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A semilinear Black and Scholes partial differential equation for valuing
American options: approximate solutions and convergence
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In [[7], we proved that the American (call/put) option valuation problem can be stated in terms of one
single semilinear Black and Scholes partial differential equation set in a fixed domain. The semilinear
Black and Scholes equation constitutes a starting point for designing and analyzing a variety of “easy
to implement” numerical schemes for computing the value of an American option. To demonstrate
this feature, we propose and analyze an upwind finite difference scheme of “predictor—corrector type”
for the semilinear Black and Scholes equation. We prove that the approximate solutions generated by
the predictor—corrector scheme respect the early exercise constraint and that they converge uniformly
to the American option value. A numerical example is also presented. Besides the predictor—corrector
schemes, other methods for constructing approximate solution sequences are discussed and analyzed.

Keywords American option; semilinear Black and Scholes partial differential equation; viscosity
solution; approximate solutions; numerical schemes; convergence.
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1. Introduction

Let 7T > 0 be fixed and < T. Suppose that the price dynamics of a dividend paying sicls
governed by a geometric Brownian motion (under the unique equivalent martingale m@gsure
i.e., it evolves according to the stochastic differential equation

dX(@s) = —d)X(s)ds +oX(s)dW(s), se(,T],

whered > 0 is the constant dividend yield for the stoek;: O is the risk-free interest rate, > 0 is
the volatility, and{W (s) | s € [0, T} is a standard Brownian motion. Starting at timwith initial
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condition X (+) = «x, it is well known that the arbitrage-free value of an American option with
expiration at timef is given by
Ve, x) = sup E"[e" T 0g(X ()], (1.1)
1<t <T
where the supremum is taken over Ajl stopping timeg < [z, T], E"** denotes expectation under
the equivalent martingale measure conditioned@n = x, andg : R — R is the payoff function.
Herein we will focus on call and put options, i.e. options with payoff

_ K"t i
g(x):{(x K)*, call option (1.2)

(K —x)*, putoption

whereK > 0 is the strike price. In this paper, we use Duffiel[10], Karatzas and Shreve [17], Musiela
and Rutkowski[[19], and Mynen[_[20] as general references on the American option valuation
problem.

In the literature one can find two main approaches to determining the fungtion (I.1):

(i) the free boundary problenfiormulation and (ii) thequasi-variational inequalityformulation.

It is well known that there is no explicit formula fdr, as opposed to the value of an European
option for which an analytical formula exists. Consequently, with both approaches one has to resort
to numerical schemes for finding. However, the two approaches lend themselves to different
numerical schemes. We refer to [10] 17,19, 20] (and also the references therein) for mathematical
and numerical aspects of the free boundary problem and quasi-variational inequality formulations
as well as their advantages and disadvantages.

In [7], we presented a new approach to determining the value of an American option. The
function vV in (I.1) is the value function of an optimal stopping problem for which the dynamic
programming principle holds [24]. Using the dynamic programming principle, we proved in [7]
that V uniquely solves (in a viscosity solution sense) the followsegnilinear Black and Scholes
equationset in a fixed domain:

1
o+ (r —d)xd,v + Eazxzafv —rv=—q(x,v), (t,x)eQr, (1.3)
whereQr denotes the time-space cylinder 0 x [0, o). Thenonlinear reaction term
g :R xR — [0, 0)

takes the form
q(xsv) :C(X)H(g(x)—l)), (14)
with ¢ : R — [0, co) being the “cash flow” function

_ + i
() = (dx —rK)*, call opt.|or1 (1.5)
(rK —dx)*, putoption
andH : R — [0, co) the Heaviside function
07 g < 07
H(E) = 1.6
&) {1’ £>0. (1.6)

We augment (1]3) with the terminal condition
v(T,x) =g(x), x¢€l0,o0), 2.7)
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whereg is the payoff function in[(1]2). One should note thafin{1.3) there is no free boundary that
needs to be computed as part of the solution nor are there “side constraints” that need to be satisfied
by the solution (as opposed to the quasi-variational formulation). We refer to [7] for the motivation
behind the semilinear Black and Scholes equafion (1.3) and its rigorous derivatioff frbm (1.1) via the
dynamic programming principle. We also referl[to [7] for an overview of relevant literature. Here we
only mention that[(1]3) can be viewed as an infinitesimal (partial differential equation) version of
the well knownearly exercise premium representation of the American ogiien the separation

of the American option price into the corresponding European option price plus an early exercise
premium) and that an initial motivation for our work [n [7] was [18].

It was pointed out in[[[7] that the semilinear Black and Scholes equation does not make sense
as it stands in[(1]3) if classical (i.eG%?) solutions—or more generally continuous viscosity
solutions [9[1l1]—are sought. This is related to the fact that the nonlinearity ¢ (x, v) in (T.3)
is discontinuous Guided by the dynamic programming principle, we suggested!in [7] a suitable
definition of aviscosity solutiorior (1.3). We recall this definition in Secti¢h 2 of the present paper.

It was proved in[[V] that the functio defined in[(1]l) is the unique such viscosity solution of
(13) satisfying the terminal conditiop (1.7). In other words, the terminal value proplem [1.3)—(1.7)
constitutes an alternative formulation of the American (call/put) option valuation problem.

From a practical point of view, the advantage of the semilinear Black and Scholes equation
(I3) is that it suggests a natural recipe for constructing “easy to implement” numerical schemes
for valuing American options. In fact, any European option solver can be turned into an American
option solver via[(1]3). In Sectidr] 4, we devise an upwind finite difference scheme of “predictor—
corrector type” for[(T.8). Fronj (1.1), it is seen that the American option vélaévays satisfies the
early exercise constraint

V=g onQr, OQr:=[0,T]x][0,c0). (1.8)

The suggested predictor—corrector scheme automatically satisfies a discrete arfaldg of (1.8). Using
the Barles—Ishii-Perthame weak viscosity limit metidd [9, 11], we give ankgsyi.e., uniform

on compacta) convergence proof for the predictor—corrector scheme. A numerical example is
presented in Sectigr 6.

We must stress that the particular numerical scheme studied herein is chosen just for its
simplicity in terms of presentation, mathematical analysis, and implementation. But, at the same
time, this simple choice illustrates the basic advantages of using the semilinear Black and Scholes
equation [(IB) as the governing partial differential equation for American option valuation. In
practical applications, however, one should use numerical schemes that result from a more
sophisticated discretization ¢f (1.3) than the one used herein.

In addition to the numerical scheme, we also analyze various sequences of “semidiscrete
approximate solutions”, which are obtained by solving “approximate semilinear Black and Scholes
equations” in which the discontinuous right-hand sigen (I.3) has been replaced by some
continuous approximation. This is the topic of Secfipn 3. Related to this, let us mention that some
of the so-callegenalty schemedsund in recent computational finance literature (see, €.d.. [12, 21,
25]) can be interpreted as numerical schemes obtained by discretizing an approximate semilinear
Black and Scholes equation. A consequence of this point of view is that one can adopt the techniques
developed herein to give easy convergence proofs for penalty schemes. We make a further remark
about this in Sectionl4.

To demonstrate that the mathematical framework herein can be used to analyze other numerical
schemes for valuing American options as well, we give in Seflion 5 a rather elementary convergence
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proof for a numerical scheme based on the classical Brennan and Schwartz algadrithm [8] and the
finite difference approach.

