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Evolution of characteristic functions of convex sets in the plane by the
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In this paper we compute the explicit evolution of the minimizing total variation flow when the initial
condition is the characteristic function of a convex set inR2, or a finite number of them which are
sufficiently separated. We also obtain some explicit solutions of the total variation formulation of the
denoising problem in image processing. We illustrate these results with some experiments.
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1. Introduction

The purpose of this paper is to compute the explicit solution of the minimizing total variation flow
in R2 given by the equation

∂u

∂t
= div

(
Du

|Du|

)
in QT = ]0, T [ × R2, (1.1)

when the initial datum
u(0, x) = χC(x), x ∈ R2, (1.2)

is the characteristic function of a bounded convex setC ⊆ R2. More generally, we shall compute
the evolution corresponding to initial datau0(x) =

∑m
i=1 biχCi

, wherebi ∈ R andCi are bounded
convex sets inR2 which satisfy some additional condition (condition (c) in Theorem 5) which
amounts to saying that the setsCi are sufficiently far apart.
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The study of the explicit solutions of (1.1) was initiated in [5, 2], where the authors considered
the evolution of characteristic functions of bounded setsC of finite perimeter inR2 which evolve at
constant speed without distortion of the boundary. In the case thatC ⊆ R2 is connected, those sets
were characterized in [5] by the following result. For notational convenience, we set

λC :=
P(C)

|C|
,

whereP(C) denotes the perimeter ofC and|C| its area.

THEOREM 1 ([5]) LetC ⊂ R2 be a bounded set of finite perimeter, and assume thatC is connected.
Let λ > 0. The following conditions are equivalent:

(i) C decreases at speedλ, i.e.,u(t, x) := (1 − λt)+ χC(x) is the solution of (1.1) corresponding
to u(0, x) = χC(x).

(ii) C is convex,λ = λC and minimizes the functional

GλC
(D) := P(D) − λC |D|, D ⊆ C, D of finite perimeter.

(iii) C is convex,∂C is of classC1,1, λ = λC , and

ess sup
p∈∂C

κ∂C(p) 6 λC, (1.3)

whereκ∂C(p) denotes the curvature of∂C at the pointp.

The main conclusion of this theorem is that the bounded connected subsetsC ⊆ R2 which
decrease at constant speed are convex sets whose curvature is bounded by (1.3). In particular, the
evolution of polygons inR2 is not described by Theorem 1. Our purpose in this paper will be to
describe the evolution of general convex sets inR2. In this case, and depending on the curvature of
the boundary, some distortions may occur. To describe them let us recall some basic concepts useful
in integral geometry.

As usual, ifx ∈ R2 andr > 0, we letB(x, r) := {y ∈ R2 : |y − x| 6 r}. The Minkowski
addition and subtraction of a setA ⊆ R2 and the ballB(0, r) will be denoted byA ⊕ B(0, r) :=⋃

x∈A B(x, r) andA 	 B(0, r) := {x ∈ C : B(x, r) ⊆ A}.
Let C be a compact convex set inR2, andr > 0. We shall use the notations

Cr := C 	 B(0, r),

Cr := (C 	 B(0, r)) ⊕ B(0, r) =

⋃
B(x,r)⊆C

B(x, r).

The family of the setsCr , r > 0, is ordered by inclusion, i.e.,Cr
⊆ Cs

⊆ C if 0 < s < r,
C =

⋃
r>0 Cr , and we shall find a valueR > 0 of r characterized by

1

R
=

P(CR)

|CR|

for which the setCR decreases at speed 1/R. As we shall prove in Lemma 4, the setC \ CR is
foliated by the boundaries∂Cr

\ ∂C, 0 < r < R, which are a family of circular arcs of radiusr
tangent to∂C. If p ∈ C \ CR, we definer(p) as the radius of the arc of{∂Cr

\ ∂C : r ∈ [0, R]}
passing throughp, and ifp ∈ CR, we definer(p) = R; that is, we set

r(p) = sup{r ∈ [0, R] : p ∈ Cr
} = inf{r ∈ [0, R] : p 6∈ Cr

}, p ∈ C. (1.4)
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The evolution ofχC can now be easily described: the points inCR decrease at speedλCR , the points
p ∈ ∂Cr

\ ∂C, 0 < r < R, decrease at speed 1/r, until the height reaches the value 0. This is the
main result of the paper.

