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The Wulff shape minimizes an anisotropic Willmore functional
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The aim of this paper is to find a fourth order energy having Wulff shapes as minimizers. This
guestion is motivated by surface restoration problems. In surface restoration usually a damaged
region of a surface has to be replaced by a surface patch which restores the region in a suitable way.
In particular one aims fo€1-continuity at the patch boundary. A fourth order energy is considered

to measure fairness and to allow appropriate boundary conditions ensuring continuity of the normal
field. Here, anisotropy comes into play if edges and corners of a surface are destroyed. In the present
paper we define a generalization of the classical Willmore functional and prove that Wulff shapes are
its only minimizers.

1. Introduction

Consider a closed, immersed, oriented, smooth sutfaceM — RS2 with a two-dimensional
parameter manifold\. The differential of the normal mapping: M — $? induces the shape
operatorS via Dx o S = Dn. The classicaWillmore functionals defined as

W[x] = %/M h2dA, 1)

where d is the induced area element ald= tr S is the mean curvature. This functional is used
e.g for modelling elastic surfaces.

A geometric analysis concerning the structure of integrghs, «2) appearing in elasticity is
due to Nitsche. Here¢; and«; are the principal curvatures af Nitsche considered integrands
f (k1, k2) which are symmetric, definite and of polynomial growth of order at most two. He shows
that such integrands are of the form

o + B(h — ho)? — ok,

wherea, 8, o andhg are constants fulfilling certain structural inequalities [11]. Furthermiore,

detS is the classical Gaul3 curvature. Nevertheless, the physical meaning of the pure Willmore
functional ¢ = 0 = hg = 0, 8 = 1) is limited. Any round sphere is a minimizer and the area of
Willmore surfaces cannot be bounded.

On the other hand, it is a well known fact that spheres are the only minimizé¥s &br the
construction of minimizers in the classes of fixed genus we refér 1o [18] in the case of genus one,
and to [1] for arbitrary genus.

Recently, the corresponding?-gradient flow of W—the Willmore flow—was considered
analytically as well as numerically. For initial data close to spheres il€&fetopology, Simonett
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is able to show global existence of the flow and convergence to a sphéere [19]. Kuwert @tzléSch

[8] prove a lower bound on the maximal time of smooth existence of the Willmore flow in terms of
the concentration of the curvature. [n[[7, 9] they are able to show that for surfaces of sphere type and
initial energy less than or equal tar8Willmore flow converges to a round sphere. (Note that in the
present paper spheres have energyr8contrast to 4 which is the usual convention in geometry.)

Mayer and Simonett present a numerical scheme for axisymmetric solutions based on finite
differences [[10]. Their numerical experiments predict the appearance of singularities under
Willmore flow in finite time. Furthermore, these experiments show that the result obtained in [9]
is optimal.

The case of curves moving in space under Willmore flow (and also curve diffusion) is considered
in [5] analytically and numerically. Here, results of Polden for planar cutves$ [13, 14] are generalized
and a semi-implicit discretization scheme based on a mixed formulation is given.

A discretization scheme for triangulated surfaces without boundary is obtained by[Rusu [15].
A generalization of this to bounded surfaces is usedlin [2] for applications in surface restoration.

The present work is motivated by restoration problems. Restoring a surface usually means
replacing a damaged domain of a surface by a patch which restores the region in a suitable way.
This means in particulat1-continuity at the boundary [22]. Therefore, it is crucial to use at least
fourth order methods if one wants to obtain smoothness at the boundary. With the aid of Willmore
flow, one is able to prescribe boundary conditions for the position vector and the normal. Often, real-
world restoration problems are of anisotropic nature, e.g., if the edge of a surface is destroyed. In
such cases, using the isotropic Willmore functional will not lead to results respecting this anisotropy
(see [2]). Therefore, one is interested in anisotropic fourth order functionals with corresponding
minimizers. In this paper, we propose to replace the integhdriay a generalized mean curvature
appearing as first variation of the functional

A, [x] =/ y(n)dA.
M
Herey is a smooth function
yi82 5 RY, ey (), 2

and we may assume thatis given as a one-homogeneous functiorifohi.e., forr > 0 we have
y(Az) = Ay(z). In addition, we assume there is a positive constarguch that for the second
derivative we have

D*(y(z) — mlz]) > 0.