Finally, we mention that future work will be devoted to extending the semilinear Black and
Scholes equation and its mathematical/numerical theory to the multi-asset setting.

2. Viscosity solutions

In this section, we recall froni [7] the definition of a viscosity solution for the semilinear Black and
Scholes equation. For a general introduction to the viscosity solution theory, we refer to Crandall,
Ishii, and Lions|[[9] and Fleming and Sonér [11]. We also recall from [9, 11] how to perform weak
limit operations with viscosity solutions. This will be needed later when we prove convergence of
various sequences of approximate solutions.

Before stating the definition of a viscosity solution, we need to introduce some notation. We
start with the following spaces of semicontinuous functions:

USC(07) = {v: Or — R U {—00} | v is upper semicontinuoiis
LSC(Q7) = {v: Q7 — RU {400} | v is lower semicontinuoys

Next, C%#(Qr) denotes the space of functions @y that area > O times continuously
differentiable inr and 8 > 0 times continuously differentiable in. The space of continuous
functions onQ7 is denoted byC(07), i.e.,C(0r) = C%°(07).

In what follows, we will need the nonlinear functiogs, ¢, : R x R — [0, co) defined by

g (x,v) =c(x)H"(g(x) —v), g«(x,v) = c(x)Hy(g(x) — v), (2.1)
whereH*, H, : R — [0, co) are defined as

0, 0, 0, <0,
§ < H, () = 5

H©=11 50 1, £>0

REMARK Observe thay* and g, are respectively upper and lower semicontinuousRor R.
Moreover, we have, < ¢* andg™ = ¢. In fact,¢* andg, are respectively the upper and lower
semicontinuous envelopes of the nonlinear functiatefined in[(1.p) (se€[7]).

The fact that the mapping — ¢ (x, v) is discontinuous makes it a nontrivial matter to decide
what one should mean by a viscosity solution or even a clas6itélsolution of [I.3). Using
the dynamic programming principle in optimal stopping theory, we showlin [7] that the notion of
viscosity solution found in Definition 2.1 below is the natural one; that is, it identifies the American
option value as the unique viscosity solution of the terminal value profplein (I.3)—(1.7). Remarkably,
it turns out that this definition of a viscosity solution is an adaptation to our setting of the one used
by Ishii [13] for first order Hamilton—Jacobi equations with discontinuous Hamiltonians.

DEFINITION 2.1 (i) Alocally bounded function € USC(Qr) is aviscosity subsolution off.3)
if and only if for all ¢ € C12(Q7) we have:

for each(z, x) € Qr being a local maximizer of — ¢,

9 1.2 .22 * (22)
(1, x) + (r — d)x3x (1, x) + 50°x°05p (£, x) — rv(t, x) + g*(x, v(#, x)) = 0.

If, in addition,v|;=7 < g on [0, c0), thenw is aviscosity subsolution ofT.3)-{1.7).
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(ii) A locally bounded function € LSC(Q7) is a(viscosity) supersolution off-3) if and only if
forall ¢ € C12(Q7) we have:

for each(z, x) € Qr being a local minimizer ob — ¢,

9 1 _2.2q42 (23)
(P (t, x) + (r —d)xo,o(t, x) + 50°x 9cp(t, x) —rv(t, x) + q+(x, v(t, x)) < 0.

If, in addition,v|;=7 > g on [0, co), thenv is aviscosity supersolution ofL.3)-[1.7).

(iii) A function v € C(Qr) is aviscosity solution off.3) if and only if it is simultaneously a
viscosity sub- and supersolution ¢f ([1.3). If, in additiem,—r = g on [0, c0), thenv is a
viscosity solution ofL.3)-[L.7).

REMARK For convenience, we adopt the tersubsolutiorandsupersolutiorinstead of viscosity
subsolution and viscosity supersolution. Furthermore, it is well known (see,[e/d.] [9, 11]) that we
can replace “local” by “strict local” or “global” by “strict global”’. We can also assume that the
extremum ofv — ¢ has the value zero. There are equivalent formulations of sub- and supersolutions
based on so-called semijets (or semidifferentials). These formulations were Used in [7], but they will
not be needed in this paper.

REMARK Note that ifv is a subsolution (supersolution) far > 0, then it is automatically a
subsolution (supersolution) far> 0. We refer tol[¥] for a proof of this result.

The remaining part of this section is devoted to weak (half-relaxed) limit operations with
viscosity solutions[][9, 11]. This will set the scene for the convergence proofs presented in the
subsequent sections. Regarding limit operations with viscosity solutions, the following comparison
principle will be of fundamental importance:

THEOREM 2.1 ([7]) Let vsup and vsyp be respectively a sub- and supersolution [of |(1[3)}(1.7).
Suppose there exists a finite const@rduch that

vsublt, x), —vsupl(t, ¥) < C(1+x), (t,x) € Q7. (2.4)
Then _
Usub< Usyp ON Q7.

Later we shall repeatedly be faced with the problem of passing to the limit|a8 in various
sequences, : Q7 — R of approximate solutions. A natural procedure for doing so is to prove
that v, is uniformly bounded (ire) as well as equicontinuous on compacta. The Ascoli—Arzel
compactness theorem then givgy. (i.e., uniform on compacta) convergence along a subsequence
of v, to a locally bounded and continuous functionHowever, a merit of the viscosity solution
theory is that one can dispense with the equicontinuity estimate provided there is a comparison
principle in the class of semicontinuous sub- and supersolutions (Thdorém 2.1). This limiting
procedure is known as the Barles—Ishii-Perthame weak limit method [3, 14]. For completeness,
we recall here the definitions of the upper and lower weak (or half-relaxed) limits of

DEFINITION 2.2 Suppose; is locally uniformly bounded.
(i) Theupper weak limiof v., denoted by, is defined as

v(t,x) = limsup wvg(s,y)
073(s,5)— (1)
el0

zlai%suqu(sa)’) | (S,y) EE, |t_s|9|-x_y| gav 0<8<8}
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(i) The lower weak limitof v., denoted by, is defined as

v(t,x)=__ liminf  v.(s, y)
0r13(s,y)—>(t,x)
el0

= g?ginf{vg<s, 1@, y)€0r, |t —sllx—yl <8, 0<e<s).

Sincev, is locally uniformly bounded, the weak limitsandv are well defined (finite). Some
properties (to be used later) of the weak limits are given in the next lemma (whose proof can found
in, e.g., [9/11]).

LEMMA 2.1 (i) The upperweak limi belongs to USCQ7) and the lower weak limit belongs
to LSC(Q7).

(i) If v = v = v on a compact subset @7, thenv is continuous and, — v in L™ (i.e.,
uniformly) on this setas | 0.

(iii) Let v, € USC(Q7) (resp. LSGQ7)) be locally uniformly (ine) bounded. Lett, x) € Or
be a strict local maximizer af — ¢ (resp. minimizer fon — ¢), ¢ € C12(0r). Then there
exist subsequences, which we do not relapglx.) — (¢, x) andv, (¢, x.) — v(¢, x) (resp.
v(t, x)) ase | 0 such thatz,, x.) is a local maximizer (resp. minimizer) of — ¢ for each
e > 0.

Regarding the general use of the weak limit method as a tool for proving convergence of
approximate solutions of fully nonlinear degenerate second order partial differential equations, we
refer to [4,9]/ 111] and the references therein. For some concrete applications to partial differential
equations arising in finance theory, sek€ |1, 2] and the references therein.

