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Metastable behavior of premixed gas flames in rectangular channels
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A two-dimensional model for the upward propagating flame in a vertical square channel is explored.
It is proved that under certain special initial conditions, the point where the flame interface attains
its maximum, stays off the boundary (channel’s wall) for an exponentially long period of time. The
proof is an extension of the analysis developed previously for the one-dimensional version of the
problem.

1. Introduction and main results

In our earlier works [5], [6], we studied a one-dimensional model for upward propagating flames.
Our intention was to explain some of the metastable behavior.

In [6], the model was shown to reduce to the equation

ut − εuxx + uux − u = 0 for x ∈ (0, 1), t > 0 (1.1)

together with
u(t, 0) = u(t, 1) = 0,

u(0, x) = u0(x).

In Section 3 below, we recall some of the main results from [6] concerning this equation.
In this paper, we address the problem in higher dimensions. From a mathematical point of view,

the problem is more involved. We now describe our main results.
We consider the initial-boundary value problem

Φt −
1
2|∇Φ|

2
= ε∆Φ + Φ − 〈Φ〉 in S = {(x, y, t) : (x, y) ∈ D, t > 0}, (1.2)

Φ(0, x, y) = Φ0(x, y), (x, y) ∈ D, (1.3)
∂Φ

∂n
= 0 on∂D × (0, ∞), (1.4)

〈Φ〉 =

∫ 1

0

∫ 1

0
Φ(t, x, y) dx dy.
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In the one-dimensional case we setu = −∂Φ/∂x, and arrive at (1.1). Here we study the case where
D is the rectangle(0, 1) × (0, 1) andΦ0 ∈ C(D).

Equation (1.1) contains a nonlocal term, but by the transformation

Φ 7→ Φ̃ = Φ + et

∫ t

0
e−τ

〈Φ〉 dτ

it reduces to
Φ̃t −

1
2|∇Φ̃|

2
= ε∆Φ̃ + Φ̃. (1.5)

Initial and boundary conditions are transformed into

Φ̃(0, x, y) = Φ̃0(x, y) = Φ0(x, y), (1.6)

∂Φ̃

∂n
= 0 on∂D × (0, ∞). (1.7)

The existence and uniqueness of the solution for the problem (1.5)–(1.7) is guaranteed by the stan-
dard theory of parabolic equations. By using the inverse transformationΦ = Φ̃ −

∫ t

0〈Φ̃〉 dτ , we
deduce that the solution of the problem (1.2)–(1.4) exists and is unique.

We analyze below the long-time dynamics of the solutionΦ(t, x, y) whenε > 0 is very small.
Of particular interest is to describe the motion of the point(x(t), y(t)) = P(t) whereΦ(t, ·) reaches
its maximum. We prove that under some special assumptions on the initial dataΦ0, the pointP(t)

stays off∂D for an exponentially long time. Nevertheless ast → ∞ the pointP(t) approaches one
of the corners ofD and forε small enough the shape ofΦ = Φε becomes close to a paraboloid.
We call this phenomenonmetastability. More specifically, the metastability is a process where the
solution slowly evolves over an exponentially long time, provided the parameterε is close to zero.

We now formulate the assumptions on the initial functionΦ0(x, y):

ASSUMPTIONA1 There exist constantsa > 0, b > 0 such thata < b and

∂Φ0

∂x
> 0 for (x, y) ∈ (0, a) × [0, 1],

∂Φ0

∂x
< 0 for (x, y) ∈ (b, 1) × [0, 1].

ASSUMPTIONA2 There exist constantsc > 0, d > 0 such thatc < d and

∂Φ0

∂y
> 0 for [0, 1] × (0, c),

∂Φ0

∂y
< 0 for [0, 1] × (d, 1).

A paraboloid with its tip at the point(x0, y0) ∈ (0, 1)× (0, 1) is an example of a function which
satisfies A1–A2.

