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The energy density of martensitic thin films
via dimension reduction
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A variational limit defined on the space of bi-dimensional gradient Young measures is obtained from
three-dimensional elasticity via dimension reduction. The resulting limit problem uniquely deter-
mines the energy density of the thin film. Our result might be used to compute the microstructure in
membranes made of phase transforming material.

1. Introduction

Martensitic thin films have recently attracted much interest because of their applications in the con-
struction of actuators, sensors and micromachines. These technological applications have generated
a new interest in nonlinear membranes theories. The purpose of the present paper is to obtain, by
means of a rigorous dimension reduction, the energy density of a thin film, and hence to deduce a
membrane model capable of describing the microstructure observed in martensitic materials.

Phase transformations have been successfully modelled within the theory of non-linear elasticity
by Ball and James [5]. Within this approach, equilibrium configurations are found by minimizing
the total free energy of the body.

In the spirit of the works on dimension reduction (see for instance [1, 3]) we start by considering
the total free energy

18(y>=/ W(Dy)dx—/ fooydx
2 £2¢

corresponding to a deformation of a hyperelastic three-dimensional body which occupies the
cylindrical region$2, := w x (—¢/2, £/2), with Helmholtz free energ¢ and subject to some body
forces /¢ and boundary conditions.

Under the usual assumptions @n and /¢ there are different topologies which ensure com-
pactness of the family of minimizers (or quasi-minimizers). Once one of these topologies is chosen,
the membrane model is obtained by passing to the limi as 0 in an appropriate variational
sense ["-convergence). Roughly speaking, this variational limit ensures the convergence, in such
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topology, of minimizers of the energy at leveto the minimizers of the membrane problem. The
resulting limit problem depends on the chosen topology.

Le Dret and Raoul{[22], working with the strong convergencgfnfor an appropriate larger
than 1 related to the growth &¥, have found a limit energy of the form

J(y):/ QWO(DaY)dxa_/mef'ydxa’

whereQ Wy denotes the quasiconvex envelope of the function
Wo(F) :=min{W(F|z) iz € R%}, F e M®*2,

By D,y = (Diy, D2y) we mean the gradient of the admissible deformation= y(xy),

xe = (x1, x2). At this introductory level it is useless to specify the meaning @ffirfor which

we refer to Sectiofn]4. A similar result in the case of strings was previously obtained by Acerbi,
Buttazzo and Percivale inl[1]. Typically, the infimum of the total free endiggf a martensitic
material is not attained. In general, the minimizing sequences develop fine scale oscillations, which,
according to the interpretation due to Ball and Jarmés|[5, 6], model the microstructure experimen-
tally observed in specimens of phase transforming materials. On the other hand the minimum of
the functionalJ is achieved but the limit problem, when applied to martensitic materials, does
not describe the microstructure. Our aim is to derive a thin film theory capable of capturing the
oscillations of the minimizing sequences. Inspired by earlier works on phase transitions by Ball and
Jamesl[5], James and Kinderlehier|[19], Kinderlehrer and Pedfegal [20, 21], we take the variational
limit in the framework of parametrized measures introduced by L. C. Young [31], which is one of
the most successful tools used to characterize the oscillatory behaviour of sequences of functions.
To this end we extend the three-dimensional energy functionals to the space of Young measures
associating to each gradienty the corresponding Young measytg = 8py(); a similar idea

was used by Parorii [26]. Since we are interested in a bi-dimensional limit, we consider the average
over the thickness of the cylinders of these measuked hen, under the weélconvergence of the
averaged gradient Young measures, we obtain the limit energy

1) = f Wo(F) duy, (F) dxg — / Mmaf -y dxa,
w M3><2 w

whose domain is the space of bi-dimensional gradient Young measures satisfying the appropriate
boundary conditions. The functionalsand J share the same infimum value, but there is a ma-

jor difference between them: whilé is uncapable of capturing the oscillations of the minimizing
sequences, the functionalcharacterizes the microstructure through the Young measure solution.
Indeed, the minimizers of carry more information than those df since the minimizers of

provide a description of the microstructure and their centers of mass select minimize(sex
Sectior] §). The computation of the microstructure in a thin film can therefore be evaluated through
the use of the functiondl exactly as is done in three-dimensional elasticity (see for instance Ball
and James [%, 6], and Luskin [23]).

Another important feature of the limit functiona) which is missing in all the other previously
obtained variational problems, and which is also relevant from the point of view of the computation
of the microstructure, is that it uniquely determines the energy demgtpf the thin film (see
Section 7). The total energy of the membrane, written without using Young measures, is therefore

E(y) = / Wo(Day) drg — / maf - y di.
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Thin films of martensitic material have also been studied by Bhattacharya and James [10]. These
authors have considered a body characterized not only by a free energy but also by an interfacial
energy; indeed they have taken a total energy of the form

IE,K(y)=/Q(W(Dy)+/c|Dzy|2)o|x_/Q fe oy,

wherex is a positive constanty has a quadratic growth and?y denotes the Hessian of The
limit problem

JK<y,b>=/(W(Dayw)+K<|D§y|2+2|Dab|2>)dxa—/maf.ydxa

was obtained by them under the weak convergend&?rf of the deformation toy and the weak
convergence iV 12 to the Cosserat vectorof the third partial derivative of a suitable rescaling of

the deformation. We note that the interfacial energy plays a crucial role in order to supply a limit
problem in which no quasiconvexification appears. On the other hand, it has been shown[by Shu [29]
that if we also letc — 0 the variational limit coincides with that obtained by Le Dret and Raoult.

Beélik and Luskin[[7| 8] have observed that the deformations with finite energy cannot have sharp
interfaces between compatible variants, unless the constarget equal to 0. For this reason they
set the problem in the framework of functions with bounded Hessian and considered an interfacial
energy proportional to the total variation of the deformation gradient.