In this casey is calledelliptic and the eigenvalues @2y (z) restricted ta+ = {x € R3 | x-z = 0}
are bounded from below by. Let us mention here that the Euclidean scalar product of two vectors
a, b € R3 will always be denoted by - b.

Considering a surface : M — R3, we can give a version of the second derivative ain its
tangential space as follows:

ay  TeM - TeM, v Dx~Yy..(n)Dx(v). 3)

The endomorphism field, is well defined due to the fact th@?y(z)z = O for all z # 0. By
ellipticity, a, is positive definite. The classical area functional is obtained for the funetion=
|z|. In this caseq, is the identity.
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The first variation ofA,, in direction®¥ may be represented in the?-metric by a generalized
mean curvature vector:

(A [x], 9) =/Mhyn-19dA. (4)

Here,h, = tr(a, S) will be called they-mean curvature

It is known since the beginning of the last century![21] that solutions of the isoperimetric
problem forA, exist and are given by the so call@dllff shapesV, that may be obtained from
via the following parametrization over the unit sphere:

Yz - 52 — Wy, 2= y(2). 5)

For a proof of the (unique) isoperimetric property of the Wulff shape and more references to the
literature se€ [6].

In this paper we want to give a different characterization of Wulff shapes. For the application
in anisotropic restoration problems one seeks for a fourth order functignathich has the Wulff
shapelV, as minimizer. Here we show that one possible choice is

W, [x] = % /M h2 dA. (6)

In this way we have found a fourth order functional which is well suited for anisotropic restoration
problems. For a second order approach to surface fairing by locally prescribing Wulff shapes we
refer to [3].

The paper is organized as follows: Secfipn 2 contains a proof of a formula for the linearization of
a generalized respnisotropic mean curvature (Theorgem|2.2). This formula may also be interesting
in other applications because the anisotropy we consider there is not related to an injegsand
in (2.

In Sectior{ B we apply the result of Sectign 2 in the special case of anisotropic mean curvature
obtained by an integrang to derive the Euler equation of the functiorigl (6). An important tool is
a generalized Codazzi equati¢n](12). Moreover, we show that the Wulff shape is a solution of the
Euler equation.

In Sectior] # we prove the main result of this paper. Here, it is shown that Wulff shapes are not
only stationary points o, but also minimizers and essentially the only minimizers. The proof is
based on a symmetrization argumént| (16) and the generalized Codazzi edugtion (12). For a related
reasoning see the work on stable surfaces of congtanéan curvature [12].

2. Linearization of generalized mean curvature

In this section we will consider a family of surfaces M x (-1, n) — R3, thusx () = x(-, 1) isan
immersion of a two-dimensional orientable manifdid andy is a small positive real number. This
family is considered as a perturbation of a surfaceM — R3, i.e.,x(-, 0) = x. The evolution of
x(t) is assumed to be given by the equation

dx = @(®)n(t) + Dx(v(1)), (7)

whereg(t) is a smooth function and(z) is a smooth vector field oM.
The following notion is essential in our considerations:
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DEFINITION 2.1 Leta € R3*3 be a symmetric endomorphism dependingzoa $? with the
propertya(z)z = 0 for all z € $2. Thena induces an endomorphism field g,

a:TM—TM, (8)
given bya = Dx~1 o a o Dx. The correspondingeneralized mean curvatuie defined as
ha =tr(@o S).
In the next section we will apply this notion in the casex¢f) = y,.(z) for an elliptic integrand

y asin[2). In this case we assume that) : - — z* is positive definite for alt € $2. The main
result of this section will be

THEOREM2.2 Letx be a family of surfaces evolving according fd (7). The generalized mean
curvatureh; fulfils the following evolution equation:

— dha = Az + 18|29 — g(diva, gradg) — tr(@ o [(VeS)v]) — g (9, 9;x) - 9;n. (9)

Here we uset; = div(a grad and|S|2 = tr(a o 5?).