THEOREM 2 Let C be a nonempty bounded convex set inR2. Let r(x), x ∈ C, be the function
defined in (1.4). Extendr(x) to R2 by definingr(x) = 0 if x ∈ R2

\C, and write(1/r(x))χC(x) = 0
if x ∈ R2

\ C. Let u(t, x) = (1 − t/r(x))+χC(x). Thenu is the solution of (1.1) corresponding to
the initial conditionu(0, x) = χC(x).

We shall also consider the evolution of sets of the formΩ = C1 ∪ · · · ∪ Cm, where theCi are
nonempty bounded convex sets which are sufficiently far from each other (see Theorem 5).

One of the main motivations for our analysis comes from image processing. Equation (1.1)
corresponds to the gradient descent flow associated to total variation minimization, which was
introduced by L. Rudin, S. Osher and E. Fatemi [19] in the context of image denoising and
restoration. Denote byΩ the image domain which, for simplicity, we assume to be a rectangle
in R2. When dealing with the restoration problem one minimizes the total variation functional∫

Ω

|Du| (1.5)

under some constraints which model the process of image acquisition, including blur and noise.
The constraint can be written asf = K ∗ u + n, wheref ∈ L2(Ω) is the observed image,K is a
convolution operator whose kernel represents the point spread function of the optical system,n is
the noise, andu is the ideal image, previous to distortion. The denoising problem corresponds to
K = I and, in this case, the constraint becomes

f = u + n. (1.6)

In practice, the only information we have about the noise is statistical. Assuming thatn is a Gaussian
white noise of zero mean and standard deviationσ , the constraint (1.6) can be imposed in an integral
form as ∫

Ω

(f − u)2 dx = σ 2
|Ω|. (1.7)

Among all images satisfying this constraint, the denoised image is chosen as the one minimizing
(1.5) (see [19]). As proved by A. Chambolle and P. L. Lions in [9], minimizing (1.5) under the
constraint (1.7) amounts to minimizing

min
u∈BV(Ω)

{ ∫
Ω

|Du| +
1

2λ

∫
Ω

(u − f )2 dx

}
, (1.8)

for some Lagrange multiplierλ > 0. Notice that, as a by-product of our analysis, we shall obtain
some explicit solutions of (1.8) (which, for simplicity, we state forΩ = R2). These explicit sol-
utions, together with other ones found in [5], contribute to display the qualitative behavior of total
variation when denoising the dataf according to (1.8). They also serve as tests for the numerical
algorithms used to minimize (1.8).

It is important to recall that one of the main features of total variation denoising (1.8), confirmed
by numerical experiments, is its ability to restore the discontinuities of the image [19], [9], [11], [12].
Indeed, the underlying functional model is the space of BV functions, i.e., functions of bounded
variation, which admit a set of discontinuities which is countably rectifiable [1], [13], [21]. The
total variation approach to denoising had a strong influence on the use of BV functions in image
processing.
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Finally, observe that the Euler–Lagrange equation corresponding to (1.8) coincides with the
first step of an implicit Euler discretization of (1.1) withλ = ∆t , also called the Crandall–
Liggett scheme. Thus, studying each of these problems gives information about the other, and
this is reflected by our results in Sections 3.3 and 4. For an account on existence, uniqueness, and
qualitative behavior of (1.1) under different boundary conditions we refer to [2], [5].

Let us explain the plan of the paper. In Section 2 we recall some basic notions on functions of
bounded variation, a generalized Green formula, and the notion of solution for problem (1.1), (1.2).
Section 3 describes, after some technical preliminaries, the evolution of a general convex set inR2

and the evolution of sets which are unions of a finite number of convex sets which are sufficiently
separated (condition (c) of Theorem 5). In Section 4 we construct further explicit solutions of the
denoising problem (1.8) for some particular functionsf . Finally, in Section 5 we present some
numerical experiments which are in agreement with the results of previous sections and have been
obtained using the numerical scheme of [10].