More recently Boceé& [11] has studied the liffit(y, b) of I. under the weak convergence in
WP of the deformations to and the weak convergence irf to b of the third partial derivative
of a suitable rescaling of the deformation. Using a result of Bocea and Fohséca [12], he has proved
that

W(y, b) = inf W du
Q2 x M3x3
where the infimum is taken over all Young measutegenerated by sequences of gradients of
deformations whose third partial derivative is suitably rescaled.

We conclude this brief review by mentioning also the papers [9, 13, 28], among the wide litera-
ture on thin films, and a related paper by the autHors [18] where some of the ideas used in this paper
are applied to obtain the energy density of a martensitic string starting from a three-dimensional
body with a free energy that becomes infinite when the volume locally vanishes.

The paper is organized as follows. In Sections 2 and 3 we summarize well known definitions and
properties of Young measures afdconvergence. In Section 4 we consider the three-dimensional
problems and set the framework in which theimit will be taken. Moreover we briefly recall the
earlier result of Le Dret and Raoult. In Section 5 various preliminary results are proved and the
main coerciveness and-convergence theorems are stated. The proofs are postponed to Section 8.
In Section 6 we study the relationship between our limit functional and the one obtained by Le Dret
and Raoult. The energy density of the thin film is proposed in Section 7.

2. Young measures preliminaries

The main references for this section are Ball [4])IMr [24] and Pedregal [27].
Throughout the whole sectiaf? is an open bounded subset®f. We denote by *¥ the set
of h x k real matrices which will be often identified with the Euclidean spite By M (M)
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we mean the space @-valued Borel measures o’k which can be viewed as the dual of the
separable Banach spa€g(M"*¥) under the duality

(n, @) = / @ dpu.
thk

We recall that a mapping : 2 — M(M"*¥) is said to beveak measurablevhenever the func-
tion x — (u(x), @) is measurable for every € Co(M"**). The spacd.2°(£2; M(M"*k)) con-
sists of all weak measurable mappings: 2 — M (M"**) which are essentially bounded. This
space will be endowed with the weatopology induced by the duality with1(£2; Co(M*k)).
Therefore, a sequengé is weak converging to a limiu if and only if

fg(uﬁ, @)g(x) dx — /me, Plg(x)dx, Vo e Co(M™*), vge LY(£2).

A Young measuren £2 with target spacé/” > is an element of the spacd.2° (2; M(M"**))
such thaw, := v(x) is a probability measure for almost every 2.

A Young measurg. € L3 (£2; M(M"*¥)) is said to begenerated by the sequence of measur-
able functions:” : 2 — M"*k f

Sun(y — 1o weak in L (2; M(M"%y).

Every Young measure is generated by some sequence of measurable functions.
Thecenter of massf a Young measurg € L (£2; M(M"*¥)) is the function

e Gid) = [ aduo,
Mhxk
where id denotes the identity mapping.

In this paper an important role will be played by the image of a measure and by the fiber product
of two Young measures. LéK, A, 1) and(Y, ) be measurable spaces ahdX — Y. Then the
imageof the measurg under the mapping is defined byosu(A) := (@~ 1(A)) for everyA e B.

Thefiber productof two Young measures € LS (22; M(R™)) ando € LY (22; M(R®)) is
the Young measurg € LS (£2; M(M™**)) usually denoted by, = v ® o and defined by

Wy = Vx @ Oy,

where® denotes the usual tensor product of measures. The following theorem of Balder and Val-
adier (see Valadief [30, Theorem 14]) gives a sulfficient condition which allows one to pass to the
limit in the fiber product.

THEOREM2.1 Letv” ando” be two sequences of Young measures belongidgtos2; M(R™))
andLSP(82; M(R®)) respectively, such that

V' —> v weak in L (£2; M@R™))

while
o" — o =68, weakKinL; (£2; MR"))

for a suitable measurable functianThen

V'®o" - v®o  weak in L2(2; M@R™)).
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Extensive use will be made of the following theorem (see for instaridéel24, Corollary 3.3])
which states the fundamental property of Young measures.

THEOREM2.2 Suppose that the sequence of méapss2 — R generates the Young measure
Let f : 2 x R" — R be a Caratbodory function and assume that the negative partr, u” (x))
is weakly relatively compact ifi!(£2). Then

I|m|nf/ fle,u"(x)dx > // f(x, A)dv, (M) dx.
2 JRA

If, in addition, the sequence of functions— | f|(x, u” (x)) is weakly relatively compact if1(£2)
then

fCu"()) — f weaklyinL(£2) where f(x) :fh Fx, A)dve(b).
R

We are mainly interested in those Young measures which are generated by sequences of gradi-
ents, in the sense specified by the following definition.

DEFINITION 2.3 A weak measurable map : 2 — M(M"¥) is awlr-gradient Young mea-
sureif there exists a sequence of maps: 22 — R" such that” — u weakly in W17 (2;: R")
andépyny — v weak in L3 (£2; MKy In this case, th&/17-gradient Young measureis said
to begenerated by the sequenDa" andu is called arunderlying deformatioffior v.

Gradient Young measures are in a sort of duality with quasiconvex functions.

DEFINITION 2.4 A function f : M"*% — (—o0, +00] is said to bequasiconveif for every open
and bounded subsdt of R* with negligible boundary (with respect to the Lebesgue measure) one
has

f f(F + Dy)dx > / f(F)dx = |AIf(F) Vg € C5(A;R"), VF € M",
A A

whenever the integral on the left hand side exigtg lenotes the Lebesgue measure of the open
setA).

The following characterization oV 1-”-gradient Young measures is due to Kinderlehrer and
Pedregall[21].

