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We consider the Hamilton—Jacobi equation of eikonal type

H(Vu) = f(x), xE€§2,
whereH is convex andf is allowed to be discontinuous. Under a suitable assumptighiwa prove
a comparison principle for viscosity sub- and supersolutions in the sense of Ishii. Furthermore, we
develop an error analysis for a class of finite difference schemes, which are monotone, consistent and
satisfy a suitable stability condition.
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1. Introduction

Let2 c R" be abounded domain with a Lipschitz boundafy. We consider the Hamilton—Jacobi
equation
H(Vu) = f(x), x € £, (1.1
ulx) =¢kx), xe€ds, (1.2)

where f and¢ are given functions. The equatign ([L.1) occurs in a variety of applications including
geometrical optics, computer vision and etching. In order to motivate the link to propagating fronts,
let us suppose for a moment that such a front at tineen be described as thdevel set of an
auxiliary functionu : 2 — R,i.e.I"(t) = {x € 2 | u(x) = t}. Then, formally, a unit normal to

I' () and the corresponding normal velocltyare given by

po ) Y cr,
Vi (x)] [Vu(x)]
If in addition, u solves|[(L.]1) f is positive andH is homogeneous of degree one, then
1 1 HVux)) _

V= — _ u | o
IVux)|  |Vu®x)| fx) 15 (v(x), xel@)
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i.e. the front moves with a normal velocity which depends on the properties of the underlying space
and the orientation of the front. Furthermore, we can interp(e} as the first arrival time at the
pointx of a front which was the zero level setoft the beginning of the evolution.

Itis often desirable to consider situations in which the functfda allowed to be discontinuous,

e.g. in geometrical optics, when light propagates through a layered medium. Thus, we shall be
concerned both with the well-posednesd of|(1[1),] (1.2) in the cas¢ tisadiscontinuous and with
the convergence of numerical algorithms which approximate the corresponding solution.

Various ways of defining a solution ¢ (1.1]), (I.2) for discontinugusave been suggested. First,

Ishii [8] (see 82 below) extended the concept of viscosity solution introducéd in [5] to the case of
discontinuous Hamiltonians. He obtained existence and unigueness results for an equation of the
form H(x, u(x), Vu(x)) = 0, in which the HamiltoniarH (x, u, p) is allowed to be discontinuous

in u. Using this notion of solution, Soravia [15] studies a class of Hamilton—Jacobi equations
in a control-theoretic framework and gives necessary and sufficient conditions for uniqueness of
solutions of boundary value problems. [n[10], Newcomb & Su introduce a concept of solution for
(L.7), [1.2) which is based on the optical length functiofx, y) (see §2 below) and which they

term Monge solution. For lower semicontinuofishey prove a comparison principle as well as
existence and uniqueness for the Dirichlet problem. Recently, a further definition of solution was
suggested ir_[4] by Camilli & Siconolfi for Hamilton—Jacobi equations of the féftw, Du) = 0.

They introduce a generalized notion of viscosity solution, which allows measurable dependence of
H onx. In the case of the eikonal equation, ié(p) = |p|, this definition involves the measure-
theoretic notion of an approximate limit for a subsolution and an essential limit for a supersolution
and hence is not symmetric. Comparison and uniqueness results are provided.

Problem [(I.]),[(1]2) also occurs in shape-from-shading. In this case, the right hang iside
related to the light intensity which can be discontinuous|_In [16], Tourin establishes a comparison
result for equations of the form (x, Du) = 0, in which H is allowed to be discontinuous along a
smooth surface. For the shape-from-shading problem, Rouy & Tadurin [13] present a consistent and
monotone scheme along with numerical calculations. A related problem is studled in [12], where
the unigue solution is obtained as the limit of sequences which arise from a suitable regularization
of the intensity function.

Our work is based on Ishii’s definition of solution, but let us emphasize that even though we
allow discontinuities off the solutions themselves will be Lipschitz continuous. In order to obtain
uniqueness for the solution ¢f (1.1]), (1.2) an assumptiorf a8 needed: this condition (see (F2)
below) can be seen as a generalization of a condition which appears in [16], and it amounts to a
one-sided continuity constraint along a fixed direction at each poift.itnder this assumption
we are able to prove a comparison result in Thedrerp 2.3. In §3 we analyze a class of numerical
schemes which approximate the solution[of|(1]1),](1.2). Denoting the grid size we obtain an
order O(v/h) for finite difference schemes which are monotone, consistent and satisfy a suitable
stability condition. In 84 we present examples of schemes which satisfy the above requirements,
while 85 contains numerical tests.

2. Existence and uniqueness

Let us start by defining a viscosity solution pf (1.1), {1.2). As already mentioned above, we use a
concept which was introduced by Ishii [ [8] and which is based on upper and lower semicontinuous
envelopes. For a given functian: 2 — R let
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v*(x) == limsup{v(y) | y € B,(x) N 2},

r—0

Ve (x) 1= |imil(")|f{v(y) | y € B, (x) N §2}.

DEFINITION 2.1 A functionu € C%(£2) is called aviscosity subsolutiofresp.supersolutio of
(1.7) if for eachs € C*°(£2): if u — ¢ has a local maximum (resp. minimum) at a poipte $2,
then

H(V¢(x0) < f*(x0) (resp. > fi(x0)).

A viscosity solutiorof (1.1), [1.2) is then a functiom € C°(£2) which is both a viscosity sub- and
supersolution and which satisfigéx) = ¢ (x) for all x € 352.

