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We study a cylindrical crystalline flow in three dimensions coupled to a diffusion field. This system
arises in modeling crystals grown from supersaturated vapor. We show existence of self-similar
solutions to this system under a special choice of interfacial energy and kinetic coefficients.

1. Introduction

In [GR1] we considered a model of crystals grown from supersaturated vapor. We established
existence of solutions to the evolution equations. Here we want to construct a special kind of
maximal solutions, namely a self-similar motion.

Our work was motivated by experiments. Namely, in their laboratory Gonda and Gomi [GoG]
have grown specimens of elongated prisms of ice crystals similar to those formed in the atmosphere
and found mostly in Antarctica. Theoretical foundation for our work has been laid down by Seeger
[S€] who studied planar polygonal crystals. Later his approach was extended to three dimensions
by Kurodaet al. [KIO]. These papers, however, do not include the Gibbs—Thomson relation on the
free boundary. We think that it is important to include this effect, especially for small crystals.

In [GR1] and here we make a simplifying assumption that the evolving crystal is a (right
circular) cylinder$2(t), and not a hexagonal prism. This approach is in fact quite frequent in the
physics literature (see [Nel, [YSF]). We shall study solely the evolution of such right cylinders. The
description of the evolving interface is then relatively easy. Namely, it requires specifying the radius
R and the height 2.

We now recall the equations of motion which we studied[in [GR1]. The first one, for the
supersaturation outside the crystaf2(¢), is

Ao =0 inR3\ Q). (1.1)

It means that the mass is transported by diffusion and this transport is much faster than the motion
of the free boundary$2(t), hence the termo/dr on the right-hand side of (1.1) is dropped. It is
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also physically reasonable to assume thaias a specific value at infinity, i.e.

lim o(t,x) =0c%. 1.2
|x]—o00
We now explain the next equation representing the mass conservation on a crystal surface. It is a
Stefan—type condition. The evolution model we present is meant not only for crystals grown from
vapor but also for those growing from solution. Since the presentation is simpler for the latter we
explain the equation of mass conservation for crystals grown from solution. In this ¢agéven as

_C-C,
=<
whereC = C(t, x) represents the concentration of atoms @&hds the saturated concentration

which is a constant independentxofind:. The velocityV of the growing crystal is determined by
the normal derivative of” on the surface,

p2C _ v onsen
veD— = ,
7 9n

o

’

wheren is the outer normal. Here. represents the volume of an atom of the crystal Bnd 0 is
the diffusion coefficient of atoms in the solution. This equation expresses the mass conservation. By
normalizing the time variable we may assume that this Stefan-like mass conservation is of the form
do
o = V.  onoaf2(t). (1.3)
HereV is assumed to be constant on each faget 0£2(¢),i = T, B, A, i.e. on the top, bottom
and lateral surface. The notation we use is explained in Section 2.

The hypothesis that is spatially constant on each relates to stability properties of facets or
facet non-breaking properties. This property is not always natural, especially @&trens large
(seel[GiGl], [BNP1], [BNP2]). We do not touch on this issue in the present paper.

We also need an equation for the motion of the free boundary; it is

_/ G(I,X)dHZ(X)=(Ki(t)—,3i‘/i(t))|Si(t)|, i:TaB»A9 (14)
Si (1)

wherep;’s are the (normalized) kinetic coefficients and (for simplicity of notati@h) stands for
H2(S;), i.e. the two-dimensional Hausdorff measureSofHerex; denotes the crystalline curvature
of §;. Later, we shall see how important is the interplayxpé and 8;’s. Note that the kinetic
coefficients here are normalized because of time normalization uged]in (1.3).

Condition [T.3) is in fact the Gibbs—Thomson relation. Due to the lack of smoothnés3,of
pointwise curvature makes no sense. Instead we use the crystalline curvabfrie facetss; (see
[GR1]). The notion of crystalline curvature was first introduced by J. Tayldr [Ta] and independently
by Angenent and Gurtir_[AG]. We stress that the Gibbs—Thomson relation, in a similar form to
(I.4), has been derived by Gurtii {([G, Chapter 8], see also [GM]) for polygonal interfaces.

These equations have to be augmented with an initial conditiaR dre.

2(0) = 2. (1.5)

In [GR1] we showed that this systefn (IL.])—{1.5) 6, R, o) is well posed and we have local-in-
time existence of solutions for any admissible initial data. Namely are subject to an ODE (see
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equation[(Z.B) and further explanations) ani$ easily represented in terms bfandR (see[(2.P)).
However, in that paper we did not study any subtle properties of the dynamics.

