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The Wulff shape minimizes an anisotropic Willmore functional
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The aim of this paper is to find a fourth order energy having Wulff shapes as minimizers. This
question is motivated by surface restoration problems. In surface restoration usually a damaged
region of a surface has to be replaced by a surface patch which restores the region in a suitable way.
In particular one aims forC1-continuity at the patch boundary. A fourth order energy is considered
to measure fairness and to allow appropriate boundary conditions ensuring continuity of the normal
field. Here, anisotropy comes into play if edges and corners of a surface are destroyed. In the present
paper we define a generalization of the classical Willmore functional and prove that Wulff shapes are
its only minimizers.

1. Introduction

Consider a closed, immersed, oriented, smooth surfacex : M → R3 with a two-dimensional
parameter manifoldM. The differential of the normal mappingn : M → S2 induces the shape
operatorS via Dx ◦ S = Dn. The classicalWillmore functionalis defined as

W [x] =
1

2

∫
M

h2 dA, (1)

where dA is the induced area element andh = tr S is the mean curvature. This functional is used
e.g. for modelling elastic surfaces.

A geometric analysis concerning the structure of integrandsf (κ1, κ2) appearing in elasticity is
due to Nitsche. Here,κ1 andκ2 are the principal curvatures ofx. Nitsche considered integrands
f (κ1, κ2) which are symmetric, definite and of polynomial growth of order at most two. He shows
that such integrands are of the form

α + β(h − h0)
2
− σk,

whereα, β, σ andh0 are constants fulfilling certain structural inequalities [11]. Furthermore,k =

detS is the classical Gauß curvature. Nevertheless, the physical meaning of the pure Willmore
functional (α = σ = h0 = 0, β = 1) is limited. Any round sphere is a minimizer and the area of
Willmore surfaces cannot be bounded.

On the other hand, it is a well known fact that spheres are the only minimizers ofW . For the
construction of minimizers in the classes of fixed genus we refer to [18] in the case of genus one,
and to [1] for arbitrary genus.

Recently, the correspondingL2-gradient flow of W—the Willmore flow—was considered
analytically as well as numerically. For initial data close to spheres in theC2,α topology, Simonett
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is able to show global existence of the flow and convergence to a sphere [19]. Kuwert and Schätzle
[8] prove a lower bound on the maximal time of smooth existence of the Willmore flow in terms of
the concentration of the curvature. In [7, 9] they are able to show that for surfaces of sphere type and
initial energy less than or equal to 8π , Willmore flow converges to a round sphere. (Note that in the
present paper spheres have energy 8π in contrast to 4π which is the usual convention in geometry.)

Mayer and Simonett present a numerical scheme for axisymmetric solutions based on finite
differences [10]. Their numerical experiments predict the appearance of singularities under
Willmore flow in finite time. Furthermore, these experiments show that the result obtained in [9]
is optimal.

The case of curves moving in space under Willmore flow (and also curve diffusion) is considered
in [5] analytically and numerically. Here, results of Polden for planar curves [13, 14] are generalized
and a semi-implicit discretization scheme based on a mixed formulation is given.

A discretization scheme for triangulated surfaces without boundary is obtained by Rusu [15].
A generalization of this to bounded surfaces is used in [2] for applications in surface restoration.

The present work is motivated by restoration problems. Restoring a surface usually means
replacing a damaged domain of a surface by a patch which restores the region in a suitable way.
This means in particularC1-continuity at the boundary [22]. Therefore, it is crucial to use at least
fourth order methods if one wants to obtain smoothness at the boundary. With the aid of Willmore
flow, one is able to prescribe boundary conditions for the position vector and the normal. Often, real-
world restoration problems are of anisotropic nature, e.g., if the edge of a surface is destroyed. In
such cases, using the isotropic Willmore functional will not lead to results respecting this anisotropy
(see [2]). Therefore, one is interested in anisotropic fourth order functionals with corresponding
minimizers. In this paper, we propose to replace the integrandh2 by a generalized mean curvature
appearing as first variation of the functional

Aγ [x] =

∫
M

γ (n) dA.