2. Preliminaries

2.1 BV functions

Let Q be an open subset ofRN . A function u ∈ L1(Q) whose gradientDu in the sense of
distributions is a (vector-valued) Radon measure with finite total variation inQ is called afunction
of bounded variation. The class of such functions will be denoted by BV(Q). The total variation of
Du onQ turns out to be

sup

{ ∫
Q

u div z dx : z ∈ C∞

0 (Q; Rn), ‖z‖L∞(Q) := ess sup
x∈Q

|z(x)| 6 1

}
(2.1)

(where for a vectorv = (v1, . . . , vN ) ∈ RN we set|v|
2 :=

∑N
i=1 v2

i ), and will be denoted by
|Du|(Q) or

∫
Q

|Du|. It turns out that the mapu 7→ |Du|(Q) is L1
loc(Q)-lower semicontinuous.

BV(Q) is a Banach space when endowed with the norm
∫
Q

|u| dx + |Du|(Q). We recall that

BV(RN ) ⊆ LN/(N−1)(RN ), and in particular BV(R2) ⊆ L2(R2). The total variation ofu on a
Borel setB ⊆ Q is defined as inf{|Du|(A) : A open, B ⊆ A ⊆ Q}. For more information about
functions of bounded variation we refer to [1], [13], [21].

A measurable setE ⊆ RN is said to be offinite perimeter inQ if (2.1) is finite whenu is the
characteristic functionχE of E. The perimeter ofE in Q is defined asP(E, Q) := |DχE |(Q).
We shall use the notationP(E) := P(E, RN ). For sets of finite perimeterE one can define the
essential boundary∂∗E, which is countably(N − 1)-rectifiable with finiteHN−1 measure, and
compute the outer unit normalνE(x) at HN−1-almost all pointsx of ∂∗E, whereHN−1 is the
(N − 1)-dimensional Hausdorff measure. Moreover,|DχE | coincides with the restriction ofHN−1

to ∂∗E.

2.2 A generalized Green formula

Let Ω ⊂ RN be an open set. Following [3], let

X2(Ω) := {ξ ∈ L∞(Ω; RN ) : div ξ ∈ L2(Ω)}. (2.2)
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If ξ ∈ X2(Ω) andw ∈ L2(Ω) ∩ BV(Ω) we define the functional(ξ, Dw) : C∞

0 (Ω) → R by the
formula

〈(ξ, Dw), ϕ〉 := −

∫
Ω

wϕ div ξ dx −

∫
Ω

wξ · ∇ϕ dx ∀ϕ ∈ C∞

0 (Ω). (2.3)

Then(ξ, Dw) is a Radon measure inΩ (see [3]), and∫
Ω

(ξ, Dw) =

∫
Ω

ξ · ∇w dx ∀w ∈ L2(Ω) ∩ W1,1(Ω). (2.4)

If Ω is a bounded open set with Lipschitz boundary, andνΩ denotes the outer unit normal on∂Ω,
we have the following integration by parts formula [3]: givenξ ∈ X2(Ω) there exists a function
[ξ · νΩ ] ∈ L∞(∂Ω) satisfying‖[ξ · νΩ ]‖L∞(∂Ω) 6 ‖ξ‖L∞(Ω;RN ), and such that for anyw ∈

L2(Ω) ∩ BV(Ω) we have∫
Ω

w div ξ dx = −

∫
Ω

(ξ, Dw) +

∫
∂Ω

[ξ, νΩ ]w dHN−1. (2.5)

If Ω = RN , ξ ∈ X2(RN ) andw ∈ L2(RN ) ∩ BV(RN ) we have the following integration by parts
formula: ∫

RN

w div ξ dx +

∫
RN

(ξ, Dw) = 0. (2.6)

For convenience, we shall apply the usual notationξ · Dw instead of(ξ, Dw).

2.3 Existence and uniqueness of solutions of (1.1)

Consider the energy functionalΦ : L2(RN ) → ]−∞, +∞] defined by

Φ(u) =

{ ∫
RN |Du| if u ∈ BV(RN ) ∩ L2(RN ),

+∞ if u ∈ L2(RN ) \ BV(RN ).
(2.7)

Since the functionalΦ is convex, lower semicontinuous and proper,∂Φ is a maximal monotone
operator with dense domain, generating a contraction semigroup inL2(RN ) (see [8]). Let us recall
the following characterization of the subdifferential ofΦ ([2, 5]).

