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We consider a Bernoulli-type variational problem and we prove some geometric properties for
minimizers, such as: gradient bounds, linear growth from the free boundary, density estimates,
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1. Introduction

In this paper we study various geometric properties of minimizers of the energy functional

Jg(u)=fQ[A(x,Vu)+Q(x)x<_1,1>(u)]dx, (1.1)

wheres2 is a (possibly unbounded) domainlikf. We assume that (x, ), n € R", behaves a;|”
for some 1< p < oo and thatQ(x) > 0 is uniformly bounded away from zero and infinity (see
below for precise hypotheses).

One can think of the s€t-1 < u < 1} as a jet of fluid in a certain medium and th&iand Q
reflect the underlying physics and geometry. In this interpretatitnthe stream function. In fact,
the minimizers satisfy (in a distributional sense) the equation

diva(x,Vu) =0 in{-1<u <1}, (1.2)

where
a(x,n) == DyA(x,n).

Moreover on thdree boundary
' =d{-1<u<1}Nng
a Bernoulli-type condition (hence the name)
b(x,Vu) = Q(x)

is satisfied in a certain weak sense (see e.g. [AC81]). Héeren) = n - a(x,n) — A(x,n) and
behaves ap;|? under the conditions we impose dnanda.
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56 A. PETROSYAN & E VALDINOCI
The functional7 and its “one-side” analogue (see Lemimg 3.3)

Fo) = /g [AGx, V) + 0() (0100 ()] (1.3)
have been studied earlier in the cases

A, ) =%, A, =, A, ) = n|”

respectively by[[AC81],[[Val01] and [DP03] and we borrow many of the ideas from those papers.
We prove gradient bounds, linear growth from the free boundary, density estimates, uniform
convergence of level sets to a set of minimal “perimeter” (see [Bou90]) and the existence of plane-
like minimizers in periodic media. For the latter two results, we were influenced mosily by [CC95]
and [CdILO1].

We now state explicitly the hypotheses we assume on our functional:

(H1) AeCYR"xR"),aeCR"xR")NCLR" x R" — {0});
A(x,0)=0,a(x,0) =0;

(H2) ¢ - Dya(x.m¢ = Al¢|?n|P~? foranys € R,
in particular,A(x, n) is convex iny;

(H3)  |Dya(x, | < AlnP=%

(H4)  |Dya(x,n)| < Aln|P7Y

(H5)  Ja(x, n)| < AlnlP~Y

(H6)  n-a(x,n) = Alnl?;

(H7) 0 < Omin < 9(x) < Omax

Here and in what follows we assure< A and Qmin < Omax to be strictly positive constants. We
will refer to A, A, Omin, Omax. p andn as thestructural constantsQuantities depending only on
them will be referred asniversal constantddypothesegH1)—-(H5) are needed in order to apply
the interior regularity results of [Tol84]. Under hypothefits), we are also able to employ the
Harnack inequality of [Tru67].

Also, when dealing with global geometric results, we will consider periodic media, i.e. we will
require the following condition:

(H8) A(x,n) =A(x+k,n)andQ(x) = Q(x + k) for anyk € Z".

In what follows, we will takex € L|1OC with Vu € Lﬁ’)c and we will consider several types of
minimizers for the functional/. Namely, if K C R” is a compact domain, we say thatis an
absolute minimizefor 7 in K if Jg (u) < Jk (u + ¢) foranye € C3°(K).

We say that a function in R” is aclassA minimizerif Jx (1) < Jkx (u + ¢) for any compact
domaink C R" and for anyp € C3°(K); i.e., a classA minimizer is an absolute minimizer in any
compact domain.

Also, given a domain2 in R", a subsetr’ C 952 and a function-1 < ug < 1 we consider
the classt’ = Xg 5 ,, Of functions that are equal tp on X' (see @) below). We say thatis a

constrained minimizeif J, (1) < Jg (v) foranyv € X.

2. Main results

Below we state the main results of this paper.
As a first result, we prove uniform gradient bounds and linear growth from the free boundary
for minimizers of [1.3).
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THEOREM2.1 Assume hypothesd$i1){(H7). Let v be a constrained minimizer foF in a

domain £2. Thenw is Lipschitz continuous. Moreover, giveki cc £2, the Lipschitz norm of
v on K depends only on the structural constants and the distance befveem 052. Also, if

B, (x) € K Nn{v > 0} touchesi{v > 0}, then

cr <vx)<Cr

for suitable positive universal constartandC.

This result is an extension of [ACB1], [Val01] arid [DP03], which have considered, respectively,
the casest (x, n) = [n|%, A(x, n) = a;;(x)nin; andA(x, n) = |n|”.
Next, we prove the following density estimates for the level sets of minimizers:

THEOREM2.2 Assume hypothesd$i1)—(H7). Let u be a constrained minimizer fof in a
domain2 andx € {—1 < u < 1}. Then, for fixedr; > 0, there exist positiveg, ¢ and C
depending only on the structural constants ansluch that

"t < T, o) < Cr 7l
LY'Bx)N{u=-1}) > cr and L"(B,(x)N{u=1}) > cr",

for anyr > rg providedB, ;,, (x) CC £2.

Analogous density estimates fax, n) = |n|? andA(x, n) = a;j(x)n;n; have been dealt with
in [CC95] and[[Val01], respectively.
By I'-convergence methods, it has been proved in [Bbu90] that minimizess

T (u) = /[A(x, eVu) + Q(x) x(-1,1 )] (2.1)
converge inLllOC to a functionug which has a minimal “interface” with respect to some weighted
area. Indeed, a consequence of the above density estimates is that level sets colgrge in

THEOREM2.3 Assume hypothesdsi1)(H7). Let u, be an absolute minimizer of (2.1) in a
bounded domaitD. Assume that, as — 0, u, converges inL}  to

uo .= XE — XD—-E
for a suitableE ¢ D. Then{|u.| < 1} converges locally uniformly té E.

