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Geometric properties of Bernoulli-type minimizers
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1. Introduction

In this paper we study various geometric properties of minimizers of the energy functional

JΩ(u) =

∫
Ω

[A(x,∇u)+Q(x)χ(−1,1)(u)] dx, (1.1)

whereΩ is a (possibly unbounded) domain inRn. We assume thatA(x, η), η ∈ Rn, behaves as|η|p

for some 1< p < ∞ and thatQ(x) > 0 is uniformly bounded away from zero and infinity (see
below for precise hypotheses).

One can think of the set{−1 < u < 1} as a jet of fluid in a certain medium and thatA andQ
reflect the underlying physics and geometry. In this interpretationu is the stream function. In fact,
the minimizers satisfy (in a distributional sense) the equation

div a(x,∇u) = 0 in {−1< u < 1}, (1.2)

where
a(x, η) := DηA(x, η).

Moreover on thefree boundary

Γ := ∂{−1< u < 1} ∩Ω

a Bernoulli-type condition (hence the name)

b(x,∇u) = Q(x)

is satisfied in a certain weak sense (see e.g. [AC81]). Hereb(x, η) := η · a(x, η) − A(x, η) and
behaves as|η|p under the conditions we impose onA anda.
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The functionalJ and its “one-side” analogue (see Lemma 3.3)

FΩ(v) =

∫
Ω

[A(x,∇v)+Q(x)χ(0,∞)(v)] (1.3)

have been studied earlier in the cases

A(x, η) = |η|2, A(x, η) = aij (x)ηiηj , A(x, η) = |η|p

respectively by [AC81], [Val01] and [DP03] and we borrow many of the ideas from those papers.
We prove gradient bounds, linear growth from the free boundary, density estimates, uniform
convergence of level sets to a set of minimal “perimeter” (see [Bou90]) and the existence of plane-
like minimizers in periodic media. For the latter two results, we were influenced mostly by [CC95]
and [CdlL01].

We now state explicitly the hypotheses we assume on our functional:

(H1) A ∈ C1(Rn × Rn), a ∈ C(Rn × Rn) ∩ C1(Rn × Rn − {0});
A(x,0) = 0, a(x,0) = 0;

(H2) ζ ·Dηa(x, η)ζ > λ|ζ |2|η|p−2 for anyζ ∈ Rn;
in particular,A(x, η) is convex inη;

(H3) |Dηa(x, η)| 6 Λ|η|p−2;
(H4) |Dxa(x, η)| 6 Λ|η|p−1;
(H5) |a(x, η)| 6 Λ|η|p−1;
(H6) η · a(x, η) > λ|η|p;
(H7) 0< Qmin 6 Q(x) 6 Qmax.

Here and in what follows we assumeλ 6 Λ andQmin 6 Qmax to be strictly positive constants. We
will refer to λ, Λ, Qmin, Qmax, p andn as thestructural constants.Quantities depending only on
them will be referred asuniversal constants.Hypotheses(H1)–(H5) are needed in order to apply
the interior regularity results of [Tol84]. Under hypothesis(H6), we are also able to employ the
Harnack inequality of [Tru67].

Also, when dealing with global geometric results, we will consider periodic media, i.e. we will
require the following condition:

(H8) A(x, η) = A(x + k, η) andQ(x) = Q(x + k) for anyk ∈ Zn.
In what follows, we will takeu ∈ L1

loc with ∇u ∈ L
p

loc and we will consider several types of
minimizers for the functionalJ . Namely, ifK ⊂ Rn is a compact domain, we say thatu is an
absolute minimizerfor J in K if JK(u) 6 JK(u+ ϕ) for anyϕ ∈ C∞

0 (K).
We say that a functionu in Rn is aclassA minimizerif JK(u) 6 JK(u + ϕ) for any compact

domainK ⊂ Rn and for anyϕ ∈ C∞

0 (K); i.e., a classA minimizer is an absolute minimizer in any
compact domain.

Also, given a domainΩ in Rn, a subsetΣ ⊂ ∂Ω and a function−1 6 u0 6 1 we consider
the classX = XΩ,Σ,u0 of functions that are equal tou0 onΣ (see (3.1) below). We say thatu is a
constrained minimizerif JΩ(u) 6 JΩ(v) for anyv ∈ X .

2. Main results

Below we state the main results of this paper.
As a first result, we prove uniform gradient bounds and linear growth from the free boundary

for minimizers of (1.3).
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THEOREM 2.1 Assume hypotheses(H1)–(H7). Let v be a constrained minimizer forF in a
domainΩ. Thenv is Lipschitz continuous. Moreover, givenK ⊂⊂ Ω, the Lipschitz norm of
v on K depends only on the structural constants and the distance betweenK and ∂Ω. Also, if
Br(x) ⊂ K ∩ {v > 0} touches∂{v > 0}, then

cr 6 v(x) 6 Cr

for suitable positive universal constantsc andC.

This result is an extension of [AC81], [Val01] and [DP03], which have considered, respectively,
the casesA(x, η) = |η|2, A(x, η) = aij (x)ηiηj andA(x, η) = |η|p.

Next, we prove the following density estimates for the level sets of minimizers:

THEOREM 2.2 Assume hypotheses(H1)–(H7). Let u be a constrained minimizer forJ in a
domainΩ and x ∈ {−1 < u < 1}. Then, for fixedr1 > 0, there exist positiver0, c andC
depending only on the structural constants andr1 such that

crn−1 6 JBr (x)(u) 6 Crn−1,

Ln(Br(x) ∩ {u = −1}) > crn and Ln(Br(x) ∩ {u = 1}) > crn,

for anyr > r0 providedBr+r1(x) ⊂⊂ Ω.

Analogous density estimates forA(x, η) = |η|2 andA(x, η) = aij (x)ηiηj have been dealt with
in [CC95] and [Val01], respectively.

By Γ -convergence methods, it has been proved in [Bou90] that minimizersuε of

J ε(u) =

∫
[A(x, ε∇u)+Q(x)χ(−1,1)(u)] (2.1)

converge inL1
loc to a functionu0 which has a minimal “interface” with respect to some weighted

area. Indeed, a consequence of the above density estimates is that level sets converge inL∞

loc:

THEOREM 2.3 Assume hypotheses(H1)–(H7). Let uε be an absolute minimizer of (2.1) in a
bounded domainD. Assume that, asε → 0, uε converges inL1

loc to

u0 := χE − χD−E

for a suitableE ⊂ D. Then{|uε| < 1} converges locally uniformly to∂E.