Here we are interested in establishing existence of special maximal solutions (we allow for finite
extinction times). Namely, we want to establish existence of self-similar solutions, i.e. such that

Q) = a(t)2(0) (1.6)

for a scale facton(¢). By showing their existence we hope to gain new insight into the dynamics of
C)-L5).

At this point we mention that the existence of self-similar solutions to the anisotropic curvature
flow of the formBV = «, is well-studied in the plane, wheks is a weighted curvature with respect
to the interfacial energy. In fact there exists a self-similar shrinking solution for smooth, strictly
convexy: [Gd], [GaL], [DG], [DGM]. This result was extended to a planar crystalline flov in|[St1],
[St2] and to a crystalline flow iiR® in [PE]. Note that if8y = const, it is clear that the Wulff shape
of y always shrinks self-similarly. The reader is referred to a review arficle [Gi] and a nice book
[CZ] on this topic. If there is a driving force term, i.e. we deal with the equaion= «, + C with
some constant > 0, then there is a self-similar expanding solution, provided ghat= const, as
shown in[S0, §12]. This can be easily extended to the crystalline case. The main difference between
these problems and ours is that our system may be understood as a crystallineufded to a
diffusion field. However, it turns out that the relatiBy = const is also necessary for the existence
of self-similar solutions.

Related to our work is the study of the isotropic Stefan problem undertaken in [HV]. However,
the essential difference is that they do not assume the Gibbs—Thomson law at the free boundary and
they work with smooth interfaces, precisely balls.

Our main goal is to establish existence of (expanding or shrinking) self-similar solutions to
(L.I){1.%). However, we will see that this is not always possible. Our result is sensitive to a
choice of two sets of parameters: (a) the Wulff shape of interfacial energy denghiythe kinetic
coefficientss;. Geometrically speaking, the crystalline curvatdrelepends on our selection of the
surface energy densiy, hence on the Wulff shap&, . We note thaW,, is a cylinder with constant
crystalline curvature equal te2 (see 82 for more details). We can now give a rough indication
of this dependence. We mentioned above that the evolutiaR &f in fact a system of ordinary
differential equations (ODE’s) fok and R; see[(2.B). However, when we try to reduce this system
to a single equation for the scale factom (1.6) it turns out that this is possible only for special

values of the aspect ratio
L

EZPO,

which must be equal to the quotient of the kinetic coefficighigfr = po (see Propositiop 4).2).
More preciselyog is a positive zero of a function which is not given in an explicit way. Our main
focus is then on studying this function and proving that it has at least one positive root; this is done
in 84.

Our work requires some preparations, made in 82, where we also explain the notation. What
is more important, we present the structure of the solutionis of (L.I)—(1.5) and their behavior under
scaling, which is an important ingredient of our argument.

We also show in §3 that the only steady state] of| (1} 1)}(1.5) is a properly scaled Wulff shape,
with the scale factor depending upefi®. We also explain how the signs of the spe&@dslepend
ono® and the curvatures,i = T, B, A.
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2. Preliminaries

In this section we set up the problem. We present our assumptions and the known results. We also
recall the structure of solutions and exhibit a scaling law.

2.1 The setup

As in the physics literature (sele [Ne], [YSF]), our evolving crystak) is assumed to be a right
cylinder,
(1) = {(x. x2,x3) € R*: xf + x5 < R%(1), |x3| < L(n)}.

In other words, we only have to knoR(¢) andL(¢) to describe its evolution. The following subsets
of 0£2(¢) will be calledfacets

Sa={x€dR2(t):x%+x%=R?,
St ={x€082():x3=L},
Sp=1{x€082(t):x3=—-L};

these are the lateral side, top and bottom respectively. We algo=s¢iA, T, B}. We shall specify
the initial datas2(0) = £20. We denote by; the speed of the facét, i € 1, in the direction of,
the outer normal t@ £2 (¢).

We explicitly assume that enjoys the symmetry aR(z), i.e.o is axisymmetric and symmetric
with respect to the plane; = 0:

- 2 2
o =a( x1+x2,|x3|).