The latter convergence is understood in the sense that diddt) — 0 uniformly for x €
{lue] < 1}N K foranyK cc D.

Finally, we study the minimizers qQff in periodic media. We prove the existence of class
minimizers in periodic media constrained in a strip of universal width. Also, we show that any
periodic minimizer constrained in a strip wide enough is indeed unconstrained andiclslsse
precisely, we prove:

THEOREM 2.4 Assume hypothes@d1)—(H8). Then there exists a positive universal constdpt
such that:

(T1) Given anyw € R" — {0}, there exists a clas$ minimizeru = u,, for the functional7 for
which the sef|u| < 1} is constrained in the strifx - w € [0, Mp|wl]}.
Furthermore, such enjoys the following property of “quasi-periodicity”:
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— if @ € Q" — {0}, thenu is periodic (with respect to the identification induceddsy
— if w € R"—Q", thenu can be approximated uniformly on compact sets by periodic class
A minimizers.

(T2) If w € Q" — {0} andv is anyw-periodic minimizer of7 constrained in the strif}, =
{x - wel0, M|w|]}, M > My, then itis also an unconstrained classninimizer.

Notice thatMg above isndependenof the frequency.

The paper is organized as follows. In Secfipn 3, we discuss existence of constrained minimizers
and in Sectiof4 we prove optimal Lipschitz regularity (i.e., the first part of Thejorgm 2.1). Jection 5
deals with the linear growth from the free boundary (i.e., the second part of Th€orem 2.1). The
density estimates and the uniform convergence of level sets will be dealt with in ggction 6, where
we also prove Theorenjs 2.2 gnd]2.3. In Sedfion 7 we recall a geometric result, which will be of
use in Sectiofi]8, where the proof of Theorlenj 2.4 will be carried out. The Appendix collects some
utilities. The results in Sectiof$[3-7 will make use only of hypoth@d&$—(H7), while in Sectiof B
we will also make use of hypothegid8).

3. Existence

In this section we show the existence and recall some properties of the constrained minimizers of
the functional

JoW) = /Q[A(x, Vu) + Q%) x(—1,1 )]
over the class of admissible functions
Xo = Xo s uy = {u € Lt (2) : Vu € LP(2) andu = ug on X}. (3.1)

Here$2 is a (possibly unbounded) domainlitt with Lipschitz regular boundargs2, X' is a given
measurable subset 82 with #"~1(X) > 0 andug is a given function with

—1<uo<1, wuoelp(2), VugeLP(R2).

We start by discussing the known existence and regularity of such constrained minimizers.

PrRoOPOSITION3.1 (i) Suppose thayo(u1) < oo for someu; € Xp. Then there exists a
constrained minimizer aff; in the classYy,.

(i) Every constrained minimizes is Holder continuous in the interior a®. Furthermore, given
K cc £2, the Holder exponent O< @ < 1 and theC® norm ofu on K depend only on the
structural constants and the distance betwieanda 2.

Proof. (i) The existence is obtained by a direct method of Calculus of Variations. Our proof below
is the same as in [AC81, Proposition 1.3] (see élso [Val0l, Theorem 9.1]).
Letu; be a minimizing sequence fgr, in the sense that

T (up) — inf Jg.
Xo
Then from(H1), (H2) and(H6) it follows that

A(x,n) = Anl?,
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hence the sequen&a&y; is uniformly bounded ir.? (£2). Moreoveru; — ug is uniformly bounded
in LP(£2 N Bg) (sinceH"~1(X) > 0) for any largeR. Thus we can extract a subsequence (still
denoted by ) such that

Vuip — Vu  weakly inL?(£2),
up —> u  a.e.ins2.

Since we assuma(x, ) is convex inn we have (see, for instance, Theorem 1.2 in [Dac89])

f A(x, Vu) <lim inf/ A(x, Vuy).
22NBg k—o00 22NBg

Moreover, the pointwise convergence implies

/ Q) x(-1,1 () < liminf Q@) x—1.1 (i),
2NBg k=00 Jonpg

sincey(—1,1) is lower semicontinuous, and lettif) — oo we obtain
Je ) < liminf Jg (ug).
k— 00

(i) The Holder regularity of minimizers follows from a theorem of Giaquinta and Giusti
[GG82). O

Since the functional/; is not convex, there could be more than one minimizer. We will denote
by Mg, the class of all constrained minimizersiiy,. Observe that for any € Mg,

-1<u<l ae.inf.

Indeed, otherwise mamin(u, 1), —1) would have less energy.
Now we turn to the PDE properties of minimizers.

PROPOSITION3.2 Letu € Mg. Then in the weak (distributional) sense
diva(x,Vu) =0 in{—-1<u <1} 3.2)
Moreover, on thdree boundary” = 3{—1 < u < 1} N £2 a Bernoulli-type condition
b(x, Vu) = Q(x) (3.3)
is satisfied in a certain weak sense, whigte, n) ;= a(x,n) - n — A(x, n).

Observe that the structural conditions imply that|? < b(x, n) < C|n|?.

Proof. We leave the standard proof ¢f (B.2) to the reader. For the interpretation of the condition
(3:3) we refer to[[ACSL]. O

The free boundary” in the proposition above consists of two parts
I=o{-1l<u<1}n{u=i}, i=-11,

that are well separated on every compact subse? oby Holder regularity ofu. The following
simple observation will be extensively used throughout the paper.
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LEMMA 3.3 Suppose that in a subdomdncc 2 the minimizeru does not take the value 1
(respectively—1). Then the functiom = u + 1 (respectively = 1 — ) is an absolute minimizer
of the functional

Fp) = /D[A(x,Vv) + Q) x(0,00(V)]- (3.4)

We conclude this section with a remark about rescalings.

