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A level set formulation for Willmore flow
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A level set formulation of Willmore flow is derived using the gradient flow perspective. Starting
from single embedded surfaces and the corresponding gradient flow, the metric is generalized to
sets of level set surfaces using the identification of normal velocities and variations of the level
set function in time via the level set equation. This approach in particular allows one to identify the
natural dependent quantities of the derived variational formulation. Furthermore, spatial and temporal
discretizations are discussed and some numerical simulations are presented.
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1. Introduction

Let M be ad-dimensional surface embedded®i*! and denote by the identity map onM.
Consider the energy

IM] = ;/M h2da

where#h is the mean curvature oM, i.e., h is the sum of the principle curvatures gvi. The
corresponding.2-gradient flow—thewillmore flow—is given by the geometric evolution problem
[34,[32)21]

1
dx (1) = Apyh()n(t) + h(t)< 1S5 - Eh(t)2>n(t),

which defines for a given initial surfack1g a family of surfacesM (¢) for + > 0 with M(0) =
Mo. Here S(¢) denotes the shape operator om(z), n(¢) the normal field onM(¢), and||-|, the
Frobenius norm on the space of endomorphisms on the tangent Wlpdie).

Now we considerM () to be given implicitly as a specific level set of a corresponding function
$@t) : 2 — R for a domain2 ¢ R?*1. Thus, the evolution of\(¢) can be described by an
evolution of¢ (¢). In our case, the level set equatig (1) + || Vo (¢)||V = 0 (cf. the book of Osher
and Paragiog [25] for a detailed study), withbeing the speed of propagation of the level set of
¢ (1), turns into the equation

1
%+ Vo] (AMh + h(r)( 1S5 — Ehmz)) =0, (1)
with initial data¢ (0) = ¢g. Heregg implicitly describes the initial level set1g.
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Let us emphasize that as opposed to second order geometric evolution problems, such as mean
curvature motion, for fourth order problems no maximum principle is known. Indeed, two surfaces
both undergoing an evolution by Willmore flow may intersect in finite time. Hence, a level set
formulation in general will lead to singularities and we expect a blow up of the gradientirof
finite time. If one is solely interested in the evolution of a single level set, one presumably can
overcome this problem by a reinitialization with a signed distance function with respect to this
evolving level set.

We are now aiming to derive a suitable weak formulation for the above evolution problem, which
only makes use of first derivatives of unknown functions and test functions. This will in particular
allow for a discretization based on a mixed formulation with piecewise affine finite elements, closely
related to results by Rusu [28] for parametric Willmore flow.

Hence, we have to reformulate this problem solely in terms of quantities sueh(zas
h(¢) and its gradients, in particular avoiding the telffi(¢)||» and derivatives of the normal.

Here, we take advantage of a fairly general gradient flow perspective on geometric evolution
problems. Indeed, given a gradient flow for parametric surfaces we derive in Section 3 a level
set formulation which describes the simultaneous evolution of all level sets corresponding to
this gradient flow. This approach is based on the co-area formula (cf. for example the book of
Ambrosio et al.[[1]) and a proper identification of the temporal change of the level set function
and the corresponding evolution speed of the level surfaces. Thereby, we are able to identify the
natural dependent variables. This approach gives insight into the geometry of evolution problems
on the space of level set ensembles. We apply it to Willmore flow in Sec}ion 4 and outline the
correspondence to a spatial integration of the well known gradient of the parametric Willmore
functional in Sectior] J5. Here, we confine ourselves to a formal analysis and do not discuss
questions concerning well-posedness, short or long time existence and regularity. Indeed, there
is not very much known so far (see below). Boundary conditions are discussed in $éction 7 and
a suitable regularization taking care of degenerate gradiépts= 0 and related to Willmore

flow for graphs is introduced in Secti¢n 6. Besides the derivation of the weak formulation we
deduce a mixed semi-implicit finite element discretization in Se¢fjon 8 and show some numerical
results.