LEMMA 1 Letu, v ∈ L2(RN ). The following assertions are equivalent:

(a) (u, v) ∈ ∂Φ;
(b) u ∈ L2(RN ) ∩ BV(RN ), v ∈ L2(RN ), and there existsz ∈ X2(RN ) with ‖z‖∞ 6 1 such that

v = − div z in D′(RN ), and ∫
RN

(z, Du) =

∫
RN

|Du|. (2.8)

Thanks to this characterization the semigroup solution of (1.1) can be expressed in more
classical terms [2, 5].

THEOREM 3 Let u0 ∈ L2(RN ). There is a strong solutionu ∈ C([0, T ]; L2(RN )) of (1.1),
(1.2), i.e.,u ∈ W

1,2
loc (0, T ; L2(RN )) ∩ L1

w(]0, T [; BV(RN )), u(0, x) = u0(x), and there exists
z ∈ L∞(]0, T [ × RN

; RN ) with ‖z‖∞ 6 1 such that

ut = div z in D′(]0, T [ × RN )
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and ∫
RN

(z(t), Du(t)) =

∫
RN

|Du(t)| for a.e.t > 0. (2.9)

The strong solution is unique and it coincides with the semigroup solution.

3. Evolution of the characteristic function of a convex set

The main purpose of this section is to prove Theorem 2. Some preparatory results will be proved in
Subsections 3.1 and 3.2.

3.1 A convex set insideC which decreases without distortion

The main purpose of this subsection is to prove the following result.

PROPOSITION1 Let C ⊆ R2 be a nonempty compact convex set. Then there existsR > 0 such
thatCR decreases at speed 1/R. The value ofR is characterized by the equation 1/R = λCR .

By int(X) we denote the interior of the setX ⊆ R2. In the next lemma we recall several facts
on convex sets [17, 20]. The proof of (v) can be found, for instance, in [5].

LEMMA 2 LetC ⊆ R2 be a nonempty compact convex set, andr > 0. Then:

(i) Cr andCr are compact convex sets.
(ii) (Cr)r = Cr and(Cr)r = Cr .

(iii) Cr =
⋂

s<r Cs , and if
⋃

s>r Cs 6= ∅, thenCr =
⋃

s>r Cs .
(iv) Cr

=
⋂

s<r Cs , and if
⋃

s>r Cs
6= ∅, thenCr

=
⋃

s>r Cs .
(v) If C = Cr , thenC is of classC1,1. In particular, any setCr is of classC1,1.

PROPOSITION2 LetC ⊂ R2 be a bounded set of finite perimeter, and assume thatC is connected.
Let λ > 0. The equivalent conditions of Theorem 1 can be complemented with the following ones:

(iv) C is convex,λ = λC , andC = C1/λ.
(v) C is convex,C = C1/λ, and|C1/λ| = π/λ2.

The equivalence of (iii) and (iv) was proved in [5]. The equivalence (iv)⇔(v) follows from the
following lemma.

LEMMA 3 LetC ⊆ R2 be a nonempty bounded convex set andr > 0.

(a) P(C ⊕ B(0, r))/|C ⊕ B(0, r)| = 1/r if and only if |C| = πr2.
(b) Assume thatC = Cr . ThenP(C)/|C| = 1/r if and only if |Cr | = πr2.

Proof. (a) By Steiner’s formulas in the plane [20], we have (ifX is reduced to a segment, then
P(X) denotes its length)

P(C ⊕ B(0, r)) = P(C) + 2πr, |C ⊕ B(0, r)| = |C| + πr2
+ P(C)r,

hence
|C| − πr2

= |C ⊕ B(0, r)| − P(C ⊕ B(0, r))r.