We will use two kinds of rescalings. The first kind preserves the gradient and is suitable for
proving the Lipschitz regularity of minimizers. It is better formulated in terms of the functignal
Namely, letv be a minimizer ofF; andxg € R”. Then the function

ve(x) = ;—Lv(xo +&x)

is a minimizer of
/ [As(xv Vv) + QS(X)X(O,OO)(U)]»
£21/¢

Where.Ql/g = QXO’]_/S ={x:xo+e¢ex € 2}and

Ag(x,n) = Alxo+ex,n), Qe(x) = Q(xo + £x). (3.5)

Note thatA, and Q. satisfy the same (if not better) structural conditiongiaend Q.

The second kind of rescalings preserves the value of the function. We will need it in the proof
of Theorenj 2.8 (see the end of Sec{i¢n 6). We state it in terms of the functionédmely, ifu, is
a minimizer of

/Q[A(X, eVu) + Q(x) x(-1,1 )]

Then the function
we (x) = ug(xo + £x) (3.6)
is a minimizer of
/ [Ae(x, Vw) + Qs (x) x(—1,1(w)],
£21/¢

with A, andQ, as in [3.5).

4. Lipschitz regularity
In this section we prove that every constrained minimizef 7 is in fact Lipschitz.

THEOREM4.1 Letu € Mg. Thenu is Lipschitz continuous. Moreover, giveki cC €2, the
Lipschitz norm ofu on K depends only on the structural constants and the distance be&veen
andas2.

The idea is to show that grows at most linearly away from the free boundary
I'=90{-1<u <1}

The Holder regularity ofu implies that the two parts of the free boundalfy,;, are well separated
on K in the sense that
distI_1NK, IMNK)>é8 >0.
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Let nowxg € I' N K. Without loss of generality we may assume thgte I_1 N K. Then for
& < min(8p, dist(K, 382)), the ball B, (xg) is contained inf2 and does not intersec¢t. Hence the
functionv = u + 1 will be a minimizer ofFp, (»y), as defined in Lemnja 3.3.

The next lemma is the main step in establishing Thedrem 4.1. The proof is based on that of
Lemma 3.2 in[[DPO03].

LEMMA 4.2 Letv be a bounded absolute minimizer®g, (r,) with v(xg) = 0. Then

sup v < Ce (4.1)
B /4(x0)
and
[Vu(xo)| < C, (4.2)

whereC > 0is a universal constant.

Proof. Observe that[(4]2) is a consequence[of](4.1) and the interior gradient estimates (see e.g.
[Tol84]). Moreover, by the rescaling arguments at the end of the previous section, it is enough to
consider the case= 1 andxo = 0 to prove[(4.1L).

Next we argue by contradiction. Indeed, assume that the estimate (4.1) is fadse fbrThen
there exists a sequence of bounded absolute minimizeykthe functionals

Fr) = / [AF(x, Vv) + 05 (¥) X(0,00) (V)]

inBy,k=12,...,suchthat
maxuvg (x) > k.
B1s
Set
di(x) =dist(x, {vy =0}) in By

and define
Or={xeBy:dr(x) <(Q—|x|)/3}.

Observe thaB1/4 C Ok. In particular
my = sup(l — [x)vg(x) = ‘%ma)%l/4 v (x) > 3k.
Ok

Sincewy is bounded (for fixed), we have(l — |x|)vg(x) — 0 as|x| — 1, and therefore:; will
be attained at some point € O:

(1 — |xk Dok (xk) = n(19ax(1 — |xDve(x). (4.3)
k
Clearly,
my 3
=Mk S k.
Uk (x) 1= ol mi >

Sincex; € Oy, by the definition we have

dy = di(xr) < (L—|x)/3. (4.4)
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Let nowy; € a{vr > 0} N By be such that
|yk — xi| = di. (4.5)

Then [4.4){(4 ) imply that
Bog, (i) C By and By, ;2(yk) C Ok.
In particular, forz € Bg, /2(yi),
11—zl =2 Q= xl) = e — 2l 2 A = x]) — (3/Ddi = (1 — |xk])/2.
This, in conjunction with[(4]3), implies that

~max v < 2v(xg).
By j2(yk)

Next, sinceBy, (xx) C {vx > O}, v satisfies
diva*(x, Vo) =0 in By, (xx)

with a* = D,yA". By the Harnack inequality (see Theorem 1.1-1.3in [Tru67]), there is a constant
¢ > 0 such that

_min v > cop(xp).

B3 ja(xi)
In particular,

_max vg = cug(xg).

By /a(y)

Consider now the rescalings
vk (Vk + (di/2)x)

wi(x) =
¢ Uk (xk)
From the properties af; above, we obtain
maxwg < 2, maxwi =c >0, wi(0)=0. (4.6)

B1 B1)2
Moreover,w; is an absolute minimizer of
Fhw) = / [A"(x, V) + 0" (0) x(0,00) (W)]
in By with
AX e, ) = e A (i + (di/2)x, /&),

OF(x, ) = &l OF (v + (di/2)x), e = dic/ v (xp)).

Then over a subsequence

a*(x,n) - a®n),  x € By,
uniformly for n in compact subsets @&, wherea* = D, A* anda® satisfies the same structural
conditions asiX. Moreover, we have

0< 0 (x) < Qmaxf — 0.



BERNOULLI-TYPE MINIMIZERS 63

Let nowvy, be such thaty, — wy € Wol”’(Bg/4) and diva* (x, Vi) = 0in Bz, wherea® (x, n) =
Dy A*(x, n). Then from Lemm& Al1 in the Appendix we have

IV(wk = vl Lr By < Clek) = 0. 4.7)

Moreover, from a theorem of Giaquinta and Giusti [GG82}, and v, are uniformlyC® in Bgg.
Thus, we can extract subsequences (still denoted;bgndv;) such thatw, — wo andvy — vg
uniformly on Bs;g. On the other handy, satisfy uniformC1® estimates 0mBsg (see [Tol84]).
Hence, we can assume that the convergence vg is actually inC%-# on Bs,g andvg solves

diVaO(Vvo) =0 in Bsys.
We next observe th@.?) implies thag = vo + ¢ in Bs;g. Hence, also
diva®(Vwo) =0 in Bsys.