Concerning physical modelling, the minimization of the Willmore energy is closely related to
the minimization of the bending energy of an elastic shell (cf. the monograph of Ciarlet [9] and the
shell simulation by Sclider et al.[[2D, 19] ). A further potential application of Willmore flow is in
image processing and related to image inpainting or restoration of implicit surfaces. Methods based
on similar ideas can be found in the works of Kobbelt and Schnédidér [29, 30] and Yoshizawa and
Belyaev [35]. In the restoration of flat 2D images—known as the inpainting problem—variational
methods have proved to be successful tools. Here, higher order methods were presented for instance
by Bertalmio et al.[[7.6]. The normal directions on level sets and the grey values are prescribed at
the boundary of the inpainting domain and an energy depending on directions and image intensities
is then minimized under these boundary conditions, subject to the constraint that the directions are
perpendicular on the level sets of the corresponding image intensity field.

Furthermore, curvature based inpainting methods have been proposed by Ambrosio and Masnou
[2], Morel [24] and Chan et al[[8]. They treat the level sets of 2D images as Euler’s elastica and
minimize their bending energy. In particular Ambrosio and Masnou proved existence of minimizers
of the Willmore energy in the level set contexi [2] making extensive use of techniques from
geometric measure theory.
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Recently, theL2-gradient flow of the Willmore energy was considered analytically. Simonett
[32] was able to prove long time existence for surfaces close to spheregif th®pology. Kuwert
and Schtzle [22] show the existence of a lower bound on the maximal time for which smooth
solutions for Willmore flow exist. In particular they analyze the concentration of curvatuie.lin [21,
23] they are able to prove convergence to round spheres unter suitable assumptions on the initial
surface. The case of curves moving in space.W\filimore flow is treated in[[16] (joint with Dziuk)
analytically as well as numerically. They generalize results of Polden for planar curves [26, 27]
and give a semi-implicit discretization scheme.[In/[28] Rusu presented a new approach to weak
formulation for parametric Willmore flow which allows a mixed finite element discretization. In
[10] this scheme has been generalized with respect to boundary conditions. Recamsish Bt al.
[3l[4] presented a novel numerical algorithm for surface diffusion, which is the gradient flow of the
area with respect to the —1 metric. For a general overview on the numerical analysis of geometric
evolution problems we refer to Deckelnick and Dziukl[11,[14, 13][In [15] Deckelnick, Dziuk and
Elliott discussed surface diffusion for axial symmetric surfaces.

2. Some useful geometric tools

First, let us introduce some useful notation and derive representations for geometric quantities on
level setsM in terms of the corresponding level set functipnLet ¢ : 2 — R be some smooth
function on a domai2 ¢ R¥*1 . SupposeM. = {x € 2 |¢(x) = ¢} is a level set ofp for the
level valuec. For simplicity, we writeM = M, and assume thdtV¢| # 0 on M. Hence by the
implicit function theoremM_. is a smooth hypersurface and the normal
V¢
n=-——
IVoll

on the tangent spacg M is defined for every on M. In what follows we will make extensive use

of the Einstein summation convention. Furthermore veatoesR4 ! and matricest € R4+1.d+1
are written in index form

v=(vi)i, A= (A;)ij.
Let us introduce some important differential operators basethogential differentiationFor a
tangential vector field on M and a scalar functiom onR?** we set
divazv,‘,i —ninjvi,j, VMMZ(M,,‘ —n,'nju,j)i,

and we abbreviate in the usual way: = u ; andd;v; = v; ;. As an exercise, let us compute the
Laplace—Beltrami operator with respect to a level &¢tfor a functionuz extended on the whole
domains2:

Apu = AV Vpqu = (0 — ningd) (u ; — ninju ;)
= Ui — Mg ik — hnju j —ningiu j — ninju i
+ningninju g +ningn; gnjup + RiNgRinG kU
= Ui — NiNLU jk — hnju,j = Apga+1u — hopu — 8,?’4, (2)

and thereby retrieve a classical result. Here, we have used)JQ|n||2 = 2n;n; ; and the fact that
h = divn = n;; is the mean curvature aiv. Next, let us consider the shape operator on implicit
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surfaces. We evaluate the Jacobian of the normal field

