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We consider a classical problem of stability of equilibrium figures of a liquid rotating uniformly as

a rigid body about a fixed axis. We connect the problem of stability with the behavior for/lafge
solutions of an evolution problem governing the motion of an isolated liquid mass whose initial data
are slight perturbations of the regime of a rigid rotation. The main attention is given to the case when
the figure is not rotationally symmetric; in this case the regime of a rigid rotation defines a periodic
solution of the above-mentioned nonstationary problem. It is proved that a sufficient condition of
stability is the positivity of the second variation of the energy functional in an appropriate function
space.

1. Introduction

The problem of the shape and stability of equilibrium figures of a uniformly rotating isolated
liquid mass has drawn attention of many generations of mathematicians, beginning with I. Newton.
A review of results obtained in the past and of some recent contributions can be fouhd in [1, 7]. We
recall that if the liquid rotating with constant angular velocity about thexz-axis is subjected to
capillary forces at the boundary (which is assumed to be free) and to the forces of self-gravitation,
then the equilibrium figuré is defined by the equation

2
oH(x) + %(xf a2 4 alU(x) + po=0,  xeG=0oF, 1.1)

which should be satisfied at the boundghof the domainZ. Here pg = const,H is twice the
mean curvature ofj, negative for convex domaing(x) = ff |x — y|~1dy is the Newtonian
potential, andr andk are the constant coefficient of surface tension and the gravitational constant,
respectively. The case = 0 corresponding to the absence of self-gravitation is not excluded but
should be positive. The density of the liquid is assumed to equal one.

Equation[(L.L) is the Euler equation for the functional

R=o|l+—-F // dxdy - pl2l, T=02, (1.2)
ng(xl—i—xz)dx 2|

where 2 is a domain inR3 close toF with the same volumés2| and the same position of the
barycenterag, I' = 9£2, |I"'| = mesI", and

2 2
B =a)o/ (x7 + x3) dx.
]:
TEmail: slk@dns.unife.it

© European Mathematical Society 2004



462 V. A. SOLONNIKOV

is the magnitude of the total angular momentum of the rotating liquid. We assume that the barycenter
of F coincides with the origin, and hence

12| = |F1, /xkdx=/XkdX=o, k=123 (1.3)
2 F

The fact that2 is close taF means thaf” can be determined by the equation
x=y+NOypQh), yeg, (1.4
whereN (y) is the exterior normal t¢ andp(y) is a certain small function; we assume that
Iplerg) =8 < L. (1.5)

The restrictions[(1]3) can be expressed in terms iof the form

/g o(y; p)dS, = O, /g V(i) dS, =0, k=123, (1.6)
where
0%(y) 03()
oy, p)=pQ) — > H(y) + 3 K(y), a7
2 3 4
noim =i+ M55 - S0 + S0k ). as

and/C(y) is the Gaussian curvature Gf
Hence,R can be regarded as a functional defined on the set of small fungtignslescribed
above, and it can be shown that its first variation vanishes:

SoR(p] = - Rip]

A=0

=— 0H(x)+w—%(x2+x2)+/d/{(x)+ (x)dS, =0
= G 2 1 2 pPo |p(x x — Y

by (L.1).

It was conjectured in the papers of H. Poireand A. M. Lyapunov that a sufficient condition
of the stability of the equilibrium figure is the positivity of the second variation of the energy
functional. For the functiona[ (1].2) the second variation is given by the formula

2

0
BRIl = - Rl = /g (0 1Y50()P = b(3)p2()) dS,

2 2 ds, ds,
+ &</gp(y)(yf+y§) dSy) —K/g/gp(y)p@f (19

‘A_O

T ly —z|’

where )
wj 9 ou
b) = o2 =20 + Dot odregn T= [0Fade
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(seel[1] 57, 18]). This criterion is now generally accepted but its justification givéenlih [6, 1] is far
from being complete because it is made under some a-priori assumptions concerning the perturbed
free boundary of the liquid. Moreover, the corresponding evolution free boundary problem for the
perturbation has not even been formulated. It was pointed out in [6] that a more careful justification
of the principle of minimum of the energy functional based on the study of a perturbed motion of
the liquid is highly desirable.

Our conclusion about stability of the equilibrium figures is based on the analysis of the above-
mentioned evolution problem that consists in the determination of the bounded d@nais- 0,
the velocity vector fieldi(x, ) and the pressure functign(x, t), x € £2,, satisfying the Navier—
Stokes equations

U4+ @ V)T —vVH+Vp=0, V-9(x,1)=0 xe€8,1t>0, (1.10)
as well as the dynamic and kinematic boundary conditions on the free suilfac@$2,, namely,
T@, pn=(H+«Ux, )i, V,=10-n. (1.12)

Herev is a constant positive viscosity coefficiedt(v, p) = —pl + vS(v) is the stress tensor,
S(@) = (dv;i/dxj + dv;/0x;); j=1,2,3 iS the doubled rate-of-strain tensdy, is twice the mean
curvature off;, V,, is the velocity of motion of; in the direction of the exterior normal and

d
U(x,t):/ Y
2 lx =yl

is the Newtonian potential calculated in the unknown donsainFinally, the initial condition

v(x,0) =vo(x), x € o, (112

is prescribed with a givet2o whose boundaryy is defined by equatior (1.4) with a given small
p = po(y) satisfying [1.5),[(1J6). Concerning it is assumed that it is close to the velocity vector
field of a rigid rotation about thes-axis

V(x) = wo(—x2, x1, 0) = wo(é3 x ¥),

and that it satisfies the conditions

/ Jo(x) dx = 0, (& x To(x)) dx = Béa, (1.13)
20 20

like ¥, and some natural compatibility conditions.

We say that the figuré is stablewhen the problen] (1.10)—(1.]12) is solvable in an infinite time
intervalz > 0 and the solution tends to the regime of a rigid rotation as oc.

The fact that a rigid rotation can be a limiting regime for the solutionis of [1.10)4(1.12pasc
was discovered in the papers[12] 13] in the case whisrsmall andF is close to a ball. In]9] it was
shown that the convergence of the solution[of (JL.10)—{1.12) to this limiting regime is exponential.
In [10,[14+16] the condition of smallness pfwas replaced with the condition of the positivity of
the second variation of the functional

2
w K dxd
G=0|F|—70/Q(xf+x§)dx—§/9/9|x_§|—p0|[2|, =30, (1.14)
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also considered in the theory of equilibrium figures/In [18] a more natural functiofal the free
motion of the liquid was invoked, which required certain modifications in the proofs. Concefning
the axial symmetry was always assumed. Under this assumption,

V() = wo(@3 x X), Px) = a)%(xf +x§)/2+ po, xeF,

is a stationary solution of the proble@.l@.n), becalige), P(x)) satisfy ), and the
boundary conditiong (1.11) reduce o (1.1).

Here we consider the case whgris nonsymmetric. Fos = 0, the existence of nonsymmetric
equilibrium figures was known long ago; these are the Jacobi ellipsoids, the pear-formed figures
of H. Poincaé etc. (seel|1,]6]). In the case > 0, « = 0 such figures were found in_[11] (see
also [7]) and computed numerically in|[5]. # is not axially symmetric, then along with = Fp
equation[(1]l) determines a one-parameter family of equilibrium figifigs) € [0, 2r), obtained
by rotating 7o about thexz-axis through angl@. It is natural to assume thatis arbitrary and
Foton = Fp. Itis easily seen thatV(x), P(x), x € Fuy+e) is a periodic solution o 0),
(1.17) for every constant, and that the velocity,, of evolution of the free boundary in the normal
direction equalgoh(x), where

h(x) = N(x)- (83 x ¥) = x1N2 — xaN1, x €G.
Itis clear thath(x) = O for axially symmetriaj.

