβ −

√
h n) − ũ(xβ)

6 Z̃(xαh
) − Z̃(xh) + ũ(xβ −

√
h n) − ũ(xβ) 6 C

√
h

as above. If we combine (3.19), (3.35) with the above estimates we obtain maxxα∈Ω̄h
|ũ(xα)−Ũα| 6

C
√

h. Transforming back tou andU implies the desired error bound. 2
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4. Examples of numerical Hamiltonians

Let us consider some examples of numerical HamiltoniansHN . In order to simplify matters we
restrict ourselves to the case of two space dimensions and a domainΩ of the formΩ = (0, b1) ×

(0, b2) with b2 6 b1.

4.1 Viscous regularization

Suppose thatH is globally Lipschitz continuous with Lipschitz constantL. We defineHN : R4
→

R by

HN (p1, q1, p2, q2) := −
L

2

2∑
k=1

(qk − pk) + H

(
p1 + q1

2
,
p2 + q2

2

)
and verify (HN1)–(HN3).

(HN1) Clearly,HN (p1, p1, p2, p2) = H(p1, p2).

(HN2) The functionFN defined in (3.4) is given by

FN (a0, a1, . . . , a4) = 2La0 −
L

2

2∑
k=1

(a2k−1 + a2k) + H

(
a2 − a1

2
,
a4 − a3

2

)
,

and (3.6) is evident. We check (3.7) fork = 1: from the Lipschitz continuity ofH we deduce for
a1 < ã1 that

FN (a0, a1, a2, a3, a4) − FN (a0, ã1, a2, a3, a4)

=
L

2
(ã1 − a1) + H

(
a2 − a1

2
,
a4 − a3

2

)
− H

(
a2 − ã1

2
,
a4 − a3

2

)
>

L

2
(ã1 − a1) − L

∣∣∣∣a2 − a1

2
−

a2 − ã1

2

∣∣∣∣ = 0,

i.e.a1 7→ FN (a0, a1, a2, a3, a4) is decreasing.

(HN3) Let us considerd(x) := dist(x, ∂Ω), x = (x1, x2). It is not difficult to see that

d(x) =


x1 in Ω1 = {x ∈ Ω | 0 6 x2 6 b2, 0 6 x1 6 min(b2 − x2, x2)},

b1 − x1 in Ω2 = {x ∈ Ω | 0 6 x2 6 b2, b1 > x1 > max(b1 − x2, b1 − b2 + x2)},

x2 in Ω3 = {x ∈ Ω | 0 6 x1 6 b1, 0 6 x2 6 min(x1, b2/2, b1 − x1)},

b2 − x2 in Ω4 = {x ∈ Ω | 0 6 x1 6 b1, b2 > x2 > max(b2 − x1, b2/2, x1 + b2 − b1)}.

We may assume thatφ is defined as a Lipschitz continuous function onΩ̄ with Lipschitz constant
Lφ (one such extension is e.g. given by the viscosity solution of (1.1), (1.2)).

DefineZ : Ω̄h → R by Zα := φα + ρd(xα), whereφα = φ(xα) andρ is independent ofh.
Clearly,Z satisfies (3.9) as well as (3.10) withR = Lφ +ρ. We claim that (3.8) holds provided that
ρ is sufficiently large and verify this for a pointxα = (x1α, x2α) ∈ Ω1.
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Case 1:x2α − h 6 x1α 6 x2α. Sincexα+e1, xα−e2 ∈ Ω3 it follows that d(xα−e1) = x1α − h,
d(xα+e1) = x2α, d(xα−e2) = x2α − h, d(xα+e2) = x1α and therefore

D−

1 Zα = D−

1 φα + ρ, D+

1 Zα = D+

1 φα + ρ
x2α − x1α

h
6 D+

1 φα + ρ,

D−

2 Zα = D−

2 φα + ρ
x1α − x2α + h

h
> D−

2 φα, D+

2 Zα = D+

2 φα.
(4.1)

Recalling thatH > 0 and using (2.1) we deduce

HN (D−

1 Zα, D+

1 Zα, D−

2 Zα, D+

2 Zα)

= −
L

2

2∑
k=1

(D+

k Zα − D−

k Zα) + H

(
D+

1 Zα + D−

1 Zα

2
,
D+

2 Zα + D−

2 Zα

2

)

> −
L

2

2∑
k=1

(D+

k φα − D−

k φα) + Lρ > −2LLφ + Lρ > M > f (xα) (4.2)

provided thatρ is sufficiently large.

Case 2:b2 − x2α − h 6 x1α 6 b2 − x2α. In this case we havexα+e1, xα+e2 ∈ Ω4 and therefore
d(xα−e1) = x1α − h, d(xα+e1) = b2 − x2α, d(xα−e2) = x1α, d(xα+e2) = b2 − x2α − h. Thus

D−

1 Zα = D−

1 φα + ρ, D+

1 Zα = D+

1 φα + ρ
b2 − x2α − x1α

h
6 D+

1 φα + ρ,

D−

2 Zα = D−

2 φα, D+

2 Zα = D+

2 φα + ρ
b2 − x2α − h − x1α

h
6 D+

2 φα.