Without loss of generality we also assume thatΦ0(x, y) ∈ C2(D) and∂Φ0/∂n = 0 on∂D.

THEOREM 1.1 SupposeΦ0(x, y) satisfies A1–A2 andΦ = Φε(t, x, y) is the solution of (1.1)–
(1.3). Letδ be an arbitrary small number less than min{a, 1− b, c, 1− d}. Then there are constants
α > 0 andε0 > 0 such that for allε < ε0,

−
∂Φε

∂x
< 0 for (x, y) ∈ (0, a − δ) × (0, 1), (1.8)
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−
∂Φε

∂x
> 0 for (x, y) ∈ (b + δ, 1) × (0, 1), (1.9)

−
∂Φε

∂y
< 0 for (x, y) ∈ (0, 1) × (0, c − δ), (1.10)

−
∂Φε

∂y
> 0 for (x, y) ∈ (0, 1) × (d + δ, 1), (1.11)

for all t with 0 6 t 6 Tε := eα/ε.

REMARK 1 Let D1 be a rectangle(a, b) × (c, d). It follows from (1.8)–(1.11) that the points of
maximum ofΦε(t, x, y) for any fixedt remain insideD1 for an exponentially long time. This fact
is an evidence of the metastable behavior of the solution.

REMARK 2 The values ofα andε0 in Theorem 1.1 depend only on the values ofa, b, c, d andδ.

Let f +
ε (x) be the unique positive solution of the ODE boundary value problem{

εf ′′
− ff ′

+ f = 0 in (0, 1),

f (0) = f (1) = 0
(1.12)

(see [6]).

THEOREM 1.2 SupposeΦ0(x, y) satisfies A1–A2 andb < 1/2, d < 1/2. Then for allε suffi-
ciently small

lim
t→∞

[Φε(t, x, y) − Φε(t, 0, 0)] = −

( ∫ x

0
f +

ε (σ ) dσ +

∫ y

0
f +

ε (σ ) dσ

)
. (1.13)

The convergence in(1.13) is uniform inD.

REMARK 3 The geometrical meaning of Theorem 1.2 is that ast → ∞ the shape ofΦ(t, ·) tends
to a bell with its tip at the corner(0, 0). The choice of the corner depends on the initial conditions
Φ0(x, y).

There are several papers dealing with metastable behavior for various physical problems. In the
earlier works by Carr and Pego [9], Fusco and Hale [10] the Allen–Cahn equation is studied and
the exponentially slow motion of the solution is proved. Some other papers deal with Allen–Cahn
and Cahn–Hillard equations (see [1], [2], [4], [7], [12], [18], [19], [20]). The flame front model was
considered by the present authors in [5], [6] and also by Sun and Ward in [17]. In [17] the formal
asymptotic expansion for the movement of the solution is presented for a one-dimensional case.

For general surveys on metastability the reader may consult [19] and [20]. In particular, dynam-
ics of the solution for the constrained Allen–Cahn equation is studied in [20] employing formal
asymptotic approaches. The solution develops an internal layer which drifts exponentially slowly
toward the closest point on the boundary and then slides along the boundary until it comes close to
the point where the curvature has a local maximum.

A similar effect occurs for the flame model studied in the current paper. For a rectangular domain
we prove that the point of maximum of the solution tends to one of the corners, and our numeri-
cal simulations show that this point of maximum first slowly approaches the closest point on the
boundary and then drifts to the corner (Fig. 4).
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Such a behavior is different from the behavior of the solution for the so-called exit problem deal-
ing with the Dirichlet boundary condition. As a result, for the exit problem the long time behavior
of the solution is defined by the points of minimum of the potential on the boundary.

REMARK 4 In the proofs below it is essential thatD is a rectangle, which allows utilization of
the results obtained for the one-dimensional case, studied previously. The case of a general domain
remains an open problem.