THEOREM2.5 Letpe[l, +00). A weak: measurable map: 2 — M(M"**) is aw-P-gradient
Young measure if and only if, is a probability measure a.e. and the following three conditions
hold:

(i)// FI dve (F) dx < 400

(ii) vx,ld Du(x),u € W-r(2;R");
(i) (vy, f) = f({vy,id)) for almost every and all quasiconvex with | f|(F) < C(|F|? + 1).

The foIIowmg proposition (see for instance Pedregall [27, Lemma 8.3]), sometimes called
Zhang's Lemma, is a variant of a result obtained by Acerbi and Fusco [2].

PROPOSITION2.6 Letp € [1,+oc] and letv be a WlP-gradient Young measure. lfg €
wLlr(2;R" is an underlymg deformation far then there exists a sequence € C3°(£2; R
such that — 0 weakly |nWO P(2: R"), |Du"|P are equi-integrable Pu"| equi-bounded in the
casep = +o0) andD(ug + u") generates.
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3. Sequentiall"-convergence

For the purposes of this paper we need a kind of variational convergence which allows us to treat
families of functionalsF, : X — R = (—o0, +00] defined on a space which may be different from

the domain of the limiting functional. It is a variant of De Giorgi's-convergence, and has been
introduced by Anzellotti, Baldo and Percivalein [3] in order to study dimension reduction problems
in mechanics. LeX be a set, letY, t) be a topological space and let X — Y. Given a sequence

of functionalsF, : X — R and a pointy € Y, define

(g, tY) liminf F,(y) := inf{liminf £, (x,) : ¢(xp) — v},
n—od n—>oo

. o T (3.1)
(g, tY)limsupF,(y) :=inf{limsupF,(x,) : g(x,) — y};

n—o0 n—o0

these are called, respectively, thequentiall”~-lower and I" ~-upper limitat the pointy. In (3:1),
as in what follows, we have dropped the minus sign for notational simplicity.

DEFINITION 3.1 Given a sequenag; of positive numbers we say that a sequefige: X — R
(sequentially)" (¢, TY)-convergedo a functionalF’ : Y — R at a pointy € Y, and we write

I(g.7Y) im Fe, () = F(y),

(g, zy)liminf £, (y) = I'(g, tY) im supF, (y) = F (). (3.2)

n—oo

We say that a family of functionals, : X — R, ¢ > 0, (sequentially)" (g, tY)-converges to a
functional F : Y — R at a pointy € Y, and we write

I'(g,tY) Flino Fe(y) = F(y), (3.3)
if for any sequence,, of positive reals such that lign, - ¢, = 0 we have
(g, 7Y) im Fe,(y) = F(y).

We say that a family of functionalE (¢, tY)-converges on a set if it (¢, TY)-converges at every
point of the set.

REMARK 3.2 Let us remark thaf (3.2) holds if and only if the following two conditions are satis-
fied:

1. for every sequence, € X such thay (x,) = y one has

liminf F,, (x,) = F(y);
n— 00

2. there exists a sequericg € X such thay (x,,) = y and

lim Fe,(xy) = F(y).

n—oo
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If X =Y andgq is the identity map, then thE-limits defined above are the classical De Giorgi
sequential” ~-limits which will be denoted by the classical notation

F_(TX)a”—rpoFs =F.
Moreover, it is easy to see that if we set
I(y) =Inf{Fe(x) 1q(x) =y}, &>0,
then [3.8) holds true if and only if
r—(zv) Eli_r)nole(y) = F(y).

Besides the notion of sequentiflconvergence, also a more general concepf afonvergence,
associated with a topology oxi, can be introduced (see for instance Dal Maso [17]), and the two
kinds of I"'-convergence coincide on first countable topological spaces. Hence when the topological
spacqY, t) is first countable and the family, is equi-coercive, then thE (g, tY)-convergence has
avariational character which is typical bfconvergence, that is, it ensures the lower semicontinuity

of the limit, which, moreover, turns out to be coercive. Roughly speaking, it preserves convergence
of minima and of minimizers. This is summarized by the statements below.

DEFINITION 3.3 The family F; is said to be(g, tY)-equi-coerciveif for every real numbe/
there exists a-compact and-closed subsek ; of Y such that

{g(x): Fe(x) < M} C Ky foreverye > 0.

This definition reduces to the classical oneregqui-coerciveness in the cage- id.

PROPOSITION3.4 Assume thaf' (¢, tY)lim._.o F. = F onY and that the family, is (¢, tY)-
equi-coercive. Then:

(i) F ist-lower semicontinuous;
(i) F ist-coercive;
(i) if x. € X satisfy liminf,_.o F;(x;) = liminf._ oinf F, (e.g. ifx, minimizesF,) then
(a) if &, is a sequence such that Jimy ¢, = 0 and ifg(x;,) 5 y theny is a minimizer ofF
onY and lim,_, o Fe, (x¢,) = F(y);
(b) there is a sequeneg such that lim_. ., &, = 0 and a minimizely of F onY such that
q(xg,) 5 y.
PROPOSITION3.5 If Y is the dual of a separable Banach spacés the weak topology, and
F, : X - Ris (g, tY)-equi-coercive, then
I'(g,tY) lim F,(y) = F(y)
n—oo

if and only if

() liminf,_ o F,(x,) > F(y) for every sequence, € X such thay(x,) = y;
(ii) for every sequencen,) of positive integers there is a subseque@qg) and a sequence, € X
such that
q(xp) >y and lim F, (x,) = F(y).
p—>00 P



446 L. FREDDI & R. PARONI

Proof. This is an easy consequence of the weaetrizability of compact subsets &fand of the
Urysohn property of "-convergence (see for instance Dal Mdsd [17, Chapter 8]). |

4. Setting of the problem and previous results

Foralle > 0,letf2, = {x = (xg,x3) € R2 xR : xy € w, |x3] < ¢/2}, wherew is an open,
bounded subset @? with Lipschitz boundary. We can think @2, as the reference configuration
of a hyperelastic homogeneous body with stored energy density funigtion/®<3 — R. This
function W is assumed to be continuous and to satisfy the growth assumption

c(FIP =) <WEF)SC(FIP+ 1 (4.1)

for two constant€ > ¢ > 0. The total energy, of the body is given by
I(y) = f W(Dy) dx — / fe -y,
¢ £2¢

where the body force densitf* is taken inL?(52,:; R®), with 1/p + 1/g = 1. Assuming, for the
sake of simplicity, the body to be clamped on the lateral surface= dw x (—¢/2, ¢/2) of §2,,
the equilibrium configuration will be found by minimizing the eneigyover the set of admissible
deformations

As = {y € WP (2 R%) 1 y(x) = x onIL).