Assumptions on the dataWe shall assume th&f : R” — R satisfies:
(H1) H(0) = 0andH(p) > Oforall p € R" \ {0}.
(H2) H is convex.

(H3) H(p) — oo as|p| — oo.

Concerning the right hand side we make the following assumptions:

(F1) f: £ — Ris Borel measurable and there existOn < M < oo such that
m< f(x) KM VxeSf2. (2.2)

(F2) For everyx € £2 there exisk, > 0 andn, € S" sothatforally € 2,r > 0,d € S**
with |d — ny| < €, andy + rd € 2 we have

fO+rd)— f(y) <w(y—x|+7), (2.2)

wherew : [0, c0) — [0, c0) is a continuous, nondecreasing function witf0) = 0.
For later purposes we shall also formulate a stronger version of this assumption, namely

(F2)* There exist > 0 andK > 0 such that for alk € £2 there is a direction = n, € §"~ with

fO+rd)— f(y) <Kr (2.3)

forallye 2,de §" 1 r>0with|y—x| <e€,|d —n| <eandy +rd € 2.

Clearly, (F2) holds at all points at which f is continuous, but it also allows for certain types of
discontinuous behavior as shown by the following

EXAMPLE. Suppose that a surfage splits £2 into two subdomains2; ands2; such thatfjo, €
C%(21), fie, € CO(£27) and

im f(y») < Im f(y) foralxer.
y—>x, yef2y Y X, yES22

In addition, assume that the following uniform cone property holds: for everyl” there exists a

neighborhood/, and a con&,, (which is congruent to a fixed given co@g) such thaty € U, N$2;

implies thaty + C, C £21. Then (F2) holds witlk = n, given by the direction of the cong,.
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To see this, observe that the cone condition prevents a situation wher@1, y + rd € 2o,
which would lead to a violation of (F2) (cf.[16], wheré is assumed to be smooth).

One can also consider e.g. a two-dimensional doniainvhere three curves of discontinuity
meet at a triple junction. A suitable modification of the above also yields an example fér (F2)

In order to describe our assumptionsgptet us definel. : 2 x 2 — R by

1
L(x,y) :=inf {/O N(f* (@), y' @) dr | y € Wh((0, 1); 2) with y(0) = x, y(1) = y},

where
N, ¢) :=sup—(, p) | H(p) =r}.

We then suppose the following compatibility condition for the boundary data,
© d(x) —p(y) < L(x,y) forallx,yeds.

We shall assume (H1)—(H3) throughout the paper, while the corresponding assumptjoaadp
will be stated explicitly.

THEOREM2.2 Assume that (F1) and (C) hold. Then there exists a viscosity solutoa%1(£2)
of @), [LD).

Proof. We regularizef using the sup-convolution, i.e.
1 2
fex) ==supy f(y) — =lx =y}, €>0.
yesf2 €

Clearly, fc is continuous and satisfigS (x) < fe(x) for all x € £2. In view of assumption (C) and
the monotonicity ofV in the first variable we deduce that

¢(x) —o(y) < Le(x,y)  Vx,y€df2,

where
1
Le(x,y) i=inf {/O N(fey @), y' () dr | y € WE((0, 1); £2) with y(0) = x, y(1) = y}~

Therefore, the problem

H(Vu®) = fe(x), x €2,
ut(x) =¢p(x), x €98,

has a unique viscosity solutiori, which is given by the formula
u€(x) = inf {Le(x, y) + oM}
yeoas?
It is not difficult to verify that

||u€||co,1((2) < C(M, $2) uniformlyine > 0.



HAMILTON —JACOBI EQUATIONS 333

Thus, there exists a sequereg)ycy With €, \, 0 ask — oo andu € C%1(£2) such that

u% — u ask — oo uniformly in 2. (2.9)

Clearly,u = ¢ on d£2. We claim that: is a viscosity solution in the sense of Definition 2.1. Let
¢ € C*(£2) and suppose that — ¢ has a local maximum afy € £2. In view of (2.4) there exist
x; € £2 such that; — xg ask — oo andu — ¢ has alocal maximum at,. Then

H(VE(xr) < fe (Xk), (2.5)
and taking into accounft (.1) we obtain
1
Ja(xi) = sup {f(y) — —lxk — ylz} <suplf () | 1y = xol < |xk — xol + v Mer},
o=y <V/Mex €k
which implies by passing to the limit ifi (3.5)

H(Vi(xg)) < limsupfe, (xx) < f*(xo).

k— 00

On the other hand, if — ¢ has a local minimum aty, there existt; € 2 with x; — xg ask — oo
such thau* — ¢ has a local minimum af;. Thus,

H(VE(xk) 2 feo (i) 2= fu(Xi).
Since f, is lower semicontinuous, we deduce that
H(V¢(x0)) 2 fi(xo0).

In conclusiony is a viscosity solution of (T]1)] (1.2). O
Uniqueness of the viscosity solution is a consequence of the following comparison result.

THEOREM2.3 Assume that (F1), (F2) hold, thate C°(£2) is a subsolution of (1]1)y; € €%(£2)
is a supersolution 0.1) and that at least one of the functions belotfs4@2). If u < v ond$2
thenu < vin 2.

