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This paper concerns numerical approximations for the Cahn—Hilliard equation A(eAu —
e~1f@w)) = 0 and its sharp interface limit as \, 0, known as the Hele—Shaw problem. The
primary goal of this paper is to establish the convergence of the solution of the fully discrete
mixed finite element scheme proposed(in/ [29] to the solution of the Hele—Shaw (Mullins—Sekerka)
problem, provided that the Hele—Shaw (Mullins—Sekerka) problem has a global (in time) classical
solution. This is accomplished by establishing some improved a priori solution and error estimates,
in particular, anL*° (L) error estimate, and making full use of the convergence resili of [2]. The
cruxes of the analysis are to establish stability estimates for the discrete solutions, use a spectrum
estimate result of Alikakos and Fuscd [3] and Chen [15], and establish a discrete counterpart of it for
a linearized Cahn—Hilliard operator to handle the nonlinear term.

Keywords Cahn—Hilliard equation; Hele—Shaw (Mullins—Sekerka) problem; phase transition;
biharmonic problem; fully discrete mixed finite element method; Ciarlet—-Raviart element.

1. Introduction

In [29] we proposed and analyzed a semi-discrete (in time) and a fully discrete mixed finite element
method for the Cahn—Hilliard equation:

1
4 A(sAu - —f(u)) —0 in@r=0xJ, J:=0T), (1.1)

&

w9 1
M eAu—=fw)) =0 ino@r =002 xJ, (1.2)

on on &
u=ug in x{0}, 1.3)

where f(u) = F'(u) and F is a double well potential. Note that the super-indesn the solution

u® is suppressed for notational brevity. We established a priori solution estimates and optimal and
quasi-optimal error estimates unaeginimum regularity assumptioms the domain2 c RV (N =

2, 3) and the initial datum functiong. Special attention was given to the dependence of the error
bounds ore. It was shown that all the error bounds depend gfn dnly in some low polynomial

order for smalk.
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2 X.FENG & A. PROHL

In this paper, we are concerned with the second stage of the evolution of the concentration,
that is, the motion of the interface. We focus on approximating the Hele—Shaw (Mullins—Sekerka)
problem:

Aw =0 in2\ I3, t€[0,T], (1.4)
ad
a—w —0 onae, t € [0, T, (1.5)
n
w=o0kK only, t €0, T], (1.6)
1[o
v=2| onr;, 1 €0, T], (1.7)
2| on r
I'o=Too whens =0 (1.8)

via the Cahn—Hilliard equation as\, 0. Here

1 [ F(s)
O'Z/;l Tds,

andx andV are, respectively, the mean curvature and the normal velocity of the intdrfaees
the unit outward normal to eithéw?2 or I3,
Jw - dwt dw™
[8n :|n T on on ’
andw* andw™ are respectively the restriction afto £2," and2,”, the exterior and interior of}
in £2 (cf. [2,[29]). We remark that the orientation bf is chosen such that the unit outward normal
n on I is pointing tog2;".

Numerical approximations for the Cahn-Hilliard equation witfixads have been studied by
several authors in the past fifteen years. Elliott and Zheng [24] analyzed a (continuous in time) semi-
discrete conforming finite element discretization in one space dimension. Numerical experiments
of the method in one space dimension were reported_in [21]. Elliott and Frenth [22] proposed
a (continuous in time) semi-discrete nonconforming finite element method based on the Morley
nonconforming finite element methad [11] 17]. Optimal order error estimates were also established
for the nonconforming method under the assumption that the solution is smooth. Elliott, French
and Milner [23] proposed and analyzed a (continuous in time) semi-discrete splitting finite element
method (mixed finite element method) which approximates simultaneously the concentratidn
the chemical potentiab. Optimal order error estimates were shown under the assumption that the
finite element approximatiomy, of the concentration is bounded in.°°. Later, Du and Nicolaides
[19] analyzed a fully discrete splitting finite element method in one space dimension under weaker
regularity assumptions on the solutianof the Cahn—Hilliard equation, and established optimal
order error estimates by first proving the boundedness @f L°°. Copetti and Elliott[[18] consid-
ered the Cahn—Hilliard equation with a nonsmooth logarithmic potential function. A fully discrete
splitting finite element method was proposed and convergence of the method was also demonstrated.
In one space dimension, French and Jersen [30] analyzed the long time behavior of the (continuous
time) semi-discrete conforminigy-finite element approximations. Recently, extensive studies have

been carried out by Barrett and Blowey and others on the finite element approximations of the
Cahn-Hilliard system for multi-component alloys with constant or degenerate mobility; we refer
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to [5,16, 7] and the references therein for detailed expositions. We like to emphasize that the results
cited above were established for the Cahn—Hilliard equation wiitked“interaction length”s. No

special effort and attention were given to address issues such as how the mealasideslepend

one¢ and how the error bounds dependsrin fact, since all error estimates were derived using a
Gronwall inequality type argument at the end of the derivations, it is not hard to check that these
error bounds contain a factor &4y ¢), which clearly is not very useful when— 0.

The main objective of this paper is to establish the convergence of the fully discrete mixed
finite element method proposed [n [29] to the solution of the Hele-Shaw proplem [I.4)—(1.8) as
h,k,e — 0, provided that the Hele—Shaw problem has a global (in time) classical solution. To our
knowledge, such a numerical convergence result is not yet known in the literature for the Cahn—
Hilliard equation. We also note that the convergence of the Cahn—Hilliard equation to the Hele—
Shaw model was established lin [2] under the same assumption.

To show convergence, we need to establish stronger error estimates, in particufagJan.>)
estimate. We are able to obtain the desired error estimates by first proving some improved a priori
solution estimates, and then an improved discrete spectrum estimate under the assumption that the
Hele—Shaw problem admits a global (in time) classical solution. As in [29], the cruxes of the analysis
are to establish stability estimates for a discrete solution, use a spectrum estimate result of Alikakos
and Fuscad[3] and Chen[15], and establish a discrete counterpart of it for a linearized Cahn—Hilliard
operator to handle the nonlinear term.

We also remark that parallel studies using a similar approach were also carried out by the authors
in [28,/27] for the Allen—Cahn equation and the related curvature driven flows, and for the classical
phase field model and the related Stefan problems, respectively. On the other hand, unlike the Allen—
Cahn equation which is ah? gradient flow, the Cahn—Hilliard equation is &1 gradient flow;
this makes the analysis for the Cahn—Hilliard equation much more delicate and complicated than
that for the Allen—Cahn equation given [n [28].

The paper is organized as follows: In Secfipn 2, we shall derive some improved a priori estimates
for the solution of[(L.11)£(I]3) under the condition that the Hele—Shaw problem has a global (in time)
classical solution. Special attention is given to dependence of the solutiemnovarious norms.

In Sectior{ B, we analyze the fully discrete mixed finite element method proposed in [29] for the
Cahn-Hilliard equation, which consists of the backward Euler discretization in time and the lowest
order Ciarlet—Raviart mixed finite element (for the biharmonic operator) discretization in space.
Optimal and quasi-optimal error estimates in stronger norms, including®hg; L) norm, are
obtained for the fully discrete solution. It is shown that all the error bounds dependsoonly

in low polynomial orders for smak. Finally, Sectiorj ## is devoted to establishing the convergence
of the fully discrete solution to the solution of the Hele—Shaw problem. Using .fRéJ; L)

error estimate and the convergence result bf [2], we show that the fully discrete numerical solution
converges to the solution (including the free boundary) of the Hele—Shaw problem, provided that
the latter admits a global (in time) classical solution.

This paper is a condensed and revised version_df [26], where one can find more details, and
some additional results as well as helpful comments which could not be included here due to page
limitation.

2. Energy estimates for the differential problem

In this section, we derive some energy estimates in various function spaces¥gdo H4(£2)) N
HY(J; H3(£2)) in terms of negative powers effor the solution: of the Cahn—Hilliard problem
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)—) for givenug € H*(£2). The basic estimates are derived under general (minimum)
regularities, while the improved estimates are established under the assumption that the Hele—
Shaw problem admits a global (in time) solution. Throughout this paper, we assungg tha”

(N = 2, 3)is a bounded domain wittmoothboundary 2. The standard notation is also adopted in

this paper (cf.[[29]), in particularn—1 and A~1/2 stand for the inverse Laplacian and its gradient.

For their detailed definitions, we refer to Section 2[of|[29]. Agahand C are used to denote
generic positive constants which are independentarid the time and space mesh sizesdh.

