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A level set formulation for Willmore flow
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A level set formulation of Willmore flow is derived using the gradient flow perspective. Starting
from single embedded surfaces and the corresponding gradient flow, the metric is generalized to
sets of level set surfaces using the identification of normal velocities and variations of the level
set function in time via the level set equation. This approach in particular allows one to identify the
natural dependent quantities of the derived variational formulation. Furthermore, spatial and temporal
discretizations are discussed and some numerical simulations are presented.
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1. Introduction

Let M be ad-dimensional surface embedded inRd+1 and denote byx the identity map onM.
Consider the energy

e[M] :=
1

2

∫
M
h2 dA

whereh is the mean curvature onM, i.e., h is the sum of the principle curvatures onM. The
correspondingL2-gradient flow—theWillmore flow—is given by the geometric evolution problem
[34, 32, 21]

∂tx(t) = ∆M(t)h(t)n(t)+ h(t)

(
‖S(t)‖2

2 −
1

2
h(t)2

)
n(t),

which defines for a given initial surfaceM0 a family of surfacesM(t) for t > 0 with M(0) =

M0. HereS(t) denotes the shape operator onM(t), n(t) the normal field onM(t), and‖·‖2 the
Frobenius norm on the space of endomorphisms on the tangent bundleTM(t).

Now we considerM(t) to be given implicitly as a specific level set of a corresponding function
φ(t) : Ω → R for a domainΩ ⊂ Rd+1. Thus, the evolution ofM(t) can be described by an
evolution ofφ(t). In our case, the level set equation∂tφ(t)+ ‖∇φ(t)‖V = 0 (cf. the book of Osher
and Paragios [25] for a detailed study), withV being the speed of propagation of the level set of
φ(t), turns into the equation

∂tφ + ‖∇φ(t)‖

(
∆Mh+ h(t)

(
‖S(t)‖2

2 −
1

2
h(t)2

))
= 0, (1)

with initial dataφ(0) = φ0. Hereφ0 implicitly describes the initial level setM0.
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Let us emphasize that as opposed to second order geometric evolution problems, such as mean
curvature motion, for fourth order problems no maximum principle is known. Indeed, two surfaces
both undergoing an evolution by Willmore flow may intersect in finite time. Hence, a level set
formulation in general will lead to singularities and we expect a blow up of the gradient ofφ in
finite time. If one is solely interested in the evolution of a single level set, one presumably can
overcome this problem by a reinitialization with a signed distance function with respect to this
evolving level set.

We are now aiming to derive a suitable weak formulation for the above evolution problem, which
only makes use of first derivatives of unknown functions and test functions. This will in particular
allow for a discretization based on a mixed formulation with piecewise affine finite elements, closely
related to results by Rusu [28] for parametric Willmore flow.

Hence, we have to reformulate this problem solely in terms of quantities such asφ(t),
h(t) and its gradients, in particular avoiding the term‖S(t)‖2 and derivatives of the normal.
Here, we take advantage of a fairly general gradient flow perspective on geometric evolution
problems. Indeed, given a gradient flow for parametric surfaces we derive in Section 3 a level
set formulation which describes the simultaneous evolution of all level sets corresponding to
this gradient flow. This approach is based on the co-area formula (cf. for example the book of
Ambrosio et al. [1]) and a proper identification of the temporal change of the level set function
and the corresponding evolution speed of the level surfaces. Thereby, we are able to identify the
natural dependent variables. This approach gives insight into the geometry of evolution problems
on the space of level set ensembles. We apply it to Willmore flow in Section 4 and outline the
correspondence to a spatial integration of the well known gradient of the parametric Willmore
functional in Section 5. Here, we confine ourselves to a formal analysis and do not discuss
questions concerning well-posedness, short or long time existence and regularity. Indeed, there
is not very much known so far (see below). Boundary conditions are discussed in Section 7 and
a suitable regularization taking care of degenerate gradients∇φ = 0 and related to Willmore
flow for graphs is introduced in Section 6. Besides the derivation of the weak formulation we
deduce a mixed semi-implicit finite element discretization in Section 8 and show some numerical
results.

Concerning physical modelling, the minimization of the Willmore energy is closely related to
the minimization of the bending energy of an elastic shell (cf. the monograph of Ciarlet [9] and the
shell simulation by Schröder et al. [20, 19] ). A further potential application of Willmore flow is in
image processing and related to image inpainting or restoration of implicit surfaces. Methods based
on similar ideas can be found in the works of Kobbelt and Schneider [29, 30] and Yoshizawa and
Belyaev [35]. In the restoration of flat 2D images—known as the inpainting problem—variational
methods have proved to be successful tools. Here, higher order methods were presented for instance
by Bertalmio et al. [7, 6]. The normal directions on level sets and the grey values are prescribed at
the boundary of the inpainting domain and an energy depending on directions and image intensities
is then minimized under these boundary conditions, subject to the constraint that the directions are
perpendicular on the level sets of the corresponding image intensity field.

Furthermore, curvature based inpainting methods have been proposed by Ambrosio and Masnou
[2], Morel [24] and Chan et al. [8]. They treat the level sets of 2D images as Euler’s elastica and
minimize their bending energy. In particular Ambrosio and Masnou proved existence of minimizers
of the Willmore energy in the level set context [2] making extensive use of techniques from
geometric measure theory.