Proof. Letus assume thate C%1(£2). We shall use the approach presentedlin [9] (seealso [16]).
Fix 0 € (0, 1) and definaiy (x) := 6u(x). Next, chooseq € £2 such that

ug(xo) — v(xo) = m%x(ue(X) —v(x)) =, (2.6)

and suppose that > 0. Upon replacing:, v by u + k, v + k, we may assume that > 0 in 2,
so thatup < u in £2. In particular,ug < v onds2, which implies thatrg € §2. Lete = €, and
n=ny € $"—1 be the quantities which appear in (F2). It is not difficult to verify that (F2) implies

[y +rd) = fi(y) <oy —xol +71) 2.7)

forally e 2,r >0andd € §" 1, |d —n| < e.
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Let us define foi. > 0, L > 1 the functiond® : 2 x 2 — R by
2

1
P(x,y) = ug(x) —v(y) = Lrlx =y = Zn| —|x —xol*
Let (xy, y1) € £2 x £2 be such that
D (x5, y3) = mMax _D(x,y). (2.8)
(x,y)eNR %82

Sincexo— +n € 2 for largex, the relationd (x;, y1) > @ (xo, xo— +n) implies togetherwit6)
that

2
Lx

1 1
Xo= T on + |xx — x0l? < up(x3) — v(y2) — ug(xo) + v<Xo - Xn>

1
= (ug(xp) — v(x3)) — (ug(x0) — v(x0)) + v(x3) — v(yn) — v(xo0) + v<xo - X")
. . 1
<lip)|xa — yal + |Ip(v)x

< lip(v) 42 lip(v)%,

1
XA—YA—X”

where lip(v) denotes the Lipschitz constantwfTherefore,
2

1 . 1
Lifx, =y = 50 41 = xo0l? < C(Ilp(v))x, (2.9)
so that
Xy, Y, = Xo asiA — 0o, (2.10)
C €
My, — vy —on| < — < —— 2.11
G| S < 2.11)

provided thatL is sufficiently large. Next,8) implies that — o%g has a local maximum at;,
wherez (x) = §(y;) + LAlx — yu — +n|2 + |x — xo|%. Therefore,

(2 (21— ) 20 20) ) < o 212
and similarly,
(25— - 20)) > row e
Combining [2.1R) and (2.13) and using assumptions (H1), (H2) we obtain
o <on (a5 - 1)) ”

1 1 1 1
< 9<H(§2Lk<xk -y — Xn)) — H<5<2Lk<xk -y — Xn) + 2(x; — xo)>>> +0f*(x;).
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Note thatH is locally Lipschitz continuous (since it is convex) so that we may deduce (2.11)

H 12LA 1 H 1 2L\ 1 2 <C
G 2) s ) )

Inserting this inequality intd (2.14) we arrive at

(1—=0) fx(y) < Clxs — xol +0(f*(x2) — (). (2.15)

In order to treat the second term we write= y, + ryd, with

d n+ w 1| oyl N 1
= —, n=-n+wy, wy=Alxy—y»—-—nj.
A |n + w“ A x A A A Y 2
Now, (2.17) implies
2¢
2 =
ldy. —n| < 2] <2 =« (2.16)
1—Jw;| 1- e

so that[(2.]7) yields

L0 = fia) = fFn +radi) — fu(n) < o(lya — xol +12).
If we insert this estimate int§ (2.]L5) and rechll{2.1) the result is
m(1—0) < Clx, — xol + @ (|yx — xol +72).

Sendingh 7 oo yieldsm (1 — 6) < 0 in view of {2.10), which is a contradiction. Thus; < v for
all & < 1 and sending 7~ 1 finally yields the result. O

3. Numerical scheme and error analysis

Numerical schemes on uniform grids for Hamilton—Jacobi equations have been developed on the
basis of an upwind discretisation of the gradient; seé [11], [14] for an outline of the underlying
ideas. It is possible to derive these schemes as well as methods on unstructured grids by interpreting
the corresponding viscosity solution as the value function of an optimal control problem and by
using the dynamic programming principle. We refer to Appendix A, written by M. Falcong] in [1]
for a description of basic results together with a comprehensive list of references.

There is a close connection between the static Hamilton—-Jacobi equafipn (1.1) and time-
dependent problems of the form

u, + H(Vu) = 0. (3.2)

Error estimates for finite difference approximations[of(3.1) have been provéd in [6], While [7]
introduces a class of semi-Lagrangian schemes which are strongly related to Godunov methods in
one space dimension.

We shall start from a class of finite difference schemes which are monotone and consistent
and which satisfy a suitable stability condition. In order to keep the presentation simple we shall
from now on assume tha? = []7_;(0, b;). Leth > 0 be such that there exi8f; € N with
b; = N;h,i =1,...,n,and define

Qui=7iNR, 32 =7 N8R, 2= 2,UdI2,
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whereZy = {xy = (ha1, ..., hay) | a; € Z, i = 1,...,n}. We shall approximate the viscosity
solutionu by a grid functionU : 2, — R, Uy = U(xe), o = (a1, ...,a,) € Z". FOrxq € £y,
andk € {1,...,n}let

Dk_ Ua — Uot _hUozfek , D:Ua — UaJrekh UO(

be the usual backward and forward difference quotients. The numerical scheme now reads: find
U : 2, — R such that

Hy(D{ Uy, Df Uy, ..., Dy Uy, DU = f(xa), Xa € 20, (3.2)
UDt = ¢(-xol)s -xot e ths (33)
whereHy : R — R, (p1, q1s -5 Pnsqn) — Hn(p1,4q1, ..., Pn,qn) IS the numerical Hamil-
tonian. It is convenient to also introdud®; : Rt — R, a = (ag, a1, az, . .., azgm—1, azm) +
Fn(a), as
Fy(a) := Hy(ap — a1, a2 — ao, ..., ap — az,—1, az, — ao)- (3.4)

In what follows we shall assume thAty is locally Lipschitz continuous and has the following
properties:

(HN1) Consistency:
Hy(p1, p1s -« Pns pn) = H(p1, ..., pn)  forallp=(p1,...,pn) eR".  (3.5)
(HN2) Monotonicity:

ap — Fy(a) isincreasing, (3.6)
ar — Fy(a)is decreasingfok =1,..., 2n. 3.7)
(HN3) Stability: there exists a functiof : £2;, — R which satisfies
HN(D] Zy,D{ Zo, ..., D; Zo, D Zy) > f(xa), Xo € 2, (3.8)
Zo = $(xg), Xy € 082, (3.9)
ID; Zol, IDf Zo| < R, Xo € 2, (3.10)

whereR is independent of.