Hereγ is a smooth function

γ : S2
→ R+, z 7→ γ (z), (2)

and we may assume thatγ is given as a one-homogeneous function onR3, i.e., forλ > 0 we have
γ (λz) = λγ (z). In addition, we assume there is a positive constantm such that for the second
derivative we have

D2(γ (z) − m|z|) > 0.

In this case,γ is calledelliptic and the eigenvalues ofD2γ (z) restricted toz⊥
= {x ∈ R3

| x ·z = 0}

are bounded from below bym. Let us mention here that the Euclidean scalar product of two vectors
a, b ∈ R3 will always be denoted bya · b.

Considering a surfacex : M → R3, we can give a version of the second derivative ofγ on its
tangential space as follows:

aγ : TξM→ TξM, v 7→ Dx−1γzz(n)Dx(v). (3)

The endomorphism fieldaγ is well defined due to the fact thatD2γ (z) z = 0 for all z 6= 0. By
ellipticity, aγ is positive definite. The classical area functional is obtained for the functionγ (z) =

|z|. In this case,aγ is the identity.
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The first variation ofAγ in directionϑ may be represented in theL2-metric by a generalized
mean curvature vector:

〈A′
γ [x], ϑ〉 =

∫
M

hγ n · ϑ dA. (4)

Here,hγ = tr(aγ S) will be called theγ -mean curvature.
It is known since the beginning of the last century [21] that solutions of the isoperimetric

problem forAγ exist and are given by the so calledWulff shapesWγ that may be obtained fromγ
via the following parametrization over the unit sphere:

γz : S2
→Wγ , z 7→ γz(z). (5)

For a proof of the (unique) isoperimetric property of the Wulff shape and more references to the
literature see [6].

In this paper we want to give a different characterization of Wulff shapes. For the application
in anisotropic restoration problems one seeks for a fourth order functionalWγ which has the Wulff
shapeWγ as minimizer. Here we show that one possible choice is

Wγ [x] =
1

2

∫
M

h2
γ dA. (6)

In this way we have found a fourth order functional which is well suited for anisotropic restoration
problems. For a second order approach to surface fairing by locally prescribing Wulff shapes we
refer to [3].

The paper is organized as follows: Section 2 contains a proof of a formula for the linearization of
a generalized resp. anisotropic mean curvature (Theorem 2.2). This formula may also be interesting
in other applications because the anisotropy we consider there is not related to an integrandγ as
in (2).

In Section 3 we apply the result of Section 2 in the special case of anisotropic mean curvature
obtained by an integrandγ to derive the Euler equation of the functional (6). An important tool is
a generalized Codazzi equation (12). Moreover, we show that the Wulff shape is a solution of the
Euler equation.

In Section 4 we prove the main result of this paper. Here, it is shown that Wulff shapes are not
only stationary points ofWγ but also minimizers and essentially the only minimizers. The proof is
based on a symmetrization argument (16) and the generalized Codazzi equation (12). For a related
reasoning see the work on stable surfaces of constantγ -mean curvature [12].

2. Linearization of generalized mean curvature

In this section we will consider a family of surfacesx :M×(−η, η) → R3, thusx(t) = x(·, t) is an
immersion of a two-dimensional orientable manifoldM andη is a small positive real number. This
family is considered as a perturbation of a surfacex :M→ R3, i.e.,x(·, 0) = x. The evolution of
x(t) is assumed to be given by the equation

∂tx = ϕ(t)n(t) + Dx(v(t)), (7)

whereϕ(t) is a smooth function andv(t) is a smooth vector field onM.
The following notion is essential in our considerations:
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DEFINITION 2.1 Let α ∈ R3×3 be a symmetric endomorphism depending onz ∈ S2 with the
propertyα(z)z = 0 for all z ∈ S2. Thenα induces an endomorphism field onM,

ā : TM→ TM, (8)

given byā = Dx−1
◦ α ◦ Dx. The correspondinggeneralized mean curvatureis defined as

hā = tr(ā ◦ S).