Sincewg > 0 andwp(0) = 0, from the Harnack inequality (se€e [Tru67]) we deduce thgt O in
Bs;g. On the other hanqﬂ.G) implies

maxwg > ¢ > 0,
By

which is a contradiction.
The lemma is proved. O

Proof of Theorerp 4]1. Lemm4 4.2 implies thatVu| is bounded o™ N K and we need to prove
the boundedness also §{r-1 < u < 1} N K. So, fix a pointxg € K with —1 < u(xg) < 1 and
consider the following two cases:

1. distxg, I') > /2,
2. disi(xg, I') < §/2,

where
§ =dist(K, 0£2) > 0.

In the former case we hay®u(xg)| < C/8§ by the interior gradient estimates (see [Tol84]), and
in the latter case we argue as follows. Consider the Balkg) with ¢ = dist(xg, I") and letyg €

I’ N 3B (xp). Then distyo, £2) > §/2 and by Lemmi 4]2 we hay®u(yo)| < C. Without loss of
generality we may also assume thgte I"_1. We claim then

co:= inf u+1 <Ce,
Byee (x0)

where the constant & « < 1 will be specified below and will depend only on the structural
constants ofd. Define
Ve(s) =5+ Ces?, Ce =x/(1— k)2

Theny, has the following properties:
Y0 =0, v.1—x)=1 ¢ (0)=1, w,i/(s) = 2C.
Consider now the function

¢ (x) = cope (1 — |x — x0l/e) IN Uy := Be(x0) \ Bee(x0).
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Then, using the strict convexity af,, (H2) and(H4), we obtain
diva(x,Vg) >0 inU,

for ko < k < 1 depending only on the structural constants. Moreawet,u + 1 onaU,, hence by
the standard comparison princigte< u + 1 in U,.. Since alsap (yo) = u(yp) + 1 = O we obtain

Vo (x0)| < [Vu(yo)l,

hence
coy(0)/e < C

and consequently
co < Ce.

Finally, we observe that by the Harnack inequality (see [Tru67]) we also have

sup u+21) <C inf (u+1) <Ces.
Bye (x0) B¢ (x0)

Then applying the interior gradient estimate, we conclude the proof of the thédrem.

5. Nondegeneracy

As we have seen in the previous section, a minimizer M, grows at most linearly near the free
boundaryl” = 9{—1 < u < 1}. In this section we show that the linear growth is the optimal one.
In order to study the growth of nearl"_1 (or I'1) we fix a domainD ccC £2 in whichu does
not take value 1 (respectivelyl). Then the functionn = u + 1 (respectivelyy = 1 — u) is an
absolute minimizer of the functiondlp,.
As a simple corollary from Theorefm 4.1 we obtain the following statement.

LEMMA 5.1 There exists a constafitdepending only on the structural constants and Bisé $2)
such that for any absolute minimizewof Fp,

1 o .
—][ v>C implies v>0inB,
rJaB,

for any ballB, C D.

Proof. Indeed, otherwis®, C D contains a free boundary point and then, by Thegrein4< Cr
ondB,, a contradiction. O

Next we prove a key nondegeneracy lemma.

LEMMA 5.2 Foranyy > p —1andO< « < 1there existg > 0 depending only or, y and the
structural constants such that for every absolute minimizgrFp and for any ballB, C D,

1 1y
—<][ v”) < c¢ implies v=0inB,,.
r B,

In particular, if B, ¢ D andB,., N d{v > 0} # @, then

supv = cr.
9B,
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Proof. Without loss of generality we may consider the case 1. Set
& = supv.
B e
By the weak Harnack inequality for subsolutions (see Theorem 1.3 in [Tru67]), we have

1/y
e < C<][ v7’> .
B1

Hence, ifc is small, so is. Let¢ (x) = ¢, (x) be the solution of
diva(x,V¢) =0 in B —Be, ¢= 0 onoB,, ¢=1 ondB s

and puip = 0onB,. Seth = e¢in B s Thenh > v oNdB s andv* = min(v, &) is an admissible
function. ThereforeF (v) < F(v*), or, equivalently,

/ [A(x, V) + Q(x)x(0,00) (V)] < f [A(x, V™) + O(x) x(0,00) (V)]
B e B e~ B
Hence

[A(x, V) + Q(x)%(0,00) (V)] < / [A(x, Vv™) — A(x, VV)]

By B ji—B

< / a(x, Vv®) - V(v* —v)
B i~ B

a(x, Vv*) - Vv* —v)

/(.BﬁBk)ﬂ{v>v*}

=— @* —v)a(x, Vv*) - v
d By

= / va(x, Vh) - v.
B,

Here in the second step we have used the convexityof n) in n (see(H2)). Since alsqVh| < Ce
ond B, we find that

f [A(x, V) + Q) X(0,00 (V)] < Csp_l/ v.
By

9B,
On the other hand, using the Fundamental Theorem of Calculus, polar coordinates and the Young

inequality,
[or=elfsfe)
0By By By

< C(/B eQ(x)X(o,oo)(v)vL/B [A(x, Vv) + Q(X)X(o,oo)(v)]>

<Cl+e) . [A(x, V) + Q(x) X(0,00)(V)]-

Therefore, ife is small enough, we obtaim= 0 in B,. O
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In light of the result above and Theorém]4.1, we infer the following:

COROLLARY 5.3 There exist constants C > 0 such that ifB,(x) C {v > 0} N D touches
a{v > 0} N D then
cr <v(x) <Cr. |

Theoreni 2.1 follows now from this and Theoreml4.1.

6. Density estimates

The purpose of this section is to show that the{jel < u < 1} has a bounded width in the sense
that B, N {—1 < u < 1} has a Lebesgue measure proportionatto! for larger. On the other
hand, the set8, N {u = +1} are thick and have Lebesgue measure proportiondl.to

LEMMA 6.1 Letu € Mg. Then, for fixedr; > 0, there exist constantg andC depending only
on the structural constants andsuch that

Tp, () < Cr*~1

for anyr > rg providedB,,, C £2.