Since the functionak takes the same value for &fly, its second variation cannot be positive
for p(y) satisfying [1.6). As shown in [6] for the case= 0, we have

82R[h] =0, (115

which will be proved in Section 3 also in the case> 0 (this follows also from[(4.43) with
b1 = by = 0, b3 = 1). Our main assumption concerniigis as follows: there exist two positive
constantsg; andcy, such that

2 2 2
C].”p”Wzl(g) < 8R[p] < C2||IO||W21(g) (116

for all p(x), x € G, satisfying the orthogonality conditions
/ p(x)dS, =0, f xpp(x)dS, =0, k=123, 1.17)

g g

(a linearized variant of (1]6)) and the additional condition

/ o (x)h(x)dS, =0. (1.18)
g
By the Gauss formula anfi (1..3),
/ h(x)dS, = / h(x)xdS, =0, k=123,
g g

so the functions 1x1, x2, x3, h(x), x € G, are linearly independent.
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Inequalities[(1.16) imply that the functionaltakes its minimal valu&g for 2 = F4 and that
R > Roif 2 # Fy, as required in[[6]. The additional orthogonality conditipn (1.18) serves for
“identifying” all the figuresFy. Itis clear that this can be done in many ways.

If inequalities [1.1p) hold for every functiom satisfying [1.1)7),[(1.18), then they are also true,
with other constants, for every smal(x) satlsfylng [1.5),[(TJ6)[ (1.18). This can be easily verified
by representing in the formp (x) = pl(x)+Zk 1M fi)ywith fi =x,i =1,2,3, fa=1,and
Jg p1fidS = 0, which implies|A| < ¢ [g |l dS, by (1.8 .) .) The converse assertion is also
true.

The main result of the paper is the proof of stability of nonsymmetric equilibrium figures under
the above assumptions. The precise formulation of the result will be given in the next section.

Another evolution free boundary problem for a viscous capillary liquid filling a layer-like
domain over a rigid bottom is considered|in([2, 3, 8].

2. Transformation of problem (1.10){Z.IP) and formulation of the main result

We start with the proof of some useful relations for an equilibrium fig@rehat is always
assumed to be a bounded domaifRmwith a connected smooth boundary. Let us show, following
A. M. Lyapunov [6], that the vector of total angular momentum of the rotating liquid,

B:/ixwmm,
f

is directed along thes-axis. When we multiply[(1]1) bW;x3 — N3x;, j = 1, 2, integrate oveg
and take account of the relations

73
/M(Nx3_N3x])dS —/ / ( x—2|3 lex_z|3>dXdZ
= Xj 73 — X3
. dxdz =0
[/( 2P IX—Z|3) )

f H(Njx3 — N3x;)dS, = f (x3Agx; — xjAgx3) dS, =0,
g g

and

whereAg is the Laplace—Beltrami operator ¢ we obtain

2

“0 i(xl + xz)X3dx = a)o/ xx;dx =0, j=12
2 Jrox F
Hence,
‘foﬁ@wxzﬁé, (2.1)
where
B = woZ, I:A@}ugm. (2.2)

Similarly, multiplying {I.1) by~;, j = 1, 2, and integrating we obtain the equation

%[Wm=q (2.3)
f
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which shows that the barycenter#fis located on the axis of rotation; hence, the first two relations
) follow from ). Finally, multiplication 01) by- N and integration leads to an expression
for po:

_ 20l9] _ i 2 / )
po = 37 67 <a)OZ—|—K }_U(x)dx . (2.4)

Foro = 0, itis obtained in[[B].

In fact, pg is the Lagrange multiplier corresponding to the constrgijt= | F|; the multipliers
corresponding to the restriction on the position of the barycenter vanish (see [15]).

Let us turn to problen (1.10)—(T.]12) and recall that for the solution of this problem the following
conservation laws for the mass, total and angular momenta hold:

12, = |82,

/ S.de = | Tox)dr, (2.5)
24 20

/ G xDde= | ol x 1) dr.

£2;

20
By assumptiong (1.13), we have

f B(x, 1) dx = 0, (2.6)
2
(X x U(x,1)) dx = Bes, 2.7
2
and, as a consequence,
xqdr= [ xdi=0 k=123 2.8)
24 20

As in [10,[15] 16], we work with the problem for the perturbations
U0 ) =00, 0) = V), pr(x.6) = ple. 1) — P(x)

written in a coordinate system uniformly rotating with angular veloeigy We make the change of
variables

x = Z(wot)y 2.9
and introduce new unknown functions
where
cosh —sinA O
ZMA)=|]sinA cosrh O]. (2.11
0 0 1

Then [1.1D)4(1.72) is transformed into the following free boundary problerqifor):
Wy + (W - V) + 2w0(83 X W) — vV2D + Vs = 0,
V-w=0 yef/,t>0,
TW,s)i' = (@H +P(y) +«U'(y,)i', Vi=w-u, yel,
i(y, 0) = o(y) — V(y) = o(y). ¥ € 0.

(2.12)
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Here 2] = Z X wot)2,, I = 882), 1" = Z Y(wot)7 is the exterior normal td”/, V! is the
velocity of motion of 77 in the directioni’, H'(y) is the doubled mean curvature 6f, and

d
U'(y, 1) :/ <
2 ly—zl

Now, we can present the main result of the paper.

THEOREM2.1 Let the following conditions be satisfied:

(i) Ipis given by equatior] (1}4) with = Go andp = po € C3%(Go), @ € (0, 1), satisfying
(.39, [1.6).[(1.1B);
(i) Tp € C?H*(£0) satisfies condition3) and the compatibility conditions
V-vo(y) =0,  S(o)io — rio(rio - S(Wo)iio) =0,  y € 0; (213

(iii) the functional R[p] of ([L.2) satisfies inequality (1.16) for evepy(y) subject to[(1.1]7)[(1.18).
If, in addition,
IWoll Ly(20) + ||PO||W21(gO) <€ (2.14)

with sufficiently smalle > 0, then probleni(2.12) has a unique solution defined fer0 and such
that

(a) I7 is given by [1.B) withG = Go(ry, p = (1) € C3H¥Gorr), B, 1) € CF(Gyqry),
(-, 1) € C¥Gaqr), for all 1 > 0; the functiond () is twice continuously differentiable;

p(x, 1) satisfies[(1.18), i.e.
/ p(x)h(x)dS, =0; (2.15
Gor

(b) W(-, 1) € CZHU(R2)), Wi (-, 1) € CU(82)), s(-, 1) € CIF4(2)), forallt > 0, and

[ (-, Dlcaa) + lw(, Dlczra(gy + 1V, Dlctra gy
+ 1P, D)l caraigy) + 101 (- D)l c2ta(gy) + 101 (5 )l ca(Go)
< ce P2 (ol core ) + 1P0lc3ta(gy)s b >0, (2.16)

16: (D] + 161 (D] < ce™ (|0l c2ragq) + |0l c30a(gg))- (2.17)

By C!(£2,), C!(I';) we mean the standardittier spaces of functions (or vector fieldg)(y, t),
P (v, t) are derivatives calculated for a fixed argumert Gy(,); in other words, ify = Z(8(t))y’,
¥y’ € Go, then
i i

0
— oy, 1) = —p(ZOE )Y, ¢t =1, 2. 2.18
8tl,O(y, ) 8tlp( @)y, )t/:t, i , (218

EstimatesG)?) imply exponential stability of the periodic solu(hE),nP, Foot+wo)-
The decay op(y, t) to zero means that, — G,,, wheregg = lim;_,«, 0(r) < oo. The existence
of this limit follows from (2.17).
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3. Auxiliary propositions

This section is devoted to calculations aimed at the determination of the fuligtipnWe begin
with some auxiliary constructions. It is well known that for every pairt R2 with dist(x, G) < 81,
whereG = Gop, 81 <« 1, we have

x=y+Nyr, yegq, 3.1

with || < §1. Let us consider this relation more closely. Assume that G C G, whereG is a
subset of7 given by
y = y($), S=(s1,s2)ech2

(s1, s2 are local coordinates of). The transformation
E(s1,52,7) = y(s1,52) + N(s1, 52)r = y(s) + N(s)r (3.2

makes the sdll = {s € w : |r| < 8} correspond to the sét of the points[(3.JL) withy € G, |p| < 3.
Let J be the Jacobi matrix of (s1, 52, r), i.e.