In this paper, we are mainly concerned with the second stage of the evolution of the
concentration:, that is, the motion of the interface, and focus on approximating the Hele—Shaw
problem via the Cahn—Hilliard equation discretized by a fully discrete mixed finite element method.
For these purposes, we rewrite (1.[)1.3) as

u = Aw in 27, 2.1)
1

w=-fu)—cAu in2r, (2.2)
€

0 d

M_2_p ond x (0, T), 2.3)

av av

u(x,0) = ug(x) Vx € £2, (2.4)

wherew physically represents the chemical potential. We refer t6[[24, 10] and references therein
for more discussions on well-posedness and regularities of the Cahn—Hilliard and the biharmonic
problems. Unless stated otherwise, we defifjéx) := w(x, 0) by settingr = 0 in (2.2).

As in [28,[29], we consider the following general double equal-well potential funétion

GENERAL ASSUMPTIONL (GA;) 1) f = F’ for F € C3(R) such thatF(+1) = 0, andF > 0
elsewhere.
2) For some finitep > 2 and positive numbeis > 0,i =0, ..., 3,

&lalP™? — G0 < fl(a) < &lalP 2+ VaeR
3) There existO< y1 < 1,72 > 0,8 > 0 andC > 0 such that
(i) (f@) — f(b),a—b) > yi(f'(@)a—b),a—b)—ysla—bl*? Vial <2C,
(i) af’(a)>0 Vla| >C.

REMARK We note that the above (GAdiffers slightly from those of[29] in 2) and 3). It is trivial
to check that (GA)2 implies

—(f' v, v) <olvlF, Vv e L¥(R), (2.5)
which will be utilized several times in the paper.

EXAMPLE  The potential functior (u) = %(u? — 1)2, and consequently; (u) = u® — u, is often
used in physical and geometrical applicatians [4]12] 8,2, 16]. For convenience, we verifyi {GA
(GA1)3. First, (GAL)1 holds trivially. Sincef’(u) = 3u? — 1, (GA1)> holds withé; = & = 3,

p = 4 andég = ¢3 = 1. A direct calculation gives

f@ — f(b) = (a—b)f'@) + (a—b)?>—3a—bal. (2.6)

Hence, (GA)s3 holds withy; = 1, y» = 3,8 = 1 and any constarg > 0. Also, [2.5) holds with
co=1.
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REMARK In this paper, we mainly consider the cage= 1; the analysis for this case is harder
than that for the case @ y; < 1. We refer to[[26] for the analysis of the latter case.

In the rest of this section, we shall establish some basic and improved a priori estimates for the
solution of the Cahn-Hilliard equation under the assumption that the Hele-Shaw prpblem (1.4)—
(L.8) has a global (in time) classical solution (¢f.][29]). These improved a priori estimates are
necessary for us to obtain error estimates in stronger norms in the next section.

LEMMA 2.1 Suppose thaft satisfies (GA). Then the solution of (2} 1)—(2.4) satisfies the following
estimates:
Jo llus |I§,_1 ds

00 = j&‘(us)s
& IVwI2, ds} °

. € 1
(i) esssup=|VullZ, + ZIIF )l 2+
[0.00) (2 €

(i) esssuguly, < C(1+J:(up) (pasin(GA)2),
[0,00)

(i) esssuflul — 112, < CeJe(uf).
[0.00)

Proof. Assertion (i) follows from the basic energy law associated with the Cahn—Hilliard equation
— s D112, .

—IVuw®)]2,,

d
g Je®) = { 2.7)

which is obtained from testing (1.1) withA~1u,, and integrating (2]7) infrom 0 tooco. Here
. € 2, 1
Tew) = | | Z|Vul?+ ZF@) |dx Vvt > 0. (2.8)
Q 2 &

The conclusions of (ii) and (iii) follow from (i), the Mean Value Theorei({) — F(+1) =
(£ DF'(EP), (GAp1 and (GA)>. O

The next lemma is a corollary of Theorems 2.1 and 2.3 bf [2]. It shows the boundedness of the
solution of the Cahn—Hilliard equation, provided that the Hele-Shaw profjlefh (1.4)—(1.8) has a
global (in time) classical solution. This boundedness result is the key for us to be able to establish
improved a priori estimates for the solution of the Cahn—Hilliard equation. We remark that the
estimates in[[29] were obtained without assuming existence of a global (in time) classical solution
for the Hele—Shaw problem, and hence, we were not able to show the boundedness of the solution
of the Cahn—Hilliard equation there.

LEMMA 2.2 Suppose thaf satisfies (GA), and the Hele-Shaw problefn ([L.4)—(1.8) has a global

(in time) classical solution. Then there exists a family of smooth initial datum functigps-. <1
and constantsy € (0, 1] andCg > 0 such that for alt € (0, ¢g) the solutioru of the Cahn—Hilliard

equation|(1L){(I]3) with the above initial daigsatisfies
lull = 2p) < 3Co. (2.9)

Proof. A proof of the assertion is buried in the middle of the proof of Theorem 2.3l0of [2]. In fact,
the assertion of Theorem 2.3 &f [2] was proved by establishing (2.9) first. Here we only sketch the
main idea of the proof.
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First, using a matched asymptotic expansion technique, a family of smooth approximate
solutions(u?, w?) to the solution(u, w) of )—) satisfying the assumption of Theorem 2.1
of [2] was constructed in Section 4 ofi [2]. One conditior|i§, || 1= (2,) < Co for someCo > 0.
Second, it was proved in Theorem 2.1 [of [2] tiiat,, w?,) is very “close” to(u, w) in L (£27)
for somep > 2 (see (2.7) on p. 169 of [2]). Finally| (2.9) was proved using a regularization
argument. The argument goes as follows in three stepg: i§)modified intof such thatf = f
in (—=3Co, 3Co) and f is linear for|u| > 2Co; (ii) it was shown that the solution of the Cahn—
Hilliard equation with the new nonlinearit satisfies the estima@.g) wher (0, go) for some
smalleg € (0, 1]; (iii) it follows from the unigueness of the solution of the Cahn—Hilliard equation
thatu = u. O

REMARK As in [2], the result of Lemma 2|2 is proved for a special family of initial data
{ug(x)}o<e<1. On the other hand, as explained in the introduction_of [2], this is not a serious
restriction on approximating the Hele—Shaw problem since (i) at the end of the first stage of the
evolution of the concentratiom has the required profile, and (ii) the solution of the Hele—Shaw

problem [1.#)4(1]8) depends only ébo ands2.

The next lemma states a PoingaFriedrichs type inequality for any functiamwhich has the
form (2.2); it was proved in Lemma 3.4 6f [16]. We note thétin the lemma does not have to be
the solution of the Cahn—Hilliard equation.

LEMMA 2.3 Suppose that® satisfies
1
—/ u®(@)dx =mpe (-1,1) Vi >0, (2.10)
1221 Je2

wheremg is independent of. Let 7. (u*) be defined by[(2]8) and® be defined by (2]2). Then there
exist a (large) positive consta@tand a (small) positive constasg such that for every € (0, ¢],

lw G, Dl 2 < C(Te@® ¢, 0) + [V, Dll2) Ve >0 (2.11)

To derive a priori estimates in high norms we need to require tfaatisfies the following
conditions:

GENERAL ASSUMPTION 2 (GAp) There exist positive-independent constantsg ando; for
j=1...,4suchthat

1
1) mgi= ﬁf.(zug(x)dx €(-11),
£ 1 _
2 Jelup) = 51IVuglige + I F gl < Ca=*™,

< Ce™%2, (=012
H¢

1
3 llwgllge == ||eAug — gf(ug)

LEMMA 2.4 Supposg satisfies (GA), ug satisfies (GA), andas2 is of classC31. Assume the
solutionu of (2.1)—{2.4) satisfie (2.9). Then, w) satisfies the following estimates:

(i i/u(t)dx=moe(—1,1) Vi >0,
12| Jo
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o0
(i) f | Aul?, ds < Cem @13,
0

o0
(i) /0 IVAu|?,ds < Ce™ @19,

; ””’”2*1 * 2 — max{201+3.203)
(iv) esssu , (T¢ [Vull72ds < Ce 108t
.00 (Vw2 0

(V) esssupjdul;2 < Ce™ MaXlo1+5/2.03+1)
[0.00)

(Vi) esssufiVAul;2 < Ce~ MXlo1+5/205+1)
[0,00)

{ Jo© lluli?, ds }

Jo~ 1Aw||2, ds

+ eSSSUp”AM”iz g Cs—max{201+7/2,203+1/2,252+1}’

[0,00)

(vii)
(0.¢]
(V|||) esssug“{l“iz + ||Aw||i2) +8/ ”Au[”iz ds < Cg—max{251+13/2,203+7/2,2c72+4,204}.
0,00) 0

Moreover, in addition to (G4) suppose that there exists > 0 such that

Sll\ﬁ'b Vus(s)llp2 < Ce™%. (2.12)
Then the solution of (T]1)F(1.3) also satisfies the following estimatesy fer2, 3,

o0
(iX) e[?)ssumVu,H%z +e /0 IV Augl|3, ds < € (e~ MaH2o1HT 20514)
,00)

+ g—ﬁ max201+5.203+2}~Max201+13/2.203+7/2.202+4} | 8—205) = Cpo(e, N),
o
) /o lugell%, - ds < Cepole, N) = Cp(e, N),

(xi) e[ss SUfl A%u|| 2 < Ce™ MNoLHS03H+7/2.0245/2.0041) — €y (),
0,00)

We refer the readers to [26] for the proof of the lemma.