We want to consider a surface energy density funcawvhich is consistent with ouf2 (). We
recall thaty has to be Lipschitz continuous, convex and 1-homogeneous. To be specific we take

y(x1,x2,x3) = rya + |xslyrg.  va,yrs >0, (2.1)

wherer? = xf + x§ andy,, yrp are positive constants. Hence, its Frank diagfgnuefined as

Fy={peR3 y(p) <1}

consists of two right cones with a common base, which is the {disk x2, 0) € R3 : x¥ + x2 <
1/y 4}, with the same height and with the vertices at

(0,0, £1/yrp).
Now, theWulff shapeof y is defined by
W, ={xeR3:VneR3 |n=1, x-n<ym)

In our settingW,, is a cylinder of radiuskp equal toy4 and half-height_o equal toyr g. Hence, all
cylinders likes2 (r) above aradmissiblein the sense that the normrato the top facet (respectively:
bottom, lateral surface) a®(¢) is the normal to the top facet (respectively: bottom, lateral surface)
of w,.
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We now explain how the “mean crystalline curvatures’of facetS; may be defined. In this
respect we follow [GRI1]. Define the surface enefgpy

E(S) = /S y (N(x)) dH2(x).

Then we define

whereh is the signed distance by which is moved in the direction of the outer normal $¢);
AE is the resulting change of surface energy, arid is the change of volume. We now recall the
calculation ofc; performed in[[GRIL]. Namely, foy given by [2.1) we obtain

yma) _ o _ v 1 ")
R =KB. ka=-——F 7Y ().

In [GR1] we pointed out a relation betweenand the surface divergence of a selection of the
Cahn—-Hoffmann vectay. Here we will not pursue this topic.
We have established existence of solutiohsR, o) to system (1.1)—(1.4).

KT = —

PrROPOSITION2.1 (see[[GR1, Theorem 1]) There exists a unique local-in-time weak solution
(R,L,0)t0

Ac() =0 inR3\ (), | Ilim o(t,x) =0, (2.2)

do

an = V.  onaf2(), (2.3)

—fs()o(t,x)de(x) = (ki () — Bi Vi(0))|S: (1| (2.4)
i (¢

with initial condition £2(0) = £29, where{2g is an admissible cylinder. Moreover,
R, L e CYY([0,T)), Vo e %0, T); L2R3\ 2@1))). O

From now on, for the sake of simplicity we shall denote the unique solutign fio (2.2)—(2(8) )
instead of(R, L, o).

Constructing the desired solutions requires a detailed knowledge of the structurdlof is
presented below.

2.2 Structure ol and scalings

In order to present the useful structuresoive have to introduce some additional objects. Namely,
we needf; which is a unique solution to

—Afi=0 inR3\ £, (2.5)
afi

oy = 5,']' onSj, j el, (26)
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such thatV f; € L?(R3\ 2) and lim,_. fi(x) = 0 (see[[GRI]), wher&? is a right cylinder in
RR3 given at the beginning of Section 2.1 (with time fixed). He¥e,is the Kronecker delta and

denotes the inner normal 8a2. For functionsf, g such thatv f, Vg € L2(R3\ £2) we also define
the following quantities:

(f.8) = / Vi) -Vgyde, [f1I7:=(f f).
R3H\Q2
Let us mention that the equatign (2.5)—(2.6) takes the following weak form:
f Vﬁ(x)~Vh(x)dx=/ h(x) dH?(x) (2.7)
R3\ Si

for all 1 such thatVh € L2(R3\ 2).
We showed in[[GRA1] thaf (2.2)—(2.4) can be reduced to the following system of ODE'’s:
(A+ D)V = B, (2.8)
where

V= (Va, Vr,Vp), B=(Sal(@™ 4+ k), ISTI(c™ +«71), [SBI(0™ + KkB)),

A={(fi, f)lij=a.1,B, D =diag{BalSal, Br|Stl, BplSBI}.
In order to explain thaf (28) is indeed an ODE we recall that
v AR _dL
A= dt s T — VB — dt .
In fact, (2.8) is a system of two equations fat, L), but for the sake of compatibility with [GR1]
we write it as if it were a system for three unknow®s L1, L) with L1 = Lo.
Moreover,c is given by

o(t) ==Y Vi) i) + 0. (2.9)

iel
The purpose of the present section is to clarify the behavior of our system under scaling of
domains. Suppose we define a new varigbls the formula

y = ax,

wherea > 0; thus$2 i§ trapsformed tw2 = 2, andS; goes toaS; = S;. If i is defined one2,
then we transform it téd : £2 — R by setting

h(y) = h(y/a).
We also define
ffy)=afily/a), i=T,B,A. (2.10)
The proposition below clarifies the role gf.
PROPOSITION2.2. If f; satisfies[(Z2]7), then
/R g S VAO) by = / IIOLARS

for all h with Vi € L2(R3\ £2).
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Proof. Note thatV,/(y) = Vxh(f—l’)g—; = 1V,h(x). Then indeed