3. Semidiscrete approximations

In this section we present and analyze several examples of “semidiscrete” approximate solutions
of the semilinear Black and Scholes equatjon](1.3). These approximations can be used to construct
“fully discrete” numerical schemes for computing the value of an American option (se€, €.0.,/[12, 21,
25] as well as Sectidn 5 herein). We also introduce the basic techniques for analyzing approximate
solution sequences associated with the semilinear Black and Scholes equation.

Let us start with the classical penalization techniduel [5, 6], which considers the following
equation for eacl > 0O:

1 1
A ve + (r — d)xdyve + Eazxzafvg — v = —g(g(x) —v)t, (t,x) e 0r, (3.1)

with terminal data
ve(T,x) =g(x), x €]0,00). (3.2)

From standard viscosity solution thedry[[9] 11], we know that there exists a unique viscosity solution
ve to (3:3){3:2) satisfying & v, < C(1+ x) on Qr, where the constan is independent of.
Regarding the penalization method, we have the following theorem:

THEOREM3.1 Letv be the unique viscosity solution ¢f (1.3)—(L.7). For each 0, letv, be the
unique viscosity solution of (3.1)=(3.2). Thep — v in LX.(Qr) ase | 0.

loc
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Proof. Letv andv be the upper and lower weak limits of (see Definitiof 22). From Lemnja 2.1,
v € USC(Q7) andv € LSC(Q7). Obviously, 0< v, v < C(1+x)on Q7.

We prove first thap is a supersolution of (1 3}=(1.7), starting with the terminal condifior] (1.7).
To get a contradiction, suppose there exist [0, co) andé > 0 such thaw (T, y) < g(y) — 4.
Pick sequenceg, x;) — (T, y) andv. (s, x.) — v(T, y) ase | 0. Because of (3]2), < T for
all ¢ < gg and someg > 0. We next pick a functiog € Cc? ([0, 00)) such thatg < g on [0, c0),
g(y) = g(y)—8/2,andg = const on K, o) with K > y. Define the functiortG = —C(T —1)+ 3
for a constanC > 0. Observe thaf; < g on Q7. For an appropriate choice 6f, G turns out to be

a subsolution of (311)E(3.2):

1520 1 n
0:G(t,x)+ (r —d)x0,G(t, x) + EG x°0:G(t,x) —rG(t,x) + —-(g(x) — G)
&
_ ~ 1‘ 2. 202~ -
>CH (r—d)xog(x)+ 2(7 x°05g(x) —rg(x).

By choosing
. 1
C>— min {(r —d)x0,3(x) + Z02x20%g (x) — rg(x)},
x€[0,00) 2
we see thatG becomes a subsolution. Observe that the minimum is finite sjnee const on
[K, 00). The comparison principle fof (3.1)—(3.2) (seel[9] 11]) impligs> G on Qr for any
e € (0, gg]. Lettinge | 0, we getv > G on Qr and, in particulary(T, y) > g(y) = g(y) — /2,
which is a contradiction. This concludes the proof of the terminal conditiory > g on [0, c0).
Next we prove that is a supersolution of (11.3). Lét, x) € Qr be a strict local minimizer of — ¢,
¢ € C12(Q7). First, we claim that
v(t, x) = g(x). (3.3)
To get a contradiction, suppos€r, x) < g(x) — 8 for somes > 0. By Lemmg 2.1, there exist
sequences,, x.) — (t, x) andv, (7., x.) — v(t, x) ase | 0 such thatz,, x.) is a local minimizer
of v, — ¢ for eache. Obviously, there exists ar(§) > 0 such that

Ve (e, xg) < g(xe) — 8/2, Ve < £(9).

In view of this and since; is a supersolution of (3.1), we have (fosmall enough)

0 (1, xe) + (r — )X 03 (1, x6) + %szfafcﬁ(te, Xe) = 1V (1, Xe)

)

%

Letting ¢ | O in this inequality gives a contradiction since the left-hand side converges to a
finite number while the right-hand side converges-tso. This proves[(3]3), which in turn implies

g«(x, v(t, x)) = 0. To conclude the proof of the supersolution property af(z, x), it only remains
tolete | 0in the inequality

1
< _g(g(xs) — Ve(le, Xe)) < —

1
0 (te, xe) + (r — d)x:0x P (e, xe) + éazxgzafd’(tev Xg) — rvg(te, x¢) < 0.

In [7], it is proved thatg is a subsolution of[(I]3)F(1.7). We have just proved thas a
supersolution of (T13)E(1. 7). Consequently, Thedrerh 2.1 tells us that

T,u>g onQr. (3.4)
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We prove next that is a subsolution of (T]3)E(D.7), starting with the terminal conditjon] (1.7).
To get a contradiction, suppose there exist [0, co) ands > 0 such thaw(T, y) > g(y) + 6.
Pick sequence§;, x.) — (T, y) andv.(z, x.) — v(T,y) ase | 0. Because of (3|2, < T
for all e < go and somesp > 0. We next pick a functiorg e C? ([0, o0)) such thatg > g
on [0, 00), g(y) = g(y) +8/2, andg = g on [K, o0) with K > max(y, K). Define the function
G = C(T —t)+g and note thaG > g on Q7. Following the same calculation as in the subsolution
case, we see that if we choose

C > max {(r —d)xd3,8(x) + 10 2x29%g(x) — rg(X)}

x€[0,00)

then G becomes a supersolution §f (8.1)={3.2). Note that the maximum is finitet Fork we
haveg = g. Thus, for a call optiong(x) = x — K for x > K, and the expression inside the curly
brackets is equal te-dx + rK < —dK + rk. For a put option, on the other hang{,x) = 0 for

x > K. The comparison principle fof (3.1)=(3.2) (s&e([9, 11]) then impliest G on Q7 for any

e € (0, go]. Letting e | 0, we gefv < G on Q7 and thusu(T, y) < g(y) = g(y) + /2, which is
a contradiction. Hence|;,—r < g on [0, co). Let us now prove thai is a subsolution of (1]3). Let
(1, x) € Qr be a strict local maximizer of — ¢, ¢ € C12(07). We use again Leml to find
sequences,, x,) — (¢, x) andv. (¢, x.) — v(t, x) ase | 0 such thatz,, x.) is a local maximizer
of v, — ¢ for eache. If (7, x) = g(x), then we us€ (3]4) and argue as follows: Singex) = g(x)
andv > g on Q7, we conclude thag — ¢ has a local maximum 4t, x). Sinceg is a subsolution
of (L.3) (seell7]),[(Z]2) follows. Finally, ifi(z, x) > g(x), then it is clear thab, (7, x:) > g(x¢) for
anye sufficiently small. Since, is a subsolution of (3]1), we have (for anygmall enough)

¥ (te, xe) + (r — d)Xe By (te, xe) + = ozx 320 (te, xe) — rvg(te, xe) >

Sincev(z, x) > g(x), g« (x,v(¢,x)) = 0. Lettinge | 0 in the above inequality thus yields the
subsolution property of at (¢, x).