Proof. Leth be a smooth function so thatg,_, = —1 andh|yp, = 1. Letu* = min{u, h}. Then

jB,(M) ng,(M*) QC/ (|VM|P+|Vh|p+rn—l)
Br*Brfl

< C/ (Vul? +r" 1.
Br—By_1

Let us coverB, — B,_1 with balls By, ..., By of radius 1+ r1/2 with N < Ccr"1. Then, by a
Caccioppoli type inequality (see [HKM93]), we infer that

N N
[ vy [ var<ed [ wr<ont O
B —B,_1 i—1YBi i—1v2Bi

LEMMA 6.2 Letu € Mg,. Fix6p € [0, 1) and letd € [—6p, Oo]. Assume that
L'({u >0YNB,) > puo > 0.

Then, for fixedr; > 0, there exist positive constantsandrg depending only omy, 8g, 0 and g
and the structural constants such that

L'{u>0}NB,) > cr"

for anyr > rg providedB, ;,, C £2.
An analogous statement holds for the sublevelset 6}.

Proof. Let 2 be a smooth function so thatg,_, = —1 andi|yp, = 1. Letu® = min{u, h} and
B = min{u — u*, 1+ 6}. Define also

Vir)=L"(u>0}NnB,), Ar)=L"({-1<u<b0}NB,).
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We would like to prove that
Vi — D] V" 4 A —1) < COVT) =V — 1) + Arr) — AQr — 1)). (6.1)
Indeed, from[(6]1) and Lemnma’A.2,
Vip+k) +Alp +k) > c(k +1)"

for any natural numbet. This and Lemmp 6]1 would imply LemrpaB.2.
Let us now address the proof §f (B.1). First of all, by definitiorgof

/ B2/ =D > / 1B12Y =D — (14 0)2/=D (B A {u > 6)).
B, B, _1N{u>06}

Therefore, by the Sobolev inequality appliedd® and then by the Young inequality witty g +
1/¢g = 1 we obtain

VG — DY < ¢ / BVl

B N{u—u*<1+6}

1
<C<K/ |V(u—u*)|p+—/ |u—u*|q).
By N{u—u* <140} K JB nju—ur<140)

HereK > Ois a free parameter that will be conveniently chosen in what follows. By our hypotheses
on the functional and the minimality property mfwe deduce from the above estimate that

1
Ve — 1" P < c<1<[ A(x, V(u—u®) + —/ |u — u*ﬂ)
K B N{u—u* <146}

r

< C(K/ [A(x, V(u —u™)) — A(x, Vu) + A(x, Vu™)]
(By—B, _p)N{u%—1)

+ | 0WIx1y@) — x-1,1@] + e lu —u™|7).
B, By N{u—u*<1+6}

By our assumptions on the functional and the gradient estimates in Theorfem 4.2, we have

/ [A(x, Vu —u™®)) + A(x, Vu™)] < CL"(B; — Br—1) N {u # —1}).
(Br_Br—l)m{“7E_1}

Thus

1
V@ — ]/ C<K/ QM) x-11@*) — x—1n W] + f/ lu — M*Iq)
B, B N{u—u*<1+6}
+ CL"((Br — B—1) N{u # —1}).

To estimate the remaining two terms above, we split the domain of integration. Namgély, in
we haveu* = —1 and thereforeg—1,1)(u*) = 0. Thus, inB,_1 we are left with

1
—-K Q™) x(-1.nw) + = lu+17 < —A(r =1,

B_1 K /Brlm{l<u<9}
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by choosingK suitably large. On the other hand, B — B,_1, we are left with the term

cf QK1) — x(11@] + e —u7[?)
(By—Br—1)N{uz-1}
< C‘Cn((Br —B,—1) N {M 75 _l})
From these estimate§, (.1) readily follows. O

LEMMA 6.3 Letu € Mg. Assume that € {—1 < u < 1}. Then, for fixedr; > 0, there exist
positiverg depending only on the structural constants anslch that: takes both the values 1 and
—1in B,y(x), providedB,,+,, (x) C £2.

Proof. By Lemma[6.1u takes either the value-1 or 41 in B,,2(x); say it takes the value-1.
If u does not assume the value 1By (x), using the linear growth from the free boundary (see
Lemmd5.2), we have

2> sup(u+1)=>crg=>3
By (x)

by choosing large enough, which is a contradiction. O
We are now in a position to improve the previous density estimates:

LEMMA 6.4 Letu € Mg. Assume thakt € {—1 < u < 1}. Then, for fixedr; > 0, there exist
positiverg andc depending only on the structural constants ansuch that

IB,(x) () = ern1

for anyr > rg providedB,,, (x) C £2.

Proof. By Lemmg 6.8, the uniform continuity of and Lemm& 6]1, we have
LBy (x)N{u >9/10) = cr, LM'(By(x) N{u < —9/10}) > cr".
Leta be the average of in B, (x). If a < 0, then
9 n n
/ |u—a|>/ u—a) > —=L"(B(x)N{u>9/10}) > cr”.
By (x) B, (x)N{u>9/10} 10
Analogously, ifa > 0, then
9
f lu—al > —=L"(Br(x) N {u < —=9/10}) > cr".
B, (x) 10
So, in any case, the Poinéaand Young inequalities yield

n=1 < 1 —al<C Vul < C O
cr X lu —al < [Vul| < jB,(x)(”)-
r JB(x) B (x)

Combining the density estimates above, we immediately obtain the proof of Théorem 2.2.
Besides, these estimates also imply Thedrem 2.3. Indeed, in the notation of Thedrem 2.3, if one
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assumes the claim to be false, there would ekist 0 and an infinitesimal sequeneg for which,
say, Bs(x,) C E for suitablex, € {—1 < u,, < 1}. But then, considering. (x) := u.(ex) (see
the end of Sectiop]3 for the rescaling argument) and applying the density estimates we would get,
after scaling back ta,,
L"(Bs/2(xn) N {ug, = —1}) > cd"
for somec > 0. But then

lug, — uol > 28",
Bs2(xn)

contradicting the hypothesis. This proves Theorer 2.3.