Y151(8) + N1 sy ()7 ¥15,(8) + Nog,($)r  Na(s)
J = y2,S1(S) + NZ,S]_(S)r yZ,Sz(s) + NZ,sg(S)r No(s) |, (33)
Y351 (8) + N3 5, ()1 ¥3.5,(s) + N3, (s)r  N3(s)

where Ni(s) = N;i(y(s)), yks; = 0yk(s)/9sj, Nrs; = 9Nk(s)/ds;. The vectorsis_/ =
(Vk,5;)k=1,23 = 7j, j = 1,2, are linearly independent and tangengtohence, def/|,—g # O
and det7 (s, r) # 0, sinceds is small. Therefore we have the inverse transformation

E7lx)={s = Z(x), r = R(x)},

so thatU = E~1V. We denote byJ;,, the elements of7 and by J*” the elements of7 1. It is

clear that 5 5 . IR
X, X
Xm,sq E_m=-]ma’ —= = m3, z =Jak _=J3k:

0S8y or 0xg T Oxg

wherea = 1, 2, k = 1, 2, 3. The elementg 3 are the components of the vector

- - - -
Xy X Xsp  Xsg X Xsp

det7 — N-(F,, x Xy,)

Since the surfacg and the parallel surfag@” = {x = y + N(y)r, y € G} have a common normal
N(y), andf,xj are linearly independent tangent vectorgtt), we have

)_C:Sl X }Jz _ N|£,Sl X £,s2|

.
T Xt T X el _
N (X5 X Xys,) |X 51 X X5,

if the triple of vectorsy ;,, y.s,, N has a right orientation. Hence is a function defined in the
81-neighborhood o}, and
OR

=J¥* = N(y) (34
0xy
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(this also follows from the fact thakt (x) = dist(x, G)). In what follows we also consider the matrix
) with a variable: = r(s); in this case the relation® (s) = Ny (s) remains valid. Indeed, fix an
arbitrarys’ € w and consider the matrik (3.3) with= r(s’). Clearly, the relation considered holds
for arbitrarys € w, also fors = s/, which proves our assertion.

The second derivatives df, andR with respect tor, are furnished by the equations

= JY
08y ar

gskm  Zyaghm aJkm o,
— + 3,
0xg =

From this formula higher order derivatives bf, and R can be calculated.
Now, let I" be a surface that is close iy = G and is given by equatiori (1.4) with(y)
satisfying [1.5), wheré < §1/2. We consider other representation formulasifaof the type[(1.}4),

X=y+Nops(y), yeGy, (3.5

where Ny is the exterior normal tgjy, in order to find the value of such thatfgg po(y)h(y)dsS,
= 0. Instead of rotating the equilibrium figure, we can rotatand try to satisfy the equation

)= /gﬁ(z, Mh(z)dS; =0, (3.6

wherep(z, A) is the function that defines the surfatér) = Z(1)I" by equation[(1}4) witl§ = Go,
p = 5, i.e.
x=z+N@p, 1), z€Go

(we assume that is so small that"" (1) is contained in thé;-neighborhood of;). It is clear that
the pointx = y + N(y)p(y) € I" and the corresponding poiixt = Z(A)x € I'(A) are related to
each other by

ZMO@+NMeM) =z+N@pz, A), z€g. (3.7

If, in addition,z, y € G, y = y(s), z = y(0), 0 = (01, 02) € w, then
y(©@) + N(@)p(o, ) = ZW)(y(s) + N(s)p(s)), (3.8)
wherep(s) = p(y(s)), p(o, 1) = p(y(c), L), N(s) = N(y(s)). Hence, for a given we have

(0, 1) = R(X) = R(Z(W)x(s)), (3.9)
oc=X(X)=X(ZMNx(s)) = S(s, A). (3.10)
The difference
p(z, 1) — p(y) = R(Zx) — R(x)

satisfies the inequality
10z, %) = p(M] < |2x — x| < clal. (31D

Let us show that the transformatign (3.10) is invertible. We have
0Su(s, 1) _ i %, i ()

Zim (A
X% km (A) dSﬁ

= Baﬁ(s, A, (3.12

dsp fom=1
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where
dxy (s)  dym(s)  ONu(s)p(s)  Oxp dp
dSﬁ 3Sﬁ 3Sﬁ 3Sﬁ 3Sﬁ
(i.e. here the dependencembn s is taken into account). In particular,

08y 3 00Xy [ 0xp ap ap )
- = _ N, — Jotm J L) s ’
aSﬁ A=0 n;_ X (aS’B + N 8Sﬂ Z]_ mﬁ + m38 5p af

hence S~ 1(o, 1) exists for small values of, and

Sy
aSﬂ op

< clAl.

Let us compute the derivativéss—1/ax. When we differentiate the identities
00 = Z(ZMX(STH0, 1) = Su(STHo, ), ), @ =12,

with respect to. and take account of (3.]L0), we obtain

2. asgt & gz, dz
B a km
0:2 Bop—— + E ——Xm(s) ;
p=1 A k,m=1 Xk da. s=8"1(0,})

and, as a consequence,

1
e Z > plZe 32" LN : (313

=1k,m=1

whereB? = 3S; /3oy are the elements &1
Next, we calculate the derivative p{o, A) = R(X) with respect to.. Differentiation of [3.9)

gives
9p(0, 1) o~ OR X O dz,,,k 2 dxe as
oA _;axk o Z "+Z " Ose '
From [3.1B) and
92, dZZ X =é3x X
X =—— =e ,
AT dn 3
we have -
0X -
and ~
ap
o = VxRX) (I = D)[é3 x X], (3.14)
whereD is the matrix with elements
dx 8sa 3(7/3 dX,, (o) 3(7/3
m m . 3.1
k= Z Z i (4 )ds 80,38Xk Z dog 9X; 319

j=1la,=1
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It is easily seen thab,,, can be expressed in terms of the elements of the matrik (3.3) calculated
fors = o, r = p(o, A) (We denote it by7 (o, 1)) and of the inverse matrig ~1(o, 1). Indeed,

2
00X 3p(o, 1)\ dog
= 3 (s i B0
" /32::1 dog " dog ) 90Xy

2

Z( In(0,2) + Jns(o, A>M>Jﬂ"<m 1),
dog

=1
hence,
2 ~
ap(o, A
Sk — Dk = Jm3(0, N T¥ (0, 1) = Jwa(0, 1) ) %ﬁ)ﬂ“(a, )
B=1
2 ~
A
= Ny, (cr)(Nk(a) -y %Jﬂk(a, m) (3.16)
p=1 9P
and
~ 3 2 ~
35 (o, A .-
= (Nkw) -2 paL)Jﬁ"w, A))(es x Xk, (317
=1 p=1 998
where
8,0(0 A s IR(X) d X (5)
- Zm B 3.18
2:: z:: 0Xm daﬂ ;1; j dS s=8"1(0,1) ( )
Finally, taking into account
N(0)- (€3 x X) = N(0) - (€3 x 3(0))
we obtain
ap(o, 1) .. 3 dp(o, 1) Bk
= N©@) (@ x §(©) ,3; 507 ;J (0, 1)(€3 x X)i. (319

Computation of/ #* shows that the last term i (3]19) is equal to

(/7,01 :002 01) X N(U)

(e3> X) - detj(cr, » ’

wherep ,, = dp (0, A)/do; and

5 _ ) N

0 —

p(o, A).

3(7]' 3C7j
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The above term is independent of the choice of local coordinates, since both the numerator and the
denominator are multiplied by d@t’/dc) when the transformatios’ = F (o) is made. Hence,
(3:19) can be written in the form

ap(z, 1)

o =h@+ h1(z, p(z, M) - Vgp(z, 1), (3.20

whereh is a differentiable vector-valued function dependingoolout not on the derivatives gf.
One of the consequences pf (3.19) is the formula {1.15). To prove it, we comypter)/dx
for I'(A) = Gy. ltis clear that in this casg(c, A) is a smooth function of both arguments and that

p(s) = 0. Passing to the limit irj (3.19], (3.20) we obtain

3p(z, M)
I

= h(2),

r=0

because, by (3:18),
ap
dog

23: aR(x) D _y
= dsg

1=0,p=0

Hence,
"
p(z, A) = Ah(z) = /( (z, ) — h(z))du = /dM/ Bz, 1) dp!

= AZ/C) d;/o 2" (z, M) dt' = 22p1(z, 1).