In order to study the behaviour of the minimizefsof I, ase — 0, it is convenient to transform,
after Ciarlet and Destuynder [15], the problems under consideration into problems over a fixed
domain. To this end we defin@ := 21, I := I'y and a mag, : L”(£2,; R%) — LP(2: R%) by

(Oey)(x) = y(x1, x2, £x3).

We accordingly rescale the energies by setiiffgy) = . (6, 1y) /e, which is

1£(y) :=/ W(Day @)dx—/ ff - ydx,
2 & 2

where we have set® = 6, f¢. Following Le Dret and Raoulf[22] we assume thy#t does not
depend ore and setf := f*. The admissible set over which the total energy has to be minimized
becomes

AS =y e WEP(2:R3) : y(x) = (x1,x2, ex3) OnI'}.

Above and in what follows, we identify73%3 with M3%2 x R3, and write(F|z) for the element in
M3*3 which is identified with(F, z) € M3*2 x R®. Moreover,D, y denotes the first two columns
of the gradient ofy.

Within a similar framework, Le Dret and Raoult (][22, Theorem 2]) have proved that,a<0,
the family of functionals

I£(y) ifye A2,

o) = {+oo otherwise inL? (2; R3),
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I'-converges in the strong topology bf ($2; R®) to the functional

_ ) i Lp. . m3
J(y) = /wQWO(Day) dxg /(;)me ydxy ifye Wi (w; R®), (4.2)
+00 otherwise inL?(2; R®).
Here
Wh? (@; R%) 1= {y € WP (@; R?) 1 y(x) = (x1, x2,0) ondo},
m3f(xy) = _152 f (x4, x3) dx3 denotes the integral mean value pfwith respect to the third

variable andQ Wy denotes the quasiconvex envelope of the continuous function
Wo(F) :=min{W(F|z) 1z € R}, F e M3? (4.3)

which satisfies the same growth conditionsasA similar result in the case of strings was previ-
ously obtained by Acerbi, Buttazzo and Percivale [1].

With the motivation already explained in the introduction we extend the functidifate the
larger spacd.°(£2; M(M3*3)) by setting

IZ(y) if3y e AZ o =6py0),

e s (4.4)
400 otherwise inLS° (§2; M(M=*®)).

Mu) = {

Let us remark that this functional is well defined becausa ify, € A are such thatp,, ) =
8Dy,(x) then, due to the boundary condition, = y» almost everywhere.

5. The limit problem
Let us denote byt andx2 the projections of3*2 onto M3*2 andRR3, respectively, that is,
7 M33 5 M3>2 F(Flz)=F,
73 M3%3 R3, n3(F|z) =z,
and bymg/u, andnjux the usual image measures (see Seon 2).
We further denote bw#”(ﬂ; R3) the set of W7 (£2; R3)—gradient Young measures with

an underlying deformationy with y(x) = (x1,x2,0) on I, and byj'i}”’(fz; R3) the subset of
y,lip(.Q; RR3) of Young measureg with ngu, = 8o, that is,

51 1
Vi (2; R = {p € VP (2; R®) 1w = 8o}

The following lemma states that the sequence of functiorzéffsis equi-coercive injoi}’”([z; R3)
with the weak convergence of.2°(£2; M(M3<3)).

LEMMA 5.1 Lete, — O andu” e LS°(£2; M(M3*3)) be such that

suprM(u") < +oo.
n
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Then there existg € j'i}"’(:z; R3) and a subsequeng¢g”) such that
W — o weak in L(2; M(M3*3)).

Moreover, if y"* andy are the underlying deformations pf** andp which satisfy the boundary
conditionsy™ (x) = (x1, x2, &, x3) andy(x) = (xz, x2, 0), respectively, then

Yy —y weaklyinw?(2; R, Dzy=0.
Proof. Since sup IM(u") < +oo, we haveu? = Spyiq, y" € WEP(2;R3) andy"(x) =

(x1, x2, &,x3) On I". By the growth assumption o and the Poinc#@ inequality, for every: large

enough so that, < 1 we get
D n
Iﬁ(u”)zf W<Day” 3 )dx—/ feytde
Q &n Q
D3yn p
&n

(Day" = 1fllgly" I = cl$2]
p

> cDY" Iy = I flgly"llp = el2] = Caly"lf , — Ca,

>c

where|| - ||, and]|| - ||1,, denote the usudl” andW? norms, respectively. Therefore
D n
(e[ 2)
&n

y' >y weakly inwi?(2;R%, D3y" — 0 strongly inL?(£2; R%)

< +00,
)4

suplly"lly,p < 400,  sup
n n

and thus, up to subsequences,

and
p" = weak in LS(2; M(M3<3)).

It follows thaty = y(x1, x2) andy(x) = (x1, x2,0) onI" andnﬁu = §p. Henceu € y}” |

If uwe j’)}‘”(ﬂ; R3) then it can be proved (see Lem@5.3 below) that the center of mass of
1, does not depend on thg variable. With an example we are going to show that, in gengral,
does depend ars. This is the main motivation which will lead us to study theconvergence with
respect to the wedlconvergence of the averages with respect to the third variable.