The latter convergence is understood in the sense that dist(x, ∂E) → 0 uniformly for x ∈

{|uε| < 1} ∩K for anyK ⊂⊂ D.
Finally, we study the minimizers ofJ in periodic media. We prove the existence of classA

minimizers in periodic media constrained in a strip of universal width. Also, we show that any
periodic minimizer constrained in a strip wide enough is indeed unconstrained and classA. More
precisely, we prove:

THEOREM 2.4 Assume hypotheses(H1)–(H8). Then there exists a positive universal constantM0
such that:

(T1) Given anyω ∈ Rn − {0}, there exists a classA minimizeru = uω for the functionalJ for
which the set{|u| < 1} is constrained in the strip{x · ω ∈ [0,M0|ω|]}.
Furthermore, suchu enjoys the following property of “quasi-periodicity”:
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– if ω ∈ Qn
− {0}, thenu is periodic (with respect to the identification induced byω);

– if ω ∈ Rn−Qn, thenu can be approximated uniformly on compact sets by periodic class
A minimizers.

(T2) If ω ∈ Qn
− {0} andv is anyω-periodic minimizer ofJ constrained in the stripSωM :=

{x · ω ∈ [0,M|ω|]},M > M0, then it is also an unconstrained classA minimizer.

Notice thatM0 above isindependentof the frequencyω.
The paper is organized as follows. In Section 3, we discuss existence of constrained minimizers

and in Section 4 we prove optimal Lipschitz regularity (i.e., the first part of Theorem 2.1). Section 5
deals with the linear growth from the free boundary (i.e., the second part of Theorem 2.1). The
density estimates and the uniform convergence of level sets will be dealt with in Section 6, where
we also prove Theorems 2.2 and 2.3. In Section 7 we recall a geometric result, which will be of
use in Section 8, where the proof of Theorem 2.4 will be carried out. The Appendix collects some
utilities. The results in Sections 3–7 will make use only of hypotheses(H1)–(H7), while in Section 8
we will also make use of hypothesis(H8).

3. Existence

In this section we show the existence and recall some properties of the constrained minimizers of
the functional

JΩ(u) =

∫
Ω

[A(x,∇u)+Q(x)χ(−1,1)(u)]

over the class of admissible functions

XΩ = XΩ,Σ,u0 := {u ∈ L1
loc(Ω) : ∇u ∈ Lp(Ω) andu = u0 onΣ}. (3.1)

HereΩ is a (possibly unbounded) domain inRn with Lipschitz regular boundary∂Ω,Σ is a given
measurable subset of∂Ω withHn−1(Σ) > 0 andu0 is a given function with

−1 6 u0 6 1, u0 ∈ L1
loc(Ω), ∇u0 ∈ Lp(Ω).

We start by discussing the known existence and regularity of such constrained minimizers.

PROPOSITION3.1 (i) Suppose thatJΩ(u1) < ∞ for someu1 ∈ XΩ . Then there exists a
constrained minimizer ofJΩ in the classXΩ .

(ii) Every constrained minimizeru is Hölder continuous in the interior ofΩ. Furthermore, given
K ⊂⊂ Ω, the Ḧolder exponent 0< α < 1 and theCα norm ofu onK depend only on the
structural constants and the distance betweenK and∂Ω.

Proof. (i) The existence is obtained by a direct method of Calculus of Variations. Our proof below
is the same as in [AC81, Proposition 1.3] (see also [Val01, Theorem 9.1]).

Let uk be a minimizing sequence forJΩ in the sense that

JΩ(uk) → inf
XΩ
JΩ .

Then from(H1), (H2) and(H6) it follows that

A(x, η) > λ|η|p,
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hence the sequence∇uk is uniformly bounded inLp(Ω). Moreover,uk − u0 is uniformly bounded
in Lp(Ω ∩ BR) (sinceHn−1(Σ) > 0) for any largeR. Thus we can extract a subsequence (still
denoted byuk) such that

∇uk ⇀ ∇u weakly inLp(Ω),

uk → u a.e. inΩ.

Since we assumeA(x, η) is convex inη we have (see, for instance, Theorem 1.2 in [Dac89])∫
Ω∩BR

A(x,∇u) 6 lim inf
k→∞

∫
Ω∩BR

A(x,∇uk).

Moreover, the pointwise convergence implies∫
Ω∩BR

Q(x)χ(−1,1)(u) 6 lim inf
k→∞

∫
Ω∩BR

Q(x)χ(−1,1)(uk),

sinceχ(−1,1) is lower semicontinuous, and lettingR → ∞ we obtain

JΩ(u) 6 lim inf
k→∞

JΩ(uk).

(ii) The Hölder regularity of minimizers follows from a theorem of Giaquinta and Giusti
[GG82]. 2

Since the functionalJΩ is not convex, there could be more than one minimizer. We will denote
byMΩ the class of all constrained minimizers inXΩ . Observe that for anyu ∈ MΩ ,

−1 6 u 6 1 a.e. inΩ.

Indeed, otherwise max(min(u,1),−1) would have less energy.
Now we turn to the PDE properties of minimizers.

PROPOSITION3.2 Letu ∈ MΩ . Then in the weak (distributional) sense

div a(x,∇u) = 0 in {−1< u < 1}. (3.2)

Moreover, on thefree boundaryΓ = ∂{−1< u < 1} ∩Ω a Bernoulli-type condition

b(x,∇u) = Q(x) (3.3)

is satisfied in a certain weak sense, whereb(x, η) := a(x, η) · η − A(x, η).

Observe that the structural conditions imply thatc|η|p 6 b(x, η) 6 C|η|p.

Proof. We leave the standard proof of (3.2) to the reader. For the interpretation of the condition
(3.3) we refer to [AC81]. 2

The free boundaryΓ in the proposition above consists of two parts

Γi = ∂{−1< u < 1} ∩ {u = i}, i = −1,1,

that are well separated on every compact subset ofΩ, by Hölder regularity ofu. The following
simple observation will be extensively used throughout the paper.
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LEMMA 3.3 Suppose that in a subdomainD ⊂⊂ Ω the minimizeru does not take the value 1
(respectively−1). Then the functionv = u + 1 (respectivelyv = 1 − u) is an absolute minimizer
of the functional

FD(v) =

∫
D

[A(x,∇v)+Q(x)χ(0,∞)(v)]. (3.4)

We conclude this section with a remark about rescalings.
We will use two kinds of rescalings. The first kind preserves the gradient and is suitable for

proving the Lipschitz regularity of minimizers. It is better formulated in terms of the functionalF .
Namely, letv be a minimizer ofFΩ andx0 ∈ Rn. Then the function

vε(x) =
1

ε
v(x0 + εx)

is a minimizer of ∫
Ω1/ε

[Aε(x,∇v)+Qε(x)χ(0,∞)(v)],

whereΩ1/ε = Ωx0,1/ε = {x : x0 + εx ∈ Ω} and

Aε(x, η) = A(x0 + εx, η), Qε(x) = Q(x0 + εx). (3.5)

Note thatAε andQε satisfy the same (if not better) structural conditions asA andQ.
The second kind of rescalings preserves the value of the function. We will need it in the proof

of Theorem 2.3 (see the end of Section 6). We state it in terms of the functionalJ . Namely, ifuε is
a minimizer of ∫

Ω

[A(x, ε∇u)+Q(x)χ(−1,1)(u)]

Then the function
wε(x) = uε(x0 + εx) (3.6)

is a minimizer of ∫
Ω1/ε

[Aε(x,∇w)+Qε(x)χ(−1,1)(w)],

with Aε andQε as in (3.5).