Now, sinceR[o(-, A)] = Rg does not depend oxry we have

2 2 d? 22

d d
0= Gz RIPC ] = g R + g |

52 ER[Ah + tpa(-, A)] dt. 3.21

The last term equals

e d2
+ — ——R[Mh + tp1] dt

d d
& <2A R[Ah + tp1 (-, )»)]) dx drdx

d
=2—R[\h A
o [Ah 4 tp1 (-, W]

d/d
t 2Ad7< R[Mh + tp1]

I—A2>

t=A
d (¥ &
— ——R[Mh +tp1] dt,
Y@ )y qa Rt ted
and it tends to zero as— 0, sinceoR = 0. Hence,[(3.21) implies
2

da2

= 85R[h] =0,
=0

and [1.15) is proved.
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Let us turn to our original problem of finding the valueit= ¢ for which equation[(3]6) is
satisfied. It is equivalent to
A0
£(0) = — /() da. (3.22
0
We have the following simple lemma.

LEMMA 3.1 There exist positive constartsandl/g depending only o and such that ifA| < lg
and

/glp(y)l ds, < ey, (3.23
then .
7oz [ ds,. (324
2Jg
If )
max(h(y)ler < 2 / 12(y) ds,. (3.25)
g 2 Jg

then equatior{ (3.22) has a unique solution.

Proof. By (3.20),
o) :Lhz(z) dSZ+Lh(z)l;1(z,ﬁ)~Vg,5(Z, ) ds..
Integrating by parts in the second term and making use of|(3.11), we obtain
IOF /g K2 dS, — 1 /g 1P(I S,y — cala] > L H2(2) S, — cret — calo

from which the estimat¢ (3.24) follows. Since
| (O)] < max|h(y)le

andf& f/(w) du is @ monotone function fai| < Ig, the existence of solution o' 2) is evident.
The lemma is proved.

Now, let us assume that there is given a one-parameter family of suffaces [0, 7] (e.g.
I; = I in the problem[(2.1]2)), that eadh is given by equatior] (1}4), whege= p(y, 1) satisfies
(1.5), and is differentiable with respect toAs above, we consider the surfadgsx) = Z(A)I;
given by the same equation with= p(y, t, A), y € G = Go, and we look for the valug(z) of the
angleA such that

fOun = /gﬁ(z,t,k)h(z) ds. =0 (3.26)

for » = A(¢). The following proposition is a consequence of Lenimé 3.1.

LEMMA 3.2 If p(y, 1) satisfies|(3.23) and if (3.25) holds, then equatfon (3.26) defines a function
A(t) such thatf (A(z), ) = 0. This function is continuously differentiable with respect tmnd

120 < C/g lor (y, )] dSy. 3.27)
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Proof. We observe, first of all, that the above calculations, in particular, formulas| (3.13)] (3.20),
hold true also in the case wherdepends on (r enters these formulas as a parameter). Lemnja 3.1
is also true if[(3.28) is replaced with

/glp(y, nlds, < e

Therefore, under this condition equatipn (3.26) has a unique solutien.(r) € [—Io, lp]. Now, let
us show thatf (A, t) is continuously differentiable with respect#oSince

% = ZW)Npi (s, 1), (3.28)

we have formulas similar t¢ (3.[13), (3]114), namely,

1
05, <0 62) —Z Z Baﬂ ﬁka(A)N ($)oi(s,1) . G29
“Lkm=1 $=57Ha1 1)
iﬂ%}ilzva«I—DpoN@nwyn, (3.30)

wherey is the point ofG related toz as in [3.7). Hence,
JiG 1) = /gh(z)VxR (I =D)ZMNpi(y, 1) dS. (33D

On splitting§ into submanifolds where local coordinates can be introduced and on making use of
(3-12) (we omit the details), one can write the last integral as an integral with respes} and
obtain the estimate

|ﬁ@JH<CLVM%DW%- (332
It follows that.(¢) is also continuously differentiable, and

f[()" t)
L0 bz

Inequality [3.2]) is a consequence[of (3.32), (B.24). The lemma is proved.

If o(y, t) is twice continuously differentiable with respectrtdhen we can evaluate the second
derivative
fu , fifs

Aa() = —— + )
" A 12 Lo

For this we should computg; and f;,. Differentiation of [3.14) leads to

M)y =—

(3.33

925 VxR axk oD
- —fa1-p X] — VxR - — X
PYEY Z axX,t ( ez x X] = VxR - ——[es x X]

X
+ VxR - (I - D) [23 x 88_[:| (339
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The derivatives) D, /0t can be computed by differentiatirlg (3/16) (we recall thét depends on

p(O', t, )\,))
aD, d d (),t,)\,

I, 1, 0). (3.35)
dog

Taking also[(3.18)[(3.28) anf (3]30) into account, it is not hard to se€ that (3.34) can be written in
the form

2~ )\ 2
¥rlo ) =a(s,t,A)p:(s, 1) + Za,s(s, t K)M , (3.36)

31t = I8 ls=5-10.1.1)

wherea and ag are functions with the same regularity properties as the second and the first
derivatives ofp, respectively. Hence, on integrating by parts one obtains

O t) = /g F(y, 3 o1 (y, 1) S, (3.37)

whereF is as smooth a8?p/dsqdsg.
The derivatives;; and f;; (A, t) can be computed in a similar way. We have

92p(0,1,1) 23: VxR dXy

572 Xy W(l—D)Z(K)N(S)/Oz(SJ)

k,m=1
2 49 . St .
+ VxR - (I - D)Z(A)<Z 2o (N$)pi(s. 1)) + N(s)pu (s, t))

— b, at

aD -
— VxR - EZ()»)N(S)M(S, 9]

s=8"1(0,1,1)

From this formula, as well as frorn (3]2§), (3] 3%), (3.20) it follows thiaican be represented in the
form (3.36) with an additional teraa’ p;, on the right hand side, which implies

S (1) = /g(Fl(yJ»,t)pz(y,t) + F2(y, &, 1) pi (y, 1)) dSy. (339

Hence,
1A (0)] < C/g(lpz(y,t)l + o (v, D) dSy, (339
by (3.33), [3.3)[(3.38).

In the same way higher order derivativesfai., r) andi(z) can be computed and estimated.
If A(0) =0, then

t
)] < ¢ fo /g o2 (v, )] dS, d. (3.40)

t
Bz 1 A0)] < 1o 1)] + ¢ /O /g e (y. 7)1 dS, . (3.41)
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An estimate of the gradient @f(z, 7, A(r)) can be deduced frori (3]18). Since

dp(s) _ G OR()

dsp = A dsg’
we have
'a‘p(a,)\)_ap(s) 23:22: 23: OR , _OR()||dy;(s) B
dog 0sp oo o 0Xm 0x; dsa
2
— 8apl < clAl,
a=1!j=1 oy

and, as a consequence,

t
B¢ 1. Vleyg) < oG Dleagy + clil < oG Dleyg) + ¢ /O /g o (v, D)l dSy dr.  (3.42)

4. Proof of Theorem[2.1

As in the case of axisymmetrig (see [18]), Theorerp 2.1 reduces to the proof of the solvability
of problem [2.IP) in a finite time interval and of uniform estimates for the solution. Additional
attention should be given to the construction of the funci@mn.