LEMMA 5.2 If u is aWL?(§2; R®)-gradient Young measure generated by the sequence of gradi-
entsDy?, andv andy are the Young measures generatedigy® and D3y?, respectively, then

T#iL =V, 7r§,u =y.

Proof. The proof is a direct consequence of the definitions and of the classical integration formula
with respect to an image measure. Indeed, sibge® = 7 (Dy?), for everyp € Co(M3*?) and
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g € L1(£2) we have

[ Gprgar= [ [ ot s () g
Q Q2 JMm3x2
= [ [, ot ) g de
Q2 Jm3x3
= lim / @(T(Dy®) g(x) dx
e—=0J0
= |im0/ @(Day®) g(x) dx =/ (vx, @) g(x) dx.
E—> Q k9
The other relation can be proved similarly. |

LEMMA 5.3 If € L(82; M(M3*3)), withw3u = 8o, is generated by the sequence of gradients
Dy* with underlying deformatiory, andv is the Young measure generatedbyy®, then

“ =" do.

Moreover, the functiory and the center of mass of the measyrgsndv,, for almost every € £2,
do not depend on the variabtg. In particular, with a small abuse of notation, we shall write

(tx,id) = Dy(xq), {(vx,id) = Dy (xg).

Proof. From ng,u = §p and the previous lemma, we deduce thaly® generates the Young mea-
suredo. The first part of the statement follows by applying Theofem 2.1. Moreover, we have

Dy(x) = (px, id) = (vx ® do, id) = / (Flz) dvx ® 80(F|2) = ((vy, id)|0)

M3x3

for almost every € §2. ThusD3y = 0, hencey = y(xy) and(v(y, xs), iId) = Dy y(xg). O

EXAMPLE 5.4 We provide an example ofiac 30213’”(9; R3) such that, depends oms.
Let p(s) be the 2-periodic function equalingon [0, 1] and 2— s on [1, 2]. Let z°(x) =
(exap(x1/€), 0,0). ThenD3z® — 0in L>(£2; R3). Moreover, since

e [ X1 1 1
D1zi(x) = x3p’| — | generates the Young meast:leré_x3 + Esxs,
&
it follows that

1 1
Dy z° generates the Young measui'é_xsgn + 58)(312“11’

whereE is the matrix inM3*2 with 1 in position 11 and all other elements zero. It is now easy to
check that the functiong® (x) := (x1, x2, ex3) + z%(x) min{1, dist(x, 952)/¢} are inAgQ and they
generate a € y}”’ which depends also ors.

The example above motivates the following definition.
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DEFINITION 5.5 LetX be eitherM3*? or M3, If v € L°(£2; M(X)) we define
ACY 0 > MX),

the average of with respect to the variables, by

1/2
(AV,SCC,V, 9) = (A u(xo), @) = fl/z(v(xa,X3)a @) dx3

for everyp € Co(X).

By Fubini's theorem the map, +— <AV)3C¢,V7 @) is measurable, and since it is also essentially
bounded, we can think of Aas a mapping

AV3: L2(2; M(X)) = L2 (0; M(X)).
It is easy to check that this map is continuous, that is,

uf — o weak in L (£2; M(X))
4
AV — A weak in L(w; M(X)),

and that A¥ maps Young measures to Young measures.
The I'-convergence result will be made more expressive by using the average-projection map-
ping
q 1 Ly (2; M(MPP)) > LY (0; M(M>?),
defined by
q = T_[#OAV3 = AV?’OT_[#,

where the commutativity of composition comes directly from the definitions. By the continuity of
the average and the projection mapping, eyéscontinuous.

We are now in a position to state the main results of this section, whose proofs are postponed to
Sectior 8.

We denote le{’p(w; R3) the subset oV -7 (w; RS)—gradient Young measures with an under-
lying deformationy with y(x) = (x1, x2, 0) ondw.

The following theorems hold under the continuity and growth assumptions matié airthe
beginning of Sectiop]4.

THEOREM5.6 The family of energy functionals/™, already defined in [(44), is
(g, w* LY (w; M(M>*2)))-equi-coercive (see Definiti.3).

THEOREMS5.7 Let/M be the family of functionals defined in (4.4). Then
r(q, w* L (w; M(M3*2))) lim IMw) =1(v)
£—>
with

roy = | [ e W0l = [ mag ey ity e VE @i ), -

+00 otherwise inLS° (w; M(M3*2)),



ENERGY DENSITY OF MARTENSITIC THIN FILMS 451

whereWj is the function defined irj (4.3), ande WL (w; R3) is the underlying deformation of
with boundary conditiory = (x1, x2, 0) ondw.

By the properties of "-limits summarized in Propositign 3.4 we can state the following theorem
which makes precise the variational character of the limit enécgy.

THEOREM5.8 Let/ be the functional defined in Theorédm15.7. We have:

(i) Iisweak lower semicontinuous and weakoercive; hence it admits a minimum on the space
yr% R%);
(i) if y* e wlr(s; R3) satisfies the boundary conditioyf (x) = (x1,x2,ex3) on I and
liminf._o I (y) = liminf._.qinf I (e.g. ify* minimizes/*?) then
(@) if &, — 0 and ifg(8pyen)—v weak in L (w; M(M3*?)) thenv is a minimizer of/ on
VrP (w; R3) and limy o0 12 (y%) = 1(v);
(b) there is a sequeneg — 0 and a minimizew of 7 on y}"’(a); R3) such thaig (Spys)—v
weak: in L (w; M(M3*?)).