2. The physical model

The current paper deals with the intrinsic dynamics of an upward propagating premixed gas flame
spreading through a vertical square channel. In suitably chosen units the flame evolution is described
by the model (1.1)–(1.3) involving only one equation and one parameter [13], [14]. HereΦ is the
perturbation of the planar flame in units ofγgL2/2U2

b ; (x, y, t) are the spatio-temporal coordinates
in units ofL and 2Ub/γgL2, respectively;ε = 2DMUb/γgL2; L is the width of the channel;Ub is
the flame velocity relative to the burned gas;g is the acceleration due to gravity;γ = (ρu − ρb)/ρu

is the thermal expansive parameter;ρu, ρb are the densities of the unburned (cold) and burned (hot)
gas, respectively;DM is the so-called Markstein diffusivity, assumed to be positive.

Equation (2.1) was derived within the framework of the Boussinesq-type model for flame-
buoyancy interaction which neglects density variation everywhere but in the external forcing term
[12]. The weakly nonlinear model described by equation (1.3) corresponds to the limit

U2
b /γgL � 1, (2.1)

which is easily attainable in many realistic systems.
For example, atL = 5 cm,Ub = 500 cm/s,g = 1000 cm/s2, γ = 0.8, the left-hand side of

(2.1) amounts to 62.5.
The previous studies of the problem dealt with a one-dimensional slab geometry, 0< x < L.

The results obtained may be briefly outlined as follows.
First, the problem (1.1)–(1.3) admits a basic planar solution,Φ = 0, which, however, becomes

unstable atε < ε0 = π−2
≈ 0.10. At ε . ε0 any initial perturbation rapidly leads to an equilibrium

solution where the flame slope appears as a monotonic function ofε.
At ε � ε0 (experimentally typical situation) the final result is qualitatively the same as for

ε . ε0. However, depending on the initial conditions, the character of the transient behavior may
be markedly different for a rather wide class of initial data. At the early stage of its development,
the solution is rapidly attracted to an intermediate state where the flame assumes a somewhat asym-
metric parabolic shape. The subsequent evolution occurs at a slow rate which may become even
extremely slow, providedε is small enough. In the course of this quasi-steady development, the tip
of the parabola gradually moves towards one of the walls. As it comes close enough to the wall, the
rate of flame evolution undergoes an abrupt increase. The final equilibrium state is formed when the
tip touches the wall.

The current study deals with a two-dimensional version of the problem when the flame spreads
through a square channel: 0< x < 1, 0 < y < 1. Similarly to the one-dimensional case, at small
ε one can identify three stages of the flame evolution: (i) initial, when the flame rapidly assumes
a shape of a somewhat shifted paraboloid, (ii) intermediate, when the flame evolution proceeds
at a slow rate, and (iii) final, when the previously formed paraboloid rapidly reaches the ultimate
equilibrium with its tip settling at one of the channel’s edges.
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FIG. 1. Spatial configurations of the flame interfaceΦ(x, y, t) at two instants of time:t = 1000 (a) andt = 2500 (b).
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FIG. 2. Level sets of the flame interfaceΦ(x, y, t) at two instants of time:t = 1000 (a) andt = 2500 (b).
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Whenε = 0, equation (1.2) allows for a set of paraboloidal solutions,

Φ = V t + Ψ (x, y) (2.2)

with

Ψ (x, y) = −
1
2[(x − x0)

2
+ (y − y0)

2] (2.3)

and

V =
1
3 −

1
2[y0(1 − y0) + x0(1 − x0)] (2.4)

where(x0, y0) is the location of the flame tip.
As is readily seen,V = 1/12 if x0 = y0 = 1/2, i.e. when the tip is at the channel’s centerline,

andV = 1/3 if x0 = y0 = 0, i.e. when the tip is at one of the channel’s corners.
Figures 1–4 show results of numerical simulations of the problem (1.2)–(1.4) forε = 0.01 and

Φ(x, y, 0) = Ψ (x, y). Two different initial conditions were employed: (a) the symmetry condition
with a maximum located atx0 = y0 = 0.51, and (b) the asymmetry condition withx0 = 0.51 and
y0 = 0.55.