The functionZ which appears in (HN3) will act as a discrete supersolution for solutior{s df (3.2),
(3.3). We shall examine some examples of choiced pfin §4.

REMARK 3.1 Note that the functio in (HN3) above satisfies
Zo = Gmin i= Min ¢ (x), X4 € 2. (3.11)
xe€as2
To see this, leZg = min, .5 Z, and assume thats € £2;,. Then, [2.1),[(38) and (3.7) would
imply
m < f(xg) < Hy(D] Zg, Df Zg, ..., D, Zg, D} Zp)

Zp Zp—er Zpter Zp—e, Zp+ten Zg Zp Zp Zp Zp
=FN > ) PRI 5 <F T T s T e Ty T
h h h h h h h h h h
— Hy(,...,0)= H(0) =0
in view of (H1), a contradiction. Thusyg € 32, and [3.11) follows.
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Next, let us prove an auxiliary result which yields a kind of diagonal coercivity for the numerical
Hamiltonian.

LEMMA 3.2 For(ai, ap, ..., am_1, az) € R,
lim Fy(t,a1,an,...,a2,-1,az,) = 0.
11— 00
Proof. Using the defintion of*y along with [3.5)-{(3]7) we deduce for> r := maxazy, ao, . ..,
az_1, az,) that
Fy(t,ay,ao,...,a,—-1,a2,) = Fn@,r,r,...,r,r)=Hy(t—r1r,r —t,...,t — 1,7 — 1)
Fy@—r0,0,...,0,0)
> Fy(t—r0,2(t—r),...,0,2(t —r))
Hy(¢t —-—r,t—vr,...,t —r,t—r)=H@{—r,...,t—7r)

— 00 ast — oo,

which proves the lemma. ]

LEMMA 3.3 Assume that (HN1)-(HN3) and (F1) hold. Then there exists a solutiarf (3.2),
(3.3), which satisfiegmin < Uy < Z,, for all x, € 25.

Proof. We consider the following iteration: 1&f° := Z and givenU* : 2, — R, let
k k
F L Uozfel UotJrel Uti(—e,, U§+en
N n s h s h PR A s A
Uit = ¢(xa).  xo €082

Ukt = inf {t

)Ef(xoc)}v Xy € §2p,

We claim that the sequenc&¥),. is well defined and that

dmin <UF < UM<z forallk e N. (3.12)
To see this, assume thiat (3.12) holds for aif } < k and consider, fok, € £2;,
! Uti(—e U§+e Uzl;—e Uti(-i-e
t) = Fy| -, = Lo, n n), teR.
n() = Fy <h K h o h €

Clearly,n is continuous and increasing. Lemma|3.2 implies tiat — oo ast — oo so thatUX*+!
is well defined. Sinc&* > ¢min by our induction hypothesid, (3.7), (8.5) and (H1) yield

77(¢ in) = F ®min U§7£,1 Ut;,t(Jrel Utl);—e,, U§+en
min N h ) h ) h LI} h ) h
®min Pmin
< Fy PR =H0) =0< f(xq), (3.13)
which implies that/X+! > ¢min. Also, asU* < U*~1, (3.7) yields
¢(Uk) =F U_‘I; U§781 U§+el U‘i(_en U§+€n
CIN T T T T T h

k k—1 k-1 k—1 k—1
Ua Ua—el Uoc+el Uoz—e,, U(x-‘ren
z Fn

- ; 2
h’ h E} h ’ h h > f(xﬂt)
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by the definition ofU%. ThusUX*! < UX. Using similar arguments and recallirjg (3.11) we infer
that [3.12) holds fok = 1, so that we finally obtairi (3.12) for alle N. Note also that

F U(iH—l U(i(_el U§+el U(f—en Uo]t{—i-en
N h b h b h LR ] h b h

) = f(Xa), Xoq € 2, keN. (3.14)

From [3.1) we infer thal/X — U, for all xo € £2; ask — oo. Clearly,Uy, = ¢ (xq) for x, € 82
Lettingk — oo in (3.14) and using the continuity dfy finally implies thatU satisfies[(3]2). The
bounds orUJ follow from (3.12). O

Our main result of this paragraph is an error bound between a discrete sdluéind the viscosity
solutionu. It is natural to model the error analysis on the uniqueness proof, but in our case a closer
inspection of the proof of Theorejn 2.3 shows that it is not obvious how to control the difference
between the viscosity solutianand an approximatioty. Therefore we recall a different approach

to prove uniqueness, namely to apply the Kruzhkov transform. The advantage is that the equation
satisfied by the transformed function contains an additional term of zero ordégr (cf. (3.15)), which is
subsequently exploited.