1 i Dk ) 1 2
_ = _ ] =——PD 3
"= Vel <¢’ ST venvel ™), = ven P ®)

where P = (§;; — n;nj)ij = 1 —n ® n is the projection on the tangent space dnphdicates
the identity mapping. In particula? = PT = P2, Hence, for the shape operat®(which is the
restriction of Dn on the tangent space) we obtain

P=-———PD%P. 4
Vol i’ )

Finally, let us consider the Frobenius nofm|, = +/A : A for the shape operatdt, whereA : B
=tr(AT B) = A;; B;; for A, B € R¥*14+1 We obtain

1
ISI? = tr(S”S) = ——tr(PD?p PPD*¢ P
ETTARE AR

2 2 1 2 2
tr(PD%p PD%p P) = Wtr(PD ¢ P PD%p)

IR

”V¢”2tr(PD2¢ PD?¢) = tr(Dn Dn) = Dn' : Dn. (5)

3. The gradient flow perspective

Given a general energy densifyon a surfaceM,
elM]:= / fdA,
M
we consider the gradient flow with respect to fifesurface metric,

dx = —grad 2y e[M],

where theL? metric onM is given by

gm(v1, v2) :/ viv2 dA
M
for two scalar, normal velocities, v on M. Let us assume that we simultaneously want to evolve
all level setsM. of a given level set functiop. Hence, we take into account the co-area formula
[18,[1] to define a global energy

E[9] IZ/Re[Mc]dCZ/QIIVqﬁIIfdx,

where we see[M.] = 0 if M, = @. We interpret a functiop and thus the set of level sets
{M,}.er as an element of the manifold of level set ensembles which carries a trivial linear
structure, because we so far do not impose any constraints. A tangentsveetdrg on £ can be
identified with a motion velocity of the level sets\1,. via the classical level set equation

s+ 1Vl =0. (6)
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Thus, we are able to define a metric.6n

8¢ (51, 52) 1=/RgMC(v1, vz)dc=ff v1vp dA de

51 .
_ T .
/g Vol ||V¢|| Vel [ s152ll VoI~

for two tangent vectors, s with corresponding normal velocitiag, vo. Finally, we are able to
rewrite the simultaneous gradient flow of all level sets in terms of the level set furgtion

99 = —grad,, E[g],
which is equivalent to

8¢ (i, V) =/Q3z¢l9llv¢llfldx = —(E'[¢]. ) ()

for all functionsy € C3°($2). Let us emphasize that the velocityhas to be interpreted as a tangent
vector onL.

As an example let us first consideiM] = ared M) with f = 1. Hence,E[¢] = fg Vol
and we obtain the evolution equation

B Vo
0,0 0|V 1d.x=—/—-Vz9d
/Q 6 1V [ o Vo ds

Indeed, this is the weak formulation of mean curvature motion in level set form (cf. Evans and
Spruck [17] as well as Deckelnick and Dzilik [11]).

4. Willmore flow in level set form

Next, we proceed with the equation for Willmore flow and consider the energy
1
efM] == [ h? dA.
2 Jm

As simultaneous version of the gradient flowt = —grad, 2 \4,e[M] for all level sets we obtain
the evolution problem

d¢ = —grad,, E[¢]
on £ and evaluate

/ LI
2 Vol

—E[¢ + €]

d
d e=0
d Vg +e) T\?
& 3 oo (o ey ) dx‘e_o
J)e
IIV¢I| =0
Vo

— V9 + || Vo|h d|v[||V¢||‘1PVz9]> dx

e
_/g IVl

(——||V¢|| 3(1Vplh)2Ve - VO + Vol LPV(IV| h) - Vﬁ)dx (8)

2
Vo d
— -V + ||V¢||h div Eﬂ¢+ﬂ9
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Here, we have used the notation

Vo
ng .—m ——
T Ivell
and the variational formula
d Vi A\ Vv
horer| = - 2P vy = Vel tPVY.
de =0 Vol [IVe)? Vel

It turns out that the weighted mean curvature
w = —[|Ve|lh

—to be understood as a curvature concentration—is the natural dependent quantity arising in a weak
formulation of the evolution problem. Far we obtain the equation

. Ve
Vol twvrde = | —— .
/g” oI wy 2 Vol

for all y € C3°(£2). Finally, we end up with the following initial value problem for Willmore flow
in level set form:

Vi dx

Given an initial functionpg on £2 find a pair of functiong¢, w) with ¢ (0) = ¢g such that

0 /( 1 w2 ) )
vde= | (=5 o mVe VI = IVelTTPYw - Vi ) dx, 9

_ Vo
\Y L dx:/ " . Viurdx 10
fgn 1wy [0 vy o

forall r > Oand all functions?, ¥ € C3°(£2).