REMARK From the construction ofu’, w%) in Section 4 of [2] we know tha{ug}o<.<1
obtained in Lemma4 22 satisfy (GA In addition, the corresponding solutionsatisfies [(2)9)

(see Lemmé 2]2), provided that the Hele—Shaw probfen ({.4)—(1.8) has a global (in time) classical
solution.

We conclude this section by quoting the following result0f[3, 15] on a lower bound estimate of
the spectrum of the linearized Cahn-Hilliard operator

Lop = A(m - ;—Lf’(u)1>. (2.13)

The estimate plays an important role in our error analysis to be given in Seftion 3.
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LEMMA 2.5 Suppose the assumptions of Lenima 2.2 holdyiet 1 in (GA1)3. Then there exist
0 < g0 « 1 and another positive constafiy such that the principal eigenvalue of the linearized
Cahn—Hilliard operatoLcy satisfies

VY2, + 2 v, v)

ACH = in > —Co, (2.14)
Oy eH1(®2) lA=22y |2,
or equivalentl
! ’ elVyl2, + 2 wy. )
AcH = ) 5 > —Co, (2.15)
0y eHY(2) IVwll?,
Aw=y

forall ¢ € (0, ¢g). Hereu denotes the solution of the Cahn—Hilliard probl¢m(1[T)}(1.3).

Proof. The estimate] (2.14) was proved by Alikakos and Fusto [3] in the two-dimensional case and
by X. Chen [15] for all dimensions, provided that the functwifwhich does not have to be the
solution to the Cahn—Hilliard equation) has some special profile (cf. p. 638 of [3] and p. 1374 of
[15]). It was shown in[[2] that the solution to the Cahn—Hilliard problgm]|(1[T)}(1.3) indeed has the
required profile (cf. Theorems 4.12 and 2.1[af [2]) for sufficiently smallThe conclusion of the
lemma then follows from combining these two results. |

3. Error analysis for a fully discrete mixed finite element approximation

In this section we analyze the fully discrete mixed finite element method proposed in [49] for (2.1)-
(2.4) under the condition that the Hele—Shaw problem has a global (in time) classical solution (cf.
[2]). Under this assumption, we establish stronger error bounds than thasel of [29], which were
shown under general (minimum) regularity assumptions, for the solution of the fully discrete mixed
finite element method. In particular, we obtain & (J; L°°) error estimate, which is necessary
for us to establish the convergence of the solution of the fully discrete mixed finite element scheme
to the solution of the Hele—Shaw problem in the next section.

We recall that the weak formulation ¢f (2.1)-(2.4) is defined as: Fitid), w (1)) € [H1(2)]2
such that for almost everye (0, T),

(us,n) +(Vw, Vi) =0 Vn € HY(2), (3.1)
e(Vu, Vv) + %(f(u), v) = (w,v) Yve HY), (3.2)
u(x,0) =ugx) Vxe L. 3.3)

Note that(x,, 1) = 0, that is, the masg(r), 1) = (ug, 1) is conserved for all > 0.
We also recall that the fully discrete mixed finite element discretization df (8.1)—(3.3) is defined
as: Find{(U™, W™)}M_, e [S,]? such that

U™, ) + (VWL V) =0 Vin € S, (3.4)
1
(VU™ V) + g(f(U'"“), ) = (W' vy Y, € 8, (3.5)
with some suitable starting valug®. Unless stated otherwise, we defiti® by settingm = —1

in (3.5). HereJ; = {tm}n"f:0 is a uniform partition of [07] of mesh sizek := T/M and7}, is
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a quasi-uniform “triangulation” of2. Also, 4,U™*! := (U™+1 — U™)/k andS,, denotes theP;
conforming finite element space defined by

Sp = {vn € C(2); wplx € PL(K), VK € Tp}.

The mixed finite element spac® x Sy, is the lowest order element among a family of stable
mixed finite spaces known as the Ciarlet—Raviart mixed finite elements for the biharmonic problem
(cf. [17,[33]), which means that the following inf-sup condition holds:

\Y \%
inf sup _ V. Viw) > co (3.6)

0211 ESh 0y 5, 1Wall il e

for somecg > 0.
Also, we note thatld,U™*1,1) = 0, which implies thatU”*1,1) = (U° 1) for m =

0,1,...,M — 1. Hence, the mass is also conserved by the fully discrete solution at each time
step.
We define the.?(£2) projectionQy, : L2(2) — Sy, by
(th -, 77h) = 0 V77 € Shv (37)

and the elliptic projectior?;, : H1(£2) — S, by

(V[Pyv—v], Vi) =0 Vo, € S, (3.8)

(Ppv—v,1) =0. (3.9)

We refer to Section 4 of [28] for a list of approximation propertiegdgfand P, . In what follows,
we confine ourselves to mesh@sthat result inH* stability of 0;, (see [13] and reference therein

for the details).
We also introduce the space notations

Shi={on € Spi (i, D =0},  LE(®2) = {v e L3%(); (v, 1) = 0},
and define the discrete inverse Laplace operam;jl : LS(.Q) — §h such that
(V(=4;), Vi) = (v.n) - Vagu € S (3.10)

To establish stability estimates for the solution of the fully discrete schgmg (3.4)—(3.5) for
general potential functions (1), we make the last structural assumptionfam).

GENERAL ASSUMPTION 3 (GA3) There existug > 0, 0 < y3 < 1, andcg > O such thatf
satisfies for any O< k < &%0, any set of discrete (in time) functior{@’"}f‘jzo e HY(£), and all
L< M,

4 k 4 ~
vak D (™ 152 + kel V@™ 72) + = D (@), di™) + EaTe(¢°) > CS—4||F<¢‘>||L1-

1
(3.11)
We remark that the validity of (GA was proved in[[2€, 28] for the case of the quartic potential
F(u) = 3? - D* with ag = 3, y3 = 1/4 andés = 2. With the help of (GA) we are able to show
that the solution of (3]4)E(3.5) satisfies the following stability estimates.

m=1
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LEMMA 3.1 The solutior{(U™, W™)}¥_, of (3.4){3.5) satisfies

1 1
(i —/Umdx=—/ UOdv. m=1... M.
2l /g 21 /g

(i) U2 < CIVW" 2. m=1,..., M.

1 M
(i) O<rr"1;a<xM{s||VU’"||§z+g||F(U’">||L1}+k D UVW™Z, + ekl Vd, U™ [172) < CT(UO),
UGS m=1

M
V) kY ldU™ % < CT(UO),
m=1

W) max U™ 17, <CA+T:WU%) (pasin(GA)),

M
Vi) - max VW7, +k Y (klld: VW7, + el Vd, U™ |72) < Ce T (U,
1<m<M oy }
M 1
i) max [[dU" |7, +k Y kIdZU™ |7, < Cltke)™2 +h™2]e 7. (U°).
1<m<M el

Proof. Assertion (i) is an immediate consequence of setfing- 1 in (3.4).
For anyp € H'(52), from (3.4), (3.7), and the stability @b, in H(£2) (cf. [I3] and references
therein) we have

U™, ¢) = (d;U", Qng) + (di U™, ¢ — Qn)
= —(VW",VQ5¢) < CIIVW"| 2V 2. (3.12)

Assertion (ii) then follows from

a,um,
ldU™ | -2 = sup @9 o CIVW™| 2.
O¢¢€Hl ||¢||H1
To show assertion (iii), setting, = W”*1in (3.4) andv, = ¢,U™+' in (3.5) and adding the
resulting equations gives

€ ek 1
VW™ HZ, + SdIVUT I, + S ld VU T, + 2 (fUTh, 4,Um ) = 0. (3.13)

The statement then follows from (GRand (i) after multiplying [(3.1B) by and summing ovem
fromOtol (< M —1).