In what follows we work only with problenj (2.12) without addressing (JL.J0)—{1.12) any more.
Changing notations slightly, we write (2]12) in the form

Wy + (W - V) + 2w0(é3 x W) — vV2W + Vs =0,
V-wkx,t)=0, xe8, t>0,
2
T (W, s)n = (O’H + —(xl +x2) +xU((x,t) + p0> (4.1

Vo=w-n, xel; =08,
W(x,0) = vo(x) — V(x) = Wo(x), x € Lo,

wherer is the exterior normal td7, V, is the velocity of evolution off} in the directions, and
Ulx,1) = [q |x — y|~*dy. We recall thafio(x) satisfies cond|t|on3)
Letus ver|fy directly thato(x, ¢) satisfies the orthogonality conditions

/ Hr, 1) dr = 0, (4.2)
2
/Q w(x, 1) - 7j(x)dx = —a)()/g nj(x)-3(x)dx + Bdj3, j=1,23, (4.3)

wherej; (x) = ¢; x X. Integration of the first equation if (4.1) leads to

E/ J)(x,t)dx+2wo/ (@3 x i) dr —
dr 2 2

2
(&) -
<O’H + ?O(xf—i—x%) +kU(x,t) +po>n ds, =0.
n
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Since

HiidS, =0, /Uﬁdesz Y dydx =0,
n n 2, Jo, |x =yl

the surface integral reduces to
w2
70 (x2 4+ x3)idS, = wS/ ¥de, X =(x1,x2,0),
I; 2

and we obtain

d - . .
_/ w dx + 2wq (egxw)dx—a)g/ X'dx =0,
dr Jg, 2 2
e. dri(t) dlx(1) d
1( 2(¢
— wolo(t) = I1(1) = —Ia(t) =
o wol2(t) =0, o + wol1(t) =0, 9 3(1) =0,
where

Ij([):gj~</ J)dx+a)o/ ﬁs(x)dx), j=1273
2, 2
It follows that/;(¢) = I;(0) = 0; for j = 1, 2 this gives

d d
—/ xldx—wof xp2dx =0, —/ xzdx—l—a)of x1dx = 0;
dr 2 2, dr 2 2,

hence,
/ xpde= [ xde=0 j=12 (4.4
2 20

and, as a consequence,
wedy =L(r) =0, k=123

o

Thus, [4:2) is verified.
Next, we multiply the first equation ifi (4.1) by (x) and integrate ovef2,. On integrating by
parts we obtain

d

_/ J)-ﬁ,-dx+2w0/ (33~[17)x7/,~])dx—a)(2)/ ¥ 7ide = 0.
dr 2, 2

Fori = 3 this gives

d

.o Y d - - -
—/ w - 73 dx + 2wp (x/-w)dX=—/ (W + won3(x)) - 73(x) dx =0,
dr 2 dr 2

2

and fori = 1, 2 we obtain the system
d . o - - .
@ (W + wonz) - N1dx —wo | (W + wonz) - n2dx =0,
t 2 §2;

d - I - e o
d_/ (w+won3)~772dX+wo/ (w + wonz) - n1dx = 0.
t Js, 2
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Sincefgo(ﬁ)o + woi3) - i dx = 838, k = 1, 2, 3, we conclude from the last three equations that

(4.3) holds.

We also need to introduce the partiwvorthogonal to all rigid rotations;, i.e.

3
wh(x, 1) = wx, 1) = Yy,
i=1 (4.5

f vl rde=0, k=123
2,

The latter equations yield an algebraic systemyfor

3
> S = [ ity = —ooSia) + e, k=1,2.3
i=1 t

where
Ski(t) = / kit = [ (Bralx)? — xixe) d
2 2
are elements of a nonsingular matfixs). Hence,
3 ..
yi(t) = SY(B8j3 — woSj3) = @i (1) — woliz, i=123,
j=1

wheresi* are the elements &1 anda; (1) = S'3(1)B. It follows that the vector field¥(x, 1) =
wo73(x),

3
W (x, 1) =Y yiOfi(x) =y () x ¥
i=1
and

3
W (x, 1) =Y e ()i (x) = &) x ¥
i=1

are related to each other by .
w'(x, 1) =w'(x, 1) + V(x, 1),

and that
112,00, = 1512 0, + 12113 - (4.6)
3
10112, = D vi®v®Si(t) = SB(6)B? + Saa(t)wh — 2Bewo. A7
i,k=1

Now, we pass to the proof of the solvability of problgm {4.1). For this we need some estimates
of the solution of a linear problem

U — w2+ Vp=f(E,1), V-i=gE 1), £ecg,
v(€,0) = vg(§),
OS@)i=bE, 1), &el =82, (4.8)

t t
PTG, p)ﬁ—0ﬁ~/ Ab(E. T)de =b(§,t)~|—/ B(. 1) dr.
0 0
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in a given bounded domaif2 with a smooth boundary'. Hereri is the exterior normal td” and
MHE) = $(&) — A E)E) - (&)

is the projection of the vectap(€) given onI" to the tangent plane tb' at the pointt. Finally, A

denotes the Laplace—Beltrami operatorion

THEOREM4.1 ([12[17]) Lets2 be a bounded domain &3 with boundaryl” € C2™*, a € (0, 1),
and let£ (-, 1) € C¥(R2), g(-,1) € CH¥(Q), b e CHeA+/2(P » (0, T)), b(-, 1) € CHe(I),
B(-,t) € C*(I"), Vt € (0, T), satisfy the compatibility conditions

IS@o)iilr = b(E,0),  V-to&) =g(.0), b 1) i) =0,
and the condition _
g&. 1)=V-hE,1)
with ﬁ,(~, t) € C*(2),Vt € (0,T). Then problem8) has a unique solutibne C2+%(£2),
p e CHe(Q) with v, € C¥(£2), Vt < T, and the solution satisfies the inequality

sup|v; (-, f)|C°‘(S2)+SUp|U( f)|c2+a(_(z)+5Up|P( Dlctve )
t<T t<T

<A, Dlce(2) + suplg(, Dletreg) + supl/; (-, Blce(2)
t<T t<T

+ |b|cl+a,(l+a)/2(r><(oyT)) + sup|b(., t)|cl+a(r) ~+ sup|B(-, t)|ce(ry)-
t<T t<T

The local existence theorem for problgm {4.1) reads as follows.

THEOREM4.2 Under the hypotheses of Theorlen] 2.1, problenj (4.1) has a unique solution defined
in a certain finite time interval0, 7o) and possessing the following properties:

(i) Iy is given by equatior] (1]4) witg = Go, p = p(-.1) € C3*%(Go), t € (0, 10), pi (-, 1) €
CZ(Go), pi (-, 1) € C*(Go);
(i) W, 1) € CEU(R2), Wi (-, 1) € C¥(82), 5(, 1) € CHH(2));
(iif) we have the inequality

sup|w (-, Hlcee,) + sup|w(-, t)|c2+a(9,) + SUp|VS( l)|cl+a(_(2,)
t<tg t<tp

+suplp, 1)l c3re gy + 5Up|/0( t)|c2+a(go) + SUp|/01t( D) lce(Go)

1<tp
X C(|w0|c2+a(_(20) + |,00|c3+a(go))§ (4.9
(iv) there exists a twice continuously differentiable functim) such thai (0) = 0 and thatl;
can also be given by the equation
x=y+Nooy WP, 1), ¥ € Gons (4.10

with p possessing the same regularity properties asd, in addition, the property (2]15). The
functionsd andp satisfy the inequalities

16:(0)] < c/ o)1 dSy < ¢ [ 1 -7l dS,.
1 I
oo ! 4.1

0 ()| < CL“ (pee (v, O + 1o (v, )]) dSy < C/F(IJ)I + [w,]) dSy
16 t
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and

SUPIP(-, )l caraGyy,) T SUPIDE (-, Dl c2ra gy, + SUPIDI (-, Dlce Gy
t<tp 1<to

t<tp

< C(|w0|c2+a(go) + |po|C3+a(g0)), (412)

wherep; (y, t) andp;; (y, t) are understood as in Section 2 (dee (R.18)).

Proof. The proof of the solvability of probleni (4.1) and of estimgte|(4.9) is based on the passage
to the Lagrangean coordinates and on the use of Theorém 4.1. It is identical with the corresponding
arguments in[[18, Theorem 3.2], and we only give a very rough idea of it. The Lagrangean
coordinateg € §2¢ are related to the Eulerian coordinaies £2; by

X

! -
£ +[O i 1) dt = X(&, 1), (4.13)

whereii (€, t) = wW(X (£, 1), t) is the velocity vector field written as a function&ft. Together with
q(&, 1) =s(X(,1),1), u satisfies the relations

ii; — vV +2woe3 x il + Vg =0, V,-i=0, &eQo, (4.14)
u(&,0) = wo(%), (4.15)

2
T, (i, q)ii — o Hii = <%|x/(g, D%+ po+kU(X, t))ﬁ, £ € I, (4.16)

whereV, = AV is the transformed gradienf = (A;;); j=123 is the matrix of cofactors of
the Jacobi matrix of the transformatidn (4.13) (the Jacobian of this transformation equals one),
|X'|2 = X2 + X3, and finallyT, (i, g) = —qI + vS, (i) and

3
. ou; u;
Sy (u) _—< E (A.k—f 4'k_>>
u = ! & / 0&k i,j=1,2,3

are the transformed stress and rate-of-strain tensors, respectively. Using the well known formula
Hi = A(t)X, whereA(t) is the Laplace—Beltrami operator @i, one can easily show that under
the conditioni - 7o > 0, (4.18) is equivalent to two equations

oIS, ()i = 0,
iio - Tulii, @)t — oiig - A(r)<§ +/
0

t

U, v) dr) 4.17)
a)2 / 2 g
= <?|X &, D"+ po+rU(X, t))n -no, & € Iy,
whererng is the exterior normal tdp and
n¢=¢—iiGi-¢), Mop=¢— iiolio- ).