4. Lipschitz regularity

In this section we prove that every constrained minimizeru of J is in fact Lipschitz.

THEOREM 4.1 Letu ∈ MΩ . Thenu is Lipschitz continuous. Moreover, givenK ⊂⊂ Ω, the
Lipschitz norm ofu on K depends only on the structural constants and the distance betweenK

and∂Ω.

The idea is to show thatu grows at most linearly away from the free boundary

Γ = ∂{−1< u < 1}.

The Hölder regularity ofu implies that the two parts of the free boundary,Γ±1, are well separated
onK in the sense that

dist(Γ−1 ∩K,Γ1 ∩K) > δ0 > 0.
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Let now x0 ∈ Γ ∩ K. Without loss of generality we may assume thatx0 ∈ Γ−1 ∩ K. Then for
ε < min(δ0,dist(K, ∂Ω)), the ballBε(x0) is contained inΩ and does not intersectΓ1. Hence the
functionv = u+ 1 will be a minimizer ofFBε(x0), as defined in Lemma 3.3.

The next lemma is the main step in establishing Theorem 4.1. The proof is based on that of
Lemma 3.2 in [DP03].

LEMMA 4.2 Letv be a bounded absolute minimizer ofFBε(x0) with v(x0) = 0. Then

sup
Bε/4(x0)

v 6 Cε (4.1)

and
|∇v(x0)| 6 C, (4.2)

whereC > 0 is a universal constant.

Proof. Observe that (4.2) is a consequence of (4.1) and the interior gradient estimates (see e.g.
[Tol84]). Moreover, by the rescaling arguments at the end of the previous section, it is enough to
consider the caseε = 1 andx0 = 0 to prove (4.1).

Next we argue by contradiction. Indeed, assume that the estimate (4.1) is false forε = 1. Then
there exists a sequence of bounded absolute minimizersvk of the functionals

Fk(v) =

∫
[Ak(x,∇v)+Qk(x)χ(0,∞)(v)]

in B1, k = 1,2, . . . , such that
max
B1/4

vk(x) > k.

Set
dk(x) = dist(x, {vk = 0}) in B1

and define
Ok = {x ∈ B1 : dk(x) 6 (1 − |x|)/3}.

Observe thatB1/4 ⊂ Ok. In particular

mk := sup
Ok
(1 − |x|)vk(x) > 3

4 maxB1/4
vk(x) >

3
4k.

Sincevk is bounded (for fixedk), we have(1 − |x|)vk(x) → 0 as|x| → 1, and thereforemk will
be attained at some pointxk ∈ Ok:

(1 − |xk|)vk(xk) = max
Ok
(1 − |x|)vk(x). (4.3)

Clearly,

vk(xk) =
mk

1 − |xk|
> mk >

3

4
k.

Sincexk ∈ Ok, by the definition we have

dk := dk(xk) 6 (1 − |xk|)/3. (4.4)
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Let nowyk ∈ ∂{vk > 0} ∩ B1 be such that

|yk − xk| = dk. (4.5)

Then (4.4)–(4.5) imply that

B2dk (yk) ⊂ B1 and Bdk/2(yk) ⊂ Ok.

In particular, forz ∈ Bdk/2(yk),

1 − |z| > (1 − |xk|)− |xk − z| > (1 − |xk|)− (3/2)dk > (1 − |xk|)/2.

This, in conjunction with (4.3), implies that

max
Bdk/2(yk)

vk 6 2vk(xk).

Next, sinceBdk (xk) ⊂ {vk > 0}, vk satisfies

div ak(x,∇vk) = 0 inBdk (xk)

with ak = DηA
k. By the Harnack inequality (see Theorem 1.1–1.3 in [Tru67]), there is a constant

c > 0 such that
min

B3dk/4(xk)

vk > cvk(xk).

In particular,
max

Bdk/4(yk)

vk > cvk(xk).

Consider now the rescalings

wk(x) =
vk(yk + (dk/2)x)

vk(xk)
.

From the properties ofvk above, we obtain

max
B1

wk 6 2, max
B1/2

wk > c > 0, wk(0) = 0. (4.6)

Moreover,wk is an absolute minimizer of

F̃k(w) =

∫
[Ãk(x,∇w)+ Q̃k(x)χ(0,∞)(w)]

in B1 with

Ãk(x, η) = ε
p
kA

k(yk + (dk/2)x, η/εk),

Q̃k(x, µ) = ε
p
kQ

k(yk + (dk/2)x), εk = dk/(2vk(xk)).

Then over a subsequence
ãk(x, η) → a0(η), x ∈ B1,

uniformly for η in compact subsets ofRn, whereak = DηA
k anda0 satisfies the same structural

conditions asak. Moreover, we have

0 6 Qk(x) 6 Qmaxε
p
k → 0.
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Let nowvk be such thatvk − wk ∈ W
1,p
0 (B3/4) and divak(x,∇vk) = 0 in B3/4, whereak(x, η) =

DhA
k(x, η). Then from Lemma A.1 in the Appendix we have

‖∇(wk − vk)‖Lp(B3/4)
6 C(εk) → 0. (4.7)

Moreover, from a theorem of Giaquinta and Giusti [GG82],wk andvk are uniformlyCα in B5/8.
Thus, we can extract subsequences (still denoted bywk andvk) such thatwk → w0 andvk → v0
uniformly onB5/8. On the other hand,vk satisfy uniformC1,α estimates onB5/8 (see [Tol84]).
Hence, we can assume that the convergencevk → v0 is actually inC1,β onB5/8 andv0 solves

div a0(∇v0) = 0 inB5/8.

We next observe that (4.7) implies thatw0 = v0 + c in B5/8. Hence, also

div a0(∇w0) = 0 inB5/8.

Sincew0 > 0 andw0(0) = 0, from the Harnack inequality (see [Tru67]) we deduce thatw0 = 0 in
B5/8. On the other hand, (4.6) implies

max
B1/2

w0 > c > 0,

which is a contradiction.
The lemma is proved. 2

Proof of Theorem 4.1. Lemma 4.2 implies that|∇u| is bounded onΓ ∩ K and we need to prove
the boundedness also in{−1 < u < 1} ∩ K. So, fix a pointx0 ∈ K with −1 < u(x0) < 1 and
consider the following two cases:

1. dist(x0, Γ ) > δ/2,
2. dist(x0, Γ ) 6 δ/2,

where
δ = dist(K, ∂Ω) > 0.