Assertions (iv) and (v) follow immediately from (ii), (iii), and the general assumption;(Gh
F andf. To show (vi), choos&;, = d, W"”*1in (3.4) andv, = 4, U™+ in (3.5) after applying the
difference operata; to (3.5), and add the resulting equations to get

1 k 1
SANVW T, + SId YW THIE, + el VA UM, + g(dtf(U’”“), d,U™ 1) = 0. (3.14)
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By the Mean Value Theorem and (R.5) we bound the last term on the left hand s[de ¢f (3.14) as
follows:

1 1 )
g(dtfwm*l),d,Um“) = ~(f'®, ld, U™ 2) > —;nde’"“niz
e C
> =S IVa,U" T, = S5l UG (3.15)

The assertion then follows fror (3]14)—(3.15) and (iv) after multiplyjng (3.14) bpd summing
overm from0tol (< M —1).

Finally, to show (vii), we first apply the difference operathrto both sides of[(3]4), then take
nn = d; U™ in the resulting equation to have

1 k
Sdlld U T, + SIEUT I, = —(Vd W va Ut

1
< kv, W2, + eV, U2, (3.16)
Multiplying (8.16) byk and summing over from 0 to€ (< M — 1), the assertion then follows from
(ii), (vi), and the inverse inequality (bounding t#ié norm by theH ~* norm) to bound|d, U2,
on the right hand side. O

REMARK  In view of Lemmag ZJ4(i) an{d 3.1(i), in order for the scheme](3[4)}(3.5) to conserve the
mass of the underlying physical problem, it is necessary to regifte- ug, 1) = 0 for the starting
valueU". This condition will be assumed in the rest of this section.

As is shown in[[29], in order to establish error bounds that depend on low order polynomials of
1/¢, the crucial idea is to utilize the spectrum estimate result of Lefnnja 2.5 for the linearized Cahn—
Hilliard operator. In the following we show that the spectrum estimate still holds if the funefion
which is the solution of (T]1)F(T].3), is replaced by its elliptic projectfyn and the nonlinear term
is scaled by a factor & ¢, provided that the mesh sizeis small enough. As expected, this result
plays a critical role in our error analysis for the fully discrete finite element discretization.

Foru the solution of[(T)H(T]3), leto be as in[(2.p), define

Ci= max | "), 3.17
1 |v|<2co|f (V)] ( )

and letC2 be the smallest positiveindependent constant such that (cf. Chapter 7 af [11])
e = Poull Lo s;100) < C2h?(IN b ]l oo g, ooy < C2h?|INh|pa(e, N) (3.18)

for some (low order) polynomial functiops(e, N) in 1/¢. We remark that the existence 65 and
p3(e, N) follows easily from Lemmf 2]4(xi) and the following Gagliardo—Nirenberg inequality [1]:

4/(8-N)
L2

4—-N)/(8—-N
Tl SN N %), N =23,

lutllyco < C(IID ul|
In fact, the above inequality, (2.9) and Lemma| 2.4(xi) imply
pae, N) < pa(e)¥ &), (3.19)

wherep;(¢) is defined in Lemmp 24 (xi).
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LEMMA 3.2 Let the assumptions of Lemra]2.5 hold, agdand Co be as there. Then far €
(0, €0),

3
_ elVYIIZ, + 55 (f (Puys, ¥)
ACH = |nf L? £ 2f " > —(1-¢3(Co+1), (3.20)
0£yel3(R2) IVwlls,
Aw=1, 3w/dn 0
provided that: satisfies the constraint
h?[Inh| < (C1C2p3(e, N))te®. (3.21)

Proof. From the definitions o€1 andC,, we immediately have

| PruellLoo(r;no0y < Nl Loos; Loy + (| Poit — ]| Loo(g; L0y < 3||’4||L°°(J L=) < 2Co
if 1 satisfies[(3.21). It then follows from the Mean Value Theorem that
ILf'(Phu) — f @)l Loo(riioey < max [ f" ) Pou — ullLoo(s; 1)

1§1<2Co
< C1C2h?|Inh|p3(e, N) < €. (3.22)
Using the inequality: > b — |a — b| and [3.2R2) we get
£/ (Pau) = £ @) = | f/(Pae) — f/ @) | ooy > £/ () — €2, (3.23)
In addition, for anyy as in [3.2D) we have
2 1— 3
||1/f||Lz = (Vy, Vw) < 1-3 IIVl/flle +— IIVwHLz (3.24)

Substituting[(3.28){(3.24) into the definition )c{gH we get

3 2 o 1o
AL > in f A =e)[elVyls, J; sy, ¥)] 132
O£y el2(R2) IVwll?,
Aw=1, 3w/3n 0
The proof is completed by applying Lemina]2.5. O

REMARK Under a slightly weaker mesh constraint than (B.21), a slightly weaker version df (3.20)
was shown in Proposition 3.2 of [26].

The first main result of this section is stated in the following theorem.

THEOREM3.1 Let{(U™, W’”)}M 1 solve E).) on a quasi-uniform space méglof size
O(h) and a quasi-uniform time mesh of size O (k). Suppose the assumptions of Lemmd 2.4
and[3.1, Lemm& 2|5 ar[d 3.2 hold, in particulas, o;, pi(¢, N) are as there. Let O< § <
16/(8 — N) for N = 2, 3, and define, for any > 0,

1= (N, 8, v) = Min(s, v, 8 — N/8),  pale) i= eMN201+21/2205+15/2.20248.204+4) (3 255
,05(8) — e max{201+9,203+6,202+4,204+1}

16+(8—N)§ _ 3207+3)+25(8—N)(207-1) ANS
mi(k; e, N, 8, 0;) := p1(e, N) + k16-EMig 16-6-13 p2(g) 1@, (3.26)

(207+1)[16+(8—N)3]
ok, hi e, N, 8, o7, v) = [h A2 —2u— FER — h=22ps(e)] pae) B
+ 2071 (pa(e) BT+ pa(e)) + 20202, (3.27)
r(h, ki e, N,8,0i,v) :=k’mi(k; e, N, 8, 0;) + h*® W my(k, h; e, N, 8, 0, v). (3.28)
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Then, under the following mesh and starting value constraints:

1) k<&,
2) h¥Inh| < e3pae) N,
48
3) r(h ke N5, o;,v) < 2N py(e) 8N
4 U%1) =@,

0 2
5 lug— Ully-1 < Ch= |lugll 2,

the solution of[(3.4)£(3]5) converges to the solutior] of|(2[I)}(2.4) and satisfies

. 1/2
() max [ulty) = U" - 1+(ka||d,(u(rm)—U'”)||2 y

n<M

< C[r(h, k;e, N, 38, o;, v)]l/z,

M 12
i) (kY i) = U™22) " < Clhe Y2 4 672 (h ki, N. 8. 07 )] 2,
=

M 172
(i) (kD NV@) = UMIZ) " < Clhe™ 2 e 2r(h ki, N, 8, 01, ] Y2)
m=0

for some positive constadt = C (uf; y2, Co, T; £2). Herey, ands are defined in (GA)s.

Proof. The proof is divided into four steps. Step one deals with the consistency error due to the
time discretization. Steps two and three use Lefimia 3.2 and the stability estimates of I[emjmas 2.4
and 3.1 to avoid an exponential blow-up ifeof the error constants. In the final step, an inductive
argument is used to handle the difficulty caused by the super-quadratic term jjs(GA

STEP1 LetE™ :=u(ty,) — U™ andG™ := w(t,) — W". Subtracting[(3]4)(3]5) (after replacing
m+1 bym) from (3.3){3.2) (after setting= 1,,), respectively, we get the following error equations
att,:

(d:E™, np) + (VG™, Vi) = (R(ug; m), np), (3.29)
1
e(VE™, Vuy) + g(f(u(tm)) — fW™), ) = (G™, vp), (3.30)
where
1 [
R(us; m) = ——f (s — tim—1)us (s) ds. (3.31)
tm—1

It is easy to check that

1 M Im Im
k Z IR s m 32 < Z[ / (s — rml)zds][ / lotes 15 ds] < CKPpa(e, N),
Im—1 Im—1

m=1 =1
(3.32)
wherepi (g, N) is defined in Lemmp 2]4(x).
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STEP2 Introduce the decompositiod®” := @™ + @™ andG™ := A™ + ¥™, where
O™ = u(ty) — Pau(ty), @™ = Pou(ty) — U™,
A" = w(ty,) — Pow(ty), Y™ = Pyw(t,) — W™
Then from the definition o, in (3:8)—{3.9) we can rewrit¢ (3.29)—(3]30) as follows:
(d: @™, mp) + (VO™, Vip) = (Ruse; m), ny) — (di O™, np), (3.33)