5. Cross checking the evolution equation

Another approach to deriving a level set formulation for Willmore flow consists in transforming

the well known parametric gradient flow formulation appropriately and derive from it by

straightforward computation a weak formulation. We find it instructive to cross check our above

result (8) and in particular to underline that the gradient flow perspective is more intuitive.
Multiplying with the test functiony || Ve (r)||~* for arbitrary® e Cy°(£2) and integrating

over §2 one obtains

01 (1) 2 1— 2 .
/Q <—||V¢(t)|| O+ Aph()0 + h(t)( 1S5 2h(t) )19) dx = 0.

First, we recall tha{ S(7)|| = Dn” : Dn andh = divn. Thus, applying[ZIZ) we obtain

/ AMhﬁ dx = / (Ahﬁ — hn,'h,,'ﬁ — h,i/ninjﬁ)dx
Q Q '
1
= / (—VhVﬁ — —n,'(hz),iﬁ — h’,-jn,-njﬁ) dx
o 2
1 2 1 2
= —VhVY — Enl(h )it +h jnin;¥; + E(h ),jnj® +h jnin; ;9 dx
2

= / (—=PVhV® +h jninj ;1) dx.
2
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Furthermore, again using integration by parts we observe

/h||S||2ﬂdx:/ hnjin; jo dx
2 2 ’

= / (—h,,-njn,',jﬂ —hnjn,-,jiﬂ —hnjn,-,jz?,i)dx
2

1 2
= —h,,'njni,jz?—é(h ),jnjﬁ—hnjn,-,jz?,,‘ dx
2

and finally

1 2 1 2 1 2 1 2
_/_Qéhh ﬂde—LEh anﬂdx:/_Q(é(h ),jl’ljl?—i-zh n;jd, ; dx.

Collecting all these terms we end up with

1 1
/Q<AMh +h<<||S||2 — éhz)ﬁ> drx = f9<_PW’W — hnjn; ;9 + éhzn,-ﬂ,]) dx

/( PVhVY h PV(IVI) Vz?—i—lhz Vz?)d
= —_ —_—— . _— n. x
2 Vol 2

1
= L(—nwn—lf’wnwnm V9 + SIVOIT(IVI>Ve W> dr,
where we have used the fact tHdt (3) implies
1 ) 1
Dnn=——PD¢n=——PV(|VoI|).

Vel IVell

Thus, we have verified that the level set equatfdn (8) derived from the gradient flow perspective
coincides with the evolution problem deduced from a straightforward integration of the gradient of
the parametric Willmore energy.

6. Regularization and graph surfaces

Before we start discretizing the evolution problérm ()] (10) let us introduce a suitable regularization
to avoid singularities in case of a vanishing gradigvitp|| of the level set function. We introduce
Ivlle := (Iv? 4+ €)%2 for v € R? and replace all occurrences|(F¢ | in (9) and [(10) by V|-
Similar to many other geometric evolution problems|[14, 12], regularized Willmore flow can be
interpreted as the corresponding flow of scaled graph&dit?. Indeed, for a given functiog :

£2 — R let us consider the graph

G = {(x, e Tp(x)) | x € 2}.