In the former case we have|∇u(x0)| 6 C/δ by the interior gradient estimates (see [Tol84]), and
in the latter case we argue as follows. Consider the ballBε(x0) with ε = dist(x0, Γ ) and lety0 ∈

Γ ∩ ∂Bε(x0). Then dist(y0, ∂Ω) > δ/2 and by Lemma 4.2 we have|∇u(y0)| 6 C. Without loss of
generality we may also assume thaty0 ∈ Γ−1. We claim then

c0 := inf
Bκε(x0)

(u+ 1) 6 Cε,

where the constant 0< κ < 1 will be specified below and will depend only on the structural
constants ofA. Define

ψκ(s) = s + Cκs
2, Cκ = κ/(1 − κ)2.

Thenψκ has the following properties:

ψκ(0) = 0, ψκ(1 − κ) = 1, ψκ(0) = 1, ψ ′′

k (s) = 2Cκ .

Consider now the function

φ(x) = c0ψκ(1 − |x − x0|/ε) in Uκ := Bε(x0) \ Bκε(x0).
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Then, using the strict convexity ofψκ , (H2) and(H4), we obtain

div a(x,∇φ) > 0 inUκ

for κ0 < κ < 1 depending only on the structural constants. Moreover,φ 6 u+ 1 on∂Uκ , hence by
the standard comparison principleφ 6 u+ 1 inUκ . Since alsoφ(y0) = u(y0)+ 1 = 0 we obtain

|∇φ(x0)| 6 |∇u(y0)|,

hence
c0ψ

′
κ(0)/ε 6 C

and consequently
c0 6 Cε.

Finally, we observe that by the Harnack inequality (see [Tru67]) we also have

sup
Bκε(x0)

(u+ 1) 6 C inf
Bκε(x0)

(u+ 1) 6 Cε.

Then applying the interior gradient estimate, we conclude the proof of the theorem.2

5. Nondegeneracy

As we have seen in the previous section, a minimizeru ∈ MΩ grows at most linearly near the free
boundaryΓ = ∂{−1< u < 1}. In this section we show that the linear growth is the optimal one.

In order to study the growth ofu nearΓ−1 (or Γ1) we fix a domainD ⊂⊂ Ω in which u does
not take value 1 (respectively−1). Then the functionv = u + 1 (respectivelyv = 1 − u) is an
absolute minimizer of the functionalFD.

As a simple corollary from Theorem 4.1 we obtain the following statement.

LEMMA 5.1 There exists a constantC depending only on the structural constants and dist(D, ∂Ω)

such that for any absolute minimizerv of FD,

1

r
−

∫
∂Br

v > C implies v > 0 inBr

for any ballBr ⊂ D.

Proof. Indeed, otherwiseBr ⊂ D contains a free boundary point and then, by Theorem 4.1,u 6 Cr

on ∂Br , a contradiction. 2

Next we prove a key nondegeneracy lemma.

LEMMA 5.2 For anyγ > p− 1 and 0< κ < 1 there existsc > 0 depending only onκ, γ and the
structural constants such that for every absolute minimizerv of FD and for any ballBr ⊂ D,

1

r

(
−

∫
Br

vγ
)1/γ

< c implies v = 0 inBκr .

In particular, ifBr ⊂ D andBκr ∩ ∂{v > 0} 6= ∅, then

sup
∂Br

v > cr.
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Proof. Without loss of generality we may consider the caser = 1. Set

ε = sup
B√

κ

v.

By the weak Harnack inequality for subsolutions (see Theorem 1.3 in [Tru67]), we have

ε 6 C

(
−

∫
B1

vγ
)1/γ

.

Hence, ifc is small, so isε. Letφ(x) = φκ(x) be the solution of

div a(x,∇φ) = 0 inB√
κ − Bκ , φ = 0 on∂Bκ , φ = 1 on∂B√

κ

and putφ = 0 onBκ . Seth = εφ in B√
κ . Thenh > v on∂B√

κ andv∗
= min(v, h) is an admissible

function. ThereforeF(v) 6 F(v∗), or, equivalently,∫
B√

κ

[A(x,∇v)+Q(x)χ(0,∞)(v)] 6
∫
B√

κ−Bκ

[A(x,∇v∗)+Q(x)χ(0,∞)(v
∗)].

Hence ∫
Bκ

[A(x,∇v)+Q(x)χ(0,∞)(v)] 6
∫
B√

κ−Bκ

[A(x,∇v∗)− A(x,∇v)]

6
∫
B√

κ−Bκ

a(x,∇v∗) · ∇(v∗
− v)

=

∫
(B√

κ−Bκ )∩{v>v∗}

a(x,∇v∗) · ∇(v∗
− v)

= −

∫
∂Bk

(v∗
− v)a(x,∇v∗) · ν

=

∫
∂Bκ

va(x,∇h) · ν.

Here in the second step we have used the convexity ofA(x, η) in η (see(H2)). Since also|∇h| 6 Cε

on ∂Bκ we find that ∫
Bκ

[A(x,∇v)+Q(x)χ(0,∞)(v)] 6 Cεp−1
∫
∂Bκ

v.

On the other hand, using the Fundamental Theorem of Calculus, polar coordinates and the Young
inequality, ∫

∂Bκ

v 6 C

( ∫
Bκ

v +

∫
Bκ

|∇v|

)
6 C

( ∫
Bκ

εQ(x)χ(0,∞)(v)+

∫
Bκ

[A(x,∇v)+Q(x)χ(0,∞)(v)]

)
6 C(1 + ε)

∫
Bκ

[A(x,∇v)+Q(x)χ(0,∞)(v)].

Therefore, ifε is small enough, we obtainv = 0 inBκ . 2
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In light of the result above and Theorem 4.1, we infer the following:

COROLLARY 5.3 There exist constantsc, C > 0 such that ifBr(x) ⊂ {v > 0} ∩ D touches
∂{v > 0} ∩D then

cr 6 v(x) 6 Cr. 2

Theorem 2.1 follows now from this and Theorem 4.1.

6. Density estimates

The purpose of this section is to show that the jet{−1 < u < 1} has a bounded width in the sense
thatBr ∩ {−1 < u < 1} has a Lebesgue measure proportional torn−1 for larger. On the other
hand, the setsBr ∩ {u = ±1} are thick and have Lebesgue measure proportional torn.

LEMMA 6.1 Letu ∈ MΩ . Then, for fixedr1 > 0, there exist constantsr0 andC depending only
on the structural constants andr1 such that

JBr (u) 6 Crn−1

for anyr > r0 providedBr+r1 ⊂ Ω.

Proof. Let h be a smooth function so thath|Br−1 = −1 andh|∂Br = 1. Letu∗
= min{u, h}. Then

JBr (u) 6 JBr (u∗) 6 C

∫
Br−Br−1

(|∇u|p + |∇h|p + rn−1)

6 C

∫
Br−Br−1

(|∇u|p + rn−1).