6. Relationship with Le Dret and Raoult theory
Let J be ther"-limit functional of Le Dret and Raoult introduced in (4.2).
THEOREM6.1 Lety € L”(£2; R®). Then

J(y) =infI(v), (6.1)

where the infimum is taken over all € L°(w; M(M3*?)) which satisfy(v, id) = D,y and
y(x) = (x1, x2, 0) ondw, with the usual convention iff = 4+o00. Moreover the infimum is attained.

Proof. Lety e LP($2; RR3). Let us first of all observe that the infimum is attained as a consequence
of item (i) of Theoren| 58 and the continuity of the center of mass with respect to the weak
convergence i (w; M(M3*?)).

For convenience we denote the right hand sidé of (6. ll)(by

Let us start by proving the inequaliti(y) < /(y). To this end we can assume tap) is finite,
that is, there exists € L (w; M(M3*2)) such thatl (v) = I(y) andy satisfies the boundary value
problemD,y = (v, id), y(x) = (x1, x2, 0) on I". Hencey = y(x,). Then, sincd (v) < +o0, we
havev € V7:” (w; R%) and therefore € W" (w; R3). In this case

J(y)=/ QWO(DaY)dxa_/m?:f'ydxaa

0]

and, from (iii) of Theorem 2]5, we have

OWo(Day) < (v, Wo),

which implies that/ (y) < 1(v) = 1 ().
In order to prove the converse inequality, it is convenient to use the fact that the functionals
involved arel-limits. As
J(y) =™ (LP (@ R3) i (),
E—>
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there exist sequences — 0 andy” — y weakly in W17 (£2; R®) such that
lim Je, ") = J(y).
n— oo
Since the only interesting caseds$y) < +oo, by coercivity and possibly passing to subsequences,
we can assume that

e (Dy") generates &7 (£2; R®)-Young measure with underlying deformatiory,
e (Dyy") generates a Young measusg,
e D3y" — D3y = 0 strongly inL”, henceD3y, generates the measuig

By Lemm it follows thatrzu = v andnﬁu = 80, SOu € 5’1}”’(9; R3) by definition. An
application of Lemma 5|3 gives = ve ® 6o and (v, id) = Dgy. Let u" = 8pyn andv =
q(w) = Av3(vg). Thenv € V1’ (w; R3) and(v, id) = D, y. From the continuity of,

q(u") — v weak in L% (w; M(M3*?))

and by thel"-convergence theor.7 and the fact thaty,) = Is/:/‘ (u™), we obtain
J(y) = lim J., (") = liminf ;2 ") > 1(v) > 1(y).
n—o00 n—o00 n

which concludes the proof. |

The relationship between the minimizers of the two functiodand J is made explicit in the
following theorem.

THEOREM®6.2 The following properties hold for the functiondlsind J.
() min{J(y) 1y € WE" (0; R®} = min{I(v) : v € Y (o; RO)}.
(ii) Let v be a minimizer for. If y € W,l;”(a); R3) satisfiesDy y(xy) = (vy, ., id) for almost every
Xo € w, theny is a minimizer forJ andQ Wo(Dy y(x¢)) = (vx,, Wo) for almost every, € w.

(i) Let y be a minimizer forJ. If v € yﬁ”(a); R3) satisfies Dy y(xo) = (vy,,id) and
OWo(Dyy(x4)) = (vy,, Wo) for almost every, € w, thenv is a minimizer forl.

Proof. This follows by noticing that/ and! are the relaxed functionals of the extensiortbyo of
E(y) :/ Wo(Dgyy) dx, _/ m3f'ydxa

with respect to the strong topology af”(w;R%) and the weak topology of the space
LY (w; M(M3*2)), respectively, and applying Theorem 4.4 and Corollary 4.6 of Pediegal[27].

7. The energy density of the thin film

The aim of this section is to propose and motivate an energy density for the thin film. Indeed we
shall deduce that/y and

E(y) = / Wo(Day) drg — / maf - y di

are the energy density and the total energy of the thin film, respectively.
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We need to work with a general linear boundary conditiat) = Bx on I, whereB is a linear
map fromR? into itself. The right Sobolev space to treat this case is

Wi (@ R%) = (y € WP (@ R®) : y(xa) = Bxg ONdw),

whereB € M3*2 denotes the first two columns of the matrix represenBngt is trivial to check
that in this setting the variational limit is the functioradlefined in[{(5.]L) Withyllip(a); R3) replaced,

with the obvious meaning of the notation, W;’(w; R3), and the corresponding limit functional is
denoted by z. Similarly, also the case studied by Le Dret and Raoult can be put into this framework

and the limit functional is defined owj{;”(w; R®) and denoted by.

For every continuous functio? : M3*2 _ R satisfying the growth condition of order,
¢(|FIP —1) < Z(F) < C(1+ |F|P) for 0 < ¢ < C, we introduce the energy

EZ(Y)ZfZ(DaY)dxa_/ mgf -y dxy

and denote by[Ez, I's] the relaxed functional, that is, the lower semicontinuous envelogg,of
on the spacéV,{;sp (w; R®) with respect to the weak topology. B[ E 7, '] we mean the relaxation
of

. 1,
Ez(y) fv=20p,y. y€ Wil (w: R,

EOO V) =
2 {‘I‘OO otherwise inL % (w; M(M3%?)),

with respect to the wedkopology of L (w; M(M3*?)).

As briefly noticed in the last proof, the limit functionak, obtained by Le Dret and Raoult, and
the functionallz, obtained by us, can be written (see Dacoro@na [16] and, for instance, Murat and
Tartar [25]) as

Jp(¥) = QlEwy, I'8](y), 1p(v) = Y[Ew,, I'8](v).
THEOREM 7.1 The functionWy is the unique continuous integrand satisfying a growth condition
of orderp such that’g = Y[Ew,, I'g] for every linear boundary condition, that is, for every linear
mapaB.