3
/ VY ff (y)Vyfl(y) dy = / a—anfi(x)Vxh(x) dx = aZ/ h(x) dH?(x)
R3\2 R3\@2 4 S;

i

_ f ) A2 0

i

3. Critical size crystals

First, we want to determine the stationary statef of (4.2)(2.4). They will certainly depend ¥pon
Indeed, we have the following result.

PROPOSITION3.1 Leto™ > 0 be given andy be defined by[(2]1). Theqs2(¢), o (1)) is a
stationary solution tq (212)=(3.4) if and only if
20 =aW, and o) =0,

wherea = 2/5°.

Proof. Suppose first tha(0) = aW,, a = 2/c* ando (t) = o°. With this definition of the
scalea, we see that the right-hand side of equat[on]|(2.8) vanishes,

(A+D)V =0.

HenceV = 0, because the matrid + D is nonsingular. Moreover, by (3.9,(t) = 0. Thus
((2/5>®°)W,,, ) furnishes a solution t¢ (2.2]—(2.4).

Conversely, if(£2(r), o (¢)) is a stationary solution, thefi (2.9) together with= 0, € I,
implies thato () = o . In addition, the left-hand side of equatign (2.8) vanishes, implying that
B = 0. Thus,£2(¢) is of a constant crystalline curvature:

KT =kp =kp = —0,
i.e. 22(t) is a scaled Wulff crystal. Equivalently,
yre _ya _ 0%
L R 2
and the dimensiong, L are determined by . |

We may now say that i5* is given, then(2/0*°)W,, is of critical size We expect thaf2 (0) (not
necessarily a scaled Wulff shape) containiagr°°) W, will have the tendency to grow, while those
£2 contained in(2/o>°)W,, will shrink. We specify this below.

PROPOSITION3.2 Leto™ > 0 and a solutiori$2(1), o (1)) to (2.2){2.4) be given. Also assume
thatVa(z) - Vo (z) > 0.

(a) Ifthe crystalline curvatures of2 (r) satisfyo ™ +«;(¢t) > 0,i € I, thenV;(¢) > Oforalli € I.
(b) If 6 +«;(t) <0,i € I,thenV;(t) < Oforalli € I.
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REMARK The conditionV; - V; > 0 looks strange, but we may not exclude the possibility that
it is violated. However, in the case of self-similar motion constructed in the next section it is
automatically satisfied.

Proof of Propositiorj 3]2. We shall prove (a) since (b) is handled in a similar way. Recall that the
matrix A + D in (2.8) is positive definite. Thus,

0<2lVIP S (A+ D)V, V) =) (0% +x)ISi|V:.
iel
Sincesc™ + k; > 0 and all terms on the right-hand side are of the same sign, we conclude that
Vi >0fori e {A, T, B}. O

4. Existence of self-similar solutions

We are interested in special solutions to the evolution equations that are simple yet important. We
shall say that a solutionfZ(¢), o (1)) is self-similarif at all times the region2 (¢) satisfies

£2()=a@)20), a(t) #£1, (4.1)

for a real-valued function : R, — R,. We require that it is nonconstant for otherwise we would
obtain a stationary solution.

We shall examine consequences|of(4.1). We have to exgress (4.1) in temsLofnd the
speeds of facets. Later we shall see that self-similar evolution exists ondpfioechoices of the
Wulff shapesW,, and kinetic coefficients;,i = A, T, B.

We note that in the case of evolving cylinder the self-similar evolution is equivalent to the
constancy of the aspect ratio

L(t) _
rRe) P
Subsequently we shall find an equivalent characterizatidn df (4.2) in terms of the speeds

4.2)

L) =Vr(t) = Vg(t), R=V,.

PROPOSITION4.1 Suppose that2(r), o (1)) is a self-similar solution td (2}2)-(3.4). Then (¢.2)
is equivalent to
Vr@)
va) "’
Proof. = We notice that2(r) = a(#)£2(0) is equivalent to

LO
forall r € [0, Tmay and % =p. (4.3)

zi(t) =a®)z;(0), ie€{A,T,B}, (4.4)
where(z4, z7, z8) = (R, L, L). After differentiation of this identity we see that
Vi(t) =a()z;(0), ie{A,T,B)}.

