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The energy density of martensitic thin films
via dimension reduction
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A variational limit defined on the space of bi-dimensional gradient Young measures is obtained from
three-dimensional elasticity via dimension reduction. The resulting limit problem uniquely deter-
mines the energy density of the thin film. Our result might be used to compute the microstructure in
membranes made of phase transforming material.

1. Introduction

Martensitic thin films have recently attracted much interest because of their applications in the con-
struction of actuators, sensors and micromachines. These technological applications have generated
a new interest in nonlinear membranes theories. The purpose of the present paper is to obtain, by
means of a rigorous dimension reduction, the energy density of a thin film, and hence to deduce a
membrane model capable of describing the microstructure observed in martensitic materials.

Phase transformations have been successfully modelled within the theory of non-linear elasticity
by Ball and James [5]. Within this approach, equilibrium configurations are found by minimizing
the total free energy of the body.

In the spirit of the works on dimension reduction (see for instance [1, 3]) we start by considering
the total free energy

Iε(y) =

∫
Ωε

W(Dy)dx −

∫
Ωε

f̂ ε · y dx

corresponding to a deformationy of a hyperelastic three-dimensional body which occupies the
cylindrical regionΩε := ω× (−ε/2, ε/2), with Helmholtz free energyW and subject to some body
forcesf̂ ε and boundary conditions.

Under the usual assumptions onW and f̂ ε there are different topologies which ensure com-
pactness of the family of minimizers (or quasi-minimizers). Once one of these topologies is chosen,
the membrane model is obtained by passing to the limit asε → 0 in an appropriate variational
sense (Γ -convergence). Roughly speaking, this variational limit ensures the convergence, in such
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topology, of minimizers of the energy at levelε to the minimizers of the membrane problem. The
resulting limit problem depends on the chosen topology.

Le Dret and Raoult [22], working with the strong convergence inLp, for an appropriatep larger
than 1 related to the growth ofW , have found a limit energy of the form

J (y) =

∫
ω

QW0(Dαy)dxα −

∫
ω

m3f · y dxα,

whereQW0 denotes the quasiconvex envelope of the function

W0(F̄ ) := min{W(F̄ |z) : z ∈ R3
}, F̄ ∈ M3×2.

By Dαy = (D1y,D2y) we mean the gradient of the admissible deformationy = y(xα),
xα = (x1, x2). At this introductory level it is useless to specify the meaning of m3f , for which
we refer to Section 4. A similar result in the case of strings was previously obtained by Acerbi,
Buttazzo and Percivale in [1]. Typically, the infimum of the total free energyIε of a martensitic
material is not attained. In general, the minimizing sequences develop fine scale oscillations, which,
according to the interpretation due to Ball and James [5, 6], model the microstructure experimen-
tally observed in specimens of phase transforming materials. On the other hand the minimum of
the functionalJ is achieved but the limit problem, when applied to martensitic materials, does
not describe the microstructure. Our aim is to derive a thin film theory capable of capturing the
oscillations of the minimizing sequences. Inspired by earlier works on phase transitions by Ball and
James [6], James and Kinderlehrer [19], Kinderlehrer and Pedregal [20, 21], we take the variational
limit in the framework of parametrized measures introduced by L. C. Young [31], which is one of
the most successful tools used to characterize the oscillatory behaviour of sequences of functions.
To this end we extend the three-dimensional energy functionals to the space of Young measures
associating to each gradientDy the corresponding Young measureµx = δDy(x); a similar idea
was used by Paroni [26]. Since we are interested in a bi-dimensional limit, we consider the average
over the thickness of the cylinders of these measuresµx . Then, under the weak∗ convergence of the
averaged gradient Young measures, we obtain the limit energy

I (ν) =

∫
ω

∫
M3×2

W0(F̄ )dνxα (F̄ )dxα −

∫
ω

m3f · y dxα,

whose domain is the space of bi-dimensional gradient Young measures satisfying the appropriate
boundary conditions. The functionalsI andJ share the same infimum value, but there is a ma-
jor difference between them: whileJ is uncapable of capturing the oscillations of the minimizing
sequences, the functionalI characterizes the microstructure through the Young measure solution.
Indeed, the minimizers ofI carry more information than those ofJ since the minimizers ofI
provide a description of the microstructure and their centers of mass select minimizers ofJ (see
Section 6). The computation of the microstructure in a thin film can therefore be evaluated through
the use of the functionalI exactly as is done in three-dimensional elasticity (see for instance Ball
and James [5, 6], and Luskin [23]).

Another important feature of the limit functionalI , which is missing in all the other previously
obtained variational problems, and which is also relevant from the point of view of the computation
of the microstructure, is that it uniquely determines the energy densityW0 of the thin film (see
Section 7). The total energy of the membrane, written without using Young measures, is therefore

E(y) =

∫
ω

W0(Dαy)dxα −

∫
ω

m3f · y dxα.
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Thin films of martensitic material have also been studied by Bhattacharya and James [10]. These
authors have considered a body characterized not only by a free energy but also by an interfacial
energy; indeed they have taken a total energy of the form

Iε,κ(y) =

∫
Ωε

(W(Dy)+ κ|D2y|2)dx −

∫
Ωε

f̂ ε · y dx,

whereκ is a positive constant,W has a quadratic growth andD2y denotes the Hessian ofy. The
limit problem

Jκ(y, b) =

∫
ω

(W(Dαy|b)+ κ(|D2
αy|

2
+ 2|Dαb|

2))dxα −

∫
ω

m3f · y dxα

was obtained by them under the weak convergence inW2,2 of the deformation toy and the weak
convergence inW1,2 to the Cosserat vectorb of the third partial derivative of a suitable rescaling of
the deformation. We note that the interfacial energy plays a crucial role in order to supply a limit
problem in which no quasiconvexification appears. On the other hand, it has been shown by Shu [29]
that if we also letκ → 0 the variational limit coincides with that obtained by Le Dret and Raoult.

Běĺık and Luskin [7, 8] have observed that the deformations with finite energy cannot have sharp
interfaces between compatible variants, unless the constantκ is set equal to 0. For this reason they
set the problem in the framework of functions with bounded Hessian and considered an interfacial
energy proportional to the total variation of the deformation gradient.

More recently Bocea [11] has studied the limitW(y, b) of Iε under the weak convergence in
W1,p of the deformations toy and the weak convergence inLp to b of the third partial derivative
of a suitable rescaling of the deformation. Using a result of Bocea and Fonseca [12], he has proved
that

W(y, b) = inf
∫
Ω×M3×3

W dµ

where the infimum is taken over all Young measuresµ generated by sequences of gradients of
deformations whose third partial derivative is suitably rescaled.

We conclude this brief review by mentioning also the papers [9, 13, 28], among the wide litera-
ture on thin films, and a related paper by the authors [18] where some of the ideas used in this paper
are applied to obtain the energy density of a martensitic string starting from a three-dimensional
body with a free energy that becomes infinite when the volume locally vanishes.