WILLMORE FLOW 363

Recently, theL2-gradient flow of the Willmore energy was considered analytically. Simonett
[32] was able to prove long time existence for surfaces close to spheres in theC2,α topology. Kuwert
and Scḧatzle [22] show the existence of a lower bound on the maximal time for which smooth
solutions for Willmore flow exist. In particular they analyze the concentration of curvature. In [21,
23] they are able to prove convergence to round spheres unter suitable assumptions on the initial
surface. The case of curves moving in space w.r.t.Willmore flow is treated in [16] (joint with Dziuk)
analytically as well as numerically. They generalize results of Polden for planar curves [26, 27]
and give a semi-implicit discretization scheme. In [28] Rusu presented a new approach to weak
formulation for parametric Willmore flow which allows a mixed finite element discretization. In
[10] this scheme has been generalized with respect to boundary conditions. Recently, Bänsch et al.
[3, 4] presented a novel numerical algorithm for surface diffusion, which is the gradient flow of the
area with respect to theH−1 metric. For a general overview on the numerical analysis of geometric
evolution problems we refer to Deckelnick and Dziuk [11, 14, 13]. In [15] Deckelnick, Dziuk and
Elliott discussed surface diffusion for axial symmetric surfaces.

2. Some useful geometric tools

First, let us introduce some useful notation and derive representations for geometric quantities on
level setsM in terms of the corresponding level set functionφ. Let φ : Ω → R be some smooth
function on a domainΩ ⊂ Rd+1 . SupposeMc := {x ∈ Ω |φ(x) = c} is a level set ofφ for the
level valuec. For simplicity, we writeM = Mc and assume that‖∇φ‖ 6= 0 onM. Hence by the
implicit function theorem,Mc is a smooth hypersurface and the normal

n =
∇φ

‖∇φ‖

on the tangent spaceTxM is defined for everyx onM. In what follows we will make extensive use
of the Einstein summation convention. Furthermore vectorsv ∈ Rd+1 and matricesA ∈ Rd+1,d+1

are written in index form

v = (vi)i, A = (Aij )ij .

Let us introduce some important differential operators based ontangential differentiation. For a
tangential vector fieldv onM and a scalar functionu onRd+1 we set

divMv = vi,i − ninjvi,j , ∇Mu = (u,i − ninju,j )i,

and we abbreviate in the usual way∂ju = u,j and∂jvi = vi,j . As an exercise, let us compute the
Laplace–Beltrami operator with respect to a level setM for a functionu extended on the whole
domainΩ:

∆Mu = divM∇Mu = (∂i − nink∂k)(u,i − ninju,j )

= u,ii − ninku,ik − hnju,j − ninj,iu,j − ninju,j i

+ ninkninju,jk + ninkni,knju,j + ninkninj,ku,j

= u,ii − ninku,ik − hnju,j = ∆Rd+1u− h∂nu− ∂2
nu, (2)

and thereby retrieve a classical result. Here, we have used 0= ∂j‖n‖
2

= 2nini,j and the fact that
h := div n = ni,i is the mean curvature onM. Next, let us consider the shape operator on implicit
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surfaces. We evaluate the Jacobian of the normal field

Dn =
1

‖∇φ‖

(
φ,ij −

φ,i

‖∇φ‖

φ,k

‖∇φ‖
φ,kj

)
ij

=
1

‖∇φ‖
PD2φ (3)

whereP = (δij − ninj )ij = 1 − n ⊗ n is the projection on the tangent space and1 indicates
the identity mapping. In particular,P = P T = P 2. Hence, for the shape operatorS (which is the
restriction ofDn on the tangent space) we obtain

S = DnP =
1

‖∇φ‖
PD2φP. (4)

Finally, let us consider the Frobenius norm‖A‖2 =
√
A : A for the shape operatorS, whereA : B

= tr(ATB) = AijBij for A,B ∈ Rd+1,d+1. We obtain

‖S‖
2

= tr(ST S) =
1

‖∇φ‖
2
tr(PD2φ PPD2φ P )

=
1

‖∇φ‖
2
tr(PD2φ PD2φ P ) =

1

‖∇φ‖
2
tr(PD2φ PPD2φ)

=
1

‖∇φ‖
2
tr(PD2φ PD2φ) = tr(DnDn) = DnT : Dn. (5)

3. The gradient flow perspective

Given a general energy densityf on a surfaceM,

e[M] :=
∫
M
f dA,

we consider the gradient flow with respect to theL2 surface metric,

∂tx = −gradL2(M)e[M],

where theL2 metric onM is given by

gM(v1, v2) =

∫
M

v1v2 dA

for two scalar, normal velocitiesv1, v2 onM. Let us assume that we simultaneously want to evolve
all level setsMc of a given level set functionφ. Hence, we take into account the co-area formula
[18, 1] to define a global energy

E[φ] :=
∫

R
e[Mc] dc =

∫
Ω

‖∇φ‖f dx,

where we sete[Mc] = 0 if Mc = ∅. We interpret a functionφ and thus the set of level sets
{Mc}c∈R as an element of the manifoldL of level set ensembles which carries a trivial linear
structure, because we so far do not impose any constraints. A tangent vectors := ∂tφ onL can be
identified with a motion velocityv of the level setsMc via the classical level set equation

s + ‖∇φ‖v = 0. (6)
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Thus, we are able to define a metric onL,

gφ(s1, s2) :=
∫

R
gMc

(v1, v2)dc =

∫
R

∫
Mc

v1v2 dAdc

=

∫
Ω

s1

‖∇φ‖

s2

‖∇φ‖
‖∇φ‖ dx =

∫
Ω

s1s2‖∇φ‖
−1 dx

for two tangent vectorss1, s2 with corresponding normal velocitiesv1, v2. Finally, we are able to
rewrite the simultaneous gradient flow of all level sets in terms of the level set functionφ,

∂tφ = −gradgφE[φ],

which is equivalent to

gφ(∂tφ, ϑ) =

∫
Ω

∂tφ ϑ‖∇φ‖
−1 dx = −〈E′[φ], ϑ〉 (7)

for all functionsϑ ∈ C∞

0 (Ω). Let us emphasize that the velocityϑ has to be interpreted as a tangent
vector onL.