In the next section we will apply this notion in the case ofα(z) = γzz(z) for an elliptic integrand
γ as in (2). In this case we assume thatα(z) : z⊥

→ z⊥ is positive definite for allz ∈ S2. The main
result of this section will be

THEOREM 2.2 Let x be a family of surfaces evolving according to (7). The generalized mean
curvaturehā fulfils the following evolution equation:

− ∂thā = ∆āϕ + |S|
2
āϕ − g(div ā, gradϕ) − tr(ā ◦ [(∇•S)v]) − gij (∂tα ∂ix) · ∂jn. (9)

Here we use∆ā = div(ā grad) and|S|
2
ā = tr(ā ◦ S2).

Proof. Equation (7) implies the following equation for the normaln:

∂tn = −Dx(gradϕ) + Dn(v). (10)

With the classical notation forgij , gij and hā,ij = −g(ā∂i, S∂j ) = −(α∂ix) · ∂jn, the mean
curvaturehā can be written as

−hā = gij hā,ij

and consequently−∂thā = ∂tg
ij hā,ij +gij∂thā,ij = I + II . Here and in the following we will use

the Einstein summation convention. Since

∂tg
ij

= −gik∂tgklg
lj

we can state (hij = −∂ix · ∂jn)

∂tg
ij

= 2ϕgikhklg
lj

− gik Dx(∇kv) · ∂lx glj
− gik ∂kx · Dx(∇lv) glj .

Note that for the tangential part of∂kDx(v) we have [∂kDx(v)]tan
= Dx(∇kv). Thus for the term

I we obtain

I = 2ϕgikhklg
ljhā,ij − gik Dx(∇kv) · ∂lx gljhā,ij − gik ∂kx · Dx(∇lv) gljhā,ij

= 2ϕ|S|
2
ā + gikg(Sā ∂i, ∇kv) + gljg(∇lv, āS∂j ) = 2ϕ|S|

2
ā + tr( (āS + Sā)∇•v).

The computation of∂thā,ij gives

∂thā,ij = − ∂tα∂ix · ∂jn − α ∂i(ϕn + Dx(v)) · ∂jn − α ∂ix · ∂j (−Dx(gradϕ) + Dn(v))

= − ∂tα∂ix · ∂jn − ϕ α∂in · ∂jn − αDx(∇iv) · ∂jn

+ α∂ix · ∂jDx(gradϕ) − α∂ix · ∂jDn(v)

= − ∂tα∂ix · ∂jn − ϕ α∂in · ∂jn − αDx(∇iv) · ∂jn

+ α∂ix · ∂jDx(gradϕ) − α∂ix · Dx(S∇jv) − α∂ix · Dx((∇jS) v) .
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Therefore, the termII can be geometrically interpreted as follows:

II = − gij ∂tα∂ix · ∂jn − ϕgij α∂in · ∂jn − gij αDx(∇iv) · ∂jn

+ gij α∂ix · ∂jDx(gradϕ) − gij α∂ix · Dx(S∇jv) − gij α∂ix · Dx((∇jS) v)

= − gij ∂tα∂ix · ∂jn − ϕ|S|
2
ā − tr(Sā ∇•v)

+ gij α∂ix · ∂jDx(gradϕ) − tr(āS ∇•v) − tr(ā ◦ [(∇•S)v]).

Now, we finish the proof. The linearization ofhā is the sum ofI andII :

−∂thā = ϕ|S|
2
ā + gij ∂ix · α∂jDx(gradϕ) − gij ∂tα∂ix · ∂jn − tr(ā ◦ [(∇•S)v])

= ϕ|S|
2
ā + gij ∂ix · ∂j (αDx(gradϕ)) − gij ∂ix · ∂jα Dx(gradϕ)

− gij ∂tα∂ix · ∂jn − tr(ā ◦ [(∇•S)v])

= ∆ā ϕ + |S|
2
āϕ − gij ∂ix · ∂jα Dx(gradϕ) − tr(ā ◦ [(∇•S)v]) − gij ∂tα∂ix · ∂jn .