We denote byi€ := ||(—=V¢, e)T | 1(—Ve¢, €)T the upward oriented normal on the gragh By

8p,e (51, 52) 1= gge (v], V3) = /g vivs dA
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we define the natural metric on normal bundlegfonwherev], v5 are scalar normal velocities of
the evolving graph in directiom®. Any velocity v¢ in this graph normal direction corresponds to
a velocityv of the corresponding level set in direction of the level set nommal particular

2 a1

IVl

Indeed, observe that cas= ||[Vo| [IVell” —1 for the anglex betweerm© and the normat-n on the
level set in theR9*2 plane. Using the |dent|f|cat|oh]ll) arld (6) we can rewrite the metric

||V<¢>||2
2 vel2

\Y
gdx,e(Sl,Sz):/ 1+6_2||V¢||2v1 de / I ¢||e
2

1/ 5182
g L
€Je ”V¢”e

On the other hand, the Willmore energj¢] of the graph surfacg€ is given by

71V¢ 2
€1 _ € 2 2 e =l
e[g]—/ S R (d“’[ Tte —2||V¢||2]> -

/”V‘b”f( [||V<f||j>2dx=:€_lEe[¢]’

whereh® is the mean curvature of the + 1)-dimensional graph surfagg and E¢[¢] turns out to
be the regularized version of the Willmore energy. Hence, the regularized gradient flow

86,¢ (30, 9) = —(E([¢], V)

can be understood as an approximation of the actual Willmore flpw (7) for implicit surfaces via a
Willmore flow for graph surfaces with a scalieg? for e — oo (cf. [17]).

7. Boundary conditions

So far, we have not imposed any boundary condition® @n We might allow for test functions

U, € C*(£2). Then, assuming sufficient regularity for the solutigh, w) and applying
integration by parts in equation (10), we obtain by the fundamental lemma the differential equation
h=— |Vl tw=div(Ve/|Ve|) in 2 and the boundary conditiatV¢/||Ve|) - v = 0 onds2.

Herev denotes the outer normal @2. Hence, the level sets are orthogonaldg®. Furthermore,
applying integration by parts also in equatiph (9), we obtain

h? V¢ 1 ,
) IV ||d|v<——+ Vo~ PVw)—O in £
¢ — Vo 2 Vol Vol
and ond £2 we get
h? V¢
2 Vel

v+ Vel tPVw v =0.
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FromV¢/||Ve| L v we deduce thaPv = v and end up with the second boundary condition
Vw-v=0.

Alternatively, we might consider test functionls € C3°(£2) andy € C*°(£2) and replace
equation[(Ip) by

Vo
2 IVl

for some scalar functiogr on 952 with |y| < 1. Then we obtain the same differential equations
in £2 and the boundary conditiom- v = y on 8£2. Hence, we are able to impoge= ¢? for
some functionp? on 952 and to enforce a boundary conditien= »n? for n = V¢/|Vé| and
some normal field:? on 32. Indeed, the tangential componéiit— v ® v)n is already uniquely
determined byy?. We obtain

/ IVl twy dx = Wfdx—/ YV da, (12)
2 082

W= (1 —v @y yy = LTVOVETYIVElY _ Vad® +ypy
1@ —v®w)é+yIVelvl — IVaed® +ypvll’

whereg := |[Vo|| = (1 — y2)~12||Vy0¢| andV,e denotes the tangential gradient &f2. For
consistency we have to sgt| = 1 if Vy0¢? = 0.

In case of Willmore flow for graphs as discussed in Segdtjon 6 we can proceed analogously to
imposeC! boundary conditions 0612 and replace the graph version of equat@ (10) by

/nwnzlwwdx:/ Vo -wdx—/ Y da, (13)
Q 2 IVl Y7)

for some functiony on d£2 with |y| < 1. Applying integration by parts we obtain the differential
equation in2 and ond$2 the boundary condition

V¢
VoIl e
Again, we can decomposeé¢ and getV¢ = (1 — v ® vV)V¢ + y||Vé|v, where the tangential

componen{l — v ® v)V¢ as above only depends @d. In analogy to our preceding derivation,
we setg = | Vo, = (1 — y?)~Y?| V3064 and obtain, for the graph normef-? on a2,

v=y.

ei _ (Vo —yBv. T
IVaoe? +vBv|,

8. A semi-implicit finite element discretization

Now we proceed with the temporal and spatial discretizations of the regularized Willmore flow
problem. We discretize the system of partial differential equatiphs[(9), (10) first in space using
piecewise affine finite elements and then in time based on a semi-implicit backward Euler scheme.