The spatial configurations of the flame surface are plotted in Figs. 1 and 2. (a) corresponds to the
incipient time interval during which the changes take place only in the boundary layer according to
condition (1.4). (b) shows the final well-settled configuration of the flame. Figs. 1 and 2 correspond
to the symmetry case. For the asymmetry case the configurations are nearly identical.

The flame velocity is naturally defined asV = d〈Ψ 〉/dt . Its temporal evolution is shown in
Fig. 3. Fig. 4 depicts trajectories of the maxima. One can see that in the case of symmetry the flame
undergoes a single jump whereas in the case of asymmetry the flame jumps twice, first in they

direction and then in thex direction. In other words the flame is attracted to the nearest boundary
(y = 1 in our simulation) and then to the nearest corner. Yet if the distances to both boundaries are
equal the resulting velocity vector is directed straight to the corner.

FIG. 3. Temporal evolutions of the flame velocityV = d〈Ψ 〉/dt =
1
2〈(∇Φ)2〉 for the symmetry (bold line) and asymmetry

(thin line) cases.
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FIG. 4. Trajectories of the maxima for the symmetry (bold line) and asymmetry (thin line) cases.

3. One-dimensional case revisited

In the one-dimensional version of (1.2),

u = −Φx,

one obtains the equation

ut − εuxx + uux − u = 0 for x ∈ (0, 1), t > 0, (3.1)

together with

u(t, 0) = u(t, 1) = 0, (3.2)

u(0, x) = u0(x). (3.3)

Note that the results obtained for equation (3.1) can be immediately translated into those for the
one-dimensional version of equation (1.2). It is worthwhile to keep in mind that whenu(t, ·) is
close to linear, thenΦ is close to a parabola. The tip of this parabola corresponds to the point where
u vanishes. In particular, whenu does not change sign, thenΦ is monotonic and the tip of the
parabola is at one of the endpoints. Equation (3.1) is of Burgers’ type, but in contrast to the classical
case, it contains a−u term. It turns out that for the asymptotic behavior, this term plays an essential
role.

Below we present some results from our previous paper [6] and the corollaries which we use for
the two-dimensional case.

Let f (x) be the stationary solution of (3.1), (3.2), i.e. the solution of the ODE boundary value
problem

εf ′′
− ff ′

+ f = 0 in (0, 1),

f (0) = f (1) = 0.
(3.4)

It is proved in [6] that for everyε with 0 < ε < π−2 there exists a unique positive solutionf +
ε .

Likewise, there exists a unique negative solutionf −
ε . We call a solutionf positive(resp.negative)

if f (x) > 0 (resp.f (x) < 0) for all x ∈ (0, 1).
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The next result is about the behavior of these solutions asε → 0. The solutionsf +
ε converge

uniformly on compact sets of [0, 1) to the functionϕ+(x) ≡ x asε → 0. The solutionsf −
ε converge

uniformly on compact sets of(0, 1] to the functionϕ−(x) ≡ x − 1 asε → 0. In [6] we consider the
case when the initial functionu0 ∈ C0

0[0, 1] satisfies the condition:

u0(x) < 0 for all x ∈ (0, a0),

u0(x) > 0 for all x ∈ (a0, 1),
(3.5)

wherea0 is some number between 0 and 1.

PROPOSITION3.1 Supposeu0 satisfies(3.5) and letδ be any small positive number less than
min{a0, 1 − a0}. Then there are constantsα > 0 andε0 > 0 such that for allε < ε0 and for all
0 6 t 6 Tε := eα/ε,

uε(t, x) > 0 for all x ∈ (a0 + δ, 1), (3.6)

uε(t, x) < 0 for all x ∈ (0, a0 − δ). (3.7)

PROPOSITION3.2 Supposeu0 satisfies (3.5). Fix someη ∈ (0, min{a0, 1 − a0}) and letδ be any
small positive number less than min{a0 − η, 1 − a0 − η}. Then there are constantsT > 0, α > 0
andε0 > 0 such that for allε < ε0,

x − a0 − δ 6 uε(t, x) 6 x − a0 + δ (3.8)

for all x ∈ [η, 1 − η] andT 6 t 6 Tε := eα/ε.