The paper is organized as follows. In Sections 2 and 3 we summarize well known definitions and
properties of Young measures andΓ -convergence. In Section 4 we consider the three-dimensional
problems and set the framework in which theΓ -limit will be taken. Moreover we briefly recall the
earlier result of Le Dret and Raoult. In Section 5 various preliminary results are proved and the
main coerciveness andΓ -convergence theorems are stated. The proofs are postponed to Section 8.
In Section 6 we study the relationship between our limit functional and the one obtained by Le Dret
and Raoult. The energy density of the thin film is proposed in Section 7.

2. Young measures preliminaries

The main references for this section are Ball [4], Müller [24] and Pedregal [27].
Throughout the whole sectionΩ is an open bounded subset ofRk. We denote byMh×k the set

of h × k real matrices which will be often identified with the Euclidean spaceRhk. ByM(Mh×k)
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we mean the space ofR-valued Borel measures onMh×k which can be viewed as the dual of the
separable Banach spaceC0(M

h×k) under the duality

〈µ, ϕ〉 =

∫
Mh×k

ϕ dµ.

We recall that a mappingµ : Ω → M(Mh×k) is said to beweak∗ measurablewhenever the func-
tion x 7→ 〈µ(x), ϕ〉 is measurable for everyϕ ∈ C0(M

h×k). The spaceL∞
w (Ω;M(Mh×k)) con-

sists of all weak∗ measurable mappingsµ : Ω → M(Mh×k) which are essentially bounded. This
space will be endowed with the weak∗ topology induced by the duality withL1(Ω;C0(M

h×k)).
Therefore, a sequenceµn is weak∗ converging to a limitµ if and only if∫

Ω

〈µnx, ϕ〉g(x)dx →

∫
Ω

〈µx, ϕ〉g(x)dx, ∀ϕ ∈ C0(M
h×k), ∀g ∈ L1(Ω).

A Young measureonΩ with target spaceMh×k is an elementν of the spaceL∞
w (Ω;M(Mh×k))

such thatνx := ν(x) is a probability measure for almost everyx ∈ Ω.
A Young measureµ ∈ L∞

w (Ω;M(Mh×k)) is said to begenerated by the sequence of measur-
able functionsun : Ω → Mh×k if

δun(·) → µ weak∗ in L∞
w (Ω;M(Mh×k)).

Every Young measure is generated by some sequence of measurable functions.
Thecenter of massof a Young measureµ ∈ L∞

w (Ω;M(Mh×k)) is the function

x 7→ 〈µx, id〉 =

∫
Mh×k

λdµx(λ),

where id denotes the identity mapping.
In this paper an important role will be played by the image of a measure and by the fiber product

of two Young measures. Let(X,A, µ) and(Y,B) be measurable spaces andθ : X → Y . Then the
imageof the measureµ under the mappingθ is defined byθ#µ(A) := µ(θ−1(A)) for everyA ∈ B.

The fiber productof two Young measuresν ∈ L∞
w (Ω;M(Rm)) andσ ∈ L∞

w (Ω;M(Rs)) is
the Young measureµ ∈ L∞

w (Ω;M(Mm×s)) usually denoted byµ = ν ⊗ σ and defined by

µx = νx ⊗ σx,

where⊗ denotes the usual tensor product of measures. The following theorem of Balder and Val-
adier (see Valadier [30, Theorem 14]) gives a sufficient condition which allows one to pass to the
limit in the fiber product.

THEOREM 2.1 Letνn andσ n be two sequences of Young measures belonging toL∞
w (Ω;M(Rm))

andL∞
w (Ω;M(Rs)) respectively, such that

νn → ν weak∗ in L∞
w (Ω;M(Rm))

while
σ n → σ = δu(·) weak∗ in L∞

w (Ω;M(Rs))
for a suitable measurable functionu. Then

νn ⊗ σ n → ν ⊗ σ weak∗ in L∞
w (Ω;M(Rm+s)).
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Extensive use will be made of the following theorem (see for instance Müller [24, Corollary 3.3])
which states the fundamental property of Young measures.

THEOREM 2.2 Suppose that the sequence of mapsun : Ω → Rh generates the Young measureν.
Let f : Ω × Rh → R be a Carath́eodory function and assume that the negative partf−(x, un(x))

is weakly relatively compact inL1(Ω). Then

lim inf
k→∞

∫
Ω

f (x, un(x))dx >
∫
Ω

∫
Rh
f (x, λ)dνx(λ)dx.

If, in addition, the sequence of functionsx 7→ |f |(x, un(x)) is weakly relatively compact inL1(Ω)

then

f (·, un(·)) → f weakly inL1(Ω) wheref (x) =

∫
Rh
f (x, λ)dνx(λ).

We are mainly interested in those Young measures which are generated by sequences of gradi-
ents, in the sense specified by the following definition.

DEFINITION 2.3 A weak∗ measurable mapν : Ω → M(Mh×k) is aW1,p-gradient Young mea-
sure if there exists a sequence of mapsun : Ω → Rh such thatun → u weakly inW1,p(Ω; Rh)
andδDun(·) → ν weak∗ in L∞

w (Ω;Mh×k). In this case, theW1,p-gradient Young measureν is said
to begenerated by the sequenceDun andu is called anunderlying deformationfor ν.

Gradient Young measures are in a sort of duality with quasiconvex functions.

DEFINITION 2.4 A functionf : Mh×k
→ (−∞,+∞] is said to bequasiconvexif for every open

and bounded subsetA of Rk with negligible boundary (with respect to the Lebesgue measure) one
has ∫

A

f (F +Dϕ)dx >
∫
A

f (F )dx = |A|f (F ) ∀ϕ ∈ C1
0(A; Rh), ∀F ∈ Mh×k,

whenever the integral on the left hand side exists (|A| denotes the Lebesgue measure of the open
setA).

The following characterization ofW1,p-gradient Young measures is due to Kinderlehrer and
Pedregal [21].

THEOREM 2.5 Letp∈ [1,+∞). A weak∗ measurable mapν :Ω→M(Mh×k) is aW1,p-gradient
Young measure if and only ifνx is a probability measure a.e. and the following three conditions
hold:

(i)
∫
Ω

∫
Mh×k

|F |
p dνx(F )dx < +∞;

(ii) 〈νx, id〉 = Du(x), u ∈ W1,p(Ω; Rh);
(iii) 〈νx, f 〉 > f (〈νx, id〉) for almost everyx and all quasiconvexf with |f |(F ) 6 C(|F |

p
+ 1).

The following proposition (see for instance Pedregal [27, Lemma 8.3]), sometimes called
Zhang’s Lemma, is a variant of a result obtained by Acerbi and Fusco [2].