Spatial discretizationLet us consider a uniform rectangular £ 1) or hexahedrald = 2) meshC
covering the whole image domaia and consider the corresponding bilinear respectively trilinear
interpolation on cell€ e C to obtain discrete intensity functions in the accompanying finite element
spaceV”. Here, the superscrifit indicates the grid size. SuppoBg; };¢; is the standard basis of
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hat shaped base functions corresponding to nodes of the mesh indexed by an idddw stdrify
the notation we will denote spatially discrete quantities with upper case letters to distinguish them
from the corresponding continuous quantities in lower case letters. Hence, we obtain

Vi = (@ e C%2)|®|c € PAVC € C},

whereP;1 denotes the space of + 1)-linear (bilinear or trilinear) functions. Suppo3g is the
Lagrangian interpolation onts”. Now, we formulate the semi-discrete finite element problem:

Find a function® : Rg — V" with ®(0) = Z,¢0 and a corresponding mean curvature function
W Rt — V" such that

2
/ w@ dx = / (—&th(t) VO — MVW(I) . V@) dx,
2 IVe@ll e\ 2|ve®)?® Ve @)l

/—W(t) lI/dx:/ —VQ(I‘) - V& dx
o VoWl o VeI

for all # > 0 and all test function®, ¥ € V". Here, we use the notation

Vo Vo
P [®] = (]l — | )

®
IV@lle ~ [IVP]e

and consider Neumann boundary condition$)éh

Time discretizationkFurthermore, for a given time step> 0 we aim to compute discrete functions
®*(-) € V" which approximatep(kt,-) on £2. Thus, we replace the time derivatidgp by a
backward difference quotient and evaluate all terms related to the metric on the previous time step.
In particular in the(k + 1)th time step the weighfV®| and the projectionP are taken from

the kth time step. Explicit time discretizations are ruled out due to accompanying severe time step
restrictions of the type < C(e)h?, wherer is the spatial grid size (cf. results presentedin [35, 8]).

We are left to decide which terms in each time step to consider explicitly and which implicitly.
We present here two variants, which turn out to behave equally well in our numerical experiments
concerning stability.

VARIANT | Find a sequence of image intensity functicmé‘)k:o,l,,_ c V" with @0 = Z,¢0 and
a corresponding sequence of functions of mean curvature concent(rwbva:o,l,,__ c V" such
that

okl _ pk P.[dk k2
f( O + el ]VWk+l~V@>dx=/ pr“l.w@dx,
2

T| VoK VO Q 2|Vek|3
Wk+l V¢k+l
/ —— Ydx = / — VY dx
2 IVeHie 2 IVeH|e

for all test functions®, ¥ € V*.

VARIANT Il Find a sequence of image intensity functio(rtnsk)k:o,lw c VI with @9 = T,
and a corresponding sequence of functions of mean curvature concentiétiono .. c V*

yeee



WILLMORE FLOW 371

such that
(karl _ q;k Vwk+l Wk 2
/( — O + - ~V@>dx:/(—(—)kgv¢k+l-V@
2\ TIIVeK|e Vol o\ 2|Vor|:3
1— Pk
¢VW"-V(~)) dr,
VoK
Wk+l V(pk+l
/—k‘”dXZ/ —— - VW dx
2 IVPXe 2 VX,

for all test functions®, ¥ € V",

REMARK. As we have discussed in Sect[dn 4 the first term on the right hand side of the evolution
equation forg represents the discrete variation of the weigj¥it || for fixed energy integrand?,
whereas the second term reflects the variation of the energy intefsfdiod fixed weight||Ve|.

The first term is primarily of second order, whereas the second one is of fourth order. Nevertheless,
our numerical experiments pointed out that it is essential to consider the first term implicitly as
well. Otherwise, we observe instabilities and correspondingly more restrictive time step constraints
(cf. [210]) .