For the proof of the statements mentioned above see [5, Theorems 1, 2, 4 and Proposition 8.1].
The last result from [6] we need is

PROPOSITION3.3 Let u0 satisfy condition (3.5) witha0 ∈ (0, 1/2). Then forε small enough
uε(t, x) → f +

ε (x) ast → ∞. If a0 ∈ (1/2, 1) thenuε(t, x) → f −
ε (x). Moreover the convergence

is uniform forx ∈ [0, 1].

For this last statement see [6, Theorem 5]. However this theorem states only the pointwise con-
vergence and not uniform convergence. But the proof there is based on the uniqueness of the sta-
tionary solution and on the construction of super- and sub-solutions. Therefore uniform convergence
follows (see [3], [15], [16]).

Now we generalize the previous statements in order to remove condition (3.5). The results we
get are not as strong, but they apply to a much wider class of solutions.

The next assumption is the one-dimensional version of assumptions A1–A2:

ASSUMPTIONA3 There exist constantsa > 0, b > 0 such thata < b and

u0(x) < 0 for x ∈ (0, a), (3.9)

u0(x) > 0 for x ∈ (b, 1). (3.10)

Suppose thatu0 satisfies A3 and letu0 be a continuous function defined on [0, 1] satisfying

u0(x) > u0(x) for x ∈ [0, 1], (3.11)

u0(x) < 0 for x ∈ (0, a), (3.12)

u0(x) > 0 for x ∈ (a, 1), (3.13)
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and

u0(0) = u0(1) = 0. (3.14)

The existence of such a function for givenu0 is ensured by (3.9).
Similarly it follows from (3.10) that there exists a continuous functionu0 such that

u0(x) 6 u0(x) for x ∈ [0, 1], (3.15)

u0(x) < 0 for x ∈ (0, b), (3.16)

u0(x) > 0 for x ∈ (b, 1), (3.17)

u0(0) = u0(1) = 0 (3.18)

(see Fig. 5).

FIG. 5. Sketch illustrating the functionsu0 andu0.

It is clear that both functionsu0 andu0 satisfy (3.5). Therefore the previously mentioned results
may be applied. Now we are ready to prove the next

THEOREM 3.4 Supposeu0 satisfies Assumption A3. Letδ be any small positive number less than
min{a, 1 − b}. Then there are constantsα > 0 andε0 > 0 such that for allε < ε0,

uε(t, x) < 0 for x ∈ (0, a − δ), (3.19)

uε(t, x) > 0 for x ∈ (b + δ, 1), (3.20)

for all 0 6 t 6 Tε := eα/ε.

Proof. Let u0(x) andu0(x) be the functions satisfying conditions (3.11)–(3.14) and (3.15)–(3.18)
respectively, and letu(t, x) (resp.u(t, x)) be the solution of (3.1)–(3.3) with initial data equal to
u0(x) (resp.u0(x)).
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By the comparison principle using (3.11) and (3.15) we obtain

u(t, x) 6 uε(t, x) 6 u(t, x) (3.21)

for all x ∈ [0, 1] andt > 0. Foru(t, x) we apply Proposition 3.6 and conclude that there areα > 0
andε0 > 0 such that forε 6 ε0,

u(t, x) < 0 for x ∈ (0, a − δ) and 06 t 6 eα/ε. (3.22)

Similarly, there areα > 0 andε0 > 0 such that forε 6 ε0,

u(t, x) > 0 for x ∈ (b + δ, 1) and all 06 t 6 eα/ε. (3.23)

The assertion of the theorem follows from (3.21)–(3.23) withε0 = min(ε0, ε0), α = min(α, α). 2

THEOREM 3.5 Supposeu0 satisfies A3. Fix someη ∈ [0, min{a, 1 − b}] and letδ be any positive
number less than min{a − η, 1 − b − η}. Then there are constantsT > 0, α > 0 andε0 > 0 such
that for allε < ε0,

x − b − δ < uε(t, x) < x − a + δ for x ∈ (η, 1 − η) andT 6 t 6 Tε := eα/ε.