The first statement of Theorgm }.2 is obtained by linearizing prokflem| (4.14)}-(4.16) and using
Theoren 41 (se¢ [15, 117] for more details). From the interpolation inequalities and frorh (2.14) it
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follows that
1/(4+w)

suplpo(y)| < ce @@ po| TG

Go

SUP|V po(y)| < ce T/l o)
Go

2/(4+a)
C3+(Go)

Since .
lo(y, ] < |po(W)] +/O loz (y, )| dr,

t
IVgon(y, DI < [Vgepo()I +/0 [Vgop-(y, Dl dr,

condition [L.}) holds fop(y, 1), t < 19, if ¢ andzg are sufficiently small.

For the construction of (¢), all the necessary calculations are carried out in Section 3. Due to
Lemmg 3.1, we may assume without loss of generalityghat po, i.e.,Fo is chosen in such a way
that pg satisfies[(1.18). Then we make use of Lenima 3.2 an@l(spt= —A(7); we assume thak(r)
is defined in the same time interval [g] asw, s, p. The estimates (4.11) follow frorh (327), (3}39)
and from the kinematic boundary conditidf)y = w - 7 that can also be written in an equivalent
form . .
w(x,t) -n(x)
i(x) - No(y)

Finally, we setp(y,1) = p(Z 10@)y,t) = B(Z(A@)y, 1), y € Goy, Wherep(z, t) =
B(z, A1), 1), z € Go. TheCL(Gy(s))-norm of 5 can be estimated with the help .4j.42). Itis
easily seen thgh satisfies) ifo ande are sufficiently small. An estimate of th& ¥ (Gy(;))-
norm of o can be derived from the equation

p(y, 1) = x=y+No(p(y.t) €I, y € Go.

o~ 602 a)z o~
o (H(x) —H(y) + 7°<xf +x3) — 7°<y% +¥3) + kU, ) —UQ)) =7 - T (W, $)it,
y€Gor), (418

which is a consequence of the boundary conditions. Hetey + Nowyp(y,t) € I, ﬁ(y) is the
doubled mean curvature ¢, at the pointy, andi/(y) = ffm ly — z|~1 dz. By Proposition 3.1

in [16] and [4.8), equation (4.18) implies
1oC, f)|c3+a(g0(,)) < (i - T(w, S)ﬁ|cl+a(r,) + 12¢, t)”Lz(gg(,)))
< C(|@0|c2+a(90) + |PO|c3+a(g0))~ (4.19
The simplest way to estimate the norms of the derivatiyes;, is to make use of the kinematic
boundary conditionV,, = w - n. Let us show that the velocity, of evolution of the surface

(W) = Z((@))I in the direction of the exterior normal can be expressed in ternis, afs
follows:

~

Vo=V, —0/t)(€3xX) -n=(w—06/(t)(e3 x X)) -n(x), x¢€Ilj.
We recall thatl; (A(t)) and I} are given by the equations
¥=z+No(2)p(z. 1) =X(z, 1), z€0Go, (4.20

and
x=Z00)X(z,t)=Y(, 1), ze€Qo,
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respectively, and that the norntaht the poinfs is related tai(x) by
i = ZO ).

Hence,

Vo=VY  i=(ZX),-ZRi=X, W4+ ZZ7YY =V, +6/@xI)- i,
as claimed. On the other hanid, = 5,(1V . ﬁ), SO
Pz 1) = (N W)L (x, 1) — 0] (1) (€3 x X)) - i (x). 4.21)
From this relation and fronj (4.9) it is easy to deduce estinjaie|(4.12) for the time derivatiges of
and, as a consequence,®fThe theorem is proved.

Let us turn to uniform estimates of the solution of problgm]|(4.1). One of them is an estimate of
a generalized energy.

THEOREM4.3 Assume that probler (4.1) has a classical solution defineddd®, '], T < oo,

and thatl; is given by equation (4.10) witp(y, ¢) satisfying [2.1p). If[(Z.16) holds, then there
exists a functiorE (¢) such that

e3(lBC, D)t 150 DG, ) < EO < callibt, Dl +IPC D51, ) (422
and
E(t) <c"E®©), b>0, (4.23)
fort < T. The constantsy, ¢, b are independent df.
Proof. First of all, we have the energy relation
%(%n@(-, DI ) + G(t)) + gus@nﬁz(g,) =0, (4.24)

whereG (1) is the functional[(1.1l4) with2 = £2,. This relation is obtained by multiplying the first
equation in[(4.]1) by and integrating ovef2; (cf. [9,[10]). By (4.6) and[(4]7), relatiof (4.24) can

be written in the form

d(1 . )
d—(—nw%, D%, + R1(t) — Ro>) + 2 IS@HI2,p, = O, (4.25)
t\ 2 2 2
where X 5
_ P “o 1oz, 1
Ri(t) = =531 + - S33(1) + G(1) = 5P (s () 533(1))+R(r>,

andR(z), Ro are defined by (I]2) witl? = 2, and2 = Fy(,), respectively (it is clear thaky is
independent of). The expression

_ 1
S3a(t)  Saa(t)

 S22(1)S25(t) + S11(1) S35(1) — 2512(£) S13(1) S23(1)
- S33(¢) detS (1)

2
§33(1) — PBRAONEO!
j=1

(4.26)
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is a positive definite quadratic form with respect3gs(¢), S23(¢) (this follows from sz(r) <
S11(1)S22(1)). By our main hypothesis concerning, the differenceR(r) — Rp is equivalent to
the square of the norfo (-, t)||W21(g9“)). Indeed,

N 1 A d2 1 N
R)~ RO) = RI71— RI0) = SR (71+ [ & [ 0 Rludldiu = boR(7] + 503171 + Ralp).

where

=0
2=0

d
SoR[p] = d_AR[Ap

and

i)
=0

G . sincep satlsfles). In additiory satisfies),

Ra[p] = f (1- m( S RIup] - dkz

is a remainder not exceeding||5]/2
(1.18) (withG = Gy (1)), hence,

AP, ) < K1Y= RIOL < 5Dl g, 427

if § is small enough.

To complete the proof 0@3) we need to obtain an additional esuma[te ll@g() According
to Lemma 4.1 in[[ in the domalr?(t) = Z(-6(1))$2; whose boundary“, Z(—=0) I} is
given by equatior{ﬂO) there exists a solenoidal vector Ue{bd, t) with the following properties:

D U satisfies the boundary conditions
Ux, 1) - ii(x) = m(y, By, D)(y: By 1), x €T,
whereg(y, p) is defined in[(L.J7)y is the point ofGo such thatx = y + No(y)5(y, ), and
m(y, p(y, 1)) is a positive function satisfying

/,ﬁ f)m(y; p)dS, = fg f(y+ No(y)p(y, 1)) dS,
t 0

f9r any f(x), x € f“};
(2) U is orthogonal to all vectors of rigid rotation:

/~ Ux,t)-ni(x)dx =0, i=123;

2

(3) we have the estimates

”U( t)”Wl(Qt) clpC ol 1/2(g )’

IIU(~, D3, S clloC, ONLyGo)
1U:C Dl 8, %C(”Pt(' DLy + 10, t)llwzl/z(go))-
It is easy to verify that the vector field (x, r) = Z(O(t))U(Z Lo@)x, 1), x € §2;, has the same
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properties inf2;, in particular,