Theorenj 2.]1 implies that < v, and thuss = v = v. Lemmg 2.1l then concludes the proof of
the theorem. |

Letg. : R x R — R designate a reasonable approximatiom td’he term “reasonable” will be

made precise through conditiofis (3.12) gnd (8.13) in Leinmja 3.1 below. Another way to construct
semidiscrete approximate solutions to the semilinear Black and Scholes equalion (1.3) is to consider
the following equation for each > 0:

0;ve + (r — d)x9, v, + ;0 )62821)‘S —rvg+¢qe(x,v.) =0, (x,1) € QOr, (3.5)
which is augmented with terminal data

(T, x) =g(x), x €]0,00). (3.6)
Let us look at some choices gf of the form

ge(x,v) = c(X)He(g(x) —v), €>0, (3.7

whereH, : R — R is an approximation to the Heaviside functipn {1.6). One example may be the
“symmetric approximation”
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0, & < —¢,
He(§) =& +e)/2, —e<E&<e, (3.8)
1 &> e

Similarly, we have the “approximation from above”

0, & < —¢,
He(§) =1 +e)/e, —e<& <O, (3.9)
1 § =20,

as well as the “approximation from below”

0, &£ <0,
He(§) = {&/e, 0<E <e, (3.10)
1 E>e.

Our final example is (there are of course infinitely many more and they do not need to be smooth as
is the case with the examples here)

H,(§) = (3.11)

e—&~
From standard viscosity solution theory [9) 11], we know that for any reasopaltfere exists a
unique viscosity solution, of (3.2)-[3.2) satisfying & v, < C(1+x) on Q7, where the constant

C is independent of. The next lemma shows that viscosity solutions (in the sense of Definition
[2.7)) are stable with respect to weak limits.

LEMMA 3.1 For eache > O, let g, be a locally uniformly bounded function such that the
comparison principle holds fof (3.5)—(B.6), and € USC(Q7) (resp. LSGQ7)) be a locally
uniformly bounded subsolution (resp. supersolution)[of](35)}(3.6). Suppose theregexis
and finite constant§, C > 0 such that

q{;‘(xv v

(3.12)
ge(x, v

) <c(x)+C wheneverg(x) — v < 0 ande < &g,
) > c(x) — C whenever(x) —v > 0 ande < &p,
where the “cash flow” function is defined in[(1.b). Leg andg be respectively the upper and lower

weak limits ofg,. If
gx,v) <g*(x,v) Yx,v) eRxR, ¢qx,v) = qulx,v) V(x,v) e RxR, (3.13)

whereg*, ¢, are defined in[(2]1), then the upper weak limiresp. lower weak limiv) of v, is a
subsolution (resp. supersolution) pf (1.8)—[1.7).

Proof. From Lemn@lﬁ is upper semicontinuous andis lower semicontinuous. Also, &

v, v < C(1+x)on Q7. Letus now prove that satisfies the terminal condition. To this end, choose
a functiong € €2 ([0, 0o)) such thag > g on [0, o0), || — gllzoo([0,00)) < 8 for somes > 0, and

g = g on[K, co) with K sufficiently large. Define the functiof = C(T — t) + § for a constant
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C > 0, and note that; > g on Q7. Observe that, for any < g and(¢, x) € Or,
1
3G (1, x) + (r — d)xd, G (1, x) + EazxzafG(r, x) = rG(t, x) + g: (x, G(t, x))
~ 1550 ~
—C+ (r —d)xd,g(x) + 50X 0rg(x) —rg(x) + qe(x, G(1, x))
1 _
—C+ r —d)xd,g(x) + Eozxzafg(x) —rg(x)+ckx)+C, (3.14)

where we have usefl (3]12) to derive the second inequality. Now choose

C>C+ %ax {(r — d)xd, 8 (x) + 102x282g(x) —rg(x) + c(x)}

Note that the maximum is finite since
1 -
(r —d)x0,g(x) + o x2025(x) —rg(x) = —c(x), x> K.

Plugging thisC into (3.14), we conclude thak is a supersolution of (3}5) and obviously also of
BH)-[3:6) (at least when < ¢g). The comparison principle fof (3.5)=(8.6) (sée [[9] 11]) then
impliesv, < G on Q7 for anye < eo. Hencev < G on [0, oo) and, in particularp(T, x) <
g(x) < g(x)+ 4 forx € [0, 00). Sinces > 0 was arbitrary, we conclude thal{— < g on [0, 00).
Similarly, we can prove that satisfies the terminal condition. This time we choose a function
g € C?([0, o0)) such tha < g on [0, 00), ||g — gllLo(0,00)) < 8, and, for a sufficiently Iargé?,

g = g on [K, o). Define the functiorG = —C(T — 1) + § for a constanC > 0, and note that

G < gonQr. Inview of (3.12), itis not difficult to see that if we choo€eso that

C>C— min {(r —d)xd:(x) + 10 22925 (x) — rg(x) + c(x)}
x€[0,00)
thenG becomes a subsolution ¢f (B.1)—(3.2) whenevet ¢g. The comparison principle far (3.5)—
(3.6) (seel[d, 11]) then implies. > G on Q7 (for small enougte). We now end the proof as we
did for v and obtairv|,—7 > g on [0, c0).
Next we prove thab, v are respectively sub- and supersolutiong of](1.3). We present here only
the subsolution case (the supersolution case is similar)zLej € Q7 be a strict local maximizer
of 7 — ¢, ¢ € CY2(Qr). By Lemmd 2.1, there exist sequencgs x.) — (7, x) anduv (t;, x;) —
v(t, x) ase | 0 such that eactr,, x.) is a local maximizer of, — ¢, and hence

1
0P (te, xe) + (r — d)Xxe 05 (e, x¢) + Eazxgzaffb(ls, Xe) — rvg(te, x¢)
+ qe(xe, ve(te, xe)) 2> 0, (3.15)
or, after rearranging,

qe(Xe, Ve(te, xg)) 2 —0;P(te, Xe) — (r — d)x:0x P (1e, X¢)

1
—50 x xqb(te,xg) + rvg (e, x¢). (3.16)
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Obviously, by [(3-IB) and the definition §f we have

g*(x,v(t, x)) = q(x,v(t, x)) = lim Soupqg(xs, Ve (e, X¢)).
el

Hence, taking lim sup on both sides jn (3.16) and observing that lim sup coincides with lim on the
right-hand side, we have the subsolution property af (¢, x):

QP (t, x) + (r — d)xdedp(t, x) + %azxzafqﬁ(t, x) — ro(t, x) + ¢*(x, v(t, x)) > 0. O

A consequence of the previous lemma is the following theorem:

THEOREM 3.2 For eaclr > 0, suppose. is a locally uniformly bounded function such that the
comparison principle holds fof (3.5)=(3.6]), (3.12) ahd (B.13) hold, @nié a locally uniformly
bounded viscosity solution df (3.5)—(B.6). Then— v ase | 0, wherev is the unique viscosity
solution of [I:8){(L]7). The convergence takes placeif(Or).

Proof. By definition, v < v on Qr. From Lemml,v and v are respectively sub- and
supersolutions of (1}3)=(1.7) andis a supersolution of (I3}=(1.7). Theorfm|2.1 yields therefore
v < vonQr,and hence = v = v is the viscosity solution of (I}3). The uniform convergence
follows from Lemmd Z.11. O

Regarding the choices gf discussed above, we have the following convergence theorem:

THEOREM3.3 For eacte > 0, let v, be the unique viscosity solution df (B.5)—(3.6) with

defined via[(3.]/) and one of the choicgs [3.B),](3[9), (3.10), or](3.11}. A, v, converges in
L%.(Or) to the unique viscosity solutionof (I.3)—{1.7).