PROPOSITION2.6 Let p ∈ [1,+∞] and let ν be aW1,p-gradient Young measure. Ifu0 ∈

W1,p(Ω; Rh) is an underlying deformation forν then there exists a sequenceun ∈ C∞

0 (Ω; Rh)
such thatun → 0 weakly inW1,p

0 (Ω; Rh), |Dun|p are equi-integrable (|Dun| equi-bounded in the
casep = +∞) andD(u0 + un) generatesν.
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3. SequentialΓ -convergence

For the purposes of this paper we need a kind of variational convergence which allows us to treat
families of functionalsFε : X → R = (−∞,+∞] defined on a space which may be different from
the domain of the limiting functional. It is a variant of De Giorgi’sΓ -convergence, and has been
introduced by Anzellotti, Baldo and Percivale in [3] in order to study dimension reduction problems
in mechanics. LetX be a set, let(Y, τ ) be a topological space and letq : X → Y . Given a sequence
of functionalsFn : X → R and a pointy ∈ Y , define

Γ (q, τY ) lim inf
n→∞

Fn(y) := inf{lim inf
n→∞

Fn(xn) : q(xn)
τ

→ y},

Γ (q, τY ) lim sup
n→∞

Fn(y) := inf{lim sup
n→∞

Fn(xn) : q(xn)
τ

→ y};
(3.1)

these are called, respectively, thesequentialΓ −-lower andΓ −-upper limitat the pointy. In (3.1),
as in what follows, we have dropped the minus sign for notational simplicity.

DEFINITION 3.1 Given a sequenceεn of positive numbers we say that a sequenceFεn : X → R
(sequentially)Γ (q, τY )-convergesto a functionalF : Y → R at a pointy ∈ Y , and we write

Γ (q, τY ) lim
n→∞

Fεn(y) = F(y),

if
Γ (q, τY ) lim inf

n→∞
Fεn(y) = Γ (q, τY ) lim sup

n→∞

Fεn(y) = F(y). (3.2)

We say that a family of functionalsFε : X → R, ε > 0, (sequentially)Γ (q, τY )-converges to a
functionalF : Y → R at a pointy ∈ Y , and we write

Γ (q, τY ) lim
ε→0

Fε(y) = F(y), (3.3)

if for any sequenceεn of positive reals such that limn→∞ εn = 0 we have

Γ (q, τY ) lim
n→∞

Fεn(y) = F(y).

We say that a family of functionalsΓ (q, τY )-converges on a set if itΓ (q, τY )-converges at every
point of the set.

REMARK 3.2 Let us remark that (3.2) holds if and only if the following two conditions are satis-
fied:

1. for every sequencexn ∈ X such thatq(xn)
τ

→ y one has

lim inf
n→∞

Fεn(xn) > F(y);

2. there exists a sequencexn ∈ X such thatq(xn)
τ

→ y and

lim
n→∞

Fεn(xn) = F(y).
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If X = Y andq is the identity map, then theΓ -limits defined above are the classical De Giorgi
sequentialΓ −-limits which will be denoted by the classical notation

Γ −(τX) lim
ε→0

Fε = F.

Moreover, it is easy to see that if we set

Iε(y) = inf{Fε(x) : q(x) = y}, ε > 0,

then (3.3) holds true if and only if

Γ −(τY ) lim
ε→0

Iε(y) = F(y).

Besides the notion of sequentialΓ -convergence, also a more general concept ofΓ -convergence,
associated with a topology onX, can be introduced (see for instance Dal Maso [17]), and the two
kinds ofΓ -convergence coincide on first countable topological spaces. Hence when the topological
space(Y, τ ) is first countable and the familyFε is equi-coercive, then theΓ (q, τY )-convergence has
a variational character which is typical ofΓ -convergence, that is, it ensures the lower semicontinuity
of the limit, which, moreover, turns out to be coercive. Roughly speaking, it preserves convergence
of minima and of minimizers. This is summarized by the statements below.

DEFINITION 3.3 The familyFε is said to be(q, τY )-equi-coerciveif for every real numberM
there exists aτ -compact andτ -closed subsetKM of Y such that

{q(x) : Fε(x) 6 M} ⊆ KM for everyε > 0.

This definition reduces to the classical one ofτ -equi-coerciveness in the caseq = id.

PROPOSITION3.4 Assume thatΓ (q, τY ) limε→0Fε = F onY and that the familyFε is (q, τY )-
equi-coercive. Then:

(i) F is τ -lower semicontinuous;
(ii) F is τ -coercive;

(iii) if xε ∈ X satisfy lim infε→0Fε(xε) = lim inf ε→0 inf Fε (e.g. ifxε minimizesFε) then

(a) if εn is a sequence such that limn→∞ εn = 0 and ifq(xεn)
τ

→ y theny is a minimizer ofF
onY and limn→∞ Fεn(xεn) = F(y);

(b) there is a sequenceεn such that limn→∞ εn = 0 and a minimizery of F on Y such that
q(xεn)

τ
→ y.

PROPOSITION3.5 If Y is the dual of a separable Banach space,τ is the weak∗ topology, and
Fn : X → R is (q, τY )-equi-coercive, then

Γ (q, τY ) lim
n→∞

Fn(y) = F(y)

if and only if

(i) lim inf n→∞ Fn(xn) > F(y) for every sequencexn ∈ X such thatq(xn)
τ

→ y;
(ii) for every sequence(nk) of positive integers there is a subsequence(nkp ) and a sequencexp ∈ X

such that
q(xp)

τ
→ y and lim

p→∞
Fnkp (xp) = F(y).
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Proof. This is an easy consequence of the weak∗ metrizability of compact subsets ofY and of the
Urysohn property ofΓ -convergence (see for instance Dal Maso [17, Chapter 8]). 2

4. Setting of the problem and previous results

For all ε > 0, letΩε = {x = (xα, x3) ∈ R2
× R : xα ∈ ω, |x3| < ε/2}, whereω is an open,

bounded subset ofR2 with Lipschitz boundary. We can think ofΩε as the reference configuration
of a hyperelastic homogeneous body with stored energy density functionW : M3×3

→ R. This
functionW is assumed to be continuous and to satisfy the growth assumption

c(|F |
p

− 1) 6 W(F) 6 C(|F |
p

+ 1) (4.1)

for two constantsC > c > 0. The total energyIε of the body is given by

Iε(y) =

∫
Ωε

W(Dy)dx −

∫
Ωε

f̂ ε · y dx,

where the body force densitŷf ε is taken inLq(Ωε; R3), with 1/p + 1/q = 1. Assuming, for the
sake of simplicity, the body to be clamped on the lateral surfaceΓε := ∂ω × (−ε/2, ε/2) of Ωε,
the equilibrium configuration will be found by minimizing the energyIε over the set of admissible
deformations

Aε = {y ∈ W1,p(Ωε; R3) : y(x) = x onΓε}.

In order to study the behaviour of the minimizersyε of Iε asε → 0, it is convenient to transform,
after Ciarlet and Destuynder [15], the problems under consideration into problems over a fixed
domain. To this end we defineΩ := Ω1, Γ := Γ1 and a mapθε : Lp(Ωε; R3) → Lp(Ω; R3) by

(θεy)(x) = y(x1, x2, εx3).

We accordingly rescale the energies by settingIΩε (y) = Iε(θ
−1
ε y)/ε, which is

IΩε (y) :=
∫
Ω

W

(
Dαy

∣∣∣∣D3y

ε

)
dx −

∫
Ω

f ε · y dx,

where we have setf ε := θεf̂
ε. Following Le Dret and Raoult [22] we assume thatf ε does not

depend onε and setf := f ε. The admissible set over which the total energy has to be minimized
becomes

AΩε = {y ∈ W1,p(Ω; R3) : y(x) = (x1, x2, εx3) onΓ }.