Proof. Let W1 be one of these functions such tigt= Y[Ew,, I'g] for every linearB. Then
/(vxa, Wo— W1)dx, =0 foreveryv e y}*Bp(a); R3)
w

and for everyB. It follows thatWo = W1 by simply taking the admissible measure= 63, where
B € M3*2 are the first two columns of the matrix representihg O

Hence, the variational problerh determines a unique energy densi. This selection is not
provided by the relation’y = Q[Wy, I'g]; indeed, in general, there exist an infinite number of
functionsWq such that/g = Q[Wp, I'g] = Q[W1, '] for every B.

A further reason to tak&/ as the energy density of the thin film follows from the relation be-
tweenE = Ew, andl, which by the well known properties of relaxed functionals can be expressed
in terms of correspondence between minimizing sequencg&samid minimizers of . In particular,
minimizing sequences df generate Young measures which are minimizers, @ind vice versa.

In Le Dret and Raoult[22] it is shown that if the energy satisfies the principle of material
frame indifference, then alsi is frame indifferent, and moreover the symmetry relation§/pf
are derived from those d¥.
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8. Proofs of the main results of Sectiofil5
Before proving the main theorems, we state some technical results.

LEMMA 8.1 Lety®8gbe aWl?(£2: R®)-gradient Young measure. Then®wvis aWl? (w; R3)-
gradient Young measure, amAvf;av, id) = (v(x,.xg), Id) for almost everyx e £2. Moreover, for

everyWL-? (w; R®)-gradient Young measuyg, there exists &7 (£2; R%)-gradient Young measure
u ® 8o such thatz = AvS .

Proof. To show that AV v is aW1? (w; R3)-gradient Young measure we may use the characteriza-
tion given by Kinderlehrer and Pedregal (see Thedrem 2.5). Thus it suffices to show that

() [, Jyzz |FIP dAVS, v(F) dxg < +00;
(i) (A3 v, id) = Day(xs) andy € WhP (w; R3);
(iii) (Avfc’av, = f((Avfj’av, id)) for almost everyx, and all quasiconvex functiong with
|/I(F) < C(FIP +1).

Property (i) holds since

_ _ 12 _ _
|F|P dAVS v(F) dxy = |F|P dv(y, xa) (F) dxadx,
w J M3%2 o J-1/2 JM3x2

B /sz./Msxz |(F|2)|” dvy ® 80(F|z) dx < +oc.

Before proving property (ii) let us note thatjfe W17 (£2; R%) is an underlying deformation for
v ® 8o, then (see Lemnfa§.3)= y(xq), and(v(y,,x3), id) = Dy y(xq). It follows that

1/2
(AVS v, id) = / 1/2<v<xa,xa>, id) dx3 = Dy y(xa), (8.1)

hence property (i) holds antAv3 v, id) = (v(x,.xy. id). Let f : M3*2 — R be a quasiconvex
function with | £|(F) < C(|F|” + 1). That is, for every open and bounded getc R? with
[0U| = 0 one has

/UfuE + Do) dxy > f(F)|U|
forall ¢ € C3(U;R® and allF € M3*2, Let f* : M®*3 — R be defined byf*(F|z) := f(F).
Then for everyF = (F|z) € M3 andy € C3(U x (—1/2, 1/2); R%) we have

1/2

/ fHF + Dy)dx = / f(F 4 Do (xq, x3)) drgdxs
Ux(=1/2,1/2) U

~1/2

1/2 B _
> fl/zf(F)IUldxs — FAFDIUl = FAR)IUI,

where we have used the fact that:, x3) C%(U; RR3) for almost everyz. Thus alsof* is quasi-
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convex. Hence, we have

1/2 1/2

A3y, f) = F(F) vy xp) (F) dxz = FH(F12) dv(y xg) ® S0(F |2) dx
_1/2 M3><2 _1/2 M3><3

1/2 12 _
= f (V(xg.xa) ® S0, f7) xg > / FH V(g x9) ® S0, 1d)) dx3
-1/2 -1/2

1/2
=/ 1 FH(Day(x2)10) dxz = f(Day(xa)) = f((AVS v, id)),

which proves property (iii). In the last equality we have uged](8.1). We now prove the second part
of the theorem. Lefi be aWw™? (w; R®)-gradient Young measure. Then, obviously® & is a
wlr(e; R3)—gradient Young measure and & = fi. a

il (- T3 Lp, . 3
The next lemma relates the spaoés (£2; R®) and " (w; R®).

LEMMA 8.2 We have .
AVC VEP (2R3 = V1P (0; R®) @ So.

Proof. Letu e )311;”([2; R3). Then, by LemmSu =1 ® 80, and forg € Co(M3*3) we have
1/2

(A2 u, ) = /
—1/2

_ _ 1/2 _ _
/ 0(F12) v, vp) ® S0(F2) dxg = f / (F10) v, xp) (F) s
M3x3 —1/2 JmB3x2
= f p $FIO AV v (F) = f L PF1) 0AE v @ So(Fl2) = ((AVF, v) ® do, ).
M 3% M 3%

Thus
AV (v ® 80) = (AV31) ® &,

and the assertion follows by an easy application of Lefnmla 8.1. |
REMARK 8.3 A useful consequence of Lemma|8.2 is
g’ (@ R) = V' (@ RY).

Proof of Theorer 5]6. SinceLS (w; M(M3*?)) is the dual of the space*(w; Co(M>*2)) which
is Banach and separable, the proof is a direct consequence of the following proposition.

PROPOSITION8.4 Ife, — 0 and the sequenge’ e L°(£2; M(M3*3)) satisfy

supIM(u") < +oo,
n

then there exist; — oo and a Young measune € L% (w; M(M>*?)) such thatg () — v
weak in L (w; M(M3*?)). Moreover e yﬁp(a); RR3).