Let us coverBr − Br−1 with ballsB1, . . . ,BN of radius 1+ r1/2 with N 6 Crn−1. Then, by a
Caccioppoli type inequality (see [HKM93]), we infer that∫

Br−Br−1

|∇u|p 6
N∑
i=1

∫
Bi

|∇u|p 6 C

N∑
i=1

∫
2Bi

|u|p 6 Crn−1. 2

LEMMA 6.2 Letu ∈ MΩ . Fix θ0 ∈ [0,1) and letθ ∈ [−θ0, θ0]. Assume that

Ln({u > θ} ∩ Bρ) > µ0 > 0.

Then, for fixedr1 > 0, there exist positive constantsc andr0 depending only onr1, θ0, ρ andµ0
and the structural constants such that

Ln({u > θ} ∩ Br) > crn

for anyr > r0 providedBr+r1 ⊂ Ω.
An analogous statement holds for the sublevel set{u < θ}.

Proof. Let h be a smooth function so thath|Br−1 = −1 andh|∂Br = 1. Let u∗
= min{u, h} and

β = min{u− u∗,1 + θ}. Define also

V(r) = Ln({u > θ} ∩ Br), A(r) = Ln ({−1< u 6 θ} ∩ Br) .
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We would like to prove that

[V(r − 1)](n−1)/n
+A(r − 1) 6 C(V(r)− V(r − 1)+A(r)−A(r − 1)). (6.1)

Indeed, from (6.1) and Lemma A.2,

V(ρ + k)+A(ρ + k) > c(k + 1)n

for any natural numberk. This and Lemma 6.1 would imply Lemma 6.2.
Let us now address the proof of (6.1). First of all, by definition ofβ,∫

Br

|β|
2n/(n−1) >

∫
Br−1∩{u>θ}

|β|
2n/(n−1)

= (1 + θ)2n/(n−1)Ln(Br−1 ∩ {u > θ}).

Therefore, by the Sobolev inequality applied toβ2 and then by the Young inequality with 1/p +

1/q = 1 we obtain

[V(r − 1)](n−1)/n 6 C

∫
Br∩{u−u∗61+θ}

|β| |∇β|

6 C

(
K

∫
Br∩{u−u∗61+θ}

|∇(u− u∗)|p +
1

K

∫
Br∩{u−u∗61+θ}

|u− u∗
|
q

)
.

HereK > 0 is a free parameter that will be conveniently chosen in what follows. By our hypotheses
on the functional and the minimality property ofu, we deduce from the above estimate that

[V(r − 1)](n−1)/n 6 C

(
K

∫
Br

A(x,∇(u− u∗))+
1

K

∫
Br∩{u−u∗61+θ}

|u− u∗
|
q

)
6 C

(
K

∫
(Br−Br−1)∩{u6=−1}

[A(x,∇(u− u∗))− A(x,∇u)+ A(x,∇u∗)]

+

∫
Br

Q(x)[χ(−1,1)(u
∗)− χ(−1,1)(u)] +

1

K

∫
Br∩{u−u∗61+θ}

|u− u∗
|
q

)
.

By our assumptions on the functional and the gradient estimates in Theorem 4.2, we have∫
(Br−Br−1)∩{u 6=−1}

[A(x,∇(u− u∗))+ A(x,∇u∗)] 6 CLn((Br − Br−1) ∩ {u 6= −1}).

Thus

[V(r − 1)](n−1)/n 6 C

(
K

∫
Br

Q(x)[χ(−1,1)(u
∗)− χ(−1,1)(u)] +

1

K

∫
Br∩{u−u∗61+θ}

|u− u∗
|
q

)
+ CLn((Br − Br−1) ∩ {u 6= −1}).

To estimate the remaining two terms above, we split the domain of integration. Namely, inBr−1,
we haveu∗

= −1 and thereforeχ(−1,1)(u
∗) = 0. Thus, inBr−1 we are left with

−K

∫
Br−1

Q(x)χ(−1,1)(u)+
1

K

∫
Br−1∩{−1<u6θ}

|u+ 1|
q 6 −A(r − 1),
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by choosingK suitably large. On the other hand, inBr − Br−1, we are left with the term

C

∫
(Br−Br−1)∩{u6=−1}

(Q(x)[χ(−1,1)(u
∗)− χ(−1,1)(u)] + |u− u∗

|
q)

6 CLn((Br − Br−1) ∩ {u 6= −1}).

From these estimates, (6.1) readily follows. 2

LEMMA 6.3 Letu ∈ MΩ . Assume thatx ∈ {−1 < u < 1}. Then, for fixedr1 > 0, there exist
positiver0 depending only on the structural constants andr1 such thatu takes both the values 1 and
−1 inBr0(x), providedBr0+r1(x) ⊂ Ω.

Proof. By Lemma 6.1,u takes either the value−1 or +1 in Br0/2(x); say it takes the value−1.
If u does not assume the value 1 inBr0(x), using the linear growth from the free boundary (see
Lemma 5.2), we have

2 > sup
Br0(x)

(u+ 1) > cr0 > 3

by choosingr0 large enough, which is a contradiction. 2

We are now in a position to improve the previous density estimates:

LEMMA 6.4 Letu ∈ MΩ . Assume thatx ∈ {−1 < u < 1}. Then, for fixedr1 > 0, there exist
positiver0 andc depending only on the structural constants andr1 such that

JBr (x)(u) > crn−1

for anyr > r0 providedBr+r1(x) ⊂ Ω.

Proof. By Lemma 6.3, the uniform continuity ofu and Lemma 6.1, we have

Ln(Br(x) ∩ {u > 9/10}) > crn, Ln(Br(x) ∩ {u < −9/10}) > crn.

Let a be the average ofu in Br(x). If a 6 0, then∫
Br (x)

|u− a| >
∫
Br (x)∩{u>9/10}

(u− a) >
9

10
Ln(Br(x) ∩ {u > 9/10}) > crn.

Analogously, ifa > 0, then∫
Br (x)

|u− a| >
9

10
Ln(Br(x) ∩ {u < −9/10}) > crn.

So, in any case, the Poincaré and Young inequalities yield

crn−1 6
1

r

∫
Br (x)

|u− a| 6 C

∫
Br (x)

|∇u| 6 CJBr (x)(u). 2

Combining the density estimates above, we immediately obtain the proof of Theorem 2.2.
Besides, these estimates also imply Theorem 2.3. Indeed, in the notation of Theorem 2.3, if one
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assumes the claim to be false, there would existδ > 0 and an infinitesimal sequenceεn for which,
say,Bδ(xn) ⊂ E for suitablexn ∈ {−1 < uεn < 1}. But then, consideringwε(x) := uε(εx) (see
the end of Section 3 for the rescaling argument) and applying the density estimates we would get,
after scaling back touε,

Ln(Bδ/2(xn) ∩ {uεn = −1}) > cδn

for somec > 0. But then ∫
Bδ/2(xn)

|uεn − u0| > 2cδn,

contradicting the hypothesis. This proves Theorem 2.3.