(4.3)

The inequality (4.2) then follows in the same way as in Case 1.

Case 3:x1α < x2α − h/2 andx1α < b2 − x2α − h. We now havexα±e1, xα±e2 ∈ Ω1, which
implies

D±

1 Zα = D±

1 φα + ρ, D±

2 Zα = D±

2 φα, (4.4)

so that

HN (D−

1 Zα, D+

1 Zα, D−

2 Zα, D+

2 Zα)

= −
L

2

2∑
k=1

(D+

k φα − D−

k φα) + H

(
D+

1 φα + D−

1 φα

2
+ ρ,

D+

2 φα + D−

2 φα

2

)

> −2LLφ + H

(
D+

1 φα + D−

1 φα

2
+ ρ,

D+

2 φα + D−

2 φα

2

)
> M > f (xα) (4.5)

in view of (H3) provided thatρ is large enough. Other points can be treated in a similar way.

4.2 Godunov Hamiltonian

In [2] the following formula was derived from the solution of the Riemann problem:

HN (p1, q1, p2, q2) := ext
ξ∈I [p1,q1]

ext
η∈I [p2,q2]

H(ξ, η),
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where

ext
ξ∈I [p,q]

=

 min
ξ∈[p,q]

if p 6 q,

max
ξ∈[q,p]

if p > q.

Let us again verify (HN1)–(HN3).

(HN1) Clearly,HN (p1, p1, p2, p2) = H(p1, p2).

(HN2) In order to verify (3.6) and (3.7) it is sufficient to check that

pk 7→ HN (p1, q1, p2, q2) is increasing,

qk 7→ HN (p1, q1, p2, q2) is decreasing,
k = 1, 2. (4.6)

As an example, assume thatp1 > q1 and considerq2 7→ HN (p1, q1, p2, q2).

Case 1:q2 < q̃2 < p2:

HN (p1, q1, p2, q2) = max
ξ∈[q1,p1]

max
η∈[q2,p2]

H(ξ, η) > max
ξ∈[q1,p1]

max
η∈[q̃2,p2]

H(ξ, η) = HN (p1, q1, p2, q̃2).

Case 2:q2 < p2 6 q̃2:

HN (p1, q1, p2, q2) = max
ξ∈[q1,p1]

max
η∈[q2,p2]

H(ξ, η) > max
ξ∈[q1,p1]

H(ξ, p2)

> max
ξ∈[q1,p1]

min
η∈[p2,q̃2]

H(ξ, η) = HN (p1, q1, p2, q̃2).

Case 3:p2 6 q2 < q̃2:

HN (p1, q1, p2, q2) = max
ξ∈[q1,p1]

min
η∈[p2,q2]

H(ξ, η) > max
ξ∈[q1,p1]

min
η∈[p2,q̃2]

H(ξ, η) = HN (p1, q1, p2, q̃2).

Other situations are treated in a similar way.

(HN3) We use the same functionZ as in the case of viscous regularization to verify (3.8)–(3.10).
Again we examine the situation at a pointxα = (x1α, x2α) ∈ Ω1.

Case 1:x2α − h 6 x1α 6 x2α. Combining (4.1) with (4.6) yields

HN (D−

1 Zα, D+

1 Zα, D−

2 Zα, D+

2 Zα) > HN (D−

1 φα + ρ, D+

1 φα + ρ, D−

2 φα, D+

2 φα). (4.7)

Case 2:b2 − x2α − h 6 x1α 6 b2 − x2α. Arguing as in Case 1, but using (4.3) instead of (4.1) we
again derive (4.7).

Case 3:x1α < x2α − h/2 andx1α < b2 − x2α − h. We infer from (4.4) that

HN (D−

1 Zα, D+

1 Zα, D−

2 Zα, D+

2 Zα) = HN (D−

1 φα + ρ, D+

1 φα + ρ, D−

2 φα, D+

2 φα).

Thus it remains to estimate the last expression from below. Choosing a prioriρ > 2Lφ we have
D−

1 φα + ρ > ρ/2, D+

1 φα + ρ > ρ/2 so that with the help of (H3) we obtain

HN (D−

1 φα + ρ, D+

1 φα + ρ, D−

2 φα, D+

2 φα) > M > f (xα),

provided thatρ is large enough. Other points can be treated analogously.
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As a special case one obtains for the eikonal equationH(p) = |p| the scheme

HN (p1, q1, p2, q2) =

√
(max(p+

1 , −q−

1 ))2 + (max(p+

2 , −q−

2 ))2, (4.8)

wherep+
= max(p, 0) andp−

= min(p, 0). This scheme was examined in [13] in the context
of shape-from-shading and convergence of approximations was proved with the help of a result
of Barles & Souganidis [3]. In a recent paper, Zhao [18] showsO(|h ln(h)|) convergence for this
scheme whenf ≡ 1 in the case of approximating the distance function to a point.