1
e(VO™, Vup) + ;(f(Phu(tm)) — £, vn)

1
=", vp) + (A", vp) — g(f(u(tm)) — f(Pru(tn)), vp). (3.34)
SinceE™, @™ ¢ L%(.Q) for0 < m < M, settingn, = —A;1<Dm in ) andv, = @™ in )

and summing over: from 1 to¢ (< M), after adding the equations we conclude

1 Sk
SIVAZRT, + kD SIVA @™,
m=1

4
1
+k Y LEIVOM G2+~ (f (Patlim)) = (U™, @™)]

m=1

4
=k Y [(Rluys m), —=A ™) = (d, O™, A ™) + (A", ™)]
m=1

k - m 1 -1 502
+ gn;(f(u(tm)) = [ (Put(tn)), @™) + SV A DO . (3.35)
The first sum on the right hand side can be bounded as follows:

4
kY [(RGus m), —A 7 @™) — (d, 0™, — A 0™) + (A", @™)]
m=1

IR Guers M3, -1 + 1d: @™ 12,1 + e A™ 12, 4]
4

&
2(1_ 83) ” ”LZ}

4

<Cky I

m=1

4

+h Y (VA T2, +
m=1

4
<k UVATRMIE, + 5 IVO™[12,} + Clk?pa(e, N) + h®pa(e)].  (3.36)

&
(1-¢%)
wherepi (e, N) is defined in Lemmp 2]4(x), anek(e, N), which is defined in[(3.35), comes from
Lemmd 2.4 (viii). Here we have used the following approximation propertiés ih of the elliptic
projection P, (cf. [20]):

m=1

lu — Phull -1 < Ch3||ul g2,
I — Phua) |l -1 < Ch3||us || g2,
< Ch3|wl 2,

andk Y4 _, deu ()12, < IS llus ()11, ds, which follows fromkd; u (t,,) = zf;”,l ug (s) ds.

lw = Prwll -1
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In view of (2.9) and the inequality at the beginning of the proof of Lerimh 3.2, the second sum
on the right hand side df (3.B5) can be bounded by

k & k&
- Z(f(u(rm» — [(Pau(tn)), @™) = = Z(f’(é)@'", ")
€ =1 £

<k Z [2(1 51 VO" Iz + Ce0le" ”Hl}
et 2
<k22(1 )|| 2" |72
n Chﬁgfmax{2<71+ll,2(73+8}' (337)

By (GA1)3 with y1 = 1, the last term on the left hand side pf (3.35) is bounded from below by
t1 P .
k’;-g(f(Phu(fm)) - f(Um), @m) = g ’;[(f’(})hu(tm))(pm’ (pm) _ V2||(pm||L§+5]. (338)

Substituting[(3.36)£(3.38) intd (3.35) we arrive at

1 ‘ ko ¢
SIVAT DT, + k Z SIVATd @™ To +k Y 262 (f (Puae(tn)) @™, &™)

m=1

1 ¢ 3 14
kZ[ |IV<1>’”II + —(f (Pru(ty)) @™, q>’")}

< C[k2p1<s, N) + h®pa(e)] + —||VA‘1<1>°||22
J4
+hY VAt 2, + 1 Z o™ 1752, (3.39)
m=1

We could bound the last term on the left hand side from below using L§miha 3.2, however, this will
consume all the contribution (211|V<1>’"||i2 on the left hand side. On the other hand, in order to
bound the super-quadratic term on the right hand side in Step 3 below, we do need a small help from

thisg||[ V@™ ||2 For that reason, we are going to apply Len. 3 2 with a scaling factaf lthat
is, we first Wr|te

e|lvVe™|?

’@m)
3 my 2 1_83 / m m
=A-¢&)|e|VP ||L2+T(f (Ppu(tm)) @™, @)

1— 3
+ 83[8||V<1>’"||iz + = P @™, <z>'">]

From Lemm4 32 we then bound the first term on the right hand side of the above equation as



16 X.FENG & A. PROHL

3
1-&3 [enwm 12, + == (f (Pau(t ) D™, qb'")]

&
>—(1-e)%(Co+DIVATIO"|2, > —(Co+ DIVATIO™|Z,.  (3.40)

We then keepg4||v<1>'"||i2 on the left hand side, and move the leftover tesAil — £3) x
(f (Ppu(ty))®™, &™) to the right side to bound it from above by

e2(L— ) (f/ (Phu(tn)) @™, @™) < 2|(f'(Phulty))®™, &™)

4
& ~ _
< [—4 Ive™ |2, + conmhlcb'"niz]. (3.41)

Combining [3.3P)(3.41) we finally get, for sufficiently smalb- 0,

1 _ Tk _ et
SIVALRIZ, +k Zl [EIIVA,, d, o™ )2, + anmniz}
m=
1 _
< ClEpate, N) + hpa(e)] + 511V A 007,
4 l
- _ ok
+(Co+30+3k ) IVA O 7, + 22 Y o IF. (342)
= m=1

m=1

where we have used the fact thak® < 1 and||VA~ 1|2 = ||VA;1vh||Lz foranyv, € 5°‘h.

STeP3 Itremains to bound the super-quadratic term at the erjd of|(3.42). ifice E™ — ©™,
the triangle inequality implies

1™ 1242, < CUE™ 1552, + 110™152,). (3.43)

To bound|| E™ ||%2rjf(S in ), we first make a shift in the super-index to get

2 —-1,2 2
IE™ 1552 < D UE™ M58 g, + K2 PN E™ 17505 4 - (3.44)
KeT,

For each term in the first sum on the right hand side of {3.44), we use the Gagliardo—Nirenberg
inequality [1] which interpolates?t%(K) between.?(K) and H*(K),

— —-1,6N/8 — 16+(8—N)4)/8 —

L2+8(K) L2(K) L2(K) L2(K)
—1,2+(8—N)5/8 SN/8 —1,6N/8
< CIE M LD -0 103+ I 115
—1,2+(8—N)5/8
< CIE" s, P pa(e)™ . (3.45)

Here we have used the estimates of Lemimas 2.4(xi), 2.1(ii) ahd 3.1(v) to obtain the last inequality.
Summing [(3.4b) over alk € 7, and using the convexity of the functigris) = s” forr > 1
ands > 0 we have

_ —1,2+(8—N)§/8
IE™ 11252, < Cpa(e)? N/ M2 21 ENN8, (3.46)
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Similarly, we can bound the second sum on the right hand side of| (3.44):

2448 246 246 4 SN /8 (16+(8—N)é)/8 246
KPP EM 128 ) < KEPLIDA EM 5 0 I B ™8+ lld B 1250

2+(8-N)5/8 5N/8 SN/8
< k2+8||dzEm||L2((K) " [||D4dt”(tm)“L2(/K) + ”thm”Lz(/K)]

2+(8—N)3/8p; — SN/8 3N/8
K2 B kN B D ) 138, + I M5

_ 2+(8—N)5/8
k2O g LN gy (o) N8, (3.47)

/N

C
C

N

Here we have used the estimates of Lem@]s 2.4(viii),(xi)@d 3.1(v) to catrBl" || 2k, <
2kt max{|| E™ | 2k | E™ I 12k} in the last inequality.
Summing both sides of (3.47) over &l € 7, we get

_ 24+(8—N)3/8
KPP Nd B35, < CRPF OBy N8y g, 75 O, (3.48)

It now follows from the triangle inequality E™ || ;2 < [|©@™| .2 + @™ ], 2, the inequalities (3.43),
(3.49), [3.46) and (3.48) that

—1,2+(8—N)§/8 _ 2+(8—N)5/8
1™ 125, < Cpa(e)®N/B(|| @275 E Ny 2+ E=NI/B) g, iy 2 (BN

—1,2+(8—N)§/8 — 2+(8—N)§/8
+ ”@m 1||L2( )8/ +k2+(8 N)é‘/s”dt@m”LZ( )8/ )+ C'”@m”i-;f5 (349)

From [11/17} 34] we know that

lu — Pyull 2 < Ch?|ull 2. (3.50)

1 — Pou)ll 2 < ChP|lu | e, (3.51)
4(24+8)—2N

e — Phuell p2ss < Ch®|lullyzzes < Ch?|| A%u] 5V (3.52)

To control the two terms which invoh@” 1 on the right hand side df (3.49), we only consider the
cased < 16/(8 — N) because (i) it covers most useful rangeg,adnd (ii) the analysis for the case
8§ > 16/(8 — N) is easier to carry out singd6+ (8 — N)§)/8 > 4 in this case.