Proof. Equation[(}) implies the following equation for the normal

dn = —Dx(gradg) + Dn(v). (10)
With the classical notation fog;;, ¢/ andhz;j = —g(ad;, S9;) = —(ad;ix) - 9;n, the mean
curvatureh; can be written as -
—ha = g" ha.ij

and consequently d,h; = 8,8 ha ij + 8" dha;; = I + 11. Here and in the following we will use
the Einstein summation convention. Since

g = —g"* 8 gug"
we can statel(;; = —d;x - 9;n)
98" = 2pg™*hig" — g™ Dx(Viv) - dix g — g™* Bx - Dx(Vyv) g

Note that for the tangential part 6f Dx (v) we have §; Dx(v)]®®" = Dx(Viv). Thus for the term
I we obtain
I =208 g ha;i; — " Dx(Viv) - dix 7 haij — &% dx - Dx(Viv) gV ha
= 29|82 + g'* g(Sa d;, Viv) + g g(Viv,aSd;) = 2¢|S|2 + tr((@s + Sa)Vev).
The computation 08, /5 ;; gives
Orhaij = — 0idix - djn — a 9;(pn + Dx(v)) - djn — a d;x - 9;(—Dx(grady) + Dn(v))
= —d0;x - djn —@adin-din — aDx(V;v) - djn
+ad;x - 3;Dx(gradp) — ad;ix - 9; Dn(v)
= —0adix - 9jn —@adin-din — aDx(V;v) - 9jn
+ad;x - 9;Dx(gradp) — adix - Dx(SV;v) — adix - Dx((V;S)v).
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Therefore, the terni/ can be geometrically interpreted as follows:
11 = — gi-/ 0 0;x - djn — (pgij adin - djin — gij aDx(Viv) - djn
+ g adix - 3; Dx(gradyp) — gV adix - Dx(SVjv) — g adix - Dx((V;S) v)
= — g dadix - 9in — ¢|S|2 —tr(Sa Vev)
+ g ad;x - 3; Dx(gradg) — tr(as Vov) — tr(@ o [(VeS)v)).
Now, we finish the proof. The linearization &f is the sum off and/I:
—dhg = ¢|S|2 + ¢V 8;x - €d; Dx(grady) — g 8,ad;x - djn —tr(@ o [(VeS)v])
= ¢|S|2 + g" 8;x - 9;(@Dx(grady)) — g/ 9;x - dja Dx(grady)
— g 8adix - djn —tr(a o [(VeS)v])
= Aag+1S12¢ — g 8ix - 9;0 Dx(gradg) — tr(@ o [(VeS)v]) — g"/ d,adix - djn.
It remains to showg(diva, w) = g 9;a 3;x - Dx(w) for all vector fieldsw:
g(diva, w) = g g(Via d;, w) = g Dx((V;a)d;) - Dx(w)
= g Dx(V;(ad;) —av;d;) - Dx(w)
= ¢ & Dx(ad;) — aDx(V;d;) - Dx(w) = g" 3 djx - Dx(w). (11)
O

3. Anisotropic Willmore energies

Now we want to apply the result on the linearization of generalized mean curvature to compute the
derivative of anisotropic Willmore functionals.
We consider the energ¥, defined as irﬂG). For a test functione C1(M, R®) we have

, d
(WyIx]. 9) = o Wyl i=o.

wherex, fulfils d,x, ;-0 = . According to Sectiof]2 we split into a normal componentr and a
tangential componerdx (v), i.e., = ¢n + Dx(v).

To derive the Euler equation we have to compute the derivati\h%’phnd of the area element
dA;. The latter is contained in [17] and the resulbidA;,—o = div 7 dA.

In the special case where the endomorphism fiefdlom Sectior{ P is given by the second
derivative of an elliptic integrang, Theorenj 2.2 simplifies in the following way:

By @) fora = y,, we have, due to;n; ;=0 = —Dx(gradg) + Dn(v),

8" Bratyji=09x) - 9jn = g yzzz () [drnyji=0, dixx, 3jn]
= 80 (yzz(m)(—Dx(grady) + Dn(v)) - d;x
= g(diva, , —grady + Sv),
wherea, is defined as in[(3). For the linearizationiof := h,, we therefore obtain, wit\, =
div(a, grad) and|S|2 = tr(a, 52,

—dhy = Ayg + |S59 —tr(a, o [(VaS)v]) — g(divay,, Sv).
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The Codazzi equation as well as the symmetr§ ahda, imply the following

LEmMMA 3.1 Forthe divergence of the endomorphism figdg and all vector fields the identity
g(div(Sa,), v) = tr(a, o [(VeS)v]) + g(diva,, Sv)

is valid. Furthermore, fop = 0 in (7) the tangential part df,/, is g(gradh,,, v) from which one
concludes
div(Sa, ) = gradh,,. (12)