This implies that
V() aL(0) _
Va)  ar© "
The possibility ofa = 0 has already been excluded in the definition.
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< Obviously, we have
t

zi(t) = z;(0) +[ Vi (s) ds.
0
Conditions[(4.B) imply

L) _ LO+ o Vrs)ds _ pRO) + fgpVals)ds _
R(t) RO+ [y Va(s)ds RO+ [y Va(s)ds

In particular it follows from Proposition 4.1 that

Vr(0) 501 Jsr 0 0 (0, 0) dH2() +k7(0) g,
Va(0) oo s, 0 0. X) dH2(X) + ka0 BT

Effectively, due to representation &fin terms of speeds, this is an equation for the initial speeds,
where the role 0B, andBy has to be clarified. We shall see momentarily that the relation between
B andpy is set by another necessary condition for self-similar motion.

PROPOSITION4.2 Suppose thdt2(r), o (1)) is a self-similar solution td (2]2)—(3.4). Then

Ba _ Vr (1) — )
Br  Va(®)

REMARK ~ Combining this proposition with (42) and the definition of the Wulff shaeleads
us to the conclusion that the relation
By = const

is a necessary condition for the existence of self-similar solutions.

Proof of Propositiof 4)2. Suppose that2(¢), o (1)) is a self-similar solution. We can then express
the supersaturation
cy=— Y iV +o>

ie{A,T,B)
interms of f;(\) = £;(0, ), V;(0),i =T, B, A. In 82.2 we showed that if

(1) = a)$2(0),
then

o == Y [0+,

ie{A,T,B)

where thef satisfy [2.10), i.e.
0%, y) = a@) fi(y/a®).

Thus, we can rewrite both sides of

/S()G(I,x) dH?(x) = (=K (t) + Bi Vi ()5 (1)] (4.5)
i (1
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in the following way. First,

_ e
LHS_/;i(I)(—ZV,(t)fj‘” o) a2

Jjel

=—a) | > O f Y dH?+0%|S:(0)|
Si(t) jer ’

(1) / . ( y ) , .,
O] 0)zj(@a(®) ;| o ) dH Si(O)l.
a<0)j; 5.0 (QTOO S 25 | dHE0) + 0 OIS, O)

We change variable = y/a to obtain

LHs = 40 > dd) /S o Vi (0) fj (x) dH2(x) + 0 ®a?(1)|S: (0)]

WO)je[

. 3
_ e ) ( / (0, %) dH2(x) — o-°°|s,~<0>|) +0%a2(1)|S: 0)]
a(0) 5:(0)
. 3
_ %m O] (B:Vi(0) — x:(0) — %) + 0%a2(1)|;O)].

We now calculate the RHS df (4.5):
ki (0)
as;  a(t)
= —a()k;(0)[S;(0)] + Bia(t)a®()|S; (0)|z; (0).
After dividing by |S; (0)| we see that

o®a®(t) + %a%)(—n (0) — 0™ + B: Vi (0)) = —ki (0)a(t) + Bia(t)a(1)z; (0).

Further simple manipulations based on (4.5) yield

RHS— dH2(y) + Bia(t)a®(1)]S:(0)|zi (0)

a(a*(t) (=i (0) — e™)a(t) + Bi Vi (0)(a(t) — 1) = —a(0)(o™a?(t) + «i (Q)a(t)).
If we assume tha®(0) = W,,, then the formula for crystalline curvatures yields
ki) =k (=-2), ie{A,B,T}
If we plug this result into the equations above, we obtain

a(0)(c®a(t) +«)
a(t)((0® + )a(?) + B Vi(0)(1 —a)))’

Of course, we have to assume th&t + « # 0, for otherwise we would have a stationary solution.
If the left-hand side is to be independent gthen we conclude that

BrVr(t) = BaVa(),

as desired. O

at) = ief{A,B,T). (4.6)
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On the way, we established the equation th@j must fulfill, namely [(4.B). This equation has to be
augmented with an initial condition, i.e.
a0 =1

and we have to supply(0) calculated from[(4]5). Namely, (4.5) may be rewritten as

D VO (i, ) + BilSi(O)Vi(0) = (0 + ki (0)]S; (0.