From the definition of—A;l in ) and Young’s inequality we have

—1,(164+(8—-N)8)/8 —1,,(16+(8—N)é)/16 — —1,,(16+(8—N)8)/16

< Clepatey oy RS 9 o B wllvwlniz. (3.53)
Similarly,
||d,q§m||(leS+(8_N)5)/8 < ”le(bm”(LlZB+(8—N)<S)/16”VA;1dZd)m||(leB+(8—N)5)/16
< Clek=B+HE-ND/B 5, (5)=ON/8]~ REGs IIVd,qﬁmllzlw
ek—@+@=N))/8 ) (o) —3N/8

~1gym 2
47y IVd AL =@™ 172
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Using
2[16+(8—N)é] 4(8—N)s
16—(8—N)$ 16—-(8—N)s
IVdi@™|| 2" ’ ||de¢m||L2||de¢m|| )
4B-N)s
< k166N g~ (1+Y/2) oG ||le(pm||L27
we get

16+(8—-N)8)/8 — — — -

7[l+45(8—N)(01+1)] SN[I6+@B-N)] 1, (8—N)2s2 2
+Cs TGN pp(e) T SIS BT kT BIEGNT || Vd, @™ (|7, (3.54)

Now, substituting[(3.50)(3.54) intp (3]49), summing owefrom 1 to¢ (< M) after multiplying
(3.49) byy2k /e and using Lemmds 3.4(iv) apd B.1(vi) leads to the following estimate:

4

yok _

= e, < k§ [—||vq>m||L2+ IV 4, 1df<z>”’||Lz]
m=1 m=1

_ 4[24+ (8-N)8] 24 AB-N)}
+ Ce™ IG-N5 py(e) 16_(3 N)gk Z ||VA 1pm— 1” 16-(8—N)3
m=1

2(8—N)$ 43(8—=N)(01+1) 4NS
+ Ck3+ T6-(@-N)3 8_[2+ T6-(8—N)3 ],02(5) 6-(6-N)5 g —2(01+2)

2 1)[16+(8—N)§
I sz(g)[;N/g[E,%h4+(8,1\7)5/4
4(2+8)—2N

+ k2h48—max{201+9,203+6,202+4,202+1}] + Ch2(2+5)p2(8)w. (355)

Finally, substituting[(3.55) intd (3.42) we get

—||VA‘1<1> 1%, + & Z [—HVA‘ldt@anz - —||W>"’||L2]

m=1

4
< Cr(h.kie,N.8.01,v) + (Co+ 30+ 3k Y _ VA, To™|2,

m=1
1 -140 « 1y 2T IO @A
+ 51Vt 12, + Cs(e. N, 6)k21||VA ", . (3.56)
m—
wherer(h, k; ¢, N, 8, 0, v) is defined in[(3.28) and
_ 4[24+(8-N)3]
s(g’ N, 3) =g 16-B-N)S /02(8) 16—(8—N)8 (3_57)

Ster4  We now conclude the proof by the following induction argument. Suppose there exist two
positive constants

c1=c1(ty, 2,uy,07), c2 = ca(te, 2, ug, oi; Co),
independent of ande, such that

¢ 4
k e
—15mp2 -1 mn2 mn2
max ||VA, ~® k sIVA, “d® — ||V
omax [IVA; "7, + m;[sn A"z + g M

< cir(h, k; e, N, 8, 0;,v)explcate). (3.58)
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In view of Lemmd Z.}(xi) and (3.56), we can choose
c1=2, c¢2=2(Co+ 3co+3).

Since the exponent in the last term[of (3.56) is greater than 2, we can rgcover (3.58)at theh
time step by using the discrete Gronwall inequality, provided Ahatsatisfy

14 28-N) c1
s(e,N,8) -r(h,k;e,N,§,0;,v)" " 166N Er(h,k; &, N, 8, 0;,v) explcates1)-

That is,
2(8=N)s
S(gs N» 8) . r(hs kv g, Nv 8a Oi, U) 16-@-N)3 < Cv

which gives the mesh condition 3) in the theorem. Hence, we have shown that

4
-1 gm 2 1 mn2 4 2
max |[|VA, ~® +k k\VA, ~d; D + 7|V
omax |IVA, e, n;l[ IVA, ™2, + e[ VO™ |12,]

< Cr(h,k;e,N,8,0i,v). (3.59)

Finally, assertion (i) follows from{(3.59) by applying the triangle inequalityeth = @™ + ¢™.
Assertions (i) and (iii) follow in the same way. Note that we need to apply the P@ricaquality
to @™ to show (ii), and sinced™ e Sp, we can bound|®™|;2 by ||[V®™| ;2. The proof is
complete. O

REMARK (a) TheL?(J; HY) estimate is optimal with respect toandk, and theL>°(J; H™1)
estimate is quasi-optimal.

(b) The proof clearly shows how the three mesh conditions arise. Condition 1) is for the stability
of the time discretization (see (G}, condition 2) is to ensure the discrete spectrum estimate (see
Lemma3.), finally, condition 3) is caused by the super-quadratic nonlinearity(ée (GA)3).

Also notice that only “smallness” of and i with respect toe is required but no restriction is
imposed on the ratio betweérand# in the L°(J; H~1) andL?(J; H') norm estimates.

(c) It is well known [34] that the finite element solutions of all linear and some nonlinear
parabolic problems exhibit a superconvergence property Ainwhen compared with the
elliptic projections of the solutions of underlying problems. It is worth pointing out that this
superconvergence also holds for the Cahn—Hilliard equation as shown by the inety (3.59).

(d) Regarding the choices of the starting vali®, clearly, botht° = Qnuj andU® = Ppug
satisfy conditions 4) and 5) with = 1 in view of (3.7) and[(3]9). In fact, they also satisfy a stronger
inequality (see 1) below). On the other hand, Bfeprojection Qnuyg is cheaper to compute
compared to the elliptic projectioP, ug. Note that condition 4) is necessary in order for the scheme
(B3:4)-[3%) to conserve the mass.

(e) We remark that it is easy to check that for each fixed O, if k < & then

r(h, ke, N,8,0;,v) < Ck?+ h2ZtH), (3.60)

In the next theorem we derive error estimates in stronger norms under a slightly stronger
requirement on the starting value®, which nevertheless is satisfied by both th projection
Ul = Qnug and the elliptic projectiot/® = Ppug. In addition, a mild constraint on admissible
choices of(k, ) is required to assure their validity.
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THEOREM 3.2 In addition to the assumptions of Theofen] 3.1, if
lug — Ul 2 < CR2(|ubl e, (3.61)

then the solution of (3]4)(3.5) also satisfies the following error estimates:

u 1/2
[ - ynm _yymy 2
() Og)”ang lutn) — U™ |2 + (ka::lkHd,(u(tm) U )||L2)

< ~{h28—llla)({o'1+5/2,(73+1/2} k_l/48_l[r(h, k, g, N, (S, . v)]l/Z}’
ii max |lu(ty,) — U™ L
( ) o<m<M i t) I

XM

< Ch2(Inhlpa(e)BN 4 n= N2k % s (h ki e, N, 8, 07, v)]Y/2).
Moreover, ifk = O (h?) forsome /3 < g < (8 — 2N) + 4u, then also

@iy~ max [[U"| L~ < 3Co,
<m<

M 5 1/2 k M ) 1/2
T m m m
() max u(t)—U 2+ (kY klld: (i)~ U™)12,) +(gmzl||w<tm)—w lle)

m=1
< C{hPe= MNOLHT/2050Y2) 4 o=T2[r(h, ks e, N, 8, 07, )] V2,
(V) ma<x ||l/l(tm) _ Um”Loo g é{h2||nh|p2(8)4/(8—N) +h(4—N)/28— max{o1+7/2,03+1/2}
M

M
+ N2~ 2[r(h, k; e, N, 8, 07, 1)]Y?)

for some positive constait = C’(ug; y2, Co, T; £2).

Proof. Since
E"=0"+o", G"=A"+y™,

it suffices to show that assertions (i), (ii), (iv), (v) hold @& and¥™ without the first term on the
right hand side of each inequality. Notice tl&t' and¥™ satisfy [3.3B){(3.34).
Using the identity

1 k
(d@", ") = Sdi| " |17 + 5 Id " Iz,
the definition of—A;1 in ) and the estimat59) we have
1 02 - k my2 - -1 m m 1 0,2
SIQNZ2+k D SIdid™ 7 =k Y (V=4 d@™), Vo) + |00,
m=1 m=1

4
_ _ _ 1
S22y KAV A @ T, + ke VO I1To] + S 11907

m=1

1
<k Y272 (h,k;e,N,$,0,v) + E||q>°||iz. (3.62)

Assertion (i) then follows fron{ (3.62) and (3]61).
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Assertion (ii) is an immediate consequence of (i), the inverse inequality boundingthey
the L2-norm, and the.® estimate of9” (see Chapter 7 of [11]).