Proof. Again use the solutionsu(t, x), u(t, x) and Proposition 3.2. 2

Finally, we have

THEOREM 3.6 Supposeu0 satisfies A3 andb < 1/2. Then for allε sufficiently small,

lim
t→∞

uε(t, x) = f +
ε (x) .

If a > 1/2 then
lim

t→∞
uε(t, x) = f −

ε (x) .

The convergence is uniform forx ∈ [0, 1].

Proof. This follows from (3.21) and Proposition 3.3. 2

4. Two-dimensional case, rectangular channels

In this section we consider the initial-boundary value problem

Φt −
1
2|∇Φ|

2
= ε∆Φ + Φ − 〈Φ〉 in S = {(x, y, t) : (x, y) ∈ D, t > 0}, (4.1)

Φ(0, x, y) = Φ0(x, y), (x, y) ∈ D, (4.2)
∂Φ

∂n
= 0 on∂D × (0, ∞), (4.3)

whereD is the rectangle(0, 1) × (0, 1) andΦ0 ∈ C(D).
Now we prove Theorems 1.1 and 1.2 formulated in the introduction. Letv = −∂Φ/∂x. Differ-

entiating (4.1) we obtain

Lv = vt + vvx +
∂Φ

∂y
vy − ε∆v − v = 0. (4.4)
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It follows from (4.2) and (4.3) that

v(0, x, y) = −
∂Φ0

∂x
, (4.5)

v(t, 0, y) = v(t, 1, y) = 0,
∂v

∂y
(t, x, 0) =

∂v

∂y
(t, x, 1) = 0. (4.6)

Equation (4.4) is not self-contained because of the term∂Φ
∂y

vy . Therefore, in general, we consider
the system of two equations, one forv = −∂Φ/∂x and one forw = −∂Φ/∂y. But in the case of
the rectangular domainD we avoid this difficulty by using the following simple observation which
is the key to the proofs of Theorems 1.1 and 1.2.

Let v be a solution of the problem (4.4)–(4.6) with the initial data which does not depend ony.
Thenv stays independent ofy for all t > 0.

LEMMA 4.1 Let u(t, x) be the solution of the problem

ut + uux − εuxx − u = 0, (4.7)

u(t, 0) = u(t, 1) = 0, (4.8)

u(0, x) = u0(x). (4.9)

Thenu(t, x) is a solution of the problem(4.4)–(4.6) which does not depend ony.

The proof is by substitution.
Now we considerv(t, x, y) as a solution of the parabolic equation (4.4) in which∂Φ/∂y appears

as a coefficient. Lemma 4.1 will be used for comparing solutions of (4.4)–(4.6) with solutions of the
problem (4.7)–(4.9).

LEMMA 4.2 (comparison) Let v(t, x, y) be a solution of the problem (4.4)–(4.6), andv(t, x),
v(t, x) be two solutions of the problem (4.7)–(4.9). Suppose that

v(0, x) 6 v(0, x, y) 6 v(0, x) ∀(x, y) ∈ D.

Then for allt > 0,

v(t, x) 6 v(t, x, y) 6 v(t, x), x ∈ (0, 1), y ∈ (0, 1), t > 0.