Proof. In what follows, letg. be any one of the choices mentioned in the theorem. Standard
viscosity solution theory |9, 11] provides us with the existence of a unique viscosity solution of
(B3:9)-[3.6) satisfying 0< v, < C(1+ x) on Q7, whereC is independent of. Moreover, the
comparison principle holds. It is easy to check thasatisfies[(3.72) and that the upper and lower
weak limitsg of andg of ¢, coincide withg* andg, respectively. Hence an application of Theorem
[3:2 concludes the proof. O

4. The predictor—corrector scheme

The semilinear Black and Scholes equat[on|(1.3) provides a natural recipe for turning any numerical
scheme for the European option valuation problem into a numerical scheme for the American option
valuation problem. We have chosen to illustrate this feature by devising a very simple explicit
upwind finite difference scheme of “predictor—corrector type” for](1.3). It will become apparent,
however, that everything presented in this section can be extended to other (more sophisticated)
numerical schemes fdr (1.3).

To implement a numerical scheme on a computer, we tnustatethe infinite domain [0oo)
to a finite domain [0L), whereL < oo is fixed, and then provide a reasonable boundary condition
atx = L (see[(4.J7) below). The truncation technique is a classical one in numerical financé (see [2]
for a theoretical investigation of it). The choice of boundary conditian at L will not affect the
theoretical convergence analysis given later. The reason is that we willfleto asAx | 0 in the
convergence analysis.
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Let Ax > 0 andAr > 0 be the spatial and temporal discretization parameters, respectively. The
spatial domain [0L] is then discretized into grid cells

Ij =[xj_172,xj412), Jj=L....J. -1

wherex, = LAxfore =0,1/2,1,...,Jp—1, Jp—1/2, J;. Furthermore, we sdp = [0, x1/2) and
Ij, = [x5,-1/2, x5,]. Choose the integef; such that/; Ax = L. For the convergence analysis,
we let

JoAx =L 1 oo asAx | 0. (4.2)

Similarly, the time interval [0T] is discretized into time strips
I"=["""Y, n=N-1,...,0,

wheret” = nAt forn = 0,..., N. The integerN is chosen such thaf Ar = T. We denote by
R} the rectangld” x I;. Forj =0,...,Jpandn = N, N —1,...,0, V" denotes the predictor—
corrector approximation (yet to be defined) associated with the pdint;).

We extend the difference solutiqwfj"} to all of QL = [0, T] x [0, L] by setting

v, t,x)eR? j=0,...,J, n=N-1,...,0,
watwy =10y PR T= t 4.2)
Vj y t=T,x€Ij,]=0,...,JL,

whereA is used as short-hand notation fox. Let us now introduce the explicit predictor—corrector

scheme. To this end, set= Ar/Ax andu = At/(Ax)2. To simplify the presentation, we use
ArandA_ to designate the difference operators inthdirection:

n _

ALV =

n n__ ymn n
i Vi AV =V -V

For the same reason, we introduce tipsvind numerical flux functiod : R x R — R defined by

b whenr —d >0,

F(a,b) =
(@, ) a whenr —d < 0.

The suggested numerical scheme for](1[3)3(1.7), which uses the upwind numerical flux function

F for the convection part and centered differencing for the parabolic part, takes the following
predictor—corrector fornfor j =0,...,Jp —1andn =N —1,...,0:

Predictor step:

V_n+l/2

1
f =V 40t — D A FVITL VIED £ uSoxZA AL VI — AVt (4.3)

j+1 2

Corrector step:
n+1/2

vVi=V; + Arc(xj)H(g(xj) —

We start the backward iteratign (#.3)—(4.4) by setting

]n+l/2)’ (44)

‘/J.Nzg(,xj')7 j:o,...,JL- (45)
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We will impose the following Dirichlet condition at = O:
VitY2— v =g, n=N-1,...,0 (4.6)

Based on the asymptotic behavior of the American option valug (1. )taso, we will impose the
following Dirichlet condition atx = L:

1/2
VIF2 =yl =g(L), n=N-1....0 @7)

Note that wheri/"™1/2

f < g(x;), the updating formuld (4]4) reduces to

1
v = Vj”+1+x(r —d)x; A_F(Vj”“, Vj'fll) +M§ozxj2A_A+V/"+1— Atrvj"“JrAtc(x,-). (4.8)

Otherwise,[(4}4) reduces to

1
1 1 1 1 1
VI = VI L — g ACF (VL VD + ,uzazszA,A+Vj"+ — AVt (4.9)

For the call (resp. put) option we havex;) = dx; — rK (rK —dx;) if x; > 2K (resp.< 5K)),
and the updating formulf (4.8) is possibly in effect. Otherwige;) = 0, and the updating formula

(429) is effective.
We assume that the followingarabolic CFL conditiorholds:

Alr —d|L + po’L? + Atr < 1. (4.10)

Note that whemA(= Ax) | 0, then alsaAt | O by this condition.

The following lemma shows that the approximate solutign satisfies the early exercise
constraint[(T.B) and has (at most) linear growthxas oo, which implies that the finite difference
scheme[(4]4) i4.°°. stable

loc

LEMMA 4.1 Suppose the parabolic CFL conditign (4.10) holds. Then the predictor—corrector
solution{V/"} defined by[(4.B) througl (4.7) satisfies

VI >g(x), j=0...J..n=NN-1..0. (4.11)
Consequently, the approximate solution defined by[(4.R) an«ﬂVj”} satisfies
va(t,x) > g(x) — O(Ax),  (1,x) € QF. (4.12)
Furthermore, there exist finite constafgtsandC», independent ofA, such that
VI <Ci+Coxj,  j=0,...,Jp, n=N,N-1,....0. (4.13)
For the call option(C; = 0 andC> = 1. For the put option¢; = K andC2 = 0. Consequently,

va(t, x) < C1+ Cox + O(Ax),  (t,x) € QF. (4.14)
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Proof. The proof is inductive. Observe first that statemepts {4.11) and](4.13) holg fer 0,
n=NN-1...,0,( =J,n=NN-1,...,0,and(j = 0,...,J.,n = N). For
(G=1....Jp—-1,n=N-1,...,0), we assume that a particular statement holds at time level
n + 1 and then seek to prove that it holds at time levedtarting with statemenf (4.]L1). First note
that if V" > ¢(x;), then
+1/2

V=V S ey,

and we are finished. In what follows, we therefore assﬁrﬁfél/z < g(x)), so that

yn — yrtl2

f f + Ate(x;). (4.15)

Introducing the functiors defined by

S(Xj, ‘/jn_-}il’ an+l’ ‘/jrf:il) — ‘/jn'i‘l + )\'(r _ d)x]'AfF(an—H, ‘/jrf:il)

1
+u§azxj2A_A+vj"+l — AtrvIH, (4.16)

we can write[(4B) as

S, VI v v — v <o

Under the parabolic CFL conditiop (4]10), it is straightforward to check that

08/9VIHE 9S/ovITE, a8/t > 0,

which implies that the finite difference schemenisnotoneSetg; = g(x;). Since by assumption
an+1 > g; for all j, we then have

+1/2 .
VT2 = Sy, viEE VIR VD > S(xy, g1, 8. 8j11) Vi
Hence

Vn+l/2

1
f > g+ Ar —d)xjA_F (gj, gj+1) + /L—osz-ZA_A+g/ — Atrgj,

2
> g+ Ar —d)xjA_F (gj, gj+1) — Atrgj Vj. (4.17)
where we have used the convexitygfo derive the last inequality. To be concrete in what follows,
we assume — d < 0, so that[(4.17) reads

1/2
VY2 > g —ad — n)xj(gj — gj-1) — Atrg;.
The case — d > 0 can be treated similarly. We have two cases to consider:

(i) x; < K. Then for the call option

Vj"+1/2 2 8 —02=gj — Are(x)),

and for the put option

V_n+1/2

f 2 g+ At(d —r)xj — Atr(K — xj) = gj — At(rK — dx;) > gj — Atc(x)).
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(i) x; > K. Then for the call option

n+1/2
14

and for the put option

> gj — At(d —r)xj — Atr(x; — K) = gj — At(dx; —rK) > gj — Atc(x)).