As an example let us first considere[M] = area(M) with f = 1. Hence,E[φ] =
∫
Ω

‖∇φ‖

and we obtain the evolution equation∫
Ω

∂tφ ϑ‖∇φ‖
−1 dx = −

∫
Ω

∇φ

‖∇φ‖
· ∇ϑ dx.

Indeed, this is the weak formulation of mean curvature motion in level set form (cf. Evans and
Spruck [17] as well as Deckelnick and Dziuk [11]).

4. Willmore flow in level set form

Next, we proceed with the equation for Willmore flow and consider the energy

e[M] =
1

2

∫
M
h2 dA.

As simultaneous version of the gradient flow∂tx = −gradL2(M)e[M] for all level sets we obtain
the evolution problem

∂tφ = −gradgφE[φ]

onL and evaluate∫
Ω

∂tφ ϑ

‖∇φ‖
dx = −

d

dε
E[φ + εϑ ]

∣∣∣∣
ε=0

= −
d

dε

1

2

∫
Ω

‖∇(φ + εϑ)‖

(
div

[
∇(φ + εϑ)

‖∇(φ + εϑ)‖

])2

dx

∣∣∣∣∣
ε=0

= −

∫
Ω

(
1

2
h2 ∇φ

‖∇φ‖
· ∇ϑ + ‖∇φ‖hdiv

[
d

dε
nφ+εϑ

∣∣∣∣
ε=0

])
dx

= −

∫
Ω

(
1

2
h2 ∇φ

‖∇φ‖
· ∇ϑ + ‖∇φ‖hdiv[‖∇φ‖

−1P∇ϑ ]

)
dx

=

∫
Ω

(
−

1

2
‖∇φ‖

−3(‖∇φ‖h)2∇φ · ∇ϑ + ‖∇φ‖
−1P∇(‖∇φ‖ h) · ∇ϑ

)
dx. (8)



366 M . DROSKE & M. RUMPF

Here, we have used the notation

nφ :=
∇φ

‖∇φ‖

and the variational formula
d

dε
nφ+εϑ

∣∣∣∣
ε=0

=
∇ϑ

‖∇φ‖
−

∇φ

‖∇φ‖
2

∇φ

‖∇φ‖
· ∇ϑ = ‖∇φ‖

−1P∇ϑ.

It turns out that the weighted mean curvature

w := −‖∇φ‖h

—to be understood as a curvature concentration—is the natural dependent quantity arising in a weak
formulation of the evolution problem. Forw we obtain the equation∫

Ω

‖∇φ‖
−1wψ dx =

∫
Ω

∇φ

‖∇φ‖
· ∇ψ dx

for all ψ ∈ C∞

0 (Ω). Finally, we end up with the following initial value problem for Willmore flow
in level set form:

Given an initial functionφ0 onΩ find a pair of functions(φ,w) with φ(0) = φ0 such that∫
Ω

∂tφ

‖∇φ‖
ϑ dx =

∫
Ω

(
−

1

2

w2

‖∇φ‖
3
∇φ · ∇ϑ − ‖∇φ‖

−1P∇w · ∇ϑ

)
dx, (9)∫

Ω

‖∇φ‖
−1wψ dx =

∫
Ω

∇φ

‖∇φ‖
· ∇ψ dx (10)

for all t > 0 and all functionsϑ,ψ ∈ C∞

0 (Ω).

5. Cross checking the evolution equation

Another approach to deriving a level set formulation for Willmore flow consists in transforming
the well known parametric gradient flow formulation appropriately and derive from it by
straightforward computation a weak formulation. We find it instructive to cross check our above
result (8) and in particular to underline that the gradient flow perspective is more intuitive.

Multiplying (1) with the test functionϑ‖∇φ(t)‖−1 for arbitraryϑ ∈ C∞

0 (Ω) and integrating
overΩ one obtains∫

Ω

(
∂tφ(t)

‖∇φ(t)‖
ϑ +∆Mh(t)ϑ + h(t)

(
‖S(t)‖2

2 −
1

2
h(t)2

)
ϑ

)
dx = 0.

First, we recall that‖S(t)‖2
= DnT : Dn andh = div n. Thus, applying (2) we obtain∫

Ω

∆Mhϑ dx =

∫
Ω

(∆hϑ − hnih,iϑ − h,ijninjϑ)dx

=

∫
Ω

(
−∇h∇ϑ −

1

2
ni(h

2),iϑ − h,ijninjϑ

)
dx

=

∫
Ω

(
−∇h∇ϑ −

1

2
ni(h

2),iϑ + h,jninjϑ,i +
1

2
(h2),jnjϑ + h,jninj,iϑ

)
dx

=

∫
Ω

(−P∇h∇ϑ + h,jninj,iϑ)dx.
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Furthermore, again using integration by parts we observe∫
Ω

h ‖S‖
2ϑ dx =

∫
Ω

hnj,ini,jϑ dx

=

∫
Ω

(−h,injni,jϑ − hnjni,j iϑ − hnjni,jϑ,i)dx

=

∫
Ω

(
−h,injni,jϑ −

1

2
(h2),jnjϑ − hnjni,jϑ,i

)
dx

and finally

−

∫
Ω

1

2
hh2ϑ dx = −

∫
Ω

1

2
h2nj,jϑ dx =

∫
Ω

(
1

2
(h2),jnjϑ +

1

2
h2njϑ,j

)
dx.