7. Geometric Lemma

We show in this section that for a minimizerof 7, the setsB N {u = +1}, whereB is a large
ball centered in the jgt—1 < u < 1}, contain balls proportional t8. This is a consequence of the
density estimates in Theor¢ém .2 and the following result, known as the Geometric Lemma.

LEMMA 7.1 (Geometric Lemma) Let C E C R”, and letu andv be Radon measures &f.
Takexg € B. Fixr > 0. Assume that there existse (0, 1/10] such that:

(i) forall x € B,(xp) andg € [§'r, r/10],

n(By(x)) < Co™;
(i) forall x € BN B, (xp) andp € [§'r, r/10]

V(By(x)) = co"

(i) w(E N By(x0)) = cr™;
(iv) v(Bz (x0)) < Cr*~1.

Then there exist8, depending only om and on the constants involved in (i)—(iv) above, so that, if
8’ < 8, we can findc € B, (xg) such that
Bsr(x) C (E — B) N B2 (x0). (7.1)

Proof. For a complete proof se2 [Val01, Lemma 6.1]. Here we just outline the rough idea of the
proof. We first cover with balls of radiussr; sinceg behaves like arin — 1)-dimensional set,

we need0 (1/8"~1) such balls to coveg. We then extend this cover to the whole #ktsince E
behaves like an-dimensional set, we nead(1/5") such balls to coveE. Therefore, if§ is small
enough, there is at least one ball in the coveEdhat does not touch. O

Here is an application of the Geometric Lemma to our case:

PROPOSITION7.2 Letu € Mg. Then, for any fixed1 > 0, there exist positive constants
andrg, depending only on the structural constants anduch that for anyg € {—1 < u < 1} and
anyr > ro, there exist; andz with

Ber(z1) C{u =1} N B (x) and B, (z2) C {u = -1} N B-(x),
providedBy, 1, (x) C £2.

This follows easily by applying the Geometric Lemma to the gets= {u > —1} or E =
{u < 1}, andpB = {|ju] < 1}, with u := £" andv(B) := Jp(u). Notice that the hypotheses of the
Geometric Lemma are satisfied in view of the density estimates (see Theotem 2.2).
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8. Plane-like minimizers

We now prove Theorein 3.4. We considere Q" — {0} (the case» € R" — Q" then follows by
uniform approximation). We denote by}, the set of all periodic constrained minimizers in the
strip

Sy ={xeR":x -wel0, Mwl]}
Whenw € Q", we can recover compactness by making some identifications in the space. Namely,
we consider the following relatiory induced byw:

x~y iff x—y=keZ"withk-w=0. (8.1)

We denote by?;} = S};/~ the quotient space of this relation (which is topologically equivalent to
the product of arin — 1)-dimensional torus and a real interval).

In what follows we consider the functiongl on functionsu periodic with respect to the
identification~ in S, and we Ietj% be the integral over a fundamental region with respect
to the relation~.

We also set

XY = {u e Lpo(S$) : Vu e LP(5%),
u(x)=1onx -w=0andu(x) =—-1onx -w= M|w|}. (8.2)

In what follows, we assum#& > 10, in order to avoid degeneracy caused by “too thin” strips.
First of all, we notice the following elementary fact: for amyv € L1 (S§y) with Vu, Vv €

~ loc
L?(8%)), one has
Tsg, (u) + Tse (v) = Tse (Minfu, v}) + Tso (Maxu, v}). (8.3

Therefore, ifu, v € M¢;, then mir{u, v}, maxu, v} e MY;.
Now, we prove a geometric property concerning the global behavior of the minimizers. If
k € R", we denote by} the translation by the vectat Also, we setlzu(x) ‘= u(x — k).

DEFINITION 8.1 LetE Cc R" andw € R". We say thatE has theBirkhoff propertywith respect
to the vectorw if:

e foranyk € Z" sothatk - w < 0, E C E;
e foranyk € 7" sothatk - @ > 0, E D E.

It follows from the above definition that i ¢ R” satisfies the Birkhoff property with respect
tow, then there exists a constantdepending only on, such that iC (E) contains a ball of radiug,
thenC(E) contains a strip of width 1 that intersects the ball.
It is convenient to introduce the notion wfinimal minimizer Following [CdIL0O1] and[[Val01],
we define
@ = min .
MM(X) ue/\/l‘,‘{lu(X)
By a standard compactness argument, the reader may convince himself that the definition is
legitimate. Let us now show that the level sets of the minimal minimizer have the Birkhoff property.

PROPOSITION8.2 Letd € R. Then the sefu}, > ¢} has the Birkhoff property with respect o
Namely:

o if k € Z" andk - w < 0, then{u$, > ¥} D {Tru§, > ¥},

o if k € Z" andk - w > 0, then{u§, > ¥} C {Truy, > 9.
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This follows easily from [(8]3) and the definition of minimal minimizer, by looking at
min{u$,, Tru$,} and maXu$,, Touf, ).