7. Geometric Lemma

We show in this section that for a minimizeru of JΩ the setsB ∩ {u = ±1}, whereB is a large
ball centered in the jet{−1< u < 1}, contain balls proportional toB. This is a consequence of the
density estimates in Theorem 2.2 and the following result, known as the Geometric Lemma.

LEMMA 7.1 (Geometric Lemma) Letβ ⊂ E ⊂ Rn, and letµ andν be Radon measures onRn.
Takex0 ∈ β. Fix r > 0. Assume that there existsδ′ ∈ (0,1/10] such that:

(i) for all x ∈ Br(x0) and% ∈ [δ′r, r/10],

µ(B%(x)) 6 C%n;

(ii) for all x ∈ β ∩ Br(x0) and% ∈ [δ′r, r/10]

ν(B%(x)) > c%n−1
;

(iii) µ(E ∩ Br(x0)) > crn;
(iv) ν(B2r(x0)) 6 Crn−1.

Then there existsδ, depending only onn and on the constants involved in (i)–(iv) above, so that, if
δ′ 6 δ, we can findx̄ ∈ Br(x0) such that

Bδr(x̄) ⊂ (E − β) ∩ B2r(x0). (7.1)

Proof. For a complete proof see [Val01, Lemma 6.1]. Here we just outline the rough idea of the
proof. We first coverβ with balls of radiusδr; sinceβ behaves like an(n − 1)-dimensional set,
we needO(1/δn−1) such balls to coverβ. We then extend this cover to the whole setE; sinceE
behaves like ann-dimensional set, we needO(1/δn) such balls to coverE. Therefore, ifδ is small
enough, there is at least one ball in the cover ofE that does not touchδ. 2

Here is an application of the Geometric Lemma to our case:

PROPOSITION7.2 Let u ∈ MΩ . Then, for any fixedr1 > 0, there exist positive constantsκ
andr0, depending only on the structural constants andr1, such that for anyx ∈ {−1 < u < 1} and
anyr > r0, there existz1 andz2 with

Bκr(z1) ⊂ {u = 1} ∩ Br(x) and Bκr(z2) ⊂ {u = −1} ∩ Br(x),

providedB2r+r1(x) ⊂ Ω.

This follows easily by applying the Geometric Lemma to the setsE := {u > −1} or E :=
{u < 1}, andβ := {|u| < 1}, with µ := Ln andν(B) := JB(u). Notice that the hypotheses of the
Geometric Lemma are satisfied in view of the density estimates (see Theorem 2.2).
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8. Plane-like minimizers

We now prove Theorem 2.4. We considerω ∈ Qn
− {0} (the caseω ∈ Rn − Qn then follows by

uniform approximation). We denote byMω
M the set of all periodic constrained minimizers in the

strip
SωM := {x ∈ Rn : x · ω ∈ [0,M|ω|]}.

Whenω ∈ Qn, we can recover compactness by making some identifications in the space. Namely,
we consider the following relation∼ induced byω:

x ∼ y iff x − y = k ∈ Zn with k · ω = 0. (8.1)

We denote bỹSωM = SωM/∼ the quotient space of this relation (which is topologically equivalent to
the product of an(n− 1)-dimensional torus and a real interval).

In what follows we consider the functionalJ on functionsu periodic with respect to the
identification∼ in SωM , and we letJ

S̃ωM
be the integral over a fundamental region with respect

to the relation∼.
We also set

Xω
M := {u ∈ L1

loc(S̃
ω
M) : ∇u ∈ Lp(S̃ωM),

u(x) = 1 onx · ω = 0 andu(x) = −1 onx · ω = M|ω|}. (8.2)

In what follows, we assumeM > 10, in order to avoid degeneracy caused by “too thin” strips.
First of all, we notice the following elementary fact: for anyu, v ∈ L1

loc(S̃
ω
M) with ∇u,∇v ∈

L2(S̃ωM), one has

JSωM (u)+ JSωM (v) = JSωM (min{u, v})+ JSωM (max{u, v}). (8.3)

Therefore, ifu, v ∈ Mω
M , then min{u, v},max{u, v} ∈ Mω

M .
Now, we prove a geometric property concerning the global behavior of the minimizers. If

k ∈ Rn, we denote byTk the translation by the vectork. Also, we setTku(x) := u(x − k).

DEFINITION 8.1 LetE ⊂ Rn and$ ∈ Rn. We say thatE has theBirkhoff propertywith respect
to the vector$ if:

• for anyk ∈ Zn so thatk ·$ 6 0, TkE ⊂ E;
• for anyk ∈ Zn so thatk ·$ > 0, TkE ⊃ E.

It follows from the above definition that ifE ⊂ Rn satisfies the Birkhoff property with respect
toω, then there exists a constant%, depending only onn, such that ifC(E) contains a ball of radius%,
thenC(E) contains a strip of width 1 that intersects the ball.

It is convenient to introduce the notion ofminimal minimizer. Following [CdlL01] and [Val01],
we define

uωM(x) := min
u∈Mω

M

u(x).

By a standard compactness argument, the reader may convince himself that the definition is
legitimate. Let us now show that the level sets of the minimal minimizer have the Birkhoff property.

PROPOSITION8.2 Letϑ ∈ R. Then the set{uωM > ϑ} has the Birkhoff property with respect toω.
Namely:

• if k ∈ Zn andk · ω 6 0, then{uωM > ϑ} ⊃ {TkuωM > ϑ};
• if k ∈ Zn andk · ω > 0, then{uωM > ϑ} ⊂ {TkuωM > ϑ}.
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This follows easily from (8.3) and the definition of minimal minimizer, by looking at
min{uωM , Tku

ω
M} and max{uωM , Tku

ω
M}.