We conclude thatC ⊕ B(0, r) decreases at speed 1/r if and only if |C| = πr2.
(b) SinceCr

= Cr ⊕ B(0, r), we see thatCr is a nonempty bounded convex set and the result
follows from (a). 2
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PROPOSITION3 Let C ⊆ R2 be a compact convex set. Thenr ∈ [0, ∞) 7→ |Cr | is a continuous
decreasing function. Moreover, there is somer0 > 0 such that|Cr | = 0 for all r > r0 and|Cr | > 0
for r < r0. As a consequence, there is a unique value ofR > 0 such that|CR| = πR2.

Proof. Obviously, the functionQ(r) = |Cr | is decreasing, and|Cr | = 0 for r large enough. Let
r0 = inf{r > 0 : |Cr | = 0}. Then|Cr | > 0 for all 0 6 r < r0, and|Cr | = 0 for all r > r0. Thus it
suffices to check thatQ(r) is continuous forr ∈ [0, r0]. Note thatCr0 =

⋂
r<r0

Cr 6= ∅, being the
intersection of a decreasing sequence of nonempty compact sets. If|Cr0| > 0, then int(Cr0) 6= ∅. In
that case, there areδ > 0 andp ∈ Cr0 such thatB(p, δ) ⊆ Cr0. This implies thatB(p, δ/2) ⊆ Cs

for any s ∈ (r0, r0 + δ/2). This contradicts our definition ofr0. Hence|Cr0| = 0 andQ(r) is
continuous atr = r0. The continuity ofQ whenr < r0 is a consequence of Lemma 2(iii) and the
fact that the boundary of a convex set has null measure.

We have proved thatQ(r) is a continuous function. Finally, note that, since the curvesr 7→ πr2

andr 7→ |Cr | intersect, they do it in a single pointR > 0. 2

Proof of Proposition 1.Observe that(CR)R = CR. ThusCR decreases at speed 1/R if and only if
|(CR)R| = πR2. But (CR)R = CR. Since|CR| = πR2, we conclude thatCR indeed decreases at
speed 1/R. 2

3.2 Some preparatory results

From now on, we assume thatC ⊆ R2 is a fixed nonempty compact convex set andR > 0 is the
radius given by Proposition 3. Letr(p) be the radius function defined in (1.4), andp ∈ C. Recall
that r(p) = R if p ∈ CR. By Proposition 1 we know thatCR decreases at speed 1/R. Our first
purpose is to prove that the set int(C)\CR is foliated by circles whose radiusr goes from 0 toR; this
will permit us to define the field of unit normalsν(p) to this family of circles forp ∈ int(C) \ CR.
Then we shall prove thatν ∈ W1,1(int(C) \ CR), and divν(p) = 1/r(p) for p ∈ int(C) \ CR. This
will imply that the solution of (1.1) withu(0, p) = χC(p) decreases at speed 1/r on∂Cr

\ ∂C, for
0 < r < R, until it reaches the value 0 (see Subsection 3.3).

Using Lemma 2, it is not difficult to prove thatp ∈ ∂Cr(p) for anyp ∈ C \ CR.

LEMMA 4 Letp ∈ ∂Cr
\ ∂C. Thenp is contained in a circular arc of radiusr that is part of∂Cr ,

and tangent to∂C. Hence∂Cr is contained in the union of∂C and a family of circular arcs of radius
r which are tangent to∂C.

Proof. SinceCr is closed, we havep ∈ Cr . Letq ∈ C be such thatp ∈ B = B(q, r) ⊆ C. Observe
thatp ∈ ∂B. If ∂B ∩ ∂C consists at most of one point, then one can find a direction (either−→

qp if

∂B ∩ ∂C = ∅, or
−→
p′p if {p′

} = ∂B ∩ ∂C) such that moving slightlyB in that direction we find a
new ballB(q ′, r) ⊂ C with p in its interior, a contradiction. Hence∂B ∩ ∂C has at least two points.
Denote byp− andp+ the two (different) end points of the connected component of∂B \ ∂C that
containsp. Note that, sinceB ⊆ C andC is convex,∂B and∂C are tangent atp− andp+. Let γ1
be the arc of∂B betweenp− andp+ that containsp, and letγ2 be the complementary arc in∂B

(see Figure 1). We have to show thatγ1 ⊂ ∂Cr . Let α be the angular span ofγ1.
It must be thatα 6 π , otherwise, again, one can find a direction in whichB