We now show that the minimal minimizer enjoys teubling property(also known in the
literature asno-symmetry-breaking propejtylt states that the minimal minimizer defined in a
set whose period is a multiple of the original one still has the original period. In some sense, the
doubling property forces the minimal minimizers to exhibit the same periodicity as the one induced
by the functional. More precisely:

PROPOSITION8.3 Letyy, ..., v,—1 € N—{0}. Let~ be the equivalence relation defined[in {8.1).
Assume that thén — 1)-dimensional lattice induced by is spanned by}, ..., k;_; € Z", i.e.
anyk € Z" such thato - k = 0 can be written as

n—1
k=Y mkf
i=1

for suitablem1, ..., m,_1 € Z. Consider the equivalence relation

n—1
x>~y iff x—y:Zmivikf
i=1

for suitablemy, ..., m,_1 € Z. Letu andv be the minimal minimizers ir§%,/~ and S, /~,
respectively (constrained to be 1 when x = 0, and—1 whenw - x = M|wl|). Thenv is also
periodic with respect te-, i.e.

v(x +k) =v(x) (8.4)

for anyk € Z" such that - k = 0. Also,
v =u. (8.5)

Proof. Since [8.4) and the definition of minimal minimizer directly imply {8.5), we just consider
the proof of [[8.4). The periodicity induced byon v reads

n—1
v(x + Zmivik;“) =v(x)
i=1
foranyms, ..., m,_1 € Z and anyx € R", or equivalently,

v(x + mivik) = v(x)
for anym; € Z and anyx € R". We want to prove that
n—1
v(x + Zm,’ki*) =v(x)
i=1

foranyms, ..., m,—1 € Z and anyx € R", or equivalently, that

v(x + k) = v(x) (8.6)
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for anyx € R”. Let us do the case= 1, the others being analogous. Let

V(%) = minfu(x), v(x + k7), v(x + 2k3), ..., v(x + (v1 — DkY)}
= min{v(x), min{v(x + k37), minfv(x +£3), ...
o min{u(x 4 (11 — 2K, v(x + (1 — DEDI.

Sincev, satisfies the same constraints and periodicity,d@tis also a minimizer, thanks tp (8.3).
From the fact that is the minimal minimizer we thus infer < v,; hence, av, < v by
construction,[(8]6) is proved. a

This doubling property will play a role in Propositipn B.5 below.

We now show that constrained minimizers are indeed unconstrained andi¢classided that
the strip is wide enough. In order to clearly state the next result, we introduce the following notation.
Letm < M and define

S =X eR" 1 x -0 € [mlo|, M|wl]}.

Set also

X2 = {u € Lige(82 ) 1 Vi e LP(82 ),
u(x) =1onx - -w=mlw| andu(x) = -1l onx - w = M|w|}.

We also denote by )7 ,, the set of all periodic constrained minimizers in the s8fp,,. Of course,

o _ Qqw o _ yo o _ w . .. L.
Sy = Som» Xy = Xg'p andMG = Mg . Also, we define the minimal minimizer
w . H
u (x) == min u(x).
m.M ueM?

To simplify the notation, we also sef), := ug ,,.
We now prove that the minimal minimizer constrained in a strip wide enough is indeed
unconstrained

PROPOSITION8.4 There existdfy > 0, depending only on the structural constants, such that if
M > Mo, thenufy, = u® ., foranya,b > 0.

Proof. Letu = u?, ,,.,.LetS be a strip of width 3 around the hyperplahe= {x - » = M/2}.
We now prove that there exists a stéipof width 1 parallel to the constraints and at distance from

L universally bounded, on which
either u=-1 or u=1. (8.7)

For that, we may assume that there exists a poir¢ S so thatu(x*) € (—1, 1), otherwise[(8]7) is
obviously true. Then from Propositin 7.2 there exists a ball (whose radius is latgésilarge),
contained iflu = —1} = C{u > —1}. Hence, we obtain a strip of width 1 intersecting the ball and
contained infu = —1}. This finishes the proof of (8.7).

Sinceu is the minimal minimizer, it cannot be that= 1 in §, otherwise we could lower it.
Henceu = —1in § and thus, for any, b > 0,

u®y mip € M2 - (8.8)
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Roughly speaking, this says that “the upper constraint has become irrelevant”. We now show that
the lower constraint is not necessary either. Indeed, givervaayX®, ,, .,, we can translate it
up by an integer vector toa € X&MH; for a suitableb > b. By ), the energy ofv (which
agrees with the one afand is not less than that f‘A’HI;) is not less than that ofy ,,. Therefore a
minimizer inXéfM a minimizer inXi“a’Mer. O

We now show that the minimal minimizer in a wide enough strip is indeed a glasmimizer.

PROPOSITION8.5 There exists a universal constaifg so that if M > Mg, thenu¢, is a classA
minimizer.
Proof. Given a compact perturbation, by the doubling property (see Propdsition 8.3), we can always

consider$, to be periodic with a period larger than the diameter of the perturbation and (in view
of Propositiory 8.4) as a minimizer in a strip of width greater than the size of the perturbatich.

This completes the proof dff1) in Theoren] 2Z.4: indeed, the case of irrational frequency can be
easily inferred from the rational frequency case by a limiting argument, by noticingffaloes
not depend on the frequency.

We now provg(T2) of Theorenj 2.4. We will keep on assuming thate Q" — {0}.

PROPOSITION8.6 There exists a universal constaWy so that if M > My, then M9, C
M,y foranya, b > 0.

w w
Pro?uf. Tak?)u € My, andv € X my
u, uy € Mgy,

Sincelu| = 1= [uf,|whenx -w <0o0rx-w> M,

jﬁﬂ () = jS(i)g,M+b (u) and ‘755(’4 (uaﬁij) = jgfa,MHa (u%[)

,» and consider the minimal minimizety, in S,‘{j,. Since

Also, by Propositi04u‘,‘{4 still minimizes 7 in 8¢, M4p» @ND SO
cw > Sw @ .
ija.M#»b (v) jsfa,Mer (MM)
. . . } > Te . O
Collecting the relations above yleld%_m%(v) jS—a,M-H: (u)

PROPOSITION8.7 There exists a universal constafi so that if M > My, then any constrained
minimizeru € M¢) is a classA minimizer.