IWC Dllwag, < lBC Dllyzg,): (428
and, moreover, the derivative

W (x,t) = Z/0)0' (1)U Z x, 1)

3
+ ZOO)UZTHO0)x. )+ Y Ur(Z7HO@)x. H(Z™Y O0)x)8' (1)),
k=1

Wherel?,t(z, 1) = 8(7(z, t)/0t andﬁ,k(z, 1) = 8(7(1, t)/0dzx, satisfies the inequality
Wi, Dl < clpr Gy Dl LyGo) + 10C, t)||W21/2(g0))- (4.29
We write the first equation iri (4.1) in the form
Wi+ (- V)t + wo(@3 x W) + (W - V)W — vV2h + Vs = —ib),
multiply it by W and integrate oveR,. After integration by parts we arrive at

d

—/ v Wde— | ot W4+ @ - VW) de + | @ V)@” - Wdx
dr 2 2

2

+f a)o(ZgXﬁ))-de-i-K/ S() : S(W) dx
24 2 2
1- -
—/ (0H(x)+ EIV(x,t)IZ-l-KU(x,t)—l-po)W -ndS, =0. (430
I;

It is easily verified that
@ V)D +awp@3 x ) = @ - VYV +0") + @ - V)" —V-VYV+[@"- V)V — V- V)]
and that the last term is a rigid rotation:

2

@ - VYV = V-V =wo Y ;)1 - VInz — (13- V)] = wolariiz — @2ii1).
j=1

Hence, it is orthogonal t&. We also observe that
- - - - 1_ - -
@ V)" = (V- V)V = ZV(VIE = "),

so [4.30) becomes

d

—/ W Wdx — wL.(VV,HJ).wW)dH/(@l.vxwuv).vf/dx
dr Jg, 2 2

. 1 -
+%/ NUE S(W)dx—/ <0H(x)+§|17)”(x,t)|2+po+lcU(x,t))W-fide =0. (430
@ n
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Finally, we multiply [4.31) by a small positive and add to[(4.25), which leads to

d

—FE E =0

™ ®) + E1(t) ,
where

E(t) = [0, 0112, + Ra(t) — Ro+ y/g LW d,
' (4.32)

VvV N N - N -
Ev0) = 18G5 0, — 7 /ﬂ B (W, + (- V)W) de

t

+y (J)i-V)(ﬁ//+J/)-de+y—2”/ S@) 1 S(W)dx — yIg
2 2

and/g is the last integral ir (4.31).

It is clear that[(4.22) follows fronj (1.16) if is a sufficiently small (but fixed) constant.

In order to obtain[(4.73), we estimate the functin(r) from below (in the same way as in [18,
Theorem 4.1]). By[(4.28)] (4.29) and the Korn inequality

185G Dl < lS@D Lz

we have

/ W (W + @ - V)W) dv| < elli ¢ 0l o) (17 ¢ Dl + 156 Dl gy)
2
< cllS@ ()l Lo (B¢ Dl Lycry + I1PC Dlly22g, )
so the first four integrals ifi (4.80) are not less than
YicormLy2 -1 = =~
S ISWHIL, @) = v IS Lo (W Doy + 10C t)”vvzl/z(g@(,)))' (4.33

Now, we estimate thé,(I})-norm ofw = w- + w” — V. Analysis of the differenc@” — V (see
[18, proof of Theorem 4.1]) shows that

18" = VLo < eIt DllLaGa:

hence,
Nl oy < 1B Lo + €PN LoGagy)-
Using again the Korn inequality we conclude that the differepce4.33) is not less than

> 12 > | ~
(/2 = IS4 = VIS D Ly IPC, Dll a2, -

The surface integralg can be written in the form
~ 1 .
Ig = f [a(H(x) = HO) + 518", O = 0§05 +39)
0(1)

+k(U(x) — LAl(y))]QD(y; p(y,1)dS,, x=y+ Nopyp(y,1) € I;.
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Repeating the calculations carried out(in|[15,[16, 18] for symmgfrione easily shows that

—Ig = Q[p] + 83R[p] + R'[7], (4.34)
where@ is the quadratic form
2
Wi 0 0 0
Q5] = WOSW(SQQ SEIP] + 819 £3[7] — 2813 T1al ] L3l p)), (4.35)
11922 ~ P12

0 > >
S% = [, 1) - ik (x) dx and

23[p] = 80Sj3 = —fg x3xjp(x, 1) dS,, j=12
0 (1)

Sincesig)2 < Sﬁ)ség), Q[p]is nonnegative. The last expressighin ) is the sum of the terms
in —Ig of degree higher than 2; it satisfies the inequality

/ < ~2
IR'[p]l < cSIIPIIWQ(ge(”),
because satisfies[(1)5). From the above estimates it follows that

E1(t) > 0/2 = ep)IS@HIEa,) — ¥ IS@DILa@n 1P Dy,
2 a2
+ y3RIB] = e8Il 6, (4.36)

By (1.18), this inequality implie€1(r) > bE(r) for someb > 0, and, as a consequenge, (4.23), for
appropriate sufficiently smajt ands. The theorem is proved.

The next theorem concerns uniform estimates of thiler norms of the solution.

THEOREM4.4 Assume that the solution of problen (4.1) is defined fer(0, T') and that it has
properties (ii)—(iv) of Theorein 4.2. Then

Wi (-, Dlceig) + 10, Dlezrag,) + I8¢ Dlctraig,y + 100, Dlcsrag,,) + 10:¢ Dlczrag,,)

1B Do @y < SUP NBCDlyy+  SUP PG Dy, ). @3
t—27o<t’' <t ! =2t <’ <t 2706

wherertg is a certain small number. The constan$ independent of.

For completeness, we give the main ideas of the proof that is practically identical with the proof
of Theorenj 4.1 in[[16]. Lefy > 219, 1 = 19 — 270, » € (0, 70), and letz, (¢) be a smooth function
equal to one for > 11 + A, to zero forr < 11 + A/2, and satisfying the inequalitiesQ ¢, (r) < 1
and
9

ark

We pass to the Lagrangean coordindtes 2;,:

ok k=12

N

t
7€=€+/ uE vdr=XE, 0, U ) =vXE 0,0,
t

1
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and we introduce the functiong(&,t) = p(X(,1),1), un(&, 1) = uE,N6@), g & 1) =
q (&, 1), (¢). They satisfy the relations

i3 — V25 + 2w0e3 X iy, + Vg, = U] (1),
Vu'ﬁAZOs segkate(tlsT)v
u(&,11) =0,

IS, @u)n =0, §&ely,
t

t
n1- A(r)iy (€, 1) dr = by, +/ B (&, 1) dr,

n

ny - T, (s, ga)n — U/

1
whereri, is the exterior normal td;, 1‘1143 = 5 —n(ny - 43), and

dA(7)
dr

t
bus,t):aﬁl-f o0 2 g,
n

- S ey - da@) ['.
By.(§,t) =ny - Tu(u, ¢)ng, (1) + ona(§) - (1) @ / u,yde
11

O [(“5, 2 2 B
+Cx(t)§ 7(X1(§,t)+X2($,t))+p1+KU(X) (n-n1)
(see|[16] for more details). By Theor¢m .1, one obtains{faufficiently small)

sup |ﬁkt(',f)|ca(ﬂ,l)+ sup |ﬁk("t)|c2+a((z,l)+ sup |f]>»("l‘)|cl+a(_(zt1)
41

1n<t<itp n<t<tp <t<Itp
—1 -
Sser(Cosup u, Dl +  SUp g Dleary). (439
n+r/2<t<tg n+r/2<t<tg

The norm ofg on the right hand side is estimated by using the boundary conditioni (4.18). We
have
|S(‘, [)|Ca(n) < C(|17)(, f)|c1+ot(1"t) + |Z)\(7 t)|C2+a(g9(t)))-

Now, we use the interpolation inequalities

i, Dl ctraqg,y) < Ol Dlcaraqg, +6~ 72t DllLym,)),

B¢, DlezraGyyy) < O1BC, Dl sty +0~ 2 NPC D i,

with & = re; and estimate (4.19). We multiply (4138) b§*7/2 and arrive after easy calculations
at
f) <cerf(h/2)+ K,

where

FO)=2FT2C sup i, Dlcage, +  SUPdC, Dlcore(g,)
n+r<t<tg n+i<t<ty

+ sup |51('1t)|c1+w(9,1)),
nt+r<t<tg

K =c(e)( sup [w(, DLy + SUp oC Dllwig,,)-

1 <t<tg 1 <t<tg
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Settinge; = 1/2¢ we easily obtain
f) <2K;

taking here. = 7o we arrive at the estimatg (4]37) farands. It follows from (4.19), [(4.2]L) thap
also satisfieg (4.37). This completes the proof of the theorem.