Above and in what follows, we identifyM3×3 with M3×2
× R3, and write(F̄ |z) for the element in

M3×3 which is identified with(F̄ , z) ∈ M3×2
× R3. Moreover,Dαy denotes the first two columns

of the gradient ofy.
Within a similar framework, Le Dret and Raoult ([22, Theorem 2]) have proved that, asε → 0,

the family of functionals

Jε(y) =

{
IΩε (y) if y ∈ AΩε ,
+∞ otherwise inLp(Ω; R3),
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Γ -converges in the strong topology ofLp(Ω; R3) to the functional

J (y) =


∫
ω

QW0(Dαy)dxα −

∫
ω

m3f · y dxα if y ∈ W
1,p
Γ (ω; R3),

+∞ otherwise inLp(Ω; R3).

(4.2)

Here
W

1,p
Γ (ω; R3) := {y ∈ W1,p(ω; R3) : y(x) = (x1, x2,0) on ∂ω},

m3f (xα) =
∫ 1/2
−1/2 f (xα, x3)dx3 denotes the integral mean value off with respect to the third

variable andQW0 denotes the quasiconvex envelope of the continuous function

W0(F̄ ) := min{W(F̄ |z) : z ∈ R3
}, F̄ ∈ M3×2, (4.3)

which satisfies the same growth conditions asW . A similar result in the case of strings was previ-
ously obtained by Acerbi, Buttazzo and Percivale [1].

With the motivation already explained in the introduction we extend the functionalsIΩε to the
larger spaceL∞

w (Ω;M(M3×3)) by setting

IMε (µ) =

{
IΩε (y) if ∃y ∈ AΩε : µ = δDy(·),

+∞ otherwise inL∞
w (Ω;M(M3×3)).

(4.4)

Let us remark that this functional is well defined because ify1, y2 ∈ AΩε are such thatδDy1(x) =

δDy2(x) then, due to the boundary condition,y1 = y2 almost everywhere.

5. The limit problem

Let us denote bȳπ andπ3 the projections ofM3×3 ontoM3×2 andR3, respectively, that is,

π̄ : M3×3
→ M3×2, π̄(F̄ |z) = F̄ ,

π3: M3×3
→ R3, π3(F̄ |z) = z,

and byπ̄#µx andπ3
#µx the usual image measures (see Section 2).

We further denote byY1,p
Γ (Ω; R3) the set ofW1,p(Ω; R3)-gradient Young measures with

an underlying deformationy with y(x) = (x1, x2,0) on Γ , and byY̊1,p
Γ (Ω; R3) the subset of

Y1,p
Γ (Ω; R3) of Young measuresµ with π3

#µ = δ0, that is,

Y̊1,p
Γ (Ω; R3) := {µ ∈ Y1,p

Γ (Ω; R3) : π3
#µ = δ0}.

The following lemma states that the sequence of functionalsIMε is equi-coercive inY̊1,p
Γ (Ω; R3)

with the weak∗ convergence ofL∞
w (Ω;M(M3×3)).

LEMMA 5.1 Letεn → 0 andµn ∈ L∞
w (Ω;M(M3×3)) be such that

sup
n
IMεn (µ

n) < +∞.
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Then there existsµ ∈ Y̊1,p
Γ (Ω; R3) and a subsequence(µnk ) such that

µnk → µ weak∗ in L∞
w (Ω;M(M3×3)).

Moreover, ifynk andy are the underlying deformations ofµnk andµ which satisfy the boundary
conditionsynk (x) = (x1, x2, εnkx3) andy(x) = (x1, x2,0), respectively, then

ynk → y weakly inW1,p(Ω; R3), D3y = 0.

Proof. Since supn I
M
εn
(µn) < +∞, we haveµnx = δDyn(x), yn ∈ W1,p(Ω; R3) andyn(x) =

(x1, x2, εnx3) onΓ . By the growth assumption onW and the Poincaré inequality, for everyn large
enough so thatεn < 1 we get

IMεn (µ
n) =

∫
Ω

W

(
Dαy

n

∣∣∣∣D3y
n

εn

)
dx −

∫
Ω

f · yn dx

> c

∥∥∥∥(
Dαy

n

∣∣∣∣D3y
n

εn

)∥∥∥∥p
p

− ‖f ‖q‖y
n
‖p − c|Ω|

> c‖Dyn‖
p
p − ‖f ‖q‖y

n
‖p − c|Ω| > C1‖y

n
‖
p

1,p − C2,

where‖ · ‖p and‖ · ‖1,p denote the usualLp andW1,p norms, respectively. Therefore

sup
n

‖yn‖1,p < +∞, sup
n

∥∥∥∥(
Dαy

n

∣∣∣∣D3y
n

εn

)∥∥∥∥
p

< +∞,

and thus, up to subsequences,

yn → y weakly inW1,p(Ω; R3), D3y
n

→ 0 strongly inLp(Ω; R3)

and

µn → µ weak∗ in L∞
w (Ω;M(M3×3)).

It follows thaty = y(x1, x2) andy(x) = (x1, x2,0) onΓ andπ3
#µ = δ0. Henceµ ∈ Y̊1,p

Γ . 2

If µ ∈ Y̊1,p
Γ (Ω; R3) then it can be proved (see Lemma 5.3 below) that the center of mass of

µx does not depend on thex3 variable. With an example we are going to show that, in general,µx
does depend onx3. This is the main motivation which will lead us to study theΓ -convergence with
respect to the weak∗ convergence of the averages with respect to the third variable.

LEMMA 5.2 If µ is aW1,p(Ω; R3)-gradient Young measure generated by the sequence of gradi-
entsDyε, andν andγ are the Young measures generated byDαy

ε andD3y
ε, respectively, then

π̄#µ = ν, π3
#µ = γ.

Proof. The proof is a direct consequence of the definitions and of the classical integration formula
with respect to an image measure. Indeed, sinceDαy

ε
= π̄(Dyε), for everyϕ ∈ C0(M

3×2) and
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g ∈ L1(Ω) we have∫
Ω

〈π̄#µx, ϕ〉 g(x)dx =

∫
Ω

∫
M3×2

ϕ(F̄ )dπ̄#µx(F̄ ) g(x)dx

=

∫
Ω

∫
M3×3

ϕ(π̄(F ))dµx(F ) g(x)dx

= lim
ε→0

∫
Ω

ϕ(π̄(Dyε) g(x)dx

= lim
ε→0

∫
Ω

ϕ(Dαy
ε) g(x)dx =

∫
Ω

〈νx, ϕ〉 g(x)dx.

The other relation can be proved similarly. 2

LEMMA 5.3 Ifµ ∈ L∞
w (Ω;M(M3×3)), withπ3

#µ = δ0, is generated by the sequence of gradients
Dyε with underlying deformationy, andν is the Young measure generated byDαyε, then

µ = ν ⊗ δ0.

Moreover, the functiony and the center of mass of the measuresµx andνx , for almost everyx ∈ Ω,
do not depend on the variablex3. In particular, with a small abuse of notation, we shall write

〈µx, id〉 = Dy(xα), 〈νx, id〉 = Dαy(xα).