It remains to showg(div ā, w) = gij ∂iα ∂jx · Dx(w) for all vector fieldsw:

g(div ā, w) = gij g(∇i ā ∂j , w) = gij Dx((∇i ā)∂j ) · Dx(w)

= gij Dx(∇i(ā∂j ) − ā∇i∂j ) · Dx(w)

= gij ∂i Dx(ā∂j ) − αDx(∇i∂j ) · Dx(w) = gij ∂iα ∂jx · Dx(w) . (11)

2

3. Anisotropic Willmore energies

Now we want to apply the result on the linearization of generalized mean curvature to compute the
derivative of anisotropic Willmore functionals.

We consider the energyWγ defined as in (6). For a test functionϑ ∈ C1(M, R3) we have

〈W ′
γ [x], ϑ〉 =

d

dt
Wγ [xt ]|t=0,

wherext fulfils ∂txt |t=0 = ϑ . According to Section 2 we splitϑ into a normal componentϕn and a
tangential componentDx(v), i.e.,ϑ = ϕn + Dx(v).

To derive the Euler equation we have to compute the derivative ofh2
γ,t and of the area element

dAt . The latter is contained in [17] and the result is∂tdAt |t=0 = div ϑdA.
In the special case where the endomorphism fieldā from Section 2 is given by the second

derivative of an elliptic integrandγ , Theorem 2.2 simplifies in the following way:
By (11) forα = γzz we have, due to∂tnt |t=0 = −Dx(gradϕ) + Dn(v),

gij (∂tαt |t=0∂ix) · ∂jn = gijγzzz(n) [∂tnt |t=0, ∂ix, ∂jn]

= gij∂j (γzz(n))(−Dx(gradϕ) + Dn(v)) · ∂ix

= g(div aγ , − gradϕ + Sv),

whereaγ is defined as in (3). For the linearization ofhγ := haγ we therefore obtain, with∆γ =

div(aγ grad) and|S|
2
γ = tr(aγ S2),

−∂thγ = ∆γ ϕ + |S|
2
γ ϕ − tr(aγ ◦ [(∇•S)v]) − g(div aγ , Sv).
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The Codazzi equation as well as the symmetry ofS andaγ imply the following

LEMMA 3.1 For the divergence of the endomorphism fieldSaγ and all vector fieldsv the identity

g(div(Saγ ), v) = tr(aγ ◦ [(∇•S)v]) + g(div aγ , Sv)

is valid. Furthermore, forϕ = 0 in (7) the tangential part of∂thγ is g(gradhγ , v) from which one
concludes

div(Saγ ) = gradhγ . (12)

Proof. By definition of the divergence, one gets

g(div(Saγ ), v) = gikg(∇i(Saγ )∂k, v) = gikg((∇iS) aγ ∂k, v) + gikg(S(∇iaγ )∂k, v)

= gikg(aγ ∂k, (∇iS)v) + gikg((∇iaγ )∂k, Sv)

= gikg(∂i, (∇aγ ∂k
S)v) + g(div aγ , Sv) = tr((∇aγ •S) v) + g(div aγ , Sv).

Defining the endomorphismΣ via Σw = (∇wS) v we have

tr((∇aγ •S) v) = tr(Σ ◦ aγ ) = tr(aγ ◦ Σ)

and the result is shown. 2

The Euler equation ofWγ

From the above considerations we obtain the identity

−∂thγ = ∆γ ϕ + |S|
2
γ ϕ − g(gradhγ , v). (13)

Using this result on the linearization ofγ -mean curvature, we obtain

〈W ′
γ [x], ϑ〉 =

∫
M

(
hγ (−∆γ ϕ − |S|

2
γ ϕ + g(gradhγ , v)) +

1

2
h2

γ div ϑ

)
dA

=

∫
M

(
hγ (−∆γ ϕ − |S|

2
γ ϕ) +

1

2
hh2

γ ϕ +
1

2
div(h2

γ v)

)
dA. (14)

This relation implies the Euler equation of the anisotropic Willmore functional for surfaces without
boundary:

−∆γ hγ − hγ |S|
2
γ +

1

2
hh2

γ = 0. (15)

In particular we obtain the following

PROPOSITION3.2 The Wulff shapeWγ is a solution of the Euler equation for the anisotropic
Willmore functional.