Collecting all these terms we end up with∫
Ω

(
∆Mh+ h

((
‖S‖

2
−

1

2
h2

)
ϑ

)
dx =

∫
Ω

(
−P∇h∇ϑ − hnjni,jϑ,i +

1

2
h2njϑ,j

)
dx

=

∫
Ω

(
−P∇h∇ϑ −

h

‖∇φ‖
P∇(‖∇φ‖) · ∇ϑ +

1

2
h2n · ∇ϑ

)
dx

=

∫
Ω

(
−‖∇φ‖

−1P∇(‖∇φ‖h) · ∇ϑ +
1

2
‖∇φ‖

−3(‖∇φ‖h)2∇φ · ∇ϑ

)
dx,

where we have used the fact that (3) implies

Dnn =
1

‖∇φ‖
PD2φ n =

1

‖∇φ‖
P∇(‖∇φ‖).

Thus, we have verified that the level set equation (8) derived from the gradient flow perspective
coincides with the evolution problem deduced from a straightforward integration of the gradient of
the parametric Willmore energy.

6. Regularization and graph surfaces

Before we start discretizing the evolution problem (9), (10) let us introduce a suitable regularization
to avoid singularities in case of a vanishing gradient‖∇φ‖ of the level set function. We introduce
‖v‖ε := (‖v‖2

+ ε)1/2 for v ∈ Rd and replace all occurrences of‖∇φ‖ in (9) and (10) by‖∇φ‖ε .
Similar to many other geometric evolution problems [14, 12], regularized Willmore flow can be
interpreted as the corresponding flow of scaled graphs inRd+2. Indeed, for a given functionφ :
Ω → R let us consider the graph

Gε = {(x, ε−1φ(x)) | x ∈ Ω} .

We denote bynε := ‖(−∇φ, ε)T ‖
−1(−∇φ, ε)T the upward oriented normal on the graphGε . By

gφ,ε(s1, s2) := gGε (v
ε
1, v

ε
2) =

∫
Gε
vε1v

ε
2 dA
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we define the natural metric on normal bundles onGε , wherevε1, vε2 are scalar normal velocities of
the evolving graph in directionnε . Any velocityvε in this graph normal directionnε corresponds to
a velocityv of the corresponding level set in direction of the level set normaln, in particular

vε = −v
‖∇φ‖

‖∇φ‖ε

. (11)

Indeed, observe that cosα = ‖∇φ‖ ‖∇φ‖
−1
ε for the angleα betweennε and the normal−n on the

level set in theRd+1 plane. Using the identification (11) and (6) we can rewrite the metric

gφ,ε(s1, s2) =

∫
Ω

√
1 + ε−2‖∇φ‖2 vε1 v

ε
2 dx =

∫
Ω

‖∇φ‖ε

ε
v1 v2

‖∇φ‖
2

‖∇φ‖
2
ε

dx

=
1

ε

∫
Ω

s1 s2

‖∇φ‖ε

dx.

On the other hand, the Willmore energye[Gε ] of the graph surfaceGε is given by

e[Gε ] =

∫
Gε
(hε)2 dA =

∫
Ω

√
1 + ε−2‖∇φ‖2

(
div

[
ε−1

∇φ√
1 + ε−2‖∇φ‖2

])2

dx

=
1

ε

∫
Ω

‖∇φ‖ε

(
div

[
∇φ

‖∇φ‖ε

])2

dx =: ε−1Eε [φ],

wherehε is the mean curvature of the(d + 1)-dimensional graph surfaceGε andEε [φ] turns out to
be the regularized version of the Willmore energy. Hence, the regularized gradient flow

gφ,ε(∂tφ, ϑ) = −〈E′
ε [φ], ϑ〉

can be understood as an approximation of the actual Willmore flow (7) for implicit surfaces via a
Willmore flow for graph surfaces with a scalingε−1 for ε → ∞ (cf. [17]).

7. Boundary conditions

So far, we have not imposed any boundary conditions on∂Ω. We might allow for test functions
ϑ,ψ ∈ C∞(Ω). Then, assuming sufficient regularity for the solution(φ,w) and applying
integration by parts in equation (10), we obtain by the fundamental lemma the differential equation
h = −‖∇φ‖

−1w = div(∇φ/‖∇φ‖) inΩ and the boundary condition(∇φ/‖∇φ‖) · ν = 0 on∂Ω.
Hereν denotes the outer normal on∂Ω. Hence, the level sets are orthogonal on∂Ω. Furthermore,
applying integration by parts also in equation (9), we obtain

∂tφ − ‖∇φ‖ div

(
h2

2

∇φ

‖∇φ‖
+ ‖∇φ‖

−1P∇w

)
= 0 inΩ

and on∂Ω we get
h2

2

∇φ

‖∇φ‖
· ν + ‖∇φ‖

−1P∇w · ν = 0.
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From ∇φ/‖∇φ‖ ⊥ ν we deduce thatPν = ν and end up with the second boundary condition
∇w · ν = 0.