LEMMA 4.3 LetΦε(t, x, y) be a solution of the problem (4.1)–(4.3) and supposeΦ0(x, y) satisfies
assumption A1. Letvε = −∂Φ/∂x and letδ be any small positive number less than min{a, 1 − b}.
Then there are constantsα > 0 andε0 > 0 such that for allε < ε0,

vε(t, x, y) < 0 for all x ∈ (0, a − δ), y ∈ (0, 1) and 06 t 6 Tε := eα/ε, (4.10)

vε(t, x, y) > 0 for all x ∈ (b + δ, 1), y ∈ (0, 1) and 06 t 6 Tε. (4.11)

Proof. Let v(t, x) be a solution of the problem (4.7)–(4.9) withv(0, x) = miny∈[0,1] v(0, x, y) and
v(t, x) be a solution of (4.7)–(4.9) withv(0, x) = maxy∈[0,1] v(0, x, y).

It follows from A1 that

v(0, x) < 0, v(0, x) < 0 for x ∈ (0, a), (4.12)
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v(0, x) > 0, v(0, x) > 0 for x ∈ (b, 1). (4.13)

Applying Theorem 3.4 tov(t, x) we deduce using (4.12) that for a fixedδ there exist̃α and̃ε such
that for allε < ε̃,

v(t, x) 6 0 for all x ∈ (0, a − δ) and 06 t 6 eα̃/ε.

By Lemma 4.2,
vε(t, x, y) 6 vε(t, x),

therefore with the sameδ, α̃ and̃ε, for ε < ε̃,

vε(t, x, y) 6 0 for all x ∈ (0, a − δ), y ∈ (0, 1) and 06 t 6 eα̃/ε. (4.14)

Next we comparevε(t, x, y) andvε(t, x). By Lemma 4.2,

vε(t, x, y) > vε(t, x).

Applying Theorem 3.4 tov(t, x) we find that for a fixedδ there exist̂α and̂ε such that for allε < ε̂,

vε(t, x) > 0 for all x ∈ (b + δ, 1) and 06 t 6 eα̂/ε.

Consequently, with the sameδ, α̂ and̂ε, for ε < ε̂,

vε(t, x, y) > 0 for all x ∈ (b + δ, 1), y ∈ (0, 1) and 06 t 6 eα̂/ε. (4.15)

Finally, we chooseα = min(̃α, α̂), ε0 = min(̃ε, ε̂), and using (4.14), (4.15) we deduce the statement
of the lemma. 2

Lemma 4.3 implies (1.8) and (1.9). In order to prove (1.10), (1.11) we definew = −∂Φ/∂y and
proceed in the same way as withv. The functionw satisfies the equation

L1w = wt + wwy +
∂Φ

∂x
wx − ε∆w − w = 0

and

w(0, x, y) = −
∂Φ0

∂y
,

w(t, x, 0) = w(t, x, 1) = 0,
∂w

∂x
(t, 0, y) =

∂w

∂x
(t, 1, y) = 0.

Next we comparewε with the solutions of the one-dimensional problem (4.7)–(4.9) wherex → y.
First we definew(t, y) as a solution of the problem

zt + zzy − εzyy − z = 0, (4.16)

z(t, 0) = z(t, 1) = 0, (4.17)

z(0, y) = z0(y), (4.18)

wherew(0, y) = minx∈[0,1] w(0, x, y). By the comparison principle

wε(t, y) 6 wε(t, x, y).
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Let wε(t, y) be a solution of (4.16)–(4.18) withwε(0, y) = maxx∈[0,1] w(0, x, y). Then

wε(t, x, y) 6 wε(t, y).

Applying Theorem 3.4 towε(t, y) and wε(t, y) we end up with the following lemma which is
similar to Lemma 4.3.

LEMMA 4.4 LetΦε(t, x, y) be a solution of the problem (4.1)–(4.3) and supposeΦ0(x, y) satisfies
assumption A2. Letw = −∂Φ/∂y and letδ be any small positive number less than min{c, 1 − d}.
Then there are constantsα > 0 andε0 > 0 such that for allε < ε0,

wε(t, x, y) < 0 for all y ∈ (0, c − δ), x ∈ (0, 1) and 06 t 6 Tε := eα/ε,

wε(t, x, y) > 0 for all y ∈ (d + δ, 1), x ∈ (0, 1) and 06 t 6 Tε.