jel

Before we proceed, we make a simplifying assumption. Due to the scaling formula of §2.2, without
loss of generality we may assume

L(O)=p and R(0)=1. 4.7
If we use this simplification, Cramer’s formula applied[to [2.8) yields

Vr(0) _ I £al? + 4Bamp — 8p(fa, fr)
Va©  4o(fr, fr + fB) +4mp?Br — 2(fa, fr)

Combining this with
Vr(0)
=0,
Va(0)
we obtain an equation fgr, where we also usg,/Br = p.
After some simple algebraic manipulations, the equatiopfarduces to

40%(fr, fr + f8) +6p(fr, f4) = Il fal* (4.8)

We notice thap 4, Br miraculously cancel out.
We stress thafr, fg, f4 depend only orp and they are independent ®f°.
This is the equation for the constant-in-time proportions of the self-similar evolving cylinder. It
guarantees that
LO _Vr© _pa _
RO~ Va0  pr "

We will show that [(4.B) has at least one solution. We first calculate the behavior of both sides of
(4.8) for large and smaj. This will be done in a series of lemmata. We do not try to give optimal
estimates here. We content ourselves with ones sufficient for showing the existence of solutions.

LEMMA 4.3 There exists a universal constéitindependent op such that
I fall < C1pY2A+ pY3),  Vp eRy,

and|| f4 || < C1p%* for smallp.
Proof. Choose a cut-off function : [0, co) — [0, 1] such that;(1) = 1 and
(R+1—r)/l, re[R,R+I1],

n(r) =130, r>R+1,
1, r € [0, R).
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Of courseR = 1 due to our scaling, but for the sake of clarity we shall exhibit it anyway. Note that

2T prp
I £all? = /S falx)dH?(x) =2 fo fo fa(x)R dxzdb,

where(r, 0, x3) are cylindrical coordinates.
SetD = (B(0, R + 1)\ B(0, R)) x (—p, p). Then due to the definition af we have

2T prp
||fA||2=2f0 /o[fA(x)Rn(R)—fA(x)(R+l)n(R+l)]dx3d9

2t pp pRH g
—2 [ [ [ oo dudd
o Jo Jr Or
a a
= —/ <_77fA + nﬁ + EfA) dx.
p \or ar r
We notice thatD| = 2p7 (2R + 1)/ andn/r < 1forr > R = 1. Now, by the Hlder inequality,

1 1/6 1/2
||fA||2<(1+7>|D|5/6</Df§> +|D|1/2<fD|VfA|2) :

The first integral may be estimated by the Sobolev inequality for unbounded domains (see &.g. [HK,
Theorem 5]), i.e. we obtain

I fall < co®C@¥® +17Y0) @+ 1)%® + o212 (1 + )2,
wherec is a constant. When we chooke- 1, then
Ifall < cp¥2@+ p¥3),  Vp eR;.

For smallp it is advantageous to balance all the terms in the estimate; for this reason we take
1 = pY2. Hence,
1fall < cp¥87H12 4 p/2HYA =1 €y p3/4

for sufficiently smallp > 0, as desired. O
A similar reasoning leads us to

LEMMA 4.4 There exists a constafiy independent op such that

lfrll < Ca. O

We also need good lower bounds pfi ||.
LEMMA 4.5 There exist€3 > 0 such that for all sufficiently smaj the following estimate
holds:

Ifall > C3p®®.

Proof. We shall exploit the fact that for any functionwith Vi) € L? and equal to 1 or§ 4, we
have

4an=/ 1d7-[2=/ V-V i < fall - Il
SA R3\ 2
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We taken = v (r)p(x3), wherer? = xf + x% ande(z) is even. Specifically, we choose

1, r € [0, R],
v(r)={(R+€—r)/t, re(R,R+1],

0, r=>R+¢,

1, z €0, pl,
p(2) =3 (+r—2)/L, z€(p,p+A],

0, 2> p+A,

wheree, A > 0 will be picked later. Obviously

Vi =1v,0-¢ + 1/f§0xgzx3»
whereé, = (x1,x2,0)/r, éx, = (0,0, 1) and|Vn|2 = y2p? + 292 . We now set

D =[BO,R+ )\ B, R)] x [-p, p],
P=BO,R+0 x[p, A+ p]UB®O, R+ x[-A—p, —p],
X =[BO,R+ 0\ B@O,R)] x ([—A—p,—p]lU[p, p+A]D.