To show (iii), notice that under the mesh conditions of Thedrem 3.1 and the assumption that
k = O(h?) for some 2V/3 < g < (8 — 2N) + 4u, we have, for sufficiently smadi,

3
max flu(n) — U™||= < 5Co, (3.63)

M

which together with[(2]9) then implies

max ||[U™| L~ < max t oo tm) — U™ =] < 3Co. 3.64
oo 1%'V3 0<mgM[IIM(m)IIL + [lu(tm) o] o (3.64)

Hence (iii) holds.

Now, takingn, = @™ in ) andv, = —%t]/”’ in ) and adding the resulting equations
we get

1 k 1 1
SANP™ 52 + Sldi ™72 + 1™ 72 = (Rl m), &™) = (@O, &™) = — (A", ™)

1
+ 2 (fwln) — Fawm, vm). (3.65)

The first three terms on the right hand side can be bounded (3.36), and the last term can be
bounded as follows. By the Mean Value Theorem and Schwarz inequality we obtain

1 m m 1 / m m 1 my2 C my2
g_z(f(u(tm))_f(U ), ¥ )=;(f (E™, ¥ )<£|I'J’ ||L2+8—3||E 72 (3.66)

Assertion (iv) follows from multiplying[(3.65) b¥, summing it overn from 1 to¢ (< M) and

using [3.66) and Theorem 3.1(ii).

Finally, (v) is a refinement of (ii), based on (iv) instead of (i). The proof is complete. O

REMARK (@) The estimate in (i) is optimal ih and suboptimal irk due to the factok~—%/4 in
the second term on the right hand side of the inequality. However, this estimate is important for
establishing thd.*°(J; L*°) estimate in (ii), which then leads to the proof of the boundedness of
U™ in (3.64), and the improved estimates (iv) and (v).

(b) Optimal estimates in stronger norms can also be obtained fo#¥ondG™ under stronger
regularity assumptions on the solutier(e.g.u;; € L2(J; L?)) of the Cahn—Hilliard equation and
on the starting valu&/®. These estimates include statements#rin L>(J; HY) andH(J; L?),
and inL>®(J; L?) andL?(J; HY) for G™. For more details in this direction, we refer [0 [23] (also
see|[19]), where a (continuous in time) semi-discrete splitting finite element method was analyzed
for afixede > 0 under the assumption that the semi-discrete finite element approximate solution for
u is bounded inL°°. Note that here we have indeed showed in (iii) that our fully discrete solution
U™ is bounded in.°.

COROLLARY 3.1 Let the assumptions of Theor3.2 be valid, Biftbe a value satisfying, for
anyg > 1,

| Phw(0) — WO, 2 < ChP. (3.67)
L
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Then

; m A my 2 2
O max, I = Wz + (k 3 kldiwien) = W )I22)

SNX

< ClhPpa(e) + kY23 (n2e~maXont308} | =3[ (h, k; e, N, 8, 07, V)]Y?} + hP),
i) max fw(i) =Wl < C{h4=M/2)In p|G=N/2 ) () 4 h=N/2[f~Y/2 (2~ mXo1+3.03)

SUSS
+ 8_3[7‘(/’1, k;e,N,$, o;, v)]l/z} + h/g]},

Proof. First, from [11/34] we know that

M 12
m my 2 ~y 2
< . .
onax 14",z + (k m§:1k||dzA ||L2) < Chopa(e) (3.68)

Next, using the identity which immediately precedes (B.62) we get

1 Lk 2 1
SN2+ kD SIdw ™I, =k Y @™ v + S0,
m=1

m=1

14
k _ 1
skz[zndzwmnizwk 1||wm||iz}+§||w0||i2. (3.69)

m=1

The first term on the right hand side can be absorbed by the second term on the left, and a desired
bound for the second term on the right has been obtained in the proof of Thgofem 3.2(iv). Hence,
(i) follows by combining[(3.68) and (3.69).

Assertion (ii) comes from applying the triangle inequalityG§ = A™ + w™ | the estimate (cf.
Section 4 of[[28])

I A™ |00 < CRAN/2In p|G=N/2) 1| 2 < CRAN/2|In B BN/ py ),

and the inverse inequality boundifig™ ||~ by |[¥ || ;2. The proof is complete. O

REMARK (a) Clearly, the solution{(U™, W™)}M_, to (3:4){33) does not depend anio.
However, estimates (i) and (ii), which will be needed for the convergence analysis in Jgction 4,
do depend on the choice &°. Recall thatW” approximatesy = —eAu + (1/¢) f (u), hence,
estimates (i) and (ii) bound the erra(t,,) — U™ in higher norms, which in turn puts a constraint
like (3:67) on the choice oi°.

(b) wg is defined by setting = 0 in (2.2). Clearly, bothD,wg and P,wj are valid candidates
for w0,

(c) Both estimates are not optimal due to the faétol’? in the second term on the right hand
side of each inequality. It can be shown that the estimates will be improved to optimal order (first
order ink and second order ih) under some stronger regularity assumptions and starting value
constraint. See (b) of the remark after the proof of Thedremn 3.2.
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4. Approximation for the Hele—Shaw problem

The goal of this section is to establish the convergence of the soliith, W”’)}f‘fzo of the fully

discrete mixed finite element scherfie [3.4)4(3.5) to the solution of the Hele-Shaw prpblem (1.4)-
(L.8), provided that the Hele—Shaw problem has a global (in time) classical solution. It is shown
that the fully discrete solutiofV™, ash, k ~\, 0, converges to the solution of the Hele—Shaw
problem uniformly in27. In addition, the fully discrete solutioti” converges tak1 uniformly

on every compact subset of the “outside” and “inside” of the free bountlaoy the Hele—Shaw
problem, respectively. Hence, the zero level sdi/8fconverges to the free boundafy Our main

ideas are to make full use of the convergence result that the Hele—Shaw problem is the distinguished
limit, ase N\ 0, of the Cahn—Hilliard equation proved by Alikakos, Bates and Chenl in [2], and to
exploit the “closeness” between the solutioif the Cahn—Hilliard equation and its fully discrete
approximatior/™, which is demonstrated by the error estimates in the previous section. We remark
that as in[[2], our numerical convergence result is also established under the assumption that the
Hele—Shaw problem has a global (in time) classical solution. We reféer to [2, 16] and references
therein for further details on this assumption and related theoretical works on the Hele—Shaw
problem.

Although it can be shown that the results of this section hold for a general potétitial
satisfying (GA), for the sake of clarity of the presentation, we only consider the quartic
potential F(u) = %(uz — 1)2 in this section. Let«* denote the solution of the Cahn—Hilliard
problem [T.1)f(T]3). Note that we put back the super-index the solution in this section. Let
(Ue.nk(x,1), Wenk(x,1)) denote the piecewise linear interpolation (in time) of the fully discrete
solution(U™, W), that is,

t— 1 1 —1

Vs, 1) 1= =2 U0 + %U'"(-), (4.1)
t— 1 t —1

Wenk(-, 1) 1= =2 W) 4 % W™ (), 4.2)

for t,, <t < tyy1and 0< m < M — 1. Note thatw? is defined in Corollarl, antl, j i (x, 1)
andW, j x(x, t) are continuous piecewise linear functions in space and time.

Let I'np C £2 be a smooth closed hypersurface anddet!” := Uog;gr(rf x {t})) be a smooth
solution of the Hele—Shaw problein (IL.4)—(1.8) starting frbgp such thatl” C £2 x [0, T]. Let
d(x, t) denote thesigned distance functioto I; such thadd(x, t) < 0inZ,, theinsideof I}, and
d(x,1) >0in O, ;.= 2\ (I; UZ,), theoutsideof I';. We also define thimsideZ and theoutside®
of I' as follows:

T:={(x,t) e 2 x[0,T];d(x,t) <0}, O:={(x,1t)eRx[0,T];d(x,t) > 0}.

&,h,k

For the numerical solutioti, 5, x (x, 1), we denote its zero level set at timby I} , that is,

rEh* = (x € 2, Upps(x, 1) = 0} (4.3)

Before we state our convergence theorem, Thepremn 4.2, we need to recall the following convergence
result (see Theorem 5.1 6f [2]), which proved that the Hele—Shaw problem is the distinguished limit,
ase \{ 0, of the Cahn—Hilliard equation.