THEOREM 3.4 Assume that (F1), (F2)(C) as well as (HN1)—-(HN3) hold. Let be the viscosity
solution of [1.1),[(T.R) and a solution of [(3.R),[(3]3) which satisfiggin < U < Z. Then there
exists a constar@, which is independent df, such that

max [u(xq) — U(xa)| < CV/h.

xaeﬂh

Eroof. As mentioned above we introduce the Kruzhkov transform ehdU, i.e.i : 2 — R,
U : 2, — R which are defined by

i(x) = —e O xe 2, U,=—eY, x4 2,.

Clearly,ii(x) = —e~?™ for x € 852 and one verifies (cf[[5]) thal is a viscosity supersolution of

fu — ﬁH(—%Vﬁ> =0 (3.15)
u
in the sense that if € C*°(£2) andiz — ¢ has a local minimum at a point € £2, then
1
fr(x0)u(x0) — IZ(XO)H<—~—V§'()C0)) > 0. (3.16)
u(xo)

Note also that
ﬁ(x, r,p) = f(x)r— rH(——1p>, (x,r,p) € 2 xR\ {0} x R",
r

satisfies in view of[(2]1) and the convexity Bf (cf. [5])

oH 1 1 1
—(x,r, P) = f(-x) - H<__p> + (DH<__p>7 __P) > f(x) > m (317)
or r r r

uniformly in (x, r, p).
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Next, letxg € £2, be such that

lii(xp) — Upl = max |ii(xy) — Uyl

Xoq €82

and assume thdlfg > ii(xp), the caséi(xg) > Ug being treated in a similar way.
Let us first consider the situation when

(xg)i <Vh or (xp)i =b; —vh forsomei € (1,...,n}. (3.18)

In the first case, Iet,g0~= (Bih, ..., Bi—1h, 0, Bis1h, ..., Buh) € 92 andZ, := —e %=, Since
i(xgy) = —e ?00) = Z we deduce with the help df (3./L0) that

Ug — ii(xp) = (Ug — i(xpy)) + (i (xpy) — it(xp)) < (Zp — Zpy) + (i (xgy) — ii(xp))
< (C(R) +lip())lxg — xpgol < (C(R) +lip (@)

Arguing in a similar way if(xg); > b; — /h we conclude that

max |ii(xy) — Uyl = Ug — ii(xg) < CVh (3.19)

xaE.Qh
if (3:18) holds. Now we consider the case
Vi< (xp)i <bi —vh fori=1,...,n. (3.20)

Lete > 0, K > 0,n = n,, be the quantities appearing [n (2.3) and defines2 x 2, — R by

. L
D (x, xy) 1= Uy — ii(x) — 7%% —x = ~hn? = Lovh x4 — xp/2,

whereL1, L > 0 are constants that do not dependiand which will be chosen later. There exists
(xn, xa,) € 2 x 82, such that

D (xp, Xo,) = max = @(x, xy).
(x,xq)ES2 X 82,

In view of ) we haves — +/hn € 2 and therefore
D (xh, Xay) > (g — Vhn, xp)
or equivalently

N ~ L .
Uay, — ii(x) — 7%|xa,, —xp = Vhn? = Lovh |xa, — xp12 > Ug —ii(xg — Vhn).  (3.21)
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This implies

Ly
ﬁ |Xey, — Xn — \/Enlz + sz/ﬁ|xah —x,g|2

< ii(xg — vVhn) —i(xp) + Uy, — Up

< ii(xey) — i(xn) + (U, — i) — (Up — ii(xp))) + ii(xpg — Vhn) — ii(xp)
< ip@@)[xe, — xn| + ~/h lip (D)

< Nip@@)|xy, — xn — Vhn| + 2v/hlip (i)

Ll 2 \/E L2 .~
< ——= x4, — x5, —Vh — 2+/h 1 ,
S e Vhn| + 5, IP@* + Vhlip (iD)
and therefore,
1 s 1, 4 e \?
Z'xah — Xp — «/En| < L—% I|p(u) + L_l ||p(1/l) < (m) (322)
|Xa, — xg]° < ! |ip(ﬁ)2+3|ip(ﬁ) < é? (3.23)
“h LS 2L1L> Lo ’ '

provided thatl1, L are sufficiently large.
Let us first consider the case thaj, x4,) € 2 x £2,. We infer from [3.1) that

1 214
T (x —xh—\/f—ln)> > 0. 3.24
iCep) /ho (3:24)
In order to derive a corresponding relation for the discrete solution, we consider the inequality
D (xp, xoy,) = D (xp, xg) for all x, € £2, which translates into

Felen)ii () — a<xh>H(_

~ - L
Uy < Uy, + —l(lxa —xpn = Nhn? = |xq, — xp — Vhn|?)
Vh
+ Lovh (1xg — xp1? — X, — xp1%)
= V,. (3.25)
Note first that
~ 2L
D, Vy = Thl(xa —xp —~hn, e) + 2LV h(xg — Xg, ek) — Livh — Loh®?,
~ 2L
D,j' V, = lel(xa —xp — Nhn, ep) + 2Lovh(xy — xg, ex) + Livh + Loh®/?,
and therefore by (3.22),
|Di Vg, |, |Dy Vi, | < C,
~ 2L 3.26
DkiVah——l(xah—xh—\/En,ek) <Cvh, k=1,...,n, ( )

vh
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uniformly in 4. Recalling that/ < Z we also deduce fron (3.9) ar{d (310) that
Vah = Uah = eV < 7% < —¢, (3.27)

wherec¢ > 0 depends og andR. Furthermore[(3.26) implies

- 1 -
Ve, < _EE for A sufficiently small (3.28)
Thus we can defin®, = — Iog(—Va) for o = oy, oy, + ¢, and the mean value theorem yields
DV, =e % D Vy,, DiVy=e5%DiV,, k=1,...n, (3.29)

whereg,~ lies betweerVy, Vi, andé,:r lies betweerV,, Vo, . INn particular,

-1 -1 2
bt < maxeVanter | V) — max< . , N—) <= (3.30)
Voth:tek Vah ¢
by (3.28). Thus[(3.39)] (3.26], (3]22), (3127) together with the facighat< U < Z imply
1 214
DV, |<C, k=1,...,n, ‘—~——x —xp —vhn)| <C. 3.31
| k ahl Uah «/E( L7 h ) ( )