With these definitions,
/ V|2 dx = / Y2? dx +/ Y2pZ, dx +/ v, 202 dx.
R3\2 D P X
We shall treat each term separately. Dnve clearly havey, = —¢~1, hence
1 27
f p*yf dx < —|D| = ZL Q2R+ 0).
D ] []
On P we havelg,,| = 1/A and
/ 202 de < (R + 0?2
P X3 22 ’
and finally we calculate the integral ovEr
2
f V202 dr < 7”,\(21% 1 0.
X

Combining those results we arrive at

(L+0% 2 )1/2

3
<celZa+e Z@4¢
71l C(Z( +4) + . +g( +90)

Again, we want to balance all the terms, so we put p*, A = p—#, «, > 0. The constraint of
equal powers of all terms yielgs= 1/3, « = 2/3, and finally

Inll < cp/®.

Hence|| 4| > C3p*® forall p > 0. O
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The argument used above also yields

LEMMA 4.6 There existg4 > 0 such that for alp > 0,

Ifrll = Ca,

i.e.| fr| is bounded below by a positive constant. O
We are now ready to study equati¢n (4.8).
THEOREM4.7 Equation[(4]8) has at least one positive solutign

Proof. Both sides of{(4.8) are continuous functionsoofVe shall estimate the growth of both sides
atoo and near 0.
Forp > 1 due to Lemmas 4.3 afnd 4.6 we have

RHS< Cyp®8,  LHS > 402|| fr| > Cro?,

where we also used the positivity 6f7, fz) and(fr, f4). Hence, LHS> RHS for sufficiently
largep.
Now, for smallp > 0, Lemmag 4)4, 4|3 ard 4.4 yield

RHS> ¢;p”3,  LHS < c(0® + po¥*).
It is obvious that
LHS < RHS for sufficiently smalp > 0.

Hence, for someo > 0 both sides of (4]8) must be equal, because they are continuous functions
of p. |

So far, we have determined the proportions of the Wulff shape and the proportions of the kinetic
coefficientspg = B4/Br. The numberpg is special and may not be unique. We are now ready to
establish the existence of a self-similar evolution.

THEOREM4.8 Suppose that is a solution of[(4.B) ang2 (0) is the Wulff shape of , i.e.£2(0) =
W, andLg/Ro = L(0)/R(0) = po. Assume that

L3 £0

Br .
Then the evolution of2 (0) is self-similar.
Proof. We have to show tha® () = a(r)$2(0). We have already shown in the course of proof of
Propositio 4.P thai(r) satisfies the ODH (4,6),

_ a(0)(c®a(t) +«)

a)((@® +x)at) + BrvrO@L —a@)))’ (4.9)
a(0) =1,

whereBy Vr(0) = BAVA(0) by our choice ofog andx = k7 = « 4. We recall thatc denotes the
mean crystalline curvature ¢2(z) at timer = 0, i.e. when2(0) = W,,. This is a constant i@.g).
We also stress that™ is a constant parameter of the problem (see equdtioh (1.2)).
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Similarly, we know that

Va0  Vr(0)

RO  LO

Equation [(4.P) has a unique solution, because the right-hand siffe Jof (4.9) is Lipschitz continuous
with respect tar and the denominator never vanishes. This is so due to

a(0) =

(0 +1)a(t) — BrVr(Qa(t) + BrVr(0) = a(t) (@™ 4+« — prVr(0)) + BrVr(0)
= a(r)/ > Vi(0) fi dH? + Br Vr (0)
S7(0) jer
#0
as long ag > # —« andV;’s have the same sign.
We have to check whether

(Va@), Vr (@) == (a()z4(0), a(0)z7(0)) = a - (R(0), L(0))

and
o(t) .= — Zd(t)zifia(t) + 0%

iel
satisfy [2.2)4(2.4). Of course

Ac() =0 InR3\ (), lllim o(t,x) =0,
X|—>00

and

99 _ v onae
an '

by the properties of;" (see Proposition 2,2). Moreover,

/ a(t)d’H2=/ BiVi(t) —ki(1))dH2, i =T, B, A,
Si (1) Si (1)

by the very definition ofi(z). |

Let us remark that iV; > 0, thena(¢) is defined for alk > 0. On the other hand, # (¢) shrinks,
i.e.V; < 0, then it is easy to see fro (4.9) that the solution dies out in finite time. We leave this
calculation to the interested reader.
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