1 olvp 3
Proof. By Lemm there exisis € V2" (£2; R®) and a subsequengé* such that

w™ — o weak in L3P(£2; M(M>3)).
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Let v = ¢(u). By continuity ofq we conclude thag (u"*) — v weak in L (w; M(M3*?)).
Moreover, by Rema?v € Vi (w; RY). O

Proof of Theorern 5]7. Let ¢, be an infinitesimal sequence of positive real numbers. Since the se-
quence of functlonaISM is (g, w* LY (w; M(M3*2)))-equi-coercive, Proposm@ 5 applies. We
start by finding a recovering sequence for a suitable subseqmﬁﬁcmat is, forv € y P (w; R®)

we find a sequence/ ¢ W7 (82; R3) with yi(x) = (x1,x2, En; x3) on I" such that the projec-
tions on the first two columns of the averages with respex@tm‘ the associated Young measures
w! = 8p,; converge ta, weak in L3 (w; M(M3*?)), and

lim supIM(,u/) <I®).

]*)00

Lety € Wll’(w R3) be the underlying deformation of with y = (x1, x2, 0) on I". By Prop-
osmon 6 there exists a sequengé e Cy° (; R®) such that, forn/ = y + v/, the sequence

D,v/ generates, v/ — y weakly inWl? (»; R%) and the sequendeD, v’ |P}; is equi-integrable.
By a measurable selection argument (see for instance Buttazzo [14, Proposition 2.2.7]), there exists
a sequence of measurable functiahs » — R® such that

Wo(Dg v’ (x)) = Min{W (Dgv’ (x4), 2) : z € R3)
= W(Dgv! (x0)|7/ (x9)) @€ x4 € w.

By the upper bound o we have
—c < Wo(Dgv!) = W(Dov[27) < W(Dgv’[0) < C(IDgv/|P + 1)

almost everywhere, and therefore the sequékigeD, v/) turns out to be equi-integrable. By con-
tinuity of Wo and an application of Theorgm 2.2 we get

lim f W (Dgv’|z7)dx = lim /WO(Dan(xa))dxa
J7X Jw

j—o00 Q

_ f Wo(F) dvy, (F) drg. (8.2)
w M3><2

Let us remark moreover that, by the lower bound Wi even the sequence turns out to be
p-equi-integrable.
Letw/ be functions inC® (w; R3) such that
lz/ = 0,0, 1) — /||, < 1/j,
and Ieten_,. be a subsequence gf such that

||3n.,~DalZ)J||p — 0.

We definew’ := (0,0, 1) + w/. Thenw/ = (0,0, 1) onI", w/ is p-equi-integrable and

lim / [W(Dqv?[27) — W(Dov?! + 4, x3Dgw’ |w/)] dx = 0. (8.3)

j—o0 Jo
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Indeed, the sequence®,v/|z/) and (Dyv/ + &,,x3D,w’|w/) generate the same Young
measure and, being-equi-integrable, the upper bound dif ensures that the sequences
W(Dgv/|z/) and W(Dgv/ + £, x3Dqw’ |w/) are equi-integrable as well. Thys (8.3) follows by
an application of Theore@.z Let us definieby

¥ () 1= v/ (xa) + &, 2307 (x4)

and observe that, using (8.3) ahd {8.2), we have

. D
lim / W(Dayf
j—0Jo

J . L
3 )dx: lim / W(Davf+8nix3Dan|w])dx
5 .

n; j—o00

= lim / W(Davjlzj)dx:// Wo(r) duy, () doxy.
7 w M3><2

j—o00
Moreover, sincg/ — 5 in LP(£2;: R%), wherey(x1, x2, x3) = y(x1, x2), we also deduce that

. 1/2
“m / f(x)'yj(x)d-x :/ f(x)'y(xa) dx = / f(xq, x3) de'y(xo()dxa~
] JR 2 wJ—=1/2

Thus, the first part of the proof is concluded by noting that

o y/ = (x1,x2,85x3)ONT,

o w =8p, — v®doweak in L (2; M(M>3)),

e g(u) — q(v ® 80) = v weak in L (w; M(M3*?)) by continuity ofg,

and using Remark 8.3.

The next step consists in proving the liminf inequality for the sequeﬁ;@f‘e Let u" e
L°(£2; M(M3*3)) be a sequence such thatu") converges weakto v in L (w; M(M3%?)).
We have to prove that

liminf 1M (") > 1(v).
n—o00 n

Without loss of generality we may suppose that the left hand side of the inequality above is finite
and that the liminf is indeed a limit. Then spg"n/‘ (u") < +o0 and, by Lemml, there exist
e yﬁp(.o; R3 and a subsequengé* such that

W — o weak in LS(2; M(M3*3)),

and the corresponding underlying deformatiofis and y which satisfy the boundary conditions
Y (x) = (x1, x2, &n, x3) andy(x) = (x1, x2, 0) are such that

y* —y weaklyin wir(@;R3), y = y(x1, x2). (8.4)
Hence, by Rema.&, € q()oi}’p(.Q; R3)) = Y17 (w:; R3). Moreover,

liminf 1M (") = lim M@ = lim 1M )
n—o00 n n—oo N k— 00

Eny,
i ([ w(or
k— 00 Q

ng
D3y >dx—/fy""dx>
Eny 2
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/ Wo (D y™) dx — / f~y""dX)
2 2

[(Z(n#uﬁk,Wo) dx—/ f(X)~y"k(x)dX)

1/2
/(/ (Tau'sk, Wo) dxa) dxg — / fx) -y dx)
o\ J_1/2

/(AV3 Tap™*, Wo) dxg —/ fx) -y (x) dx)

=klim < (g ("), » Wo) dxy /f(x) y’”‘(X)dX)

1/2
/ an»WO _/ f(xa9x3)dx3'y(xot)dxa,
19} wJ-=1/2
where in the last inequality we have usgd(8.4) and Theprem 2.2. O
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