Alternatively, we might consider test functionsϑ ∈ C∞

0 (Ω) andψ ∈ C∞(Ω) and replace
equation (10) by ∫

Ω

‖∇φ‖
−1wψ dx =

∫
Ω

∇φ

‖∇φ‖
· ∇ψ dx −

∫
∂Ω

γψ dA, (12)

for some scalar functionγ on ∂Ω with |γ | 6 1. Then we obtain the same differential equations
in Ω and the boundary conditionn · ν = γ on ∂Ω. Hence, we are able to imposeφ = φ∂ for
some functionφ∂ on ∂Ω and to enforce a boundary conditionn = n∂ for n = ∇φ/‖∇φ‖ and
some normal fieldn∂ on ∂Ω. Indeed, the tangential component(1 − ν ⊗ ν)n is already uniquely
determined byφ∂ . We obtain

n∂ = (1 − ν ⊗ ν)n+ γ ν =
(1 − ν ⊗ ν)φ + γ ‖∇φ‖ν

‖(1 − ν ⊗ ν)φ + γ ‖∇φ‖ν‖
=

∇∂Ωφ
∂

+ γβν

‖∇∂Ωφ∂ + γβν‖
,

whereβ := ‖∇φ‖ = (1 − γ 2)−1/2 ‖∇∂Ωφ‖ and∇∂Ω denotes the tangential gradient on∂Ω. For
consistency we have to set|γ | = 1 if ∇∂Ωφ

∂
= 0.

In case of Willmore flow for graphs as discussed in Section 6 we can proceed analogously to
imposeC1 boundary conditions on∂Ω and replace the graph version of equation (10) by∫

Ω

‖∇φ‖
−1
ε wψ dx =

∫
Ω

∇φ

‖∇φ‖ ε

· ∇ψ dx −

∫
∂Ω

γψ dA, (13)

for some functionγ on ∂Ω with |γ | < 1. Applying integration by parts we obtain the differential
equation inΩ and on∂Ω the boundary condition

∇φ

‖∇φ‖ ε

· ν = γ.

Again, we can decompose∇φ and get∇φ = (1 − ν ⊗ ν)∇φ + γ ‖∇φ‖εν, where the tangential
component(1 − ν ⊗ ν)∇φ as above only depends onφ∂ . In analogy to our preceding derivation,
we setβ := ‖∇φ‖ε = (1 − γ 2)−1/2

‖∇∂Ωφ
∂
‖ε and obtain, for the graph normalnε,∂ on ∂Ω,

nε,∂ =
(−∇∂Ωφ

∂
− γβν, ε)T∥∥∇∂Ωφ∂ + γβν

∥∥
ε

.

8. A semi-implicit finite element discretization

Now we proceed with the temporal and spatial discretizations of the regularized Willmore flow
problem. We discretize the system of partial differential equations (9), (10) first in space using
piecewise affine finite elements and then in time based on a semi-implicit backward Euler scheme.

Spatial discretization.Let us consider a uniform rectangular (d = 1) or hexahedral (d = 2) meshC
covering the whole image domainΩ and consider the corresponding bilinear respectively trilinear
interpolation on cellsC ∈ C to obtain discrete intensity functions in the accompanying finite element
spaceV h. Here, the superscripth indicates the grid size. Suppose{Φi}i∈I is the standard basis of
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hat shaped base functions corresponding to nodes of the mesh indexed by an index setI . To clarify
the notation we will denote spatially discrete quantities with upper case letters to distinguish them
from the corresponding continuous quantities in lower case letters. Hence, we obtain

V h = {Φ ∈ C0(Ω) |Φ|C ∈ P1 ∀C ∈ C},

whereP1 denotes the space of(d + 1)-linear (bilinear or trilinear) functions. SupposeIh is the
Lagrangian interpolation ontoV h. Now, we formulate the semi-discrete finite element problem:

Find a functionΦ : R+

0 → V h with Φ(0) = Ihφ0 and a corresponding mean curvature function
W : R+

→ V h such that∫
Ω

∂tΦ(t)

‖∇Φ(t)‖
Θ dx =

∫
Ω

(
−

W(t)2

2‖∇Φ(t)‖3
∇Φ(t) · ∇Θ −

Pε [Φ(t)]

‖∇Φ(t)‖
∇W(t) · ∇Θ

)
dx,∫

Ω

W(t)

‖∇Φ(t)‖
Ψ dx =

∫
Ω

∇Φ(t)

‖∇Φ(t)‖
· ∇Ψ dx

for all t > 0 and all test functionsΘ,Ψ ∈ V h. Here, we use the notation

Pε [Φ] :=

(
1 −

∇Φ

‖∇Φ‖ε
⊗

∇Φ

‖∇Φ‖ε

)
and consider Neumann boundary conditions on∂Ω.

Time discretization.Furthermore, for a given time stepτ > 0 we aim to compute discrete functions
Φk(·) ∈ V h which approximateφ(kτ, ·) on Ω. Thus, we replace the time derivative∂tφ by a
backward difference quotient and evaluate all terms related to the metric on the previous time step.
In particular in the(k + 1)th time step the weight‖∇Φ‖ and the projectionP are taken from
thekth time step. Explicit time discretizations are ruled out due to accompanying severe time step
restrictions of the typeτ 6 C(ε)h4, whereh is the spatial grid size (cf. results presented in [35, 8]).
We are left to decide which terms in each time step to consider explicitly and which implicitly.
We present here two variants, which turn out to behave equally well in our numerical experiments
concerning stability.