Proof. Fromπ3
#µ = δ0 and the previous lemma, we deduce thatD3y

ε generates the Young mea-
sureδ0. The first part of the statement follows by applying Theorem 2.1. Moreover, we have

Dy(x) = 〈µx, id〉 = 〈νx ⊗ δ0, id〉 =

∫
M3×3

(F̄ |z)dνx ⊗ δ0(F̄ |z) = (〈νx, id〉|0)

for almost everyx ∈ Ω. ThusD3y = 0, hencey = y(xα) and〈ν(xα,x3), id〉 = Dαy(xα). 2

EXAMPLE 5.4 We provide an example of aµ ∈ Y̊1,p
Γ (Ω; R3) such thatµx depends onx3.

Let ρ(s) be the 2-periodic function equalings on [0,1] and 2− s on [1,2]. Let zε(x) :=
(εx3ρ(x1/ε),0,0). ThenD3z

ε
→ 0 inL∞(Ω; R3). Moreover, since

D1z
ε
1(x) = x3ρ

′

(
x1

ε

)
generates the Young measure

1

2
δ−x3 +

1

2
δx3,

it follows that

Dαz
ε generates the Young measure

1

2
δ
−x3Ē

11 +
1

2
δx3Ē

11,

whereĒ11 is the matrix inM3×2 with 1 in position 11 and all other elements zero. It is now easy to
check that the functionsyε(x) := (x1, x2, εx3) + zε(x)min{1,dist(x, ∂Ω)/ε} are inAΩε and they

generate aµ ∈ Y̊1,p
Γ which depends also onx3.

The example above motivates the following definition.



450 L . FREDDI & R. PARONI

DEFINITION 5.5 LetX be eitherM3×2 orM3×3. If ν ∈ L∞
w (Ω;M(X)) we define

Av3 ν : ω →M(X),

the average ofν with respect to the variablex3, by

〈Av3
xα
ν, ϕ〉 := 〈Av3 ν(xα), ϕ〉 :=

∫ 1/2

−1/2
〈ν(xα,x3), ϕ〉 dx3

for everyϕ ∈ C0(X).

By Fubini’s theorem the mapxα 7→ 〈Av3
xα
ν, ϕ〉 is measurable, and since it is also essentially

bounded, we can think of Av3 as a mapping

Av3 : L∞
w (Ω;M(X)) → L∞

w (ω;M(X)).

It is easy to check that this map is continuous, that is,

µε → µ weak∗ in L∞
w (Ω;M(X))

⇓

Av3µε → Av3µ weak∗ in L∞
w (ω;M(X)),

and that Av3 maps Young measures to Young measures.
TheΓ -convergence result will be made more expressive by using the average-projection map-

ping
q : L∞

w (Ω;M(M3×3)) → L∞
w (ω;M(M3×2)),

defined by
q = π̄# ◦ Av3

= Av3
◦ π̄#,

where the commutativity of composition comes directly from the definitions. By the continuity of
the average and the projection mapping, evenq is continuous.

We are now in a position to state the main results of this section, whose proofs are postponed to
Section 8.

We denote byY1,p
Γ (ω; R3) the subset ofW1,p(ω; R3)-gradient Young measures with an under-

lying deformationy with y(x) = (x1, x2,0) on ∂ω.
The following theorems hold under the continuity and growth assumptions made onW at the

beginning of Section 4.

THEOREM 5.6 The family of energy functionalsIMε , already defined in (4.4), is(
q,w∗L∞

w (ω;M(M3×2))
)
-equi-coercive (see Definition 3.3).

THEOREM 5.7 LetIMε be the family of functionals defined in (4.4). Then

Γ (q,w∗L∞
w (ω;M(M3×2))) lim

ε→0
IMε (ν) = I (ν)

with

I (ν) =


∫
ω

〈νxα ,W0〉 dxα −

∫
ω

m3f · y dxα if ν ∈ Y1,p
Γ (ω; R3),

+∞ otherwise inL∞
w (ω;M(M3×2)),

(5.1)
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whereW0 is the function defined in (4.3), andy ∈ W1,p(ω; R3) is the underlying deformation ofν
with boundary conditiony = (x1, x2,0) on ∂ω.

By the properties ofΓ -limits summarized in Proposition 3.4 we can state the following theorem
which makes precise the variational character of the limit energyI (ν).

THEOREM 5.8 LetI be the functional defined in Theorem 5.7. We have:

(i) I is weak∗ lower semicontinuous and weak∗ coercive; hence it admits a minimum on the space
Y1,p
Γ (ω; R3);

(ii) if yε ∈ W1,p(Ω; R3) satisfies the boundary conditionyε(x) = (x1, x2, εx3) on Γ and
lim inf ε→0 I

Ω
ε (y

ε) = lim inf ε→0 inf IΩε (e.g. ifyε minimizesIΩε ) then

(a) if εn → 0 and ifq(δDyεn )→ν weak∗ in L∞
w (ω;M(M3×2)) thenν is a minimizer ofI on

Y1,p
Γ (ω; R3) and limn→∞ IΩεn (y

εn) = I (ν);

(b) there is a sequenceεn → 0 and a minimizerν of I onY1,p
Γ (ω; R3) such thatq(δDyεn)→ν

weak∗ in L∞
w (ω;M(M3×2)).

6. Relationship with Le Dret and Raoult theory

Let J be theΓ -limit functional of Le Dret and Raoult introduced in (4.2).

THEOREM 6.1 Lety ∈ Lp(Ω; R3). Then

J (y) = inf I (ν), (6.1)

where the infimum is taken over allν ∈ L∞
w (ω;M(M3×2)) which satisfy〈ν, id〉 = Dαy and

y(x) = (x1, x2,0) on∂ω, with the usual convention inf∅ = +∞. Moreover the infimum is attained.

Proof. Let y ∈ Lp(Ω; R3). Let us first of all observe that the infimum is attained as a consequence
of item (i) of Theorem 5.8 and the continuity of the center of mass with respect to the weak∗

convergence inL∞
w (ω;M(M3×2)).

For convenience we denote the right hand side of (6.1) byĨ (y).
Let us start by proving the inequalityJ (y) 6 Ĩ (y). To this end we can assume thatĨ (y) is finite,

that is, there existsν ∈ L∞
w (ω;M(M3×2)) such thatI (ν) = Ĩ (y) andy satisfies the boundary value

problemDαy = 〈ν, id〉, y(x) = (x1, x2,0) onΓ . Hencey = y(xα). Then, sinceI (ν) < +∞, we
haveν ∈ Y1,p

Γ (ω; R3) and thereforey ∈ W
1,p
Γ (ω; R3). In this case

J (y) =

∫
ω

QW0(Dαy)dxα −

∫
ω

m3f · y dxα,

and, from (iii) of Theorem 2.5, we have

QW0(Dαy) 6 〈ν,W0〉,

which implies thatJ (y) 6 I (ν) = Ĩ (y).
In order to prove the converse inequality, it is convenient to use the fact that the functionals

involved areΓ -limits. As
J (y) = Γ −(Lp(Ω; R3)) lim

ε→0
Jε(y),
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there exist sequencesεn → 0 andyn → y weakly inW1,p(Ω; R3) such that

lim
n→∞

Jεn(y
n) = J (y).