Proof. Let B C R" be a ball and take¢ € C3°(B). Let S be a strip obtained frorﬁ,‘(} by enlarging
its width and by repeating its periodicitytimes in such a way that it well contains the ballof
course, if we repeat the periodicity times in the'th direction, we have = vy - - - v,_1 € N—{0}).
Hence, ifv enjoys the periodicity induced by, i.e. if v(x) = v(x + k) wheneverk - v = 0, we
have

Ts(v) = ngﬁ ().

Let nowu e MY, and consider the minimal minimizer},. By the doubling property (see
Propositiorf 8.8) and Propositipn Bi4,; still minimizes 7 in S, whence

Tsuly) < Tsu + ).
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Also, since both: andu$, are minimizers in§,,
Moreoveru = u + ¢ in S — B. Therefore, by the relations above,

Tpw+¢) — Tpw) = Ts(u + ¢) — Ts(u)
> Jsuly) = Tsw) = vTgo ) = vTse (u) = 0. O

Thus, (T2) in Theoren{ 24 follows from Propositiofis 8.6 gnd]8.7. This completes the proof of
Theoreni ZK4.

A. Appendix

In the proof of Lemm@ 4]2 we have used an approximation of minimizefSwith solutions of the
homogeneous equation divx, Vu) = 0. Namely, let

f:z(w)=/Q[A(x,Vw)+Q(x)x<o,oo>(w)],

whereA(x, n) anda(x, n) = D, A(x, n) satisfy(H1)-(H6) and
0< 0 <e.
A consequence of conditiorfsl1)—(H3) is the following useful inequality:

In—n'12(nl +1n'DP~2, 1<p<2

A.l
ln—n'|? p =2 A1)

(a(x,m) —alx,n))-(n—n) = »r {

(see, e.g./[Tol84)).

LEMMA A.1 Letw € WL?(B;) be an absolute minimizer ofp,. Let alsow, € W17 (Bg/4)
satisfy
diva(x, Vwy) =0, wj, —w € Wy'” (Baya).

Then
_ a/pyli=e
|lw wh|lwl.p(33/4) < Ce P wliyy gy

with « = min(1, p/2), whereCg depends only on the structural constantgiof

Proof. From the minimality ofw in B = B34 we have

fB[A(x, Vw) + Q(x) x(0,00) (w)] < fB[A(x, Vwp) + Q)]

or
/[A(x, Vw) — A(x, Vwy)] < 8/ X{u=0}-
B B

Set now
w'(x) =swkx)+ A —-—9Hwp(x), 0<Ls <L
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Clearlyw® = w;, andw! = w. We thus obtain
1
/[A(x, Vw) — A(x, Vwp)] = / ds/ a(x, Vw®) - V(w — wy,)
B 0 B
1
= / ds / (a(x, Vw®) —a(x, Vwy)) - V(w — wy)
0 B

Lds '
N / s / (alx, Vw’) —a(x, Vup)) - Vw* —wp),
o S JB

where in the second step we used the factﬂb;ai(x, Vwy) - V(w — wy) = 0.
Next, we apply the inequality (Al1). For > 2 we obtain

1ds
/[A(x,Vu)) — A(x, Vwp)] > A/ —/ [V (w® — wp)|?
B o S Js
1
z,\f sl’*lds/ IV (w — wp)|?
0 B

f IV(w —wp)|? < CS/ X{u=0}- (A.2)
B B

In the case k p < 2 we have

and consequently

1ds 2 o
/[A(x,vw—A(x,th)] >A/ 7/ IV(w* — wy) (V'] + [Vwy])?
B 0 B
1
> c/ sds/ 1V (w — ) P(Vw] + [Vwp])? 2
0 B
> c/ IV(w — wp)2(IVw| + [Vw, )P 2.
B

On the other hand, using thedldler inequality, we have

) 5 r/2 1-p/2
/BIV(w —wnl? < (/B V(w — w2V w| + [Vuop )~ ) (/Buw + |th|>") ,

hence
p/2 1-p/2
/ IV(w —wp)|? < Cep/2</ X{w:O}) (/ w”) , (A.3)
B B B1

where we have used the estimdigl Vw,|” < C [, [Vw|? and the Caccioppoli type inequality

/le|p<C/ w?
B B1

(see[HKM93, Lemma 3.27]). The lemma follows now frdm (A.2)—(A.3). O

The following estimate was used in the proof of Lemmal 6.2 when applying the recurrence
relationship[(6.]1).
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LEMMA A.2 Letuvg, a; € Rsatisfyvy > 0,a; > 0, vp—1+ax—1 < vg +ag, vo+ag > co > 0 and

-1
v,in_l M 4 a1 < Cup — vee1 + ax — ax—1)

foranyk € N, k > 1, for some positiveg andC. Then there exists a positive depending only on
C andcg, such that
vp +ag > clk + 1" (A.4)

foranyk € N.
Proof. First of all, notice that, itC, is large enough,

Cx+1>1+x)", Vxel01] (A.5)
Also, if k < 2CC,,

v +ar > vo+ao = co > ctk+ 1",

providede < cg/(2CC, + 1)". Hence we can assunke> 2C C,. We make an iterative argument:
we assume
Vk—1 + ak—1 = ck”, (A.6)

and we prove[ (A4).
In fact, in order to prove (Al4), by (A]l5), it is enough to prove

v+ ag > ck"(Cufk+ 1), (A7)

since [(A.4) then follows fron{ (A]7) applied with:= 1/k.
Hence, we now prové¢ (Al 7). From the hypothesis and](A.6), we have

1 _
v +ag = E(v,in_ll)/n + ag-1) + ck". (A.8)

Also, using agair[ (AJ6), we infer that eithey_1 > ck"/2 orax_1 > ck"/2.
If vi_1 > ck”/2, then from[(A),
vk +ar = c(C*k”’1 + KM,

providedC, < 1/(C2~D/n¢1/m) which holds ifc is small enough. This proves (4.7) in this case.
On the other hand, #;—1 > ck”/2, then from[(A.8) we get

1
vk +ap = ck"| =—= + 1),
2C

which implies [[A.7) since& > 2CC.. a
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