VARIANT I Find a sequence of image intensity functions(Φk)k=0,1,... ⊂ V h withΦ0
= Ihφ0 and

a corresponding sequence of functions of mean curvature concentration(W k)k=0,1,... ⊂ V h such
that ∫

Ω

(
Φk+1

−Φk

τ‖∇Φk‖ε
Θ +

Pε [Φk]

‖∇Φk‖ε
∇W k+1

· ∇Θ

)
dx =

∫
Ω

−(W k)2

2‖∇Φk‖3
ε

∇Φk+1
· ∇Θ dx,∫

Ω

W k+1

‖∇Φk‖ε
Ψ dx =

∫
Ω

∇Φk+1

‖∇Φk‖ε
· ∇Ψ dx

for all test functionsΘ,Ψ ∈ V h.

VARIANT II Find a sequence of image intensity functions(Φk)k=0,1,... ⊂ V h with Φ0
= Ihφ0

and a corresponding sequence of functions of mean curvature concentration(W k)k=0,1,... ⊂ V h
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such that∫
Ω

(
Φk+1

−Φk

τ‖∇Φk‖ε
Θ +

∇W k+1

‖∇φk‖ε
· ∇Θ

)
dx =

∫
Ω

(
−

(W k)2

2‖∇Φk‖3
ε

∇Φk+1
· ∇Θ

+
(1 − Pε [Φk])

‖∇Φk‖ε
∇W k

· ∇Θ

)
dx,∫

Ω

W k+1

‖∇Φk‖ε
Ψ dx =

∫
Ω

∇Φk+1

‖∇Φk‖ε
· ∇Ψ dx

for all test functionsΘ,Ψ ∈ V h.

REMARK . As we have discussed in Section 4 the first term on the right hand side of the evolution
equation forφ represents the discrete variation of the weight‖∇φ‖ for fixed energy integrandh2,
whereas the second term reflects the variation of the energy integrandh2 for fixed weight‖∇φ‖.
The first term is primarily of second order, whereas the second one is of fourth order. Nevertheless,
our numerical experiments pointed out that it is essential to consider the first term implicitly as
well. Otherwise, we observe instabilities and correspondingly more restrictive time step constraints
(cf. [10]) .

To obtain a fully practival finite element method, we consider numerical quadrature. We replace
the parabolic term and the left hand side of the second equation using standard mass lumping [33].
For the other terms we apply a lower order Gaussian quadrature rule. In particular, we introduce
the piecewise constant projectionI0

h with I0
hf |C = f (sC), wheresC is the center of gravity of any

elementC ∈ C, and define a general weighted lumped mass matrix

M [ω] :=

(∫
Ω

I0
h(ω)Ih(ΦiΦj )dx

)
i,j∈I

.

Furthermore, we consider the Lagrangian projectionI1
h corresponding to the four Gaussian

quadrature nodes on each element, which ensure an exact integration up to third order tensor product
polynomials. Based on this notation we define a weighted second order stiffness matrix

L [ω] :=

(∫
Ω

I1
h(ω∇Φi · ∇Φj )dx

)
i,j∈I

.

Finally, for a discrete functionΦ ∈ V h we denote byΦ̄ the nodal coordinate vector and formulate
the resulting fully practical version of the numerical scheme in matrix form: We initializeΦ̄0 :=
Ihφ0 and solve in each time step either the system of linear equations resulting from variant I:

AIΦ̄k+1
= MΦ̄k

with

M := M [‖∇Φk‖−1
ε ],

AI := M +
τ

2
L1 + τL2M−1L3,

L1 := L [(W k)2‖∇Φk‖−3
ε ],

L2 := L [Pε [Φ
k]‖∇Φk‖−1

ε ],

L3 := L [‖∇Φk‖−1
ε ],
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or from variant II:

AII Φ̄k+1
= M [‖∇Φk‖ε ]Φ̄

k
+ τL4M−1L3Φ̄

k,

where

AII := M +
τ

2
L1 + τL3M−1L3,

L4 := τL [(1 − Pε [Φ
k])‖∇Φk‖−1

ε ].

Although we did not observe any problem in the numerical simulation, the solvability of the linear
system of equations appearing in variant I is still unclear. Furthermore, the linear system matrixAI is
not symmetric. Thus, in the implementation we apply BiCGstab [5] as iterative solver. Concerning
variant II, the corresponding matrixAII is obviously symmetric and positive definite. Hence,AII is
invertible and the linear system of equations can be solved by applying a CG method.

9. Numerical results

In this section we will describe numerical experiments to validate the presented algorithms for
discrete Willmore flow.

First, we consider the limit behaviour in the case of graphs.S2 is known to be a stationary
surface for Willmore flow in three space dimensions. Hence, we consider as Dirichlet boundary
conditions the correct positions and normals of a spherical cap,φ∗(x, y) =

√
r2 − x2 − y2 for

r = 1, over a rectangular domain. As initial surface graphφ0, we select the discrete solution of the
Poisson problem∆φ = 0 in Ω with φ0 = φ∗ on ∂Ω. Settingε = 1 we compute the evolution

using variant I. As expected and illustrated in Figure 1 we observeΦkh
k→∞
−→ Φh ≈ Ihφ∗. Here, we