Next, we deduce fronj (3.25) that
U, =V, Us < Vo, a=apLe, k=1,...,n,
so that the monotonicity property (3.7) afd {3.2) imply
f(xa,) = Hy(D] U, DY Uy, ..., Dy Uy,, D; Uy,)
> Hy(D{ Va,, D Voo ..., Dy Vi, D Vi)

Multiplying the above inequality by/,, < 0, using ) along witl) and the local Lipschitz
continuity of Hy we infer

f(xah)ﬁah - UahH<—~iE(xah —xp — \/f_ln)>

Uy, Vh
7 - + - + 1 20, \/_
< U, ( Hw (DY Vi D Ve Dy Ve Dy Vo) = H (=5 =, = 01 = V)
ap
1 214
< C max |DEVy, + — == (xa, — x4 — Vhn, ep)
T e UOth \/E .
= 2L1
<C g\éfﬂ(eék D Ve, — ﬁ('x@h —xp —~hn, er)

2L
Thl(xah —xp —Vhn, e

)

< CVh +Ch. (3.32)
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Note that the last estimate is a consequencg of|(3.26) and (3.30). If we cofbirje (3.24) with (3.32)
and use the definition df we obtain

H(x Us, Zj_hlmh - ﬁn)) (x 1 (xp), Zj_hlmh —xp —~h n))
< CVR+ 7N (f(xg,) — filxn)).
Note first that

Uy, — ii(xp) = ®(xp, Xe) + xp — Nhnl? + Lol |xq, — xp1?

\/—Ixah
> @ (xp, x5) = Ug — ii(xg) — Livh.
Thus, in view of [3:1]7),
m(Up — iixg)) < eV (f (xoy) = fulxn)) + CV. (3.33)

Let us writexy, = xj, + rpdy with

n—+ wy
dh: ’ rh:\/z|n+wh|v wh:
ln + wp|

%(xah — Xy — «/l—ln).

Note that [(3.2B) implies thac,, — xg| < €; (3.22) and a similar argument as [n (2.16) yield
|dn — n| < €, so that[(2.B) gives

f @) = feln) < f*Gn + rad) — filen) < Krp < CVh. (3.34)
Combining [3.3B) and (3.34) finally yields
max |ii(xy) — Uy| = Ug — ii(xg) < CV/h. (3.35)
Xq €82

It remains to consider the case whey) € 952, or x;, € 382. If x4, € 382y, it follows from @)
the fact thai (xs,,) = Uy, and [3.2b) that

Up — ii(xp) < ii(xg — Nhn) —ii(xg) + i (xa,) — i (xp)
< Nip @) (VI 4 1xey, — xi)
< lip (@) 2V + |xa, — x5 — Vhin|) < CVh.

Let us finally assume that, € 852. Sinceii(x,) = ¢ (x;) = Zy, andU < Z we obtain

wy — B(xn) + i (xg — Vhn) — ii(xp)
Z(xay) — Z(xp) +ii(xg — Vhn) —ii(xp) < CVh

Ug —ii(xg) < U,
<

as above. If we combin 35) with the above estimates we obtajnmaxi (x,) — Uy| <
C+/h. Transforming back ta andU implies the desired error bound. O
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4. Examples of numerical Hamiltonians

Let us consider some examples of numerical Hamiltonidrs In order to simplify matters we
restrict ourselves to the case of two space dimensions and a démafithe forms2 = (0, b1) x
(0, by) with by < by.

4.1 Viscous regularization

Suppose thai is globally Lipschitz continuous with Lipschitz constantWe defineHy : R* —
R by

L
2

2
Hy(p1.q1, p2.q2) '=—= > _(qx — px) + H

<p1+q1 pz+q2>
=1

2 2
and verify (HN1)—(HN3).

(HN1) Clearly, Hy (p1, p1. p2, p2) = H(p1, p2).

(HN2) The functionFy defined in[(3.4) is given by

2 2

2
L az —ail a4 —as
Fy(ao, a1, ...,as) =2Lag — > E (agk—1+ az) + H(— — ],
k=1

and [3.6) is evident. We chedk (8.7) fbr= 1: from the Lipschitz continuity off we deduce for
ay < aj that

Fy(ao, a1, az, a3, as) — Fy(ao, a1, az, az, as)

L a» —ay ag—as ar» —ai a4 — as
2(111 ai) + ( > 3 ) < 5 T 3 >

ap—a1 ax—a
2 2

L
> E(al—al)—L =0,

i.e.a1 — Fy(ao, a1, a2, az, as) is decreasing.

(HN3) Let us considefi(x) := dist(x, §2), x = (x1, x2). It is not difficult to see that

x1 iN21={x €20 x2<b2,0< x1 < mMin(b2 — x2, x2)},
d(x) = b1—x1 iINn22={x R |0<x2<b, by > x1 > maxby — x2, by — b2+ x2)},
B ) iN23={x e 2|0< x1 <b1,0< x2 <Min(xy, bp/2, by — x1)},

by—x2 IN24=1{x € 2|0 x1<b1, b > x22maxby —x1, b2/2, x1+ b —b1)}.