Proof. By definition of the divergence, one gets
g(div(Say), v) = g% g(Vi(Say)dk. v) = ¢*g((ViS) ay &k, v) + g"* g(S(Viay )3k, v)
= g™ g(ay 3. (V;iS)Hv) + g g(Viay )k, Sv)
= gikg(ai, (Va,3,9)v) + g(divay,, Sv) = tr((Vg,e5) v) + g(divay, Sv).
Defining the endomorphis® via XY w = (V,,S) v we have
tr(Va,eS) v) =tr(X oay) = tr(a, o X)

and the result is shown. O

The Euler equation oW,

From the above considerations we obtain the identity
—dhy = Ayg +|S5¢ — g(gradh,, v). (13)
Using this result on the linearization pfmean curvature, we obtain
1 .
(W) [x]. 9) = /M (hy(—Ay(p —|S12¢ + g(gradh, . v)) + Eh,% div 19) dA
= Iy (—Ayg — 1S20) + ~hi? —|—1divh2) dA (14)
This relation implies the Euler equation of the anisotropic Willmore functional for surfaces without
boundary:
2, 1.2
—Ayhy —hy|SI5, + Ehh” =0. (15)

In particular we obtain the following

PropPosITION3.2 The Wulff shapeV, is a solution of the Euler equation for the anisotropic
Willmore functional.

Proof. We use the parametrization of the Wulff shape giver[]n (5). The normialpht Dy (z) is
given byz becauseD?y (z)z = 0 for z # 0. Therefore, one get$ = a;l for the shape operator.
This in particular implies that on the Wulff shape we haye= const. The result will be shown if
we can prove

1
N Shyh =0;



ANISOTROPIC WILLMORE FUNCTIONAL 357

but this is a consequence of the above considerations:

S| = tr(a, $%) =tra,*,
1

1 _ _
Ehyh = Etr(|d) tra,t =tra;*. O

This proposition clearly follows from the result of the next section. Nevertheless, the discussion of
the Euler equation seems worth recording.

4. Main result

As was pointed out in the introduction, spheres are not only extremals but also minimizers of the
classical Willmore functional. The aim of this section is to prove an anisotropic version of this result.
We will show

THEOREM4.1 Letx : M — RS2 be an immersion of a compact surfaté without boundary
into R3. We can estimate the anisotropic Willmore enelgy[x] from below by

Wylx] = 2w, |,
where|W, | is the area of the Wulff shap®/,. The Wulff shape itself is the unique minimizer
of w,.

Proof. We follow the classical proof given e.g. in [20, pp. 270]. First we want to estifiatey a
total curvature term. In the case of elliptic integrands,th@ean curvaturé, may also be written
as
hy = tr(a, S) = tr(a}/*Sa}/?). (16)
The endomorphism fiel«zl)%/ZSa%/2 is symmetric and may be diagonalized with eigenvajugsio.
Related symmetrizations were also used.in [16] and [4]. Introducing the corresponding anisotropic

Gaul curvaturé, = deta,S) = deT(a%/ZSa%/z), one obtains the relation
h — 8k, = (u1+ pn2)® — Apaps = (u1 — p2)* > 0
and therefore we can give the following estimate:

1 2
> = >
W, [x] > 2/k;rh},dA/Z/HkydA,

14

wherek)'f = {& e M | ky,(§) > 0}. By the area formula, the expressigfg k, dA is the area
(counted with multiplicity) ony(n(k;“)). Due to the ellipticity ofy, we conclude that

ki = (& € M| k() > 0},

wherek is the classical Gaul? curvature. Therefore, and on account of the compactuels snef
obtainn (k) = $2 and in particular

/k+kaA>|wy|.

Y
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Assume now that equality holds in all of the above inequalities. Then we concludethajiy =:

w. Thus we have%/ZSa}%/z = pld, from which we getSa,, = uld and therefore

div(Sa,) = gradu.
On the other hand we know by Lemina]3.1 (§e¢ (12)) that
div(Sa,) = gradh,,.
This impliesh, — 1 = const. Sincé:, = tr(Sa, ) = 2u one getsw = const. Thus we obtain
Dx(a,S — pld) = Dy, (n) — uDx =0
and integration leads to
x=xo+ %yz(n),

wherexg € R3 is a constant vector, and the result is shown. O
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