Proof of Theorer 2]1. By Theoreni 4.p, the solution of problefn (4.1) exists, the funcfion is
defined and inequalities (4.9), (4]111)—(4.12) holdrfer [0, r0], wherer is determined by

Lo= |lI)0|c2+or(_QO) + |polcare(gy)-
It follows from (4.9){4.12) that
L < coLo,

where
L = SUp|w|c2ra(g,) + SUPIBcare (g, -
t<tg 1<itp

In addition, we have estimatds (4/238), (4.37), i.e.

E(t) <e PE0) < c1(L)e e, (4.39)
[w: (- Dlca(@y) + W, Dlczra(gy + 15C, Dlcrraig,) + PG, Dlcarag, )
+ 101G Dl czia(yy) + 1P DlewGyyy) < c2ePEY2(0) < ca(Lye e, (4.40)

They are satisfied far € [21, #p] (we chooserg < 79/2). In particular, the last inequality holds for
t = 1o, and we assumeto be so small that

ca(coLo)e "0/%e < Lo,

and that the smallness conditiofis {1.5), (B.23) Aoare satisfied when is replaced withe’ =
c3(coLo)e. Then we can apply the local existence theorem once more and extend the solution of
our problem to the intervak{, 2rg]. By the same procedure as above we find the fundi@n in

this interval (but the role of is played this time by the surfag®,). The fact that the constants

in (4.23) and[(4.37) are independent®fallows us to repeat this procedure again and again and
extend the solution to the intervalsrj, (k + Do), k = 1, 2, .... In all these intervals, inequalities
(4:39). [4.4D) hold with the same constants. It is clear that estinjate$ (£.16), (2.17) are satisfied. The
theorem is proved.

REMARK  In fact, Theoreni 2]1 was proved under the apparently weaker (1.16)) hypothesis
of the positivity of the second variation of the functional

p? 33 L
Ri=—\8"—-— R,
1= 2 +

wheres33 — 1/S33is expressed as ifi (426) in termsf = [, 71 (x) - iix(x) dx. This functional
appears in the crucial relationis (4]25) .34) leading t0](4.23), since

Q[P + 85RIp] = S5 Rl7).

As shown by A. M. Lyapunov[6], in the cage = 0 the hypotheses of positivity 68 R ands3 Ry
are equivalent to each other. Let us prove that the same is trae=oD.
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THEOREM4.5 If §2Ry has property[ (1.16) for arbitrapy(y) satisfying [1.1f)[(1.18), then
8§R1lp] < cS§RIp), (4.41)

soSSR has the same property (with other constants:).

Proof. Without restriction of generality we can assume that

/ x1x2dx =0
f

(this condition can be satisfied by appropriate choice of the axes). Then, according td (4.85),
2 2
_ Y0 2 Yo 2
Qlp] = Wzl3[p] + @223[)0]‘
11 22
Letus calculatégR[po], wherepg(x) = N(x)- 7(x) andn(x) = bxXisan arbitrary vector of
rigid rotation. To this end, we Writ%R[p] in the form

$2R[p] = /g pBlplds,
where

_ ‘US 2, .2 2, .2
B[p] = Bolp] + W(xl + x5) g(yl +y5)p ) dSy,
33

g lx—yl

and computeBg[po]. We take an arbitrary small smooth functietx), x € G, and consider the
integral

w2
I[r] = / <0H(x) + 7O(xf +x3) + 1 U (x) + po),oo(x) ds,.

r

whereU (x) = [, |x — y|~tdy and
r=02=x=y+NOrQy)=e(y), yegl

It can be easily shown that only the term containiv@s different from zero and that

I[r] = wS/ Hx)-X'dx, x' = (x1,x2, 0).

2

Now, we write/[r] as an integral oveg:

m(y; r(y))ds,y,
x=e,(y)
wherem is the function introduced above (see the proof of Thegrein 4.3), and we calculate the first
variation of I[r]. Taking account of (1]1), we obtain

0)2
I[r] = /g (UH(x) + 7O(Xf +x2) +1U(x) + po)po(X)

Po(y) dSya

x=e,(y)

“’% 2, .2
Sol[r] =/g50<0H(x)+7(X1 +x2)+KU(x)+po>

= w30 /Q i(x) - ¥ dx = wf /g i(y) - ¥r(y)dsy. (4.42)
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SincedoH (e, () = Agr(y) + (H2(y) — 2K(y)) (seel4]) and
oU(y) / r(z) ds,
g

doU (e (y)) ZT(Y)a—N‘i‘ v — 2]

(seel[16]),[(4.4R) implies
/g po(y) Bo[r]dSy, = - /g () - ¥'r(y)dsy,
and, as a consequence,

Bolpol(») = —wdii(y) - ¥ = —wi(bay1 — b1y2)ys.

From
/(yf + ¥9)po(y) dSy = ZwS/ fi(x) - ¥ dv = wd(b x &3) / x3xX'dx =0
e F F

we conclude that alsB[po(y)] = —wgﬁ(y) -y’. Multiplying this equation byg(y) and integrating
we obtain the desired expression B@R[po]:

85R[po] = —w} /f 7(x) - V[(bax1 — b1x)x3] dx

= o} <bg /f (x2 — x3) dx + b2 /f (x5 —x3) dx> = R[D3(S — D)+ b3(SSY — S, (4.43)

Finally, since
©§ > O _ ¢0),2 ®§ > 0 _ ¢(0)2
Qlrol = —5;02(S33 = S11)° + —5;01(S33 = S22)%
S11 S22
we have

1
5O

@) 0
S. 0 0 S. 0 0
85 Ralpol = 53Rl ol + Qlpol = wh [b%—sfg) (S33 — S17) + b~ (S35 — S3)
11 22

for arbitraryE = (b1, b2, b3). It is easily verified thapg satisfies?) an .| 8) (the latter with
an appropriate choice @8). In this case, by our hypothesis concernﬂﬁgil, 8gR1[po] should be
positive, which means that

0) ) (0) 0
Saz > S110 Sz > Sy,
and
8§RLpol > c8R1lpo]. (4.44)

Now, let us show that every(y) satisfying [(1.1]),[(1.18) can be represented in the form
p(») = po(») + p1(y) = N3 - (b x ) + p1()

with p1 satisfying the additional orthogonality conditions

fg y1y3p1(y) dSy = /g y2y3p1(y) dSy = 0. (4.45
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A simple computation shows that (4]45) holds if
b1 = ;/ y2y3p(y) dSy, b2 = —;f y1y3p(y) dSy,
s 59 Jg ’ 59 59 Jg ’
and if

1 2 L
b = > b /g KON G) - i () dS,,

Joh?(»)dSy &

then bothp andp; satisfy [1.17),[(1.78).
By @.43),

6R[p1] = 85R1[p1l,
so taking account of (4.44) we obtain

83RIpol + 83R[p1] > 85 R1lpol + 83 R1[p1] > c(83Rolpol + 83R1[p1]). (4.46)
Finally, it is easy to see that

83R1[p] = 85R1[po] + 85R1[ 1] + Ralpo, p1].
83RI[p] = 85R[po] + 83R[p1] + Rlpo. pal.

where

d
Rlpo. p1] = E%R[po + sp1]
s=0

/gpl(y)Bo[po]dS +220 5O /(yl +35)00(7) dSy/(yl +33)p1(y) dSy =0,

02 03
Ralpo, p1] = Rlpo. p1] + 2S(0) X13[po] Za3lpa] + 25(0) 23l po] Z23[pa] = 0.
11

Hence,[(4.4p) coincides with (4]41) and the theorem is proved.
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