We may assume that is defined as a Lipschitz continuous function @rwith Lipschitz constant
Ly (one such extension is e.g. given by the viscosity solutiop of (1.1}, (1.2)).

DefineZ : 2, — Rby Z, := ¢ + pd(xy), Wherep, = ¢(x,) andp is independent of.
Clearly, Z satisfies[(3]9) as well gs (3]10) with= L + p. We claim that[(3.8) holds provided that
p is sufficiently large and verify this for a point, = (x14, x24) € £21.
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Case lixgy — h < x1g < X2y  SINC€Xyper, Xa—e, € §23 it fOllOws thatd (xy—ey) = X100 — &,
d(Xgtey) = X205 d(Xg—ep) = X240 — 1, d(Xg+e,) = X1 and therefore

— — X2 — X
Dy Zy=Dygu+p.  DfZa=Df¢u+p=—" < Digu+p.

— _ X1g — X2 + 1 _ 4 4 (4.1)
D5 Zy = D, ¢a+p—h > Dy o, D3 Zy= D3 .

Recalling thatd > 0 and using[(2]1) we deduce

HN(D; Zy, DY Zy, D, Zy, DS Z4)

2 + — + —

L DfZy+D;Zy DIZy+ D5Z
__= +7 _ - 1 “o R iod 2 Lo
__2,;(0"2“ DkZa)+H< > , 5 )

2
L _
> -5 § (Df¢o — Dy o) + Lp > —2LLy +Lp > M > f(xo) (4.2
k=1

provided thafo is sufficiently large.

Case 2:bp — x2¢ — h < x14 < b2 — x24. In this case we have, ., xo+., € §24 and therefore
d(xoz—el) = X140 — h, d(xoz+el) = by — x2q, d(xa—ez) = Xla, d(xa+ez) = by — x4 —h. Thus

_ _ by — x24 — X14
DI Zy=Di¢o+p, DfZ, =Df¢a+p+ < D ¢ + p. ia
by — x20 — h — X140 (4.3)

D;Zo = Dy¢o, D3 Zy=D3du+p

- < D3 ¢a.

The inequality[(4.R) then follows in the same way as in Case 1.

Case 3ix1y < x2¢ — h/2 andxiy < bo — x35 — h. We now havexyie,, Xo+e, € £21, Which
implies

DfZy = Df¢u +p. D3Zy = Dy, (4.4)
so that

HN(Dy Zy, Df Zy, D, Zy, DS Z4)

L& B DY ¢y + Dy ¢, D ¢o + D5 ¢
=—§Z(Dk+¢a—0k¢a>+H< e )
k=1
D ¢ + Dy ¢, D ¢ + D, ¢,
1 Pa 1 a+p 2 Pa > Pa
2 ’ 2

> —2LLy + H< ) ZM>=fx) (45

in view of (H3) provided thap is large enough. Other points can be treated in a similar way.
4.2 Godunov Hamiltonian

In [2] the following formula was derived from the solution of the Riemann problem:

Hn(p1,q91, p2,q2) '=  ext ext H(,n),
&el[p1.q1] nelp2.q2]
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where
min_ if p <gq,
_ ) éelpdl h
tellp,q] max_if p>q.
&€elq,pl

Let us again verify (HN1)—(HN3).
(HN1) Clearly, Hy (p1, p1. p2, p2) = H(p1, p2).
(HN2) In order to verify[(3.p) and (3] 7) it is sufficient to check that

pr — Hn(p1. q1, p2, g2) is increasing

_ k=12 (4.6)
gk — Hy(p1, q1, p2, q2) is decreasing
As an example, assume that > ¢1 and consideyz — Hy(p1, g1, p2, q2)-

Case 1g7 < g2 < p2:

Hy(p1,q1, p2,q2) = max max H(E,n) > max max_ H(E,n) = Hy(p1, q1, p2, 42).
£€lq1, p1] nelga, p2] &€lqa, p1] nelga. p2]

Case 2.2 < p2 < g2:

Hy(p1,q1, p2,q2) = max  max H(,n) > max_ H(§, p2)
&€lq1, pal nelge, pel &elqa,pal

> max min H(,n) = Hyv(p1. q1. p2. §2).
&€lqa, p1l nelp2.42]

Case 3:p2 < g2 < g2t

Hy(p1.q1, p2,92) = max_ min _H(,n) > max_ min  H(, n) = Hy(p1, q1. p2, §2).
&€lqa, p1l nelp2.q2] &€lq1, pal nelp2.42]

Other situations are treated in a similar way.

(HN3) We use the same functioh as in the case of viscous regularization to verfify {(3[8)—(3.10).
Again we examine the situation at a poigt = (x14, x2¢) € £21.

Case 1oy — h < x14 < x2¢. Combining [(4.]1) with[(4]6) yields
Hn(D{ Zy, D Zo, Dy Zo, DJ Zy) > Hy(D] ¢o + p, DY o + 0, D5 ¢, DS o). (4.7)

Case 2:by — xp4 —h < x14 < b2 —x24.  Arguing as in Case 1, but usir[g (4.3) instead of|(4.1) we
again derive[(4]7).

Case 31y < x2¢ — h/2 andx1y < by — x20 — h. We infer from [(4.4) that
Hn(Dy Zy, Df Zo, Dy Zo, DS Zo) = Hy(D1 ¢o + p, Df ¢ + p. D3 o, D3 $00).