1/2
VT2 > g — 0> g — Are(x)).

Summing up,

n+1/2
Vi

Plugging this lower bound fov"™/? into (413) gives the desired result (4.11).

From [4.11) and the definition afy (see[(4.R)), we gef (4.12).
Finally, we prove thaf{(4.313) anfl (4]14) hold, starting wjth (#.13) and the put option. Assume
thatvj"+l < K for all ;. It then follows from from the monotonicity &f that

> gj — Atc(xj) V. (4.18)

V_n+l/2

f < K1 - Atr),

and hence, vid (44),
VI < K(L— Atr) + Ate(x)) <K V.

For the call option, we assunmg'+1 < x; forall j. Again from the monotonicity of, we get
p j J-Ag y g

VY2 < a1 Atr) — Ard — r)xj = xj — Atdy;,
and therefore
Vj" — Atdxj +c(xj) <x; V.
This concludes the proof 0[@13), WhICh also implies (#.14). O

THEOREM4.1 Suppose the parabolic CFL conditidn (4.10) holds. Denotey lifie unique
viscosity solution of [(TB)E(1]7). Let, be the approximate solution defined y {4.2) and the
predictor—corrector schenfe (#.3) through}4.7). Then

va— v inLE(Qr)asA | 0.

Proof. Letv anduy be respectively the upper and lower weak limita af We havev € USC(QT)
v € LSC(Q7), andv < 7 on Q7. In view of Lemm4 4.1, v are finite at each poirit, x) € O7.
More precisely, 0< 7, v < C(14x) on Q7 for some constar@ > 0. For the moment, suppose that
we can prove that andv are respectively sub- and supersolutions of| (1[3)}4(1.7). An application of
Theorenj Z]1 then gives

v<uv onQry. (4.19)

We are thus finished since this implies= v on Q7 and, via Lemml, the approximate solution
v converges ag\ | 0 to the unique viscosity solution= v = v of (T.3)-{L.7).

We will first prove tha® is a subsolution of (I]3). Pick a local maximiZerx) of v—¢ for some
¢ € C12(07). Without loss of generality, we assumé, x) = ¢ (¢, x) and that the maximizer is
strict. Moreover, we can assume> 0. In view of [4.]), there existaxg > 0 such thatz, x) is an
interior point on§ forany Ax < Axp. In what follows, we assumax < Axp. In view of Lemma
[4.7, we obviously have

v,u>g onQr. (4.20)
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First we consider the cagdr, x) = g(x). Sincev(r, x) = g(x) andv > g on Qr, we conclude
thatg — ¢ has a local maximum at, x). In [7], we proved thag is a subsolution of(1]3). Hence
(2:2) holds. Next we consider the case, x) > g(x) + § for somes > 0. Theng*(x, v(z, x)) = 0.
By Lemmd 2.1, there exist sequences, x) — (7, x) andva(ra, x4) — v(t,x) asA | 0 such
that(za, x») is a local maximizer ob, — ¢ for eachAx. For anyAx sufficiently small, we have
va(ta, xa) = g(xa) + 8/2. Without loss of generality, we can assume that there are intéfjers
such that(ta, xa) = (t", x;) and hencea (ta, xa) = Vj". Note that

yr — yrtl2

1/2
=V Are Hg () — VT,

whereV,""/? s defined in[[@). It follows that
an+1/2 = V' — Ate(xj)H(g(x)) — vj"“/z) > g(xj) +8/4,

n+1/2

by choosingA sufficiently small. This implies that’j" =V , so that[(4:4) reduces to

1
VI = vj"+l +A(r — d)xjA,F(Vj”“, Vj’fll) + MEUZ);/?A,AJFVJ.”“ — Atr‘/j"+l. (4.21)

Using the monotone functiaf defined in[(4.Ip), we can writg (4]21) as

S()Cj, ‘/jnjzl-l’ ijl‘l-‘rl’ ‘/]’z:il) _ V'jn =0 (422)

The fact tha , — ¢ has a maximum &t 4, x») implies

" > VI (va(ta, x4) — B(ta, X))

We have introduced the notatigri = ¢ (", x;). By the monotonicity ofS and [4.2P), we therefore
obtain

oan+1l o n+l o n+4l n
8(xja ¢]—1’¢j ’¢j+1) _¢j

> S(xj, VI VI VD — VI Atr(ualta, xa) — ¢ (ta, xa))

= Atr(va(ta, xa) — ¢ (ta, x4)). (4.23)

Dividing (4.23) byAr and Taylor expanding arourith, x4) = (1", x;) yields

1
P (ta, x2) + (r — d)xadr (14, x4) + Eozxiafqb(u, x4) —rva(ta, xa) = —0(4),

where “O(A)” means < C(Ar 4+ Ax)” for some constanC > 0 independent ofAx and Az.
Letting A | 0O in this inequality finishes the proof of the subsolution property. This shows that the
finite difference schemg (4.21)dsnsistent

We now prove thab is a supersolution of (1} 3). Pick a local minimizer x) of v — ¢ with
¢ € CL2(Q7). Without loss of generality, we can assume, x) = ¢(z, x) and that the minimizer
is strict. As before, we can find sequences, x4) — (¢, x) andva(ta, x4) — v(¢,x) asA | O
such that(z4, x4) is a local minimizer ofvy, — ¢ for eachA. We can also assume that each point
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(ta, x4) coincides with a grid point. Since > g on Q7, we haveg, (x, v(t, x)) = 0. Note that

(4-4) reads

Sy, v vt vl — v = — Are(r) H(g(x) — V) <. (4.24)

In view of this, arguing analogously to the subsolution case yields

1
dp(ta, xa) + (r — d)xpdxp(ta, x4) + zazxiaqu(m, x4) = rva(ta, xa) < O(A).

Letting A | 0 in this inequality finishes the proof of the supersolution property.
Finally, let us prove that andv satisfy the terminal condition, i.@},—7 < g andv|,—7 > gon
[0, 00). In view of (4.20), it is sufficient to prove that

Tl <g on[0,c0), (4.25)

which actually impliest|,—r = v,_; = g on [0, o0). Pick a functiong € C2? ([0, o0)) such
thatg > g on [0,00), [I§ — gllL(0,00) < & for somes > 0, andg = g on [K, c0) with
K > maxK, (r/d)K). DefineG = C(T — 1) + g for a constanC > 0, and note thaG > g
on Qr. LetJ be the integer such that € 1;.. SetG} = G(t", xj), g; = g(x;), and

~ 1 . 1 1 . ~
C= max {(r — d)ijA_F(gj, gj+1) + EazijWA_A+gj — rgj}.