5. Numerical results

In this section we present some results of numerical calculations for (1.1), (1.2) withH(p) = |p|.
As a first test example, letΩ := (−1, 1) × (0, 2) andf : Ω → R be defined byf (x1, x2) := 1,
x1 < 0,f (0, x2) := 3/4,f (x1, x2) := 1/2,x1 > 0. It is not difficult to see thatf satisfies (2.3) and
one verifies that

u(x1, x2) :=


1
2x2, x1 > 0,

−

√
3

2 x1 +
1
2x2, −

1
√

3
x2 6 x1 6 0,

x2, x1 < −
1

√
3
x2,

is a viscosity solution of|∇u| = f in the sense of Definition 2.1. Furthermore, letφ := u|∂Ω .
SinceH is globally Lipschitz continuous with constant 1, the numerical scheme induced by viscous
regularization reads: findU : Ω̄h → R such that

−
1

2
(Uα+e1 + Uα−e1 + Uα+e2 + Uα−e2 − 4Uα)

+
1

2

√
(Uα+e1 − Uα−e1)

2 + (Uα+e2 − Uα−e2)
2 = hf (xα), xα ∈ Ωh,

Uα = φ(xα), xα ∈ ∂Ωh.

The system of equations was solved with the help of Newton’s method and we calculated

EV R,h := max
xα∈Ω̄h

|u(xα) − Uα|

together with the experimental order of convergence

eoc=
ln(Eh2/Eh1)

ln(h2/h1)

for various choices ofh. We then used the numerical Hamiltonian (4.8) to approximate the viscosity
solution. Observing that

max((D−

k Uα)+, −D+

k Uα)−) =
1

h
(Uα − min(Uα−ek

, Uα+ek
))+

for k = 1, . . . , n, the discrete problem reads: findU : Ω̄h → R such that( 2∑
k=1

((Uα − min(Uα−ek
, Uα+ek

))+)2
)1/2

= hf (xα), xα ∈ Ωh, (5.1)

Uα = φ(xα), xα ∈ ∂Ωh. (5.2)
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The discrete solution was calculated with the help of theFast Sweeping Method(see e.g. [18] for a
description) and the corresponding errorsEFS,h and eoc’s are shown in Table 1 together with the
results from the method of viscous regularization. Figure 1 shows various level lines of the solution.

TABLE 1
Absolute error in maximum norm and experimental
order of convergence for the first test problem

h EV R,h eoc EFS,h eoc
0.1 1.24348e−1 - 5.59016e−2 -
0.05 7.22984e−2 0.78 2.79508e−2 1.00
0.025 4.08509e−2 0.82 1.39754e−2 1.00
0.0125 2.26691e−2 0.85 6.98771e−3 1.00
0.0063 1.24385e−2 0.87 3.49386e−3 1.00

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

FIG. 1. Level lines of the solution from the first test problem.

We observe linear convergence inh for the method (5.1), (5.2) (cf. also [18], where a one-sided
bound of the formuh − u 6 Ch log(1/h) is proved forf ≡ 1).

In our second example we considerΩ = (−1, 1)2, φ ≡ 0 and

f (x1, x2) :=


2, (x1 − 1/2)2

+ x2
2 6 1/8 andx2 > x1 − 1/2,

3, (x1 − 1/2)2
+ x2

2 6 1/8 andx2 < x1 − 1/2,

1, otherwise.



348 K . DECKELNICK & C . M . ELLIOTT

Note that in this case discontinuities off occur both along curved lines and along a straight line
which is not aligned with the grid. Furthermore, the three regions, in whichf takes different values,
meet at the triple points(3/4, 1/4), (1/4, −1/4). It is not difficult to check thatf satisfies (2.3). The
numerical solutions were again calculated with the help of viscous regularization and (5.1), (5.2).
In the absence of an exact solution we compared the discrete solutions for various grid sizes with
an approximationUf on a fine grid(h = 1/640). The results are displayed in Table 2, while Figure
2 shows some level curves of the solution.

TABLE 2
Absolute error in maximum norm and experimental order
of convergence for the second test problem

h EV R,h eoc EFS,h eoc
0.1 9.07922e−2 - 1.10429e−1 -
0.05 1.29179e−1 −0.51 1.28365e−1 −0.22
0.025 1.04327e−1 0.31 8.68148e−2 0.56
0.0125 7.35184e−2 0.50 5.00901e−2 0.79
0.0063 4.33351e−2 0.76 2.65873e−2 0.91

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
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−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

FIG. 2. Level lines of the solution from the second test problem.
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