Since the only interesting case isJ (y) < +∞, by coercivity and possibly passing to subsequences,
we can assume that

• (Dyn) generates aW1,p(Ω; R3)-Young measureµ with underlying deformationy,
• (Dαy

n) generates a Young measureνΩ ,
• D3y

n
→ D3y = 0 strongly inLp, henceD3yn generates the measureδ0.

By Lemma 5.2 it follows that̄π#µ = νΩ andπ3
#µ = δ0, soµ ∈ Y̊1,p

Γ (Ω; R3) by definition. An
application of Lemma 5.3 givesµ = νΩ ⊗ δ0 and 〈νΩ , id〉 = Dαy. Let µn = δDyn andν :=

q(µ) = Av3(νΩ). Thenν ∈ Y1,p
Γ (ω; R3) and〈ν, id〉 = Dαy. From the continuity ofq,

q(µn) → ν weak∗ in L∞
w (ω;M(M3×2))

and by theΓ -convergence theorem 5.7 and the fact thatJεn(yn) = IMεn (µ
n), we obtain

J (y) = lim
n→∞

Jεn(y
n) = lim inf

n→∞
IMεn (µ

n) > I (ν) > Ĩ (y),

which concludes the proof. 2

The relationship between the minimizers of the two functionalsI andJ is made explicit in the
following theorem.

THEOREM 6.2 The following properties hold for the functionalsI andJ .

(i) min{J (y) : y ∈ W
1,p
Γ (ω; R3)} = min{I (ν) : ν ∈ Y1,p

Γ (ω; R3)}.

(ii) Let ν be a minimizer forI . If y ∈ W
1,p
Γ (ω; R3) satisfiesDαy(xα) = 〈νxα , id〉 for almost every

xα ∈ ω, theny is a minimizer forJ andQW0(Dαy(xα)) = 〈νxα ,W0〉 for almost everyxα ∈ ω.

(iii) Let y be a minimizer forJ . If ν ∈ Y1,p
Γ (ω; R3) satisfiesDαy(xα) = 〈νxα , id〉 and

QW0(Dαy(xα)) = 〈νxα ,W0〉 for almost everyxα ∈ ω, thenν is a minimizer forI .

Proof. This follows by noticing thatJ andI are the relaxed functionals of the extension by+∞ of

E(y) =

∫
ω

W0(Dαy)dxα −

∫
ω

m3f · y dxα

with respect to the strong topology ofLp(ω; R3) and the weak∗ topology of the space
L∞
w (ω;M(M3×2)), respectively, and applying Theorem 4.4 and Corollary 4.6 of Pedregal [27].2

7. The energy density of the thin film

The aim of this section is to propose and motivate an energy density for the thin film. Indeed we
shall deduce thatW0 and

E(y) =

∫
ω

W0(Dαy)dxα −

∫
ω

m3f · y dxα

are the energy density and the total energy of the thin film, respectively.
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We need to work with a general linear boundary conditiony(x) = Bx onΓε, whereB is a linear
map fromR3 into itself. The right Sobolev space to treat this case is

W
1,p
ΓB
(ω; R3) := {y ∈ W1,p(ω; R3) : y(xα) = B̄xα on ∂ω},

whereB̄ ∈ M3×2 denotes the first two columns of the matrix representingB. It is trivial to check
that in this setting the variational limit is the functionalI defined in (5.1) withY1,p

Γ (ω; R3) replaced,

with the obvious meaning of the notation, byY1,p
ΓB
(ω; R3), and the corresponding limit functional is

denoted byIB . Similarly, also the case studied by Le Dret and Raoult can be put into this framework
and the limit functional is defined onW1,p

ΓB
(ω; R3) and denoted byJB .

For every continuous functionZ : M3×2
→ R satisfying the growth condition of orderp,

c(|F̄ |
p

− 1) 6 Z(F̄ ) 6 C(1 + |F̄ |
p) for 0< c < C, we introduce the energy

EZ(y) =

∫
ω

Z(Dαy)dxα −

∫
ω

m3f · y dxα

and denote byQ[EZ, ΓB ] the relaxed functional, that is, the lower semicontinuous envelope ofEZ

on the spaceW1,p
ΓB
(ω; R3) with respect to the weak topology. ByY [EZ, ΓB ] we mean the relaxation

of

E∞

Z (ν) =

{
EZ(y) if ν = δDαy, y ∈ W

1,p
ΓB
(ω; R3),

+∞ otherwise inL∞
w (ω;M(M3×2)),

with respect to the weak∗ topology ofL∞
w (ω;M(M3×2)).

As briefly noticed in the last proof, the limit functionalJB , obtained by Le Dret and Raoult, and
the functionalIB , obtained by us, can be written (see Dacorogna [16] and, for instance, Murat and
Tartar [25]) as

JB(y) = Q[EW0, ΓB ](y), IB(ν) = Y [EW0, ΓB ](ν).

THEOREM 7.1 The functionW0 is the unique continuous integrand satisfying a growth condition
of orderp such thatIB = Y [EW0, ΓB ] for every linear boundary condition, that is, for every linear
mapB.

Proof. LetW1 be one of these functions such thatIB = Y [EW1, ΓB ] for every linearB. Then∫
ω

〈νxα ,W0 −W1〉 dxα = 0 for everyν ∈ Y1,p
ΓB
(ω; R3)

and for everyB. It follows thatW0 = W1 by simply taking the admissible measureν = δB̄ , where
B̄ ∈ M3×2 are the first two columns of the matrix representingB. 2

Hence, the variational problemI determines a unique energy densityW0. This selection is not
provided by the relationJB = Q[W0, ΓB ]; indeed, in general, there exist an infinite number of
functionsW1 such thatJB = Q[W0, ΓB ] = Q[W1, ΓB ] for everyB.

A further reason to takeW0 as the energy density of the thin film follows from the relation be-
tweenE = EW0 andI , which by the well known properties of relaxed functionals can be expressed
in terms of correspondence between minimizing sequences ofE and minimizers ofI . In particular,
minimizing sequences ofE generate Young measures which are minimizers ofI , and vice versa.

In Le Dret and Raoult [22] it is shown that if the energyW satisfies the principle of material
frame indifference, then alsoW0 is frame indifferent, and moreover the symmetry relations ofW0
are derived from those ofW .
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8. Proofs of the main results of Section 5

Before proving the main theorems, we state some technical results.

LEMMA 8.1 Letν⊗δ0 be aW1,p(Ω; R3)-gradient Young measure. Then Av3 ν is aW1,p(ω; R3)-
gradient Young measure, and〈Av3

xα
ν, id〉 = 〈ν(xα,x3), id〉 for almost everyx ∈ Ω. Moreover, for

everyW1,p(ω; R3)-gradient Young measurēµ, there exists aW1,p(Ω; R3)-gradient Young measure
µ⊗ δ0 such thatµ̄ = Av3µ.