We now show that the minimal minimizer enjoys thedoubling property(also known in the
literature asno-symmetry-breaking property). It states that the minimal minimizer defined in a
set whose period is a multiple of the original one still has the original period. In some sense, the
doubling property forces the minimal minimizers to exhibit the same periodicity as the one induced
by the functional. More precisely:

PROPOSITION8.3 Letν1, . . . , νn−1 ∈ N − {0}. Let ∼ be the equivalence relation defined in (8.1).
Assume that the(n − 1)-dimensional lattice induced by∼ is spanned byk∗

1, . . . , k
∗

n−1 ∈ Zn, i.e.
anyk ∈ Zn such thatω · k = 0 can be written as

k =

n−1∑
i=1

mik
∗

i

for suitablem1, . . . , mn−1 ∈ Z. Consider the equivalence relation

x ' y iff x − y =

n−1∑
i=1

miνik
∗

i

for suitablem1, . . . , mn−1 ∈ Z. Let u and v be the minimal minimizers inSωM/∼ and SωM/',
respectively (constrained to be 1 whenω · x = 0, and−1 whenω · x = M|ω|). Thenv is also
periodic with respect to∼, i.e.

v(x + k) = v(x) (8.4)

for anyk ∈ Zn such thatω · k = 0. Also,

v = u. (8.5)

Proof. Since (8.4) and the definition of minimal minimizer directly imply (8.5), we just consider
the proof of (8.4). The periodicity induced by' onv reads

v
(
x +

n−1∑
i=1

miνik
∗

i

)
= v(x)

for anym1, . . . , mn−1 ∈ Z and anyx ∈ Rn, or equivalently,

v(x +miνik
∗

i ) = v(x)

for anymi ∈ Z and anyx ∈ Rn. We want to prove that

v
(
x +

n−1∑
i=1

mik
∗

i

)
= v(x)

for anym1, . . . , mn−1 ∈ Z and anyx ∈ Rn, or equivalently, that

v(x + k∗

i ) = v(x) (8.6)



72 A . PETROSYAN & E. VALDINOCI

for anyx ∈ Rn. Let us do the casei = 1, the others being analogous. Let

v∗(x) := min{v(x), v(x + k∗

1), v(x + 2k∗

1), . . . , v(x + (ν1 − 1)k∗

1)}

= min{v(x),min{v(x + k∗

1),min{v(x + k∗

2), . . .

. . . ,min{v(x + (ν1 − 2)k∗

1), v(x + (ν1 − 1)k∗

1)}}}}.

Sincev∗ satisfies the same constraints and periodicity asv, it is also a minimizer, thanks to (8.3).
From the fact thatv is the minimal minimizer we thus inferv 6 v∗; hence, asv∗ 6 v by
construction, (8.6) is proved. 2

This doubling property will play a role in Proposition 8.5 below.
We now show that constrained minimizers are indeed unconstrained and classA, provided that

the strip is wide enough. In order to clearly state the next result, we introduce the following notation.
Letm 6 M and define

Sωm,M := {x ∈ Rn : x · ω ∈ [m|ω|,M|ω|]}.

Set also

Xω
m,M := {u ∈ L1

loc(S̃
ω
m,M) : ∇u ∈ Lp(S̃ωm,M),

u(x) = 1 onx · ω = m|ω| andu(x) = −1 onx · ω = M|ω|}.

We also denote byMω
m,M the set of all periodic constrained minimizers in the stripSωm,M . Of course,

SωM = Sω0,M , Xω
M = Xω

0,M andMω
M = Mω

0,M . Also, we define the minimal minimizer

uωm,M(x) := min
u∈Mω

m,M

u(x).

To simplify the notation, we also setuωM := uω0,M .
We now prove that the minimal minimizer constrained in a strip wide enough is indeed

unconstrained.

PROPOSITION8.4 There existsM0 > 0, depending only on the structural constants, such that if
M > M0, thenuωM = uω

−a,M+b for anya, b > 0.

Proof. Let u = uω
−a,M+b. Let S be a strip of width 3 around the hyperplaneL := {x · ω = M/2}.

We now prove that there exists a stripH of width 1 parallel to the constraints and at distance from
L universally bounded, on which

either u = −1 or u = 1. (8.7)

For that, we may assume that there exists a pointx∗
∈ S so thatu(x∗) ∈ (−1,1), otherwise (8.7) is

obviously true. Then from Proposition 7.2 there exists a ball (whose radius is large ifM is large),
contained in{u = −1} = C{u > −1}. Hence, we obtain a strip of width 1 intersecting the ball and
contained in{u = −1}. This finishes the proof of (8.7).

Sinceu is the minimal minimizer, it cannot be thatu = 1 in S, otherwise we could lower it.
Henceu = −1 in S and thus, for anya, b > 0,

uω
−a,M+b ∈ Mω

−a,M . (8.8)



BERNOULLI-TYPE MINIMIZERS 73

Roughly speaking, this says that “the upper constraint has become irrelevant”. We now show that
the lower constraint is not necessary either. Indeed, given anyv ∈ Xω

−a,M+b, we can translate it

up by an integer vector to aw ∈ Xω

0,M+b̂
for a suitableb̂ > b. By (8.8), the energy ofw (which

agrees with the one ofv and is not less than that ofuω
M+b̂

) is not less than that ofuω0,M . Therefore a

minimizer inXω
0,M a minimizer inXω

−a,M+b. 2

We now show that the minimal minimizer in a wide enough strip is indeed a classA minimizer.

PROPOSITION8.5 There exists a universal constantM0 so that ifM > M0, thenuωM is a classA
minimizer.

Proof. Given a compact perturbation, by the doubling property (see Proposition 8.3), we can always
consideruωM to be periodic with a period larger than the diameter of the perturbation and (in view
of Proposition 8.4) as a minimizer in a strip of width greater than the size of the perturbation.2

This completes the proof of(T1) in Theorem 2.4: indeed, the case of irrational frequency can be
easily inferred from the rational frequency case by a limiting argument, by noticing thatM0 does
not depend on the frequency.

We now prove(T2) of Theorem 2.4. We will keep on assuming thatω ∈ Qn
− {0}.

PROPOSITION8.6 There exists a universal constantM0 so that ifM > M0, thenMω
M ⊂

Mω
−a,M+b for anya, b > 0.

Proof. Takeu ∈ Mω
M andv ∈ Xω

−a,M+b and consider the minimal minimizeruωM in S̃ωM . Since
u, uωM ∈ Mω

M ,
J
S̃ωM
(uωM) = J

S̃ωM
(u).

Since|u| = 1 = |uωM | whenx · ω 6 0 orx · ω > M,

J
S̃ωM
(u) = J

S̃ω
−a,M+b

(u) and J
S̃ωM
(uωM) = J

S̃ω
−a,M+b

(uωM).

Also, by Proposition 8.4,uωM still minimizesJ in S̃ω
−a,M+b, and so

J
S̃ω

−a,M+b
(v) > J

S̃ω
−a,M+b

(uωM).

Collecting the relations above yieldsJ
S̃ω

−a,M+b
(v) > J

S̃ω
−a,M+b

(u). 2

PROPOSITION8.7 There exists a universal constantM0 so that ifM > M0, then any constrained
minimizeru ∈ Mω

M is a classA minimizer.

Proof. LetB ⊂ Rn be a ball and takeϕ ∈ C∞

0 (B). Let S be a strip obtained from̃SωM by enlarging
its width and by repeating its periodicityν times in such a way that it well contains the ballB (of
course, if we repeat the periodicityνi times in theith direction, we haveν = ν1 · · · νn−1 ∈ N−{0}).
Hence, ifv enjoys the periodicity induced by∼, i.e. if v(x) = v(x + k) wheneverk · ω = 0, we
have

JS(v) = νJ
S̃ωM
(v).