J=0,...J¢

Note thatC is finite and independent afx, sinceg € C2. Seté = max, 1o, 11 €. Forj < Jg,
we have

Sxj. G G G = G < Af[-C + € — e(x)) + 8] < —Ate(x)),
provided we choos€ > C + & Forj > Jg, itis easy to check that for any > 0 we have

S(xj, G111, G G — G = At[—C — (dx — rK)] < —Ate(x;))

for the call option and

S(xj, G;?fll, G}?“, G;?jll) — G} = Af[-C] < —Ate(x))

for the put option. Hence, by choosigg> C + ¢, we have

S(xj, G2, G G — G < —Ae(x)) (4.26)
forj=1,...,Jp—1andn = N —1,...,0. From the definition of the predictor—corrector scheme
“3)-[4-3), it follows that

Sy, VIHE VL VD — VI > — Are(x)) (4.27)

forj=1,...,Jp —1landn =N —1,...,0. We now claim that

VI<G!,  j=0...J.. n=N,N-1...0. (4.28)
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Obviously, by [(4.5),[(4]6). and (4.7), this is obviously truefgor=0,...,Jp,n = N), (j =
O,n=N,N—-1,...,0,and(j = Jp,n = N,N — ,0). To prove -) for the remaining
indices, we proceed by induction @nSupposd/”Jrl < G”Jrl Then, using[(4.37)[ (4.26), and the
monotonicity ofS, we reach the desired result

J J Jj+1

S(x;. Gj* LG G + Are(x)) = G

VI < S, VI VI VD) + Are(x))
S Jjt1

From [4.28), itimmediately follows that
va(t, ) < G(t, )+ 0(Ax), (1, %) € OF,

and therefor&@ < G on Q7. In particularp(T, x) < g(x) < g(x) + 8. Sinces > 0 was arbitrary,
the proof of [4.2] -) is finished. O

REMARK Although this section shows that one can directly discretize the semilinear Black and
Scholes equatior{ (1.3) to obtain a “good” numerical scheme for computing the value of an
American option, there is some numerical literaturel [12,[21, 25] on so-cpdedlty schemes

We claim that penalty schemes can be viewed as numerical schemes obtained by discretizing an
approximation to the semilinear Black and Scholes equafion (1.3), nafely (3.1) with a suitable
choice ofe [12,[25] or [3.%) with a suitable choice gf. For example, the choice gf based on

(3-7) and[(3:111) is related to the penalty scheme used in [21]. The authdérs 6f[12] 21, 25] do not
provide rigorous convergence proofs for their penalty schemes. At a semidiscrete level, we have
already provided rather general convergence theorems (see Th¢orgms| 3.2,[3.3, and 3.1). Regarding
convergence proofs for numerical schemes based on discrefizing (3[I)]or (3.5), we only mention
that the convergence arguments presented herein can be modified so as to apply to such numerical
schemes.

From a computational point of view, the explicit predictor—corrector schémé (4.4) is not
particularly useful because of the severe time step restriction imposed by the parabolic CFL
condition [4.1D). However[ (4.10) can be easily avoided by replacing the explicit predictor step
(4-3) by an implicit one. We end this section by briefly discussing an implicit predictor—corrector
scheme. To simplify matters, we consider only the put option and se0. We then consider the
following “CFL condition free” predictor—corrector scheme:

1
vz _ V”+1+ArxjA Vn++11/2+u 1 sz A, Vn+l/2 Arr Vn+1/2’

J J 2 (4.29)
V= VY2 L A KH(K —xpt - Vi),

The terminal and boundary conditions fpr (4.29) are as before [[sde (4.5), (4.6}, dnd (4.7)). Note
that in [4:29) we do not have to solve a nonlinear algebraic system at each time step but merely a
tridiagonal linear system. This makes (4.29) an efficient numerical scheme.

We have the following convergence theorem for (4.29):

THEOREM4.2 The statements in Lemrja 4.1 and Theofem 4.1 hold true for the approximate
solution{V;"} generated by the implicit predictor—corrector scheme (4.29).
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Proof. The proof follows very closely the proofs of Lemina]4.1 and Thedrern 4.1 for the explicit
predictor—corrector scheme, and hence we will omit most of it. Since we do not have any CFL
condition relating the convergence to zerof with that of Ax, we need in this case to assume
that At goes to zero as a function afx whenAx | 0. To illustrate a typical difference between
the methods of proof for the explicit and implicit schemes, we will, however, prove that the early
exercise constrainf (4.]L1) holds. To this end, let us write the predictor sfep ih (4.29) as

n+1 n+1/2
4 - V n+1/2 n+l/2

n+1/2
A TS Vi Y Vi) =0 (4.30)
where
n+1/2 n+1/2 ,n+1/2
SO, Vi Vigr D)
= rx; iA yrtl2Z 102x2 1 A AL YHY2 oyt
Y Ax j+1 2 ](Ax)z —a+Y; I .

Observe that
8S/8VI 12, 88/0V! 2 > 0.

For anyj, setg; = g(x;) and WJ?“PP - an+p — gj with p = 1, 1/2. Observe thaWJ”+1 > 0 for

all j. The scheme foW"Jrl/2 reads
Wil _ 2
‘ ' 2 /2 ynt)2
/ A[ / +S( ja ‘n, / 7‘/an / ]n+l/ )+S(-xjvgj lvgjagj+1)
Let W, /? = min; W”Jrl/2 for some¢ and assumav, /> < 0 (otherwise there is nothing to
prove) Then
wptt — itz 1/2 1/2 1/2
e S W W W) 4 S e g g g4 <
which implies that
n+l/2

A+ Ay W, > AtS (xe, 8e—1, 8¢, ev1) = —AtrK,

where the last inequality follows as in the proof[of (4.11) for the explicit predictor—corrector scheme.
12 . : L .
In particular, WJ”Jr /2> _ AtrK forall j. Plugging this into[(4.29) yield§ (4.].11), and herice (#.12).
Similarly, we can prove thaf (4.113) and (4.14) hold.
By the monotonicity ofS in two of the variables, the proof that Theorem|4.1 holds[for (4.29) is
more or less identical to the proof for the explicit predictor—corrector scheme. O

5. The Brennan and Schwartz algorithm

By applying a predictor—corrector discretization [fo [3.1), we can devise a numerical scheme that
is identical to the one analyzed in Sectjdn 4 except that the correctof step (4.4) is replaced by the
following one:

n+l/2

1/2
V=V @m) VI
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wheree has to be chosen. We are here interested in the particular cheicdt, which results in
the following explicit scheme:

1/2
‘/jn‘l' / — ‘/j}’l+1 + )\‘(r _ d)XjA_F(‘/jn+l, V;:Tll)
1
+ //LEO'Z)C]-ZA_A+ an+1 - Ater”H, (5.1)

Vi =max v g (x))).

The terminal and boundary conditions fr (5.1) are as in Segfion 4 [(sde (4.5), (4.6), gnd (4.7)).
We call [5.1) theBrennan and Schwartz algorithmeferring to the classical scheme studied by
Brennan and Schwartz ihl[8]. The theoretical justification of the Brennan and Schwartz algorithm
is a delicate issue that has been treated by Jaillet, Lamberton, and Lapéyre [15, 16] using the theory
of quasi-variational inequalities due to Bensoussan and Lidns [5, 6]. Viscosity solution theory for
quasi-variational inequalities can be found[in![22], 23]. The purpose of this section is to show that
we can use the mathematical framework for the semilinear Black and Scholes equation to give an
elementary convergence proof for the Brennan and Schwartz scheme defjnefl in (5.1).