Proof. We use the parametrization of the Wulff shape given in (5). The normal ofWγ atDγ (z) is
given byz becauseD2γ (z)z = 0 for z 6= 0. Therefore, one getsS = a−1

γ for the shape operator.
This in particular implies that on the Wulff shape we havehγ = const. The result will be shown if
we can prove

|S|
2
γ −

1

2
hγ h = 0;
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but this is a consequence of the above considerations:

|S|
2
γ = tr(aγ S2) = tr a−1

γ ,

1

2
hγ h =

1

2
tr(Id) tr a−1

γ = tr a−1
γ . 2

This proposition clearly follows from the result of the next section. Nevertheless, the discussion of
the Euler equation seems worth recording.

4. Main result

As was pointed out in the introduction, spheres are not only extremals but also minimizers of the
classical Willmore functional. The aim of this section is to prove an anisotropic version of this result.
We will show

THEOREM 4.1 Letx : M → R3 be an immersion of a compact surfaceM without boundary
into R3. We can estimate the anisotropic Willmore energyWγ [x] from below by

Wγ [x] > 2|Wγ |,

where|Wγ | is the area of the Wulff shapeWγ . The Wulff shape itself is the unique minimizer
of Wγ .

Proof. We follow the classical proof given e.g. in [20, pp. 270]. First we want to estimateWγ by a
total curvature term. In the case of elliptic integrands, theγ -mean curvaturehγ may also be written
as

hγ = tr(aγ S) = tr(a1/2
γ Sa1/2

γ ). (16)

The endomorphism fielda1/2
γ Sa

1/2
γ is symmetric and may be diagonalized with eigenvaluesµ1, µ2.

Related symmetrizations were also used in [16] and [4]. Introducing the corresponding anisotropic
Gauß curvaturekγ = det(aγ S) = det(a1/2

γ Sa
1/2
γ ), one obtains the relation

h2
γ − 4kγ = (µ1 + µ2)

2
− 4µ1µ2 = (µ1 − µ2)

2 > 0

and therefore we can give the following estimate:

Wγ [x] >
1

2

∫
k+
γ

h2
γ dA > 2

∫
k+
γ

kγ dA,

wherek+
γ = {ξ ∈ M | kγ (ξ) > 0}. By the area formula, the expression

∫
k+
γ

kγ dA is the area

(counted with multiplicity) ofDγ (n(k+
γ )). Due to the ellipticity ofγ , we conclude that

k+
γ = {ξ ∈M | k(ξ) > 0},

wherek is the classical Gauß curvature. Therefore, and on account of the compactness ofM, we
obtainn(k+

γ ) = S2 and in particular ∫
k+
γ

kγ dA > |Wγ |.
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Assume now that equality holds in all of the above inequalities. Then we conclude thatµ1 = µ2 =:
µ. Thus we havea1/2

γ Sa
1/2
γ = µId, from which we getSaγ = µId and therefore

div(Saγ ) = gradµ.

On the other hand we know by Lemma 3.1 (see (12)) that

div(Saγ ) = gradhγ .

This implieshγ − µ = const. Sincehγ = tr(Saγ ) = 2µ one getsµ = const. Thus we obtain

Dx(aγ S − µId) = Dγz(n) − µDx = 0

and integration leads to

x = x0 +
1

µ
γz(n),

wherex0 ∈ R3 is a constant vector, and the result is shown. 2
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