Theorem 1.1 now follows from Lemmas 4.3 and 4.4.

Proof of Theorem 1.2. Consider again the solutionsvε(x, t) andvε(x, t) which were used for the
proof of Lemma 4.3. By Lemma 4.2 we have

vε(t, x) 6 vε(t, x, y) 6 vε(t, x).

It follows from Theorem 3.6 that under the assumptions of Theorem 1.2, for allε sufficiently small,

vε(t, x) → f +
ε (x), vε(t, x) → f +

ε (x) ast → ∞.

Therefore

−
∂Φε

∂x
= vε(t, x, y) → f +

ε (x) uniformly ast → ∞.

In a similar way−∂Φε/∂y → f +
ε (y) uniformly ast → ∞, thus implying (1.13). 2

5. Concluding remarks

The main result of our paper is that under the conditions of Theorem 1.1 the point of maximum of
the solutionΦ(t, ·) remains inside the rectangleD1 for an exponentially long time. On the other
hand by Theorem 1.2 ifD1 is inside one of the quarters of the rectangleD the shape ofΦ(t, ·) tends
to a bell with its tip at one of the domain’s corners.

In particular the conditions of Theorem 1.2 are met if the surfaceΦ(0, x, y) has the form of a
bell with tip not at the center of the rectangle. For this case our numerical calculations show that
the tip first moves very slowly to the closest point on the wall and then to the closest corner. If the
distances to two walls are equal the movement is in the direction to the closest corner.

For the general domain the problem remains open. Yet, one may expect that the features identi-
fied in the present study will hold for the general case as well. In particular, for large time the shape
of Φ(t, ·) should approach a bell with its tip at some point on the boundary where the curvature is
positive.

We believe that one may study the local stability of the stationary solutions using the estimates
of the pertinent eigenvalues. Yet, the global approach we use seems to be more effective, at least for
the problem considered in this paper.



GAS FLAMES IN RECTANGULAR CHANNELS 437

Acknowledgments

These studies were supported in part by the German–Israeli Foundation under Grant No. 695-
15.10.01, the United States–Israel Binational Science Foundation under Grant No. 2002008, the
Israel Science Foundation under Grant No. 67-01, and the European Community Program RTN-
HPRN-CT-2002-00274.

The authors are grateful to the referees whose comments prompted a significant improvement
of the exposition of the paper.

REFERENCES

1. ALIKAKOS , N. D., BATES, P. W., & FUSCO, G. Slow motion for the Cahn–Hilliard equation in one
space dimension.J. Differential Equations90 (1991), 81–135. Zbl 0753.35042 MR 1094451

2. ALIKAKOS , N. & FUSCO, G. Slow dynamics for the Cahn–Hilliard equation in higher spatial dimen-
sions: the motion of bubbles.Arch. Rat. Mech. Anal.141(1998), 1–61. Zbl 0906.35049 MR 1613496

3. ARONSON, D. G., CRANDALL , M. G., & PELETIER, L. A. Stabilization of solutions of a degenerate
nonlinear diffusion problem.Nonlinear Anal.6 (1982), 1001–1022. Zbl 0518.35050 MR 0678053

4. BATES, P. W. & XUN, J. Metastable patterns for the Cahn–Hilliard equation: Parts I and II,J. Differential
Equations111 (1994), 421–457, Zbl 0805.35046 MR 1284421;J. Differential Equations117 (1995),
165–216. Zbl 0805.35046 MR 1320187

5. BERESTYCKI, H., KAMIN , S., & SIVASHINSKY, G. Nonlinear dynamics and metastability in a Burg-
ers type equation (for upward propagating flames).C. R. Acad. Sci. Paris Śer. I 321 (1995), 185–190.
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