Thus it remains to estimate the last expression from below. Choosing a prier2Ly we have
DI ¢ +p 2= p/2, Df% + p > p/2 so that with the help of (H3) we obtain

Hy(Dy ¢a + p. DY ¢o + p. D3 o, D3 o) = M = f(x0),

provided thafp is large enough. Other points can be treated analogously.
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As a special case one obtains for the eikonal equdiiop) = | p| the scheme

Hn(p1.q1, P2, q2) = \/(max(pf, —q1 )2+ (max(p, —q5))2, (4.8)

wherept = max(p, 0) and p~ = min(p, 0). This scheme was examined [n[13] in the context

of shape-from-shading and convergence of approximations was proved with the help of a result
of Barles & Souganidis [3]. In a recent paper, Zhagl [18] shaw§: In(h)|) convergence for this
scheme wherf = 1 in the case of approximating the distance function to a point.

5. Numerical results

In this section we present some results of numerical calculation§ Tor (1.7), (1.2Hwjth= |p|.
As a first test example, le2 ;= (—1,1) x (0,2) and f : 2 — R be defined byf (x1, x2) := 1,
x1 < 0, f(0,x2) := 3/4, f(x1,x2) :=1/2,x1 > 0. Itis not difficult to see thaf satisfies[(23) and
one verifies that

3x2, x1 20,
: 3 1 1
u(xg, x2) i= —%xl +ox2, —presns<o,
1
X2, X1 < _\/_§x2’

is a viscosity solution ofVu| = f in the sense of Definitio@.l. Furthermore, et= u)50.
SinceH is globally Lipschitz continuous with constant 1, the numerical scheme induced by viscous
regularization reads: fintl : £2;, — R such that

1
- E(UOH-El + Ug—e; + Uggey + Uy—ey —4Uy)

1 2 2
+ E\/(Ua+el - Ua—el) + (Ua+ez - a—ez) =hf(xa), Xa € 2y,
Uy = ¢ (xa), Xy € 082y.

The system of equations was solved with the help of Newton’s method and we calculated

Eygrp = max |u(xy) — Uy|
Xoq €2

together with the experimental order of convergence

_ In(Ep,/Ep,)
®0= ntha/ )

for various choices of. We then used the numerical Hamiltoniin {4.8) to approximate the viscosity
solution. Observing that

—77 N\ +77 y— 1 ; +
maX((Dk Us)™, _Dk Uy)™) = Z(Uoz - mm(Ua—ek» Ua-i—ek))
fork =1, ..., n, the discrete problem reads: fibd: £2, — R such that

2 1/2
(- (Wa = MinWaey, U DH?) " = hf (ka), ¥ € 2, (5.2)
k=1

Upy = ¢(xa),  Xa € 352 (5.2)
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The discrete solution was calculated with the help offast Sweeping Methadee e.g/[[18] for a
description) and the corresponding errdéigs,, and eoc’s are shown in Taldl¢ 1 together with the
results from the method of viscous regularization. Figure 1 shows various level lines of the solution.

TaBLE 1
Absolute error in maximum norm and experimental
order of convergence for the first test problem

h Evrp eoc Ersn eoc
0.1 1.24348e-1 - 5.59016e-2 -
0.05 | 7.22984e-2 | 0.78 | 2.79508e-2 | 1.00
0.025 | 4.08509e-2 | 0.82 | 1.39754e-2 | 1.00
0.0125| 2.26691e-2 | 0.85| 6.98771e-3 | 1.00
0.0063| 1.24385e-2 | 0.87 | 3.49386e-3 | 1.00
1,
0.8
0.6
0.4
0.2
0
—02 4
-0.4
-0.6
-0.8
_10 012 0‘.4 016 018 1‘ 112 114 116 118 é

FiG. 1. Level lines of the solution from the first test problem.

We observe linear convergencefirior the method[(5]1)[ (5]2) (cf. also [18], where a one-sided
bound of the formy;, — u < Chlog(1/h) is proved forf = 1).
In our second example we consider= (-1, 1), ¢ = 0 and

(x1—1/2)? + x2 < 1/8 andxp > x1 — 1/2,

(x1 —1/2)2 + x2 < 1/8 andxz < x1 — 1/2,

27
fx1, x2) == 1 3,
1, otherwise
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Note that in this case discontinuities gfoccur both along curved lines and along a straight line
which is not aligned with the grid. Furthermore, the three regions, in whitdkes different values,

meet at the triple point&3/4, 1/4), (1/4, —1/4). Itis not difficult to check thay satisfies[(23). The
numerical solutions were again calculated with the help of viscous regularizatioh ahd[(5]1), (5.2).
In the absence of an exact solution we compared the discrete solutions for various grid sizes with
an approximatiort/ on a fine gridth = 1/640). The results are displayed in Taple 2, while Figure

2 shows some level curves of the solution.

K. DECKELNICK & C. M. ELLIOTT

TABLE 2

Absolute error in maximum norm and experimental order
of convergence for the second test problem

h Evr.n eoc Ers.n eoc
0.1 9.07922e-2 - 1.10429e-1 -
0.05 | 1.29179e-1 | —0.51 | 1.28365e-1 | —0.22
0.025 | 1.04327e-1 0.31 | 8.68148e-2 0.56
0.0125| 7.35184e-2 0.50 | 5.00901e-2 0.79
0.0063| 4.33351e-2 0.76 | 2.65873e-2 0.91
1,
08r-
0.6
0.4r
0.2
| TS
-0.2
—0.4+
-06F
-0.8
_11 —018 —0‘.6 —014 —012 (‘) 012 0i4 OEG 018

FiG. 2. Levellines of the solution from the second test problem.
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