To obtain a fully practival finite element method, we consider numerical quadrature. We replace
the parabolic term and the left hand side of the second equation using standard mass lumping [33].
For the other terms we apply a lower order Gaussian quadrature rule. In particular, we introduce
the piecewise constant projectiﬁﬁ with I}? fle = f(sc), wheresc is the center of gravity of any
elementC e C, and define a general weighted lumped mass matrix

M[w] := (/ I,?(w)zh(q>,-q>j)dx>
2 ijel

Furthermore, we consider the Lagrangian projecfiﬂn corresponding to the four Gaussian
quadrature nodes on each element, which ensure an exact integration up to third order tensor product
polynomials. Based on this notation we define a weighted second order stiffness matrix

L[w] := (/ THoVP; - v<pj)dx>
Q ijel

Finally, for a discrete functio® e V" we denote byp the nodal coordinate vector and formulate
the resulting fully practical version of the numerical scheme in matrix form: We initi@i2e=
Tnhpo and solve in each time step either the system of linear equations resulting from variant I:

Ald_)k+1 = Mék
with
M = M[|Vo*| Y,
Al:=M+ %L1+ rLoM L,
L1 = L[(WhH2vek| -3,
Lz := L[P[@!] VX 7Y,
La = L[|Ve*| 1,
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or from variant II:

A'@ L = M[|VDK || ]DF + tLaM L3k,
where

Al

M + %Ll +rlsM1Ls,

La:=tL[(1 - P[@* DV | 1.

Although we did not observe any problem in the numerical simulation, the solvability of the linear
system of equations appearing in variant | is still unclear. Furthermore, the linear systemhastrix

not symmetric. Thus, in the implementation we apply BiCGstab [5] as iterative solver. Concerning
variant II, the corresponding matriX'' is obviously symmetric and positive definite. Henaéd, is
invertible and the linear system of equations can be solved by applying a CG method.

9. Numerical results

In this section we will describe numerical experiments to validate the presented algorithms for
discrete Willmore flow.

First, we consider the limit behaviour in the case of grapifsis known to be a stationary
surface for Willmore flow in three space dimensions. Hence, we consider as Dirichlet boundary
conditions the correct positions and normals of a spherical g&;, y) = /r2 — x2 — y2 for
r =1, over a rectangular domain. As initial surface graphwe select the discrete solution of the
Poisson problemi¢ = 0 in 2 with ¢g = ¢* on 3£2. Settinge = 1 we compute the evolution

using variant |. As expected and illustrated in Fi(ﬂre 1 we obseﬁléi’f @, ~ Ip¢*. Here, we

-~y T
—_p <y

FiG. 1. Given an initial graph (upper left), Willmore flow with prescribed Dirichlet boundary conditions for the position and
the normal is applied. Different time steps of the evolution (from left to right and from top to bottom) are displayed. The
boundary condition corresponds to a spherical cap over the graph domain which is reflected by the limit surface (lower right)
fort — oo.
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TABLE 1
L? error and experimental order of convergence for the limit surface of the
Willmore flow which is expected to converge to a sphere cap depending on the

grid sizeh
h 2-3 2—4 2-5 2-6 2=7 2-8
L2error 1.043e-3 2.519e-4 6.244e-5 1.575e-5 4.002e-6 1.219e-6
EOC 2.05 2.01 1.99 1.98 1.71

study the convergence behaviour depending cand verify||®, — Z,¢*|| < Ch2, which reflects
the order of the interpolation error (cf. Taple 1).

Next, we deal with Willmore flow in the radial symmetric case in 2D. The evolution of the level
sets can be described by an ordinary differential equation for the radiyis- %r(t)_3. Hence, we
obtain for a circle with initial radius(0) = rg the curve evolution

r(t) = (2 +rHH4 (14)

For a radial symmetric initial functiopg we compute the discrete Willmore flow with= %/2 on

a 65x 65 and a 129 129 grid for the domaim2 = (—1/2, 1/2)2. We track a particular level set

M. and reinitialize®d* every 50th time step computing a signed distance funcition [31] with respect
to M... Figure[2 shows a comparison between the exact evolution giverypfrom (14) and the
discrete evolution. Let us emphasize that there are two sources of error: discretization errors in the
actual algorithms for Willmore flow and interpolation error due to the reinitialization of the discrete
signed distance function. THe® error of the radius(z, -) : M. () — Rbyr(z, x) = |x| is plotted

in Figure[3.