We have the following theorem:

THEOREM5.1 Suppose the parabolic CFL conditipn (4.10) holds. Then the statements in Lemma
and Theorem 4.1 hold true for the approximate solu{iié]ﬁ} generated by the Brennan and
Chwartz algorith 1).

Proof. The proof follows the lines of the proofs of Leminaj4.1 and Thedrein 4.1, and hence we will
be rather brief here. We trivially havé® > g; for all j, n, so that[(4.111) and hende (4]12) hold.

The upper bound§ (4.1.3) and (4.14) can be proved as before. Let us now prove that the upper weak
limit v is a subsolution of (I]3)=(1.7), starting with the terminal conditjon] (1.7). SVI?’E@ > gj

for all j, we know from [(4.IB) that

—(8(xj) = VAT > —Are(x)) Vi

Plugging this into[(5]1), we get

S, VIS VIR VD = VI > —Are() Y,
whereS is defined in[(4.16). Now proceeding exactly as in the proof of The¢refn 4.1, we end up
with (4.28). It remains to prove thatis a subsolution of (1]3). Pick a strict local maximizerx)

of 7 — ¢ for somep € C+2(Qr) with x > 0. The cas@(r, x) = g(x) can treated as in the proof of
Theorenj 4.]1. Let us therefore assuiie x) > g(x) + & for somes > 0. Theng*(x, v(z, x)) = 0.

By Lemmd 2.1, there exist sequendes, x4) — (¢, x) andva(ra, xa) — v(r,x) asA | 0 such
that(z4, x») is a local maximizer ob, — ¢ for eachAx. For anyAx sufficiently small, we have
va(ta, xa) > g(xa). Pick integers(j, n) such that(za, xa) = (", x;) andva(ta, xa) = Vj".
Using the monotone functiafi defined in[(4.16), we can writg (5.1) as

S(Xj, an_—lil’ an-‘rl’ fo:_ll) _ an —0.

We can now conclude exactly as in the proof of Thedrer 4.1.
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Let us now prove that the lower weak limitis a supersolution of (. 3)=(1.7). In view §f (4]20),
we already know that satisfies the terminal condition. Upon replacipg (#.24) by

Sy, VIS vt vl — v = —(g(xy) — VYA <o, (5.2)

the proof thaw is a supersolution of (11.3) goes exactly as in the proof of Theprem 4.1. O

6. A numerical example

In this section, we test the predictor—corrector scheme defined and analyzed in Section 4. In the
computer program that has been implemented, we specify the spatial discretization parameter
and then choosar according to

(Ax)?
At g )
Ax|r —d|L + 02L2 + (Ax)?r

(6.1)

so that the parabolic CFL conditign (4]10) holds. We present here only numerical results for the put
option withd = 0. Furthermore, we use the following parameters:

r=01 o¢=02 K=1 T=10, L=4 Ax=0.00533 Ar=0.0043

The choiceAax = 0.00533 corresponds to 75 grid points and = 0.0043 is chosen according to
(6-1). For comparison, we use an “exact solution” computed by the predictor—corrector scheme on a
very fine grid. The exact and numerical solutions are displayed in Higure 1. The predictor-corrector
scheme gives a fairly good approximation to the exact solution. The largest difference is seen in
the early exercise region (which roughly speaking corresponds te 0.8 — 0.9"). However, this
difference is largely due to the use of a first order upwind discretization of the convection term in
the Black and Scholes operator. By using a high order discretization of the convection term, this
difference can be greatly reduced.

For further comparison, we have also computed a solution with the Brennan and Schwartz
algorithm [5.1). The same set of discretization parameters have been used and the result is shown in
Figure[2. In the “visual norm” the predictor—corrector and Brennan and Schwartz schemes produce
solutions of more or less the same quality. This is also confirmed by looking at “zoom-in plots”
(like those in Figurels|4 comparing the predictor—corrector and penalty schemes). We do not present
these plots here, since one can hardly see any difference between the two schemes.

As mentioned before, instead of discretizing the semilinear Black and Scholes eqgpafion (1.3),
one can discretize the approximate semilinear Black and Scholes eq(iafion (3.5). To be concrete,
consider [(3.p) withg, defined via [(3]7) andd.(§) = e/(¢ — &). An explicit finite difference
discretization[(3]5) with this choice gf produces the followingenalty scheme

1
11 41 2.2 +1
Vi = Vi A = d)x AV A+ usotaf A ALV

€
8+an+l—(K—)Cj)’

— AtrVIt Ak (6.2)

wheree > 0 is a parameter that has to be specified. The terminal and boundary conditions for
(6.2) are as in Sectidr] 4. We note that the penalty schieme (6.2) coincides with the one lused in [21].
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American put option (T=1.0)
U T T

0.2r-

0.18

0.16 -

0.14

0.1

Value (v)

0.08

0.06 -

0.02-

L L L L L
0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
Stock price (x)

Fic. 1. The price of the American put option with expiration tirffie= 1.0: the exact solution along with the
payoff function (solid line) and the predictor—corrector solution (dashed line)

American put option (T=1.0)
T T

0.2

016

0.14

011

Value (v)

0.08

0.04

0.021-

1
0.7 0.8 0.9 1 1.1 1.2 1.3 14
Stock price (x)

Fic. 2. The price of the American put option with expiration tirffie= 1.0: the exact solution along with the
payoff function (solid line) and the Brennan and Schwartz solution (dashed line)
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American call option (T=1.0)
T T

0.18[

0.16 [

01

0.08

0.04 -

0.02-

0.7 0.8 0.9

1.1 1.2 1.3 1.4
Stock price (x)

Fic. 3. The price of the American put option with expiration tirffie= 1.0: the exact solution along with the

payoff function (solid line) and the penalty solution (dashed line)

In [21], it was proved that (6]2) satisfied a discrete analog of the early exercise con$trdint (1.8)
provided the following strengthened CFL condition holds:

(Ax)?
At < 7 .
AxrL 4+ 0202 4+ r(Ax)2 4+ %(Ax)z

Adopting the method of proof herein, one can also prove under this CFL condition that the
approximate solutions generated by the penalty schémg (6.2) converge to the unique viscosity
solution of [1.3)f(1]7) (i.e., the American put option value).

For the numerical example, the penalty scheme used the same discretization parameters as the
predictor—corrector scheme. This forces us to cheased.0009. The exact and numerical solutions
are displayed in Figurg] 3. The penalty solution is comparable to the predictor—corrector solution.
However, the “zoom-in plots” in Figure| 4 reveal that the penalty solution consistently lies above
the predictor—corrector solution. This is not surprising since the reaction tefm jn (6.2) is nonzero
(but small) also in the optimal exercise region. Although we did not gain anything here by using a
continuous approximatiog. instead of the discontinuous nonlinear reaction terim (1.4), it may
be an advantage to uge instead ofg in a numerical scheme in which the nonlinear reaction term
is going to be discretized implicitly. But this remains to be investigated.
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American put option (T=1.0)
T T T

0.14 B
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Fic. 4. “Zoom—in plots” of the exact solution (solid line), the predictor—corrector solution (dashed line), and
the penalty solution (dotted line).
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