FIG. 1. Given an initial graph (upper left), Willmore flow with prescribed Dirichlet boundary conditions for the position and
the normal is applied. Different time steps of the evolution (from left to right and from top to bottom) are displayed. The
boundary condition corresponds to a spherical cap over the graph domain which is reflected by the limit surface (lower right)
for t → ∞.
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TABLE 1
L2 error and experimental order of convergence for the limit surface of the
Willmore flow which is expected to converge to a sphere cap depending on the
grid sizeh

h 2−3 2−4 2−5 2−6 2−7 2−8

L2 error 1.043e-3 2.519e-4 6.244e-5 1.575e-5 4.002e-6 1.219e-6
EOC 2.05 2.01 1.99 1.98 1.71

study the convergence behaviour depending onh, and verify‖Φh − Ihφ∗
‖ 6 Ch2, which reflects

the order of the interpolation error (cf. Table 1).
Next, we deal with Willmore flow in the radial symmetric case in 2D. The evolution of the level

sets can be described by an ordinary differential equation for the radius:ṙ(t) =
1
2r(t)

−3. Hence, we
obtain for a circle with initial radiusr(0) = r0 the curve evolution

r(t) = (2t + r4
0)

1/4. (14)

For a radial symmetric initial functionφ0 we compute the discrete Willmore flow withε = h/2 on
a 65× 65 and a 129× 129 grid for the domainΩ = (−1/2,1/2)2. We track a particular level set
Mc and reinitializeΦk every 50th time step computing a signed distance function [31] with respect
toMc. Figure 2 shows a comparison between the exact evolution given byr(t) from (14) and the
discrete evolution. Let us emphasize that there are two sources of error: discretization errors in the
actual algorithms for Willmore flow and interpolation error due to the reinitialization of the discrete
signed distance function. TheL∞ error of the radiusr(t, ·) : Mc(t) → R by r(t, x) = |x| is plotted
in Figure 3.

For a further validation of our algorithm, we compare the numerical method for the evolution
of graphs under Willmore flow with a different parametric finite element method for Willmore flow
presented in [10]. In this context it would be also interesting to analyze the error for both methods
for comparison, but due to the lack of geometries for which the exact evolution under Willmore flow
is known analytically, we analyzed theL2 difference between the graph and the parametric surface.

As initial function we define

φ0 : [0,1]2 → R, (x, y) 7→ −
1
4 sin(πy)(1

4 sin(πx)+
1
2 sin(3πx))

and subsequently generate a triangulation of the graph as input for the parametric algorithm. Here,
we use a 65× 65 grid and a time step sizeτ = 10−6. Different time steps of the discrete graph
evolution (ε = 1) are shown in Figure 4. As Dirichlet boundary conditions we setφ(t) = 0 on∂Ω
and upwards pointing normals. After converting the evolving triangulation of the discrete parametric
surface back to a graph representation by Lagrangian interpolation at the grid nodes, theL2 andL∞

differences between the two discrete solutions are plotted in Figure 5.
In Figure 6 we demonstrate a change of topology under Willmore flow. An initial configuration

of two square-like shapes is first rounded off by the gradient flow until these shapes resemble circles,
which then—due to the observation that small circles yield a higher energy than large circles—in
turn grow outwards until the boundaries are in contact with each other, merge and eventually evolve
to a single circle.
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FIG. 2. A circle of radiusr0 = 0.13 expands due to its propagation via Willmore flow (h = 64−1 (top row), andh = 128−1

(bottom row),τ = 10h4). The circle is represented by a level set function. During the evolution by the level set method
for Willmore flow a signed distance function is recomputed every 50th time step. The exact solution (dotted line) and the
corresponding level set (solid line) are plotted for different timest = 2.99 · 10−4,1.192· 10−3 and 3.576· 10−3.
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FIG. 3. The error function‖r(t)− r(t, ·)‖L∞(Mc(t)) is plotted for the numerical solutions computed on two different grids

with h = 64−1 (marked by+) andh = 128−1 (marked by×), respectively.
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FIG. 4. Different time steps of discrete Willmore flow for graphs over the domainΩ = (0,1)2 (from left to right and top to
bottomt = n10−8, n = 0,100,1000,2500).
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FIG. 5. L2 (solid line) andL∞ (dashed line) differences of discrete Willmore flow for graphs and parametric surface are
plotted over time.

FIG. 6. Two shapes merge under the level set evolution of Willmore flow. The parameters were chosen as follows:ε = 5h,
whereh = 128−1, the time step sizeτ was 10h4. Time steps 0,100,800,1600,1700,1800,4000,40000 are depicted from
top left to bottom right.
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FIG. 7. On the top left, some level sets of the initial configuration are shown on top of the level set functionφ0 represented
by a gray scale image. From top to bottom and left to right the evolution is depicted at timest = 0, 10−3, 5·10−3, 2.5·10−2.

Finally, in Figure 7 an initial function with ellipse-like level sets is evolved under Willmore flow
for level sets withε = h using variant II of the algorithm. The initial function is given by

φ0 : [0,1]2 → R, (x, y) 7→ 1 + e
1−

1
(1−y2) cos(πx) cos((1

2 +
3
2(3x

2
− 2x3))πy).

Clearly we observe that the ellipses tend to get rounder. The applied Neumann boundary conditions
ensure orthogonality of the level lines to the boundary. We additionally observe a concentration of
level sets and a steepening of the gradient as well as a flattening behaviour in other regions.

The condition number of the discrete operatorM−1AII is dominated by the discretization
of the fourth-order termM−1L3M−1L3. If the level set function is initialized as a signed
distance function, i.e.,‖∇φ‖ ≡ 1 then L3 corresponds to the usual stiffness matrix andM
to the usual lumped mass matrix, and the condition number scales likeh−4. However if ‖∇φ‖

varies in space, the condition number ofM and L3 may be spread by a factor ofM/m, where
M := supΩ ‖∇φ‖ and m := infΩ ‖∇φ‖, which then leads to an even worse conditioned
system, which is reflected in significantly larger numbers of CG-iterations necessary for each time
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step. Here variants of multilevel preconditioners may provide substantial speed-up of the linear
solver.
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4. BÄNSCH, E., MORIN, P., & NOCHETTO, R. H. Surface diffusion of graphs: Variational formulation,
error analysis and simulation.SIAM J. Numer. Anal.40 (2002), 1207–1229.