THEOREM4.1 Lets2 be a given smooth domain ari@g be a smooth closed hypersurfacesin
Suppose that the Hele-Shaw problém|(1[4)4(1.8) starting figrhas a smooth solutiofw, I" :=
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Uog;gr(ﬂ x {t})) in the time interval [0T] such thatl; c 2 for all r € [0, T]. Then there
exists a family of smooth functionis:g(x)}o<e<1 Which are uniformly bounded in € (0, 1] and

(x,1) € 27, such that if«* solves the Cahn—Hilliard equatidn (L.1)—(1.3), then

. L, 1 if (x,1) e O .
0] lﬂ‘o” (x,1) = {—1 if (v.1) e uniformly on compact subsets

(i) IimO (%f(ug) — 8Au8>(x, 1) = w(x,t) uniformly on27.

We are now ready to state the following main theorem of this section.

THEOREM4.2 Let £2 be a given smooth domain anthg be a smooth closed hypersurface
in 2. Suppose that the Hele-Shaw probl¢m](1[4)}(1.8) starting ffgyhas a classical solution
(w, I' = Uog;gr(ﬂ x {t})) in the time interval [0T] such thatl; c £ for all r € [0, T]. Let
{ug(x)}o<e<1 be the family of smooth uniformly bounded functions as in Theorem 5.1l of [2]. Let
(Uenk(x,1), We nk(x,1)) denote the piecewise linear interpolation (in time) of the fully discrete
solution{(U™, W’”)}r"fzo. Also, letZ and O stand for the “inside” and “outside” (if27) of I".
Then, under the mesh and starting value constraints of Thgorém 3.1, withandk = O (h?) for
some &V/3 < g < (8 —2N) + 4u we have

. 0 .
(i) Ueni(x,t) —>8\ 1 uniformly on compact subsets 6,
. 0 .

(i) Ugpi(x, 1) g —1 uniformly on compact subsets 6f

Moreover, whenV = 2, letk = O (h?) for someN < g < (4— N) + 2u and choos&V? such that
lwg — W°||L2 < ChP for somep > ¢/2; then we also have

0 . —
(i) Wepi(x,1) 0 (1) uniformly on  27.
Proof. Let A be any compact subset 6% For any(x, ¢) € A, using the triangle inequality we have

US,h,k(xs t) - Me(-xs t)l + |M€(-x9 t) - 1|

[Ugni(x,t) =1 <
< N Uenk — ufllLoo(apy + [uf(x, 1) — 1]. (4.4)

|
|
Under the assumptions of Theorem|4.2, from Thedrerh 3.2(v) we know that there exists a constant
O<a < (4— N)/2such that

1Ue,n ke — u®llLoe2r) < Ch. (4.5)

Here we have used the assumptiog O (h?) for some 2V/3 < g < (24— 5N)/2.

Clearly, the first term on the right hand side pf {4.4) converges to zero uniformly (and
on £2) ash \ 0. From Theorerp 4]1(i) we know that the second term on the right hand side]of (4.4)
also converges to zero uniformly ah Note thath N\ 0 ase N\ 0. Therefore,

N0 .
Ue ok 99 uniformly onA.

This then completes the proof of (i).
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The proof of (ii) is almost the same. The only change is to repfads/ 7 and 1 by—1 in the
above proof. So we omit it.
To show (iii), first we notice that

1
wf = gf(ug) —sAu®

if the solutionu® of the Cahn-Hilliard equatiof (1.1j—(1.3) belongsitd>(J; L?) N L>(J; HY.
Next, from Corollary 3.JL(ii) we know that under the additional assumptions of Thelorém 4.2 there
exists a positive constant9 ¢ < (¢ — 2)/2 such that

Wenx — w2 < ChE. (4.6)

Here we have used the assumptloa O (h) for some 2< g < 7/2.
By the triangle inequality for anyx, ) € 27 we have

[Weni(x, 1) —w| < [Wepr(x, 1) —w®(x, )] + [w(x, 1) — w

<
< Wenk — w Loy + lwf(x, 1) — w. 4.7)

The first term on the right hand side pf (§.7) clearly converges to zero unifornly\a<, and so
does the second term due to Theofen 4.1(ii). Hence,

0 , _
Wenx(x, 1) 0 ) uniformly on27.

The proof is complete. |

REMARK (&) The reason for us to only show assertion (iii) f§r = 2 is that the current
L*®(J; L) estimate forw® — W, « in Corollary[3.](ii) is not strong enough to give a positive
power of (notek = O(h?)) in the error bound whe = 3. To circumvent the difficulty, we
need a betteL>°(J; L*°) estimate forw® — W, j, x which is similar to the one for® — U, 5 in
Theore(v). This can be done under the assumptionithat L2(J; L?) (needed to derive a
priori estimate in 1¢) and that the starting valug® satisfies the following stronger constraint:

IV (Pyul, — U, 2 < Ch?. (4.8)
0 L

See (b) of the remark after Theorém|3.2.
A corollary of Theorez is the following convergence result of the zero Ievdl}%ét" of
U, 1 i to the free boundaryy;.

THEOREM4.3 Letl*™* := (x € @; U, ;1 (x, 1) = 0} denote the zero level set of, ;, . Then
under the assumptions for Theorpm|4.2(i),(ii), we have

sup dist(x, I}) 9 0 uniformlyon[Q T].

xers.lz.k
t

Proof. For anyn € (0, 1), define the (open) tubular neighborhabf of width 2y of I" as

Ny = {(x, 1) € r;d(x, 1) < n). (4.9)
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Let A and B denote the complements &f, in O andZ, respectively, that is,
A=0\N,, B=TI\N,.

Note thatA is a compact subset 6f andB is a compact subset 8t Hence, from Theorem 4.2(i), (ii)
we know that there exis&) > 0, which only depends om, such that for alk € (0, 2p),

V(x,1) € A, (4.10)
V(x,1) € B. (4.11)

[Ugpi(x,t) =1 <

n
[Ueni(x, ) +1 <7
Now for anyr € [0, T] andx € I*""* sinceU, ;.1 (x, 1) = 0, we have

[Uenk(x, 1) —1 =1, (4.12)
[Uenk(x, 1) +1] = 1. (4.13)

Evidently, [4.10) and (4.12) imply that, r) ¢ A, and [4.11) and (4.13) say that, r) ¢ B. Hence

(x, 1) must reside in the tubular neighborha&§. Sincer is an arbitrary number in [@'] andx is

an arbitrary point on“f’h"‘, therefore, for alk € (0, &),
sup dist(x, I;) < n uniformlyon|[Q, T]. (4.14)
xerts,h.k
The proof is complete. O

We conclude this section and the paper with some discussions about the rate of convergence of
Fts,h,k toI;.
It is well known (see [[4] 14| 25]) that the solution for the Allen—Cahn equaiipn=
Auf —(1/€2) f (u®) approaches:1 away from the interface exponentially fast. This property allows
estimating the rate of convergence for the zero level set of the solution of the Allen—Cahn equation
and its numerical approximations to the true interface (see [9, 28, 31, 32] and references therein).
Unlike the situation for the Allen—Cahn equation, the solutibérof the Cahn—Hilliard equation
(L.1){1.B)does notapproacht1 away from the interface exponentially fast, and the transition
region from 1 to—1 could be “large” (see [2]). In fact, it was shown in Theorem 4.12 of [2] that this
transition region is contained in a tubular neighborhood of wixdtlf I, wheres* is a constant
such that digt';, 062) > 28* for all ¢ € [0, T]. The combination of this result with the> (J; L>°)
estimate fom® — U, 5, x immediately leads to the following theorem.

THEOREM4.4 Leté* be a positive constant such that dist 0£2) > 25* forall ¢ € [0, T]. Then,
under the assumptions for Theorpm| 4.2(i),(ii), there exists a (small) positive némb@rsuch that

sup dist(x, I7) < 6*/2 uniformlyon[QT], Ve € (0,2].

xerrs,h,k

Proof. From Theorems 4.12 and 5.1 &f [2] we know that there exist§ias 0 and a constant
C* > 0 such that for alk € (0,%27),

||1/l8 — 1”CO(O\M*/2) < C*S, (415)
<

4 + L cogge ) < Ce. (4.16)
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Now for anyx € Ff’h’k, sinceUg j, k(x, 1) = 0, from Theore2(v) we know that there exists an
€2 > 0, independent ofx, 1), such that

£ 1) > 1— |uf — Usps| > 2C*e (4.17)

forall e € (0,%2). Then [4.15){{4.17) implies that, r) must be in the tubular neighborhod@: 2
of I" for all ¢ € (0, ) withe = min{g1, €>}. The proof is complete. |
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