Proof. To show that Av3 ν is aW1,p(ω; R3)-gradient Young measure we may use the characteriza-
tion given by Kinderlehrer and Pedregal (see Theorem 2.5). Thus it suffices to show that

(i)
∫
ω

∫
M3×2 |F̄ |

p dAv3
xα
ν(F̄ )dxα < +∞;

(ii) 〈Av3
xα
ν, id〉 = Dαy(xα) andy ∈ W1,p(ω; R3);

(iii) 〈Av3
xα
ν, f 〉 > f (〈Av3

xα
ν, id〉) for almost everyxα and all quasiconvex functionsf with

|f |(F̄ ) 6 C(|F̄ |
p

+ 1).

Property (i) holds since∫
ω

∫
M3×2

|F̄ |
p dAv3

xα
ν(F̄ )dxα =

∫
ω

∫ 1/2

−1/2

∫
M3×2

|F̄ |
p dν(xα,x3)(F̄ )dx3dxα

=

∫
Ω

∫
M3×2

|(F̄ |z)|p dνx ⊗ δ0(F̄ |z)dx < +∞.

Before proving property (ii) let us note that ify ∈ W1,p(Ω; R3) is an underlying deformation for
ν ⊗ δ0, then (see Lemma 5.3)y = y(xα), and〈ν(xα,x3), id〉 = Dαy(xα). It follows that

〈Av3
xα
ν, id〉 =

∫ 1/2

−1/2
〈ν(xα,x3), id〉 dx3 = Dαy(xα), (8.1)

hence property (ii) holds and〈Av3
xα
ν, id〉 = 〈ν(xα,x3), id〉. Let f : M3×2

→ R be a quasiconvex

function with |f |(F̄ ) 6 C(|F̄ |
p

+ 1). That is, for every open and bounded setU ⊂ R2 with
|∂U | = 0 one has ∫

U

f (F̄ +Dαϕ)dxα > f (F̄ )|U |

for all ϕ ∈ C1
0(U ; R3) and allF̄ ∈ M3×2. Let f ] : M3×3

→ R be defined byf ](F̄ |z) := f (F̄ ).
Then for everyF = (F̄ |z) ∈ M3×3 andψ ∈ C1

0(U × (−1/2,1/2); R3) we have∫
U×(−1/2,1/2)

f ](F +Dψ)dx =

∫ 1/2

−1/2

∫
U

f (F̄ +Dαψ(xα, x3))dxαdx3

>
∫ 1/2

−1/2
f (F̄ )|U | dx3 = f ](F̄ |z)|U | = f ](F )|U |,

where we have used the fact thatψ(·, x3) ∈ C1
0(U ; R3) for almost everyx3. Thus alsof ] is quasi-
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convex. Hence, we have

〈Av3
xα
ν, f 〉 =

∫ 1/2

−1/2

∫
M3×2

f (F̄ )dν(xα,x3)(F̄ )dx3 =

∫ 1/2

−1/2

∫
M3×3

f ](F̄ |z)dν(xα,x3) ⊗ δ0(F̄ |z)dx3

=

∫ 1/2

−1/2
〈ν(xα,x3) ⊗ δ0, f

]
〉 dx3 >

∫ 1/2

−1/2
f ](〈ν(xα,x3) ⊗ δ0, id〉)dx3

=

∫ 1/2

−1/2
f ](Dαy(xα)|0)dx3 = f (Dαy(xα)) = f (〈Av3

xα
ν, id〉),

which proves property (iii). In the last equality we have used (8.1). We now prove the second part
of the theorem. Let̄µ be aW1,p(ω; R3)-gradient Young measure. Then, obviously,µ̄ ⊗ δ0 is a
W1,p(Ω; R3)-gradient Young measure and Av3 µ̄ = µ̄. 2

The next lemma relates the spacesY̊1,p
Γ (Ω; R3) andY1,p

Γ (ω; R3).

LEMMA 8.2 We have
Av3 Y̊1,p

Γ (Ω; R3) = Y1,p
Γ (ω; R3)⊗ δ0.

Proof. Letµ ∈ Y̊1,p
Γ (Ω; R3). Then, by Lemma 5.3,µ = ν ⊗ δ0, and forϕ ∈ C0(M

3×3) we have

〈Av3
xα
µ, ϕ〉 =

∫ 1/2

−1/2

∫
M3×3

ϕ(F̄ |z)dν(xα,x3) ⊗ δ0(F̄ |z)dx3 =

∫ 1/2

−1/2

∫
M3×2

ϕ(F̄ |0)dν(xα,x3)(F̄ )dx3

=

∫
M3×2

ϕ(F̄ |0)dAv3
xα
ν(F̄ ) =

∫
M3×3

ϕ(F̄ |z)dAv3
xα
ν ⊗ δ0(F̄ |z) = 〈(Av3

xα
ν)⊗ δ0, ϕ〉.

Thus
Av3(ν ⊗ δ0) = (Av3 ν)⊗ δ0,

and the assertion follows by an easy application of Lemma 8.1. 2

REMARK 8.3 A useful consequence of Lemma 8.2 is

q(Y̊1,p
Γ (Ω; R3)) = Y1,p

Γ (ω; R3).

Proof of Theorem 5.6. SinceL∞
w (ω;M(M3×2)) is the dual of the spaceL1(ω;C0(M

3×2)) which
is Banach and separable, the proof is a direct consequence of the following proposition.

PROPOSITION8.4 If εn → 0 and the sequenceµn ∈ L∞
w (Ω;M(M3×3)) satisfy

sup
n
IMεn (µ

n) < +∞,

then there existnk → ∞ and a Young measureν ∈ L∞
w (ω;M(M3×2)) such thatq(µnk ) → ν

weak∗ in L∞
w (ω;M(M3×2)). Moreoverν ∈ Y1,p

Γ (ω; R3).

Proof. By Lemma 5.1 there existsµ ∈ Y̊1,p
Γ (Ω; R3) and a subsequenceµnk such that

µnk → µ weak∗ in L∞
w (Ω;M(M3×3)).
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Let ν = q(µ). By continuity ofq we conclude thatq(µnk ) → ν weak∗ in L∞
w (ω;M(M3×2)).

Moreover, by Remark 8.3,ν ∈ Y1,p
Γ (ω; R3). 2

Proof of Theorem 5.7. Let εn be an infinitesimal sequence of positive real numbers. Since the se-
quence of functionalsIMεn is (q,w∗L∞

w (ω;M(M3×2)))-equi-coercive, Proposition 3.5 applies. We

start by finding a recovering sequence for a suitable subsequenceIMεnj
; that is, forν ∈ Y1,p

Γ (ω; R3)

we find a sequenceyj ∈ W1,p(Ω; R3) with yj (x) = (x1, x2, εnj x3) on Γ such that the projec-
tions on the first two columns of the averages with respect tox3 of the associated Young measures
µj = δDyj converge toν, weak∗ in L∞

w (ω;M(M3×2)), and

lim sup
j→∞

IMεnj
(µj ) 6 I (ν).

Let y ∈ W1,p(ω; R3) be the underlying deformation ofν with y = (x1, x2,0) on Γ . By Prop-
osition 2.6 there exists a sequenceψj ∈ C∞

0 (ω; R3) such that, forvj := y + ψj , the sequence
Dαv

j generatesν, vj → y weakly inW1,p(ω; R3) and the sequence{|Dαvj |p}j is equi-integrable.
By a measurable selection argument (see for instance Buttazzo [14, Proposition 2.2.7]), there exists
a sequence of measurable functionszj : ω → R3 such that

W0(Dαv
j (xα)) = min{W(Dαv

j (xα), z) : z ∈ R3
}

= W(Dαv
j (xα)|z

j (xα)) a.e. xα ∈ ω.