5. BARRETT, R., BERRY, M., CHAN , T. F., DEMMEL , J., DONATO, J., DONGARRA, J., EIJKHOUT, V.,
POZO, R., ROMINE, C., & DER VORST, H. V. Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods.2nd ed., SIAM, Philadelphia, PA (1994). Zbl 0814.65030 MR 1247007

6. BERTALMIO , M., BERTOZZI, A., & SAPIRO, G. Navier–Stokes, fluid dynamics, and image and video
inpainting.Proc. Internat. Conf. Computer Vision and Pattern Recognition, IEEE, I (2001), 355–362.

7. BERTALMIO , M., SAPIRO, G., CASELLES, V., & BALLESTER, C. Image inpainting. Computer
Graphics (SIGGRAPH ’00 Proc.), K. Akeley (ed.), (2000), 417–424.

8. CHAN , T. F., KANG, S. H., & SHEN, J. Euler’s elastica and curvature-based inpainting.SIAM J. Appl.
Math.63 (2002), 564–592. Zbl 1028.68185 MR 1951951

9. CIARLET, P. Mathematical Elasticity, Vol III: Theory of Shells. North-Holland (2000). Zbl 0953.74004
MR 1757535

10. CLARENZ, U., DIEWALD , U., DZIUK , G., RUMPF, M., & RUSU, R. A finite element method for
surface restoration with smooth boundary conditions.Comput. Aided Geom. Design21 (2004), 427–445.
MR 2058390

11. DECKELNICK, K. & D ZIUK , G. Convergence of a finite element method for non-parametric mean
curvature flow.Numer. Math.72 (1995), 197–222. Zbl 0838.65103 MR 1362260

12. DECKELNICK, K. & D ZIUK , G. Discrete anisotropic curvature flow of graphs.Math. Modelling Numer.
Anal.33 (1999), 1203–1222. Zbl 0948.65138 MR 1736896

13. DECKELNICK, K. & D ZIUK , G. Error estimates for a semi-implicit fully discrete finite element scheme
for the mean curvature flow of graphs.Interfaces Free Bound.2 (2000), 341–359. Zbl 0974.65088
MR 1789171

14. DECKELNICK, K. & D ZIUK , G. Numerical approximation of mean curvature flow of graphs and level
sets.Mathematical Aspects of Evolving Interfaces(Madeira, Funchal, 2000), P. Colli and J. F. Rodrigues
(eds.), Lecture Notes in Math. 1812, Springer, Berlin (2003), 53–87. Zbl 1036.65076 MR 2011033

15. DECKELNICK, K., DZIUK , G., & ELLIOTT, C. M. Error analysis of a semidiscrete numerical scheme for
diffusion in axially symmetric surfaces.SIAM J. Numer. Anal.41 (2003), 2161–2179. Zbl pre02027831
MR 2034610
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20. GRINSPUN, E., KRYSL, P., & SCHRÖDER, P. CHARMS: A simple framework for adaptive simulation.
Computer Graphics (SIGGRAPH ’02 Proc.)(2002).
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23. KUWERT, E. & SCHÄTZLE , R. Removability of point singularities of Willmore surfaces. Preprint SFB
611, Bonn, No. 47 (2002).

24. MASNOU, S. Disocclusion: A variational approach using level lines.IEEE Trans. Image Process.11
(2002), 68–76. MR 1888912

25. OSHER, S. & PARAGIOS, N. Geometric Level Set Methods in Imaging, Vision and Graphics. Springer
(2003). Zbl 1027.68137

26. POLDEN, A. Closed curves of least total curvature. SFB 382 Tübingen, Preprint, 13, 1995.
27. POLDEN, A. Curves and surfaces of least total curvature and fourth-order flows. Dissertation, Univ.
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33. THOMÉE, V. Galerkin Finite Element Methods for Parabolic Problems. Springer (1984).

Zbl 0528.65052 MR 0744045
34. WILLMORE , T. Riemannian Geometry. Clarendon Press, Oxford (1993). Zbl 0797.53002 MR 1261641
35. YOSHIZAWA, S. & BELYAEV, A. Fair triangle mesh generation with discrete elastica.Geometric

Modeling and Processing, RIKEN, Saitama, (2002), 119–123.

http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0726.53029&format=complete
http://www.ams.org/mathscinet-getitem?mr=1100206
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0804.28001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1158660
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1035.53092&format=complete
http://www.ams.org/mathscinet-getitem?mr=1882663
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1029.53082&format=complete
http://www.ams.org/mathscinet-getitem?mr=1900754
http://www.ams.org/mathscinet-getitem?mr=1888912
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1027.68137&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0859.76004&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=pre01832854&format=complete
http://www.ams.org/mathscinet-getitem?mr=1827100
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0528.65052&format=complete
http://www.ams.org/mathscinet-getitem?mr=0744045
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0797.53002&format=complete
http://www.ams.org/mathscinet-getitem?mr=1261641

	Introduction
	Some useful geometric tools
	The gradient flow perspective
	Willmore flow in level set form
	Cross checking the evolution equation
	Regularization and graph surfaces
	Boundary conditions
	A semi-implicit finite element discretization
	Numerical results