Let now u ∈ Mω
M and consider the minimal minimizeruωM . By the doubling property (see

Proposition 8.3) and Proposition 8.4,uωM still minimizesJ in S, whence

JS(uωM) 6 JS(u+ ϕ).



74 A . PETROSYAN & E. VALDINOCI

Also, since bothu anduωM are minimizers inS̃ωM ,

J
S̃ωM
(u) = J

S̃ωM
(uωM).

Moreover,u = u+ ϕ in S − B. Therefore, by the relations above,

JB(u+ ϕ)− JB(u) = JS(u+ ϕ)− JS(u)
> JS(uωM)− JS(u) = νJ

S̃ωM
(uωM)− νJ

S̃ωM
(u) = 0. 2

Thus, (T2) in Theorem 2.4 follows from Propositions 8.6 and 8.7. This completes the proof of
Theorem 2.4.

A. Appendix

In the proof of Lemma 4.2 we have used an approximation of minimizers ofF with solutions of the
homogeneous equation diva(x,∇u) = 0. Namely, let

FΩ(w) =

∫
Ω

[A(x,∇w)+Q(x)χ(0,∞)(w)],

whereA(x, η) anda(x, η) = DηA(x, η) satisfy(H1)–(H6) and

0 6 Q(x) 6 ε.

A consequence of conditions(H1)–(H3) is the following useful inequality:

(a(x, η)− a(x, η′)) · (η − η′) > λ

{
|η − η′

|
2(|η| + |η′

|)p−2, 1< p 6 2,
|η − η′

|
p p > 2,

(A.1)

(see, e.g., [Tol84]).

LEMMA A.1 Let w ∈ W1,p(B1) be an absolute minimizer ofFB1. Let alsowh ∈ W1,p(B3/4)

satisfy
div a(x,∇wh) = 0, wh − w ∈ W

1,p
0 (B3/4).

Then
‖w − wh‖W1,p(B3/4)

6 Cεα/p‖w‖
1−α
Lp(B1)

with α = min(1, p/2), whereC0 depends only on the structural constants ofA.

Proof. From the minimality ofw in B = B3/4 we have∫
B

[A(x,∇w)+Q(x)χ(0,∞)(w)] 6
∫
B

[A(x,∇wh)+Q(x)],

or ∫
B

[A(x,∇w)− A(x,∇wh)] 6 ε

∫
B

χ{u=0}.

Set now
ws(x) = sw(x)+ (1 − s)wh(x), 0 6 s 6 1.
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Clearlyw0
= wh andw1

= w. We thus obtain∫
B

[A(x,∇w)− A(x,∇wh)] =

∫ 1

0
ds

∫
B

a(x,∇ws) · ∇(w − wh)

=

∫ 1

0
ds

∫
B

(a(x,∇ws)− a(x,∇wh)) · ∇(w − wh)

=

∫ 1

0

ds

s

∫
B

(a(x,∇ws)− a(x,∇wh)) · ∇(ws − wh),

where in the second step we used the fact that
∫
B
a(x,∇wh) · ∇(w − wh) = 0.

Next, we apply the inequality (A.1). Forp > 2 we obtain∫
B

[A(x,∇w)− A(x,∇wh)] > λ

∫ 1

0

ds

s

∫
B

|∇(ws − wh)|
p

= λ

∫ 1

0
sp−1 ds

∫
B

|∇(w − wh)|
p

and consequently ∫
B

|∇(w − wh)|
p 6 Cε

∫
B

χ{u=0}. (A.2)

In the case 1< p 6 2 we have∫
B

[A(x,∇w)− A(x,∇wh)] > λ

∫ 1

0

ds

s

∫
B

|∇(ws − wh)|
2(|∇ws | + |∇wh|)

p−2

> c

∫ 1

0
s ds

∫
B

|∇(w − wh)|
2(|∇w| + |∇wh|)

p−2

> c

∫
B

|∇(w − wh)|
2(|∇w| + |∇wh|)

p−2.

On the other hand, using the Hölder inequality, we have∫
B

|∇(w − wh)|
p 6

( ∫
B

|∇(w − wh)|
2(|∇w| + |∇wh|)

p−2
)p/2( ∫

B

(|∇w| + |∇wh|)
p

)1−p/2

,

hence ∫
B

|∇(w − wh)|
p 6 Cεp/2

( ∫
B

χ{w=0}

)p/2( ∫
B1

wp
)1−p/2

, (A.3)

where we have used the estimate
∫
B

|∇wh|
p 6 C

∫
B

|∇w|
p and the Caccioppoli type inequality∫

B

|∇w|
p 6 C

∫
B1

wp

(see [HKM93, Lemma 3.27]). The lemma follows now from (A.2)–(A.3). 2

The following estimate was used in the proof of Lemma 6.2 when applying the recurrence
relationship (6.1).
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LEMMA A.2 Letvk, ak ∈ R satisfyvk > 0,ak > 0,vk−1 +ak−1 6 vk +ak, v0 +a0 > c0 > 0 and

v
(n−1)/n
k−1 + ak−1 6 C(vk − vk−1 + ak − ak−1)

for anyk ∈ N, k > 1, for some positivec0 andC. Then there exists a positivec, depending only on
C andc0, such that

vk + ak > c(k + 1)n (A.4)

for anyk ∈ N.

Proof. First of all, notice that, ifC∗ is large enough,

C∗x + 1 > (1 + x)n, ∀x ∈ [0,1]. (A.5)

Also, if k 6 2CC∗,
vk + ak > v0 + a0 > c0 > c(k + 1)n,

providedc 6 c0/(2CC∗ + 1)n. Hence we can assumek > 2CC∗. We make an iterative argument:
we assume

vk−1 + ak−1 > ckn, (A.6)

and we prove (A.4).
In fact, in order to prove (A.4), by (A.5), it is enough to prove

vk + ak > ckn(C∗/k + 1), (A.7)

since (A.4) then follows from (A.7) applied withx := 1/k.
Hence, we now prove (A.7). From the hypothesis and (A.6), we have

vk + ak >
1

C
(v
(n−1)/n
k−1 + ak−1)+ ckn. (A.8)

Also, using again (A.6), we infer that eithervk−1 > ckn/2 orak−1 > ckn/2.
If vk−1 > ckn/2, then from (A.8),

vk + ak > c(C∗k
n−1

+ kn),

providedC∗ 6 1/(C2(n−1)/nc1/n), which holds ifc is small enough. This proves (A.7) in this case.
On the other hand, ifak−1 > ckn/2, then from (A.8) we get

vk + ak > ckn
(

1

2C
+ 1

)
,

which implies (A.7) sincek > 2CC∗. 2
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