By the upper bound onW we have

−c 6 W0(Dαv
j ) = W(Dαv

j
|zj ) 6 W(Dαv

j
|0) 6 C(|Dαv

j
|
p

+ 1)

almost everywhere, and therefore the sequenceW0(Dαv
j ) turns out to be equi-integrable. By con-

tinuity of W0 and an application of Theorem 2.2 we get

lim
j→∞

∫
Ω

W(Dαv
j
|zj )dx = lim

j→∞

∫
ω

W0(Dαv
j (xα))dxα

=

∫
ω

∫
M3×2

W0(F̄ )dνxα (F̄ )dxα. (8.2)

Let us remark moreover that, by the lower bound onW , even the sequencezj turns out to be
p-equi-integrable.

Let w̄j be functions inC∞

0 (ω; R3) such that

‖zj − (0,0,1)− w̄j‖p < 1/j,

and letεnj be a subsequence ofεn such that

‖εnjDαw̄
j
‖p → 0.

We definewj := (0,0,1)+ w̄j . Thenwj = (0,0,1) onΓ , wj is p-equi-integrable and

lim
j→∞

∫
Ω

[W(Dαv
j
|zj )−W(Dαv

j
+ εnj x3Dαw

j
|wj )] dx = 0. (8.3)
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Indeed, the sequences(Dαvj |zj ) and (Dαv
j

+ εnj x3Dαw
j
|wj ) generate the same Young

measure and, beingp-equi-integrable, the upper bound onW ensures that the sequences
W(Dαv

j
|zj ) and W(Dαvj + εnj x3Dαw

j
|wj ) are equi-integrable as well. Thus (8.3) follows by

an application of Theorem 2.2. Let us defineyj by

yj (x) := vj (xα)+ εnj x3w
j (xα)

and observe that, using (8.3) and (8.2), we have

lim
j→∞

∫
Ω

W

(
Dαy

j

∣∣∣∣D3y
j

εnj

)
dx = lim

j→∞

∫
Ω

W(Dαv
j

+ εnj x3Dαw
j
|wj )dx

= lim
j→∞

∫
Ω

W(Dαv
j
|zj )dx =

∫
ω

∫
M3×2

W0(λ)dνxα (λ)dxα.

Moreover, sinceyj → ỹ in Lp(Ω; R3), wherẽy(x1, x2, x3) = y(x1, x2), we also deduce that

lim
j→∞

∫
Ω

f (x) · yj (x)dx =

∫
Ω

f (x) · ỹ(xα)dx =

∫
ω

∫ 1/2

−1/2
f (xα, x3)dx3 · y(xα)dxα.

Thus, the first part of the proof is concluded by noting that

• yj = (x1, x2, εnj x3) onΓ ,
• µj := δDyj → ν ⊗ δ0 weak∗ in L∞

w (Ω;M(M3×3)),
• q(µj ) → q(ν ⊗ δ0) = ν weak∗ in L∞

w (ω;M(M3×2)) by continuity ofq,

and using Remark 8.3.
The next step consists in proving the liminf inequality for the sequenceIMεn . Let µn ∈

L∞
w (Ω;M(M3×3)) be a sequence such thatq(µn) converges weak∗ to ν in L∞

w (ω;M(M3×2)).
We have to prove that

lim inf
n→∞

IMεn (µ
n) > I (ν).

Without loss of generality we may suppose that the left hand side of the inequality above is finite
and that the liminf is indeed a limit. Then supn I

M
εn
(µn) < +∞ and, by Lemma 5.1, there exist

µ ∈ Y̊1,p
Γ (Ω; R3) and a subsequenceµnk such that

µnk → µ weak∗ in L∞
w (Ω;M(M3×3)),

and the corresponding underlying deformationsynk andy which satisfy the boundary conditions
ynk (x) = (x1, x2, εnkx3) andy(x) = (x1, x2,0) are such that

ynk → y weakly inW1,p(Ω; R3), y = y(x1, x2). (8.4)

Hence, by Remark 8.3,ν ∈ q(Y̊1,p
Γ (Ω; R3)) = Y1,p(ω; R3). Moreover,

lim inf
n→∞

IMεn (µ
n) = lim

n→∞
IMεn (µ

n) = lim
k→∞

IMεnk
(µnk )

= lim
k→∞

( ∫
Ω

W

(
Dαy

nk

∣∣∣∣D3y
nk

εnk

)
dx −

∫
Ω

f · ynk dx

)
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> lim
k→∞

( ∫
Ω

W0(Dαy
nk )dx −

∫
Ω

f · ynk dx

)
= lim

k→∞

( ∫
Ω

〈π̄#µ
nk
x ,W0〉 dx −

∫
Ω

f (x) · ynk (x)dx

)
= lim

k→∞

( ∫
ω

( ∫ 1/2

−1/2
〈π̄#µ

nk
x ,W0〉 dx3

)
dxα −

∫
Ω

f (x) · ynk dx

)
= lim

k→∞

( ∫
ω

〈Av3 π̄#µ
nk ,W0〉 dxα −

∫
Ω

f (x) · ynk (x)dx

)
= lim

k→∞

( ∫
ω

〈q(µnk )xα ,W0〉 dxα −

∫
Ω

f (x) · ynk (x)dx

)
>

∫
ω

〈νxα ,W0〉 dxα −

∫
ω

∫ 1/2

−1/2
f (xα, x3)dx3 · y(xα)dxα,

where in the last inequality we have used (8.4) and Theorem 2.2. 2

REFERENCES

1. ACERBI, E., BUTTAZZO, G., & PERCIVALE, D. A variational definition of the strain energy for an
elastic string.J. Elasticity25 (1991), 137–148. Zbl 0734.73094 MR 1111364

2. ACERBI, E. & FUSCO, N. Semicontinuity problems in the calculus of variations.Arch. Rat. Mech. Anal.
86 (1984), 125–145. Zbl 0565.49010 MR 0751305

3. ANZELLOTTI , G., BALDO , S., & PERCIVALE, D. Dimension reduction in variational problems, asymp-
totic development inΓ -convergence and thin structures in elasticity.Asymptot. Anal.9 (1994), 61–100.
Zbl 0811.49020 MR 1285017

4. BALL , J. M. A version of the fundamental theorem for Young measures.PDEs and Continuum Models of
Phase Transitions, Lecture Notes in Phys. 344, Springer (1989), 207–215. Zbl 0991.49500 MR 1036070

5. BALL , J. M. & JAMES, R. D. Fine phase mixtures as minimizers of energy.Arch. Rat. Mech. Anal.100
(1987), 13–52. Zbl 0629.49020 MR 0906132

6. BALL , J. M. & JAMES, R. D. Proposed experimental tests of a theory of fine microstructure and the two
well problem.R. Soc. London Philos. Trans. Ser. A338(1992), 389–450. Zbl 0758.73009
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