For a further validation of our algorithm, we compare the numerical method for the evolution
of graphs under Willmore flow with a different parametric finite element method for Willmore flow
presented in [10]. In this context it would be also interesting to analyze the error for both methods
for comparison, but due to the lack of geometries for which the exact evolution under Willmore flow
is known analytically, we analyzed ttie difference between the graph and the parametric surface.

As initial function we define

$0:[0,12 - R, (x,y) > —1sin(ry)(} sin(rx) + 3 sin(3rx))

and subsequently generate a triangulation of the graph as input for the parametric algorithm. Here,
we use a 65«< 65 grid and a time step size = 10°°. Different time steps of the discrete graph
evolution ¢ = 1) are shown in Figurie] 4. As Dirichlet boundary conditions wejgel = 0 onds2
and upwards pointing normals. After converting the evolving triangulation of the discrete parametric
surface back to a graph representation by Lagrangian interpolation at the grid nodefsatttd. >
differences between the two discrete solutions are plotted in Higure 5.

In Figure[6 we demonstrate a change of topology under Willmore flow. An initial configuration
of two square-like shapes is first rounded off by the gradient flow until these shapes resemble circles,
which then—due to the observation that small circles yield a higher energy than large circles—in
turn grow outwards until the boundaries are in contact with each other, merge and eventually evolve
to a single circle.
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FIG. 2. Acircle of radiusg = 0.13 expands due to its propagation via Willmore flaw=t 641 (top row), andh = 12871

(bottom row),r = 1Oh4). The circle is represented by a level set function. During the evolution by the level set method
for Willmore flow a signed distance function is recomputed every 50th time step. The exact solution (dotted line) and the
corresponding level set (solid line) are plotted for different times2.99- 104, 1.192- 10~3 and 3576- 10~3.

FiG. 3. The error functionir (t) — r(#, -)ll Loo (M, (1)) 1S Plotted for the numerical solutions computed on two different grids
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&y S
Ay &

FiG. 4. Different time steps of discrete Willmore flow for graphs over the domaia (0, 1)2 (from left to right and top to
bottom: = n10~8, n = 0, 100, 100Q 2500).
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FiG.5. L? (solid line) andL®° (dashed line) differences of discrete Willmore flow for graphs and parametric surface are
plotted over time.

FiG. 6. Two shapes merge under the level set evolution of Willmore flow. The parameters were chosen as<feHdks:

whereh = 12871, the time step size was 1G&:4. Time steps 0100, 800, 160Q 170Q 180Q 400Q 40000 are depicted from
top left to bottom right.
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FiG. 7. On the top left, some level sets of the initial configuration are shown on top of the level set fufictepresented
by a gray scale image. From top to bottom and left to right the evolution is depicted attimes103,5.1073,2.5.1072.

Finally, in Figurd 7 an initial function with ellipse-like level sets is evolved under Willmore flow
for level sets withe = 4 using variant Il of the algorithm. The initial function is given by

__1
$0:[0. 12 >R, (r.y) > 1+e @7 costmx) cos(} + 3(3x2 — 243))my).

Clearly we observe that the ellipses tend to get rounder. The applied Neumann boundary conditions
ensure orthogonality of the level lines to the boundary. We additionally observe a concentration of
level sets and a steepening of the gradient as well as a flattening behaviour in other regions.

The condition number of the discrete operaMr!A!' is dominated by the discretization
of the fourth-order termM—1L3M~1L3. If the level set function is initialized as a signed
distance function, i.e.]|[V¢| = 1 thenLgz corresponds to the usual stiffness matrix avid
to the usual lumped mass matrix, and the condition number scaleg ttkeHowever if | V||
varies in space, the condition numberMfandL3 may be spread by a factor af /m, where
M = sup, Vel andm = infg ||Vé|, which then leads to an even worse conditioned
system, which is reflected in significantly larger numbers of CG-iterations necessary for each time
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step. Here variants of multilevel preconditioners may provide substantial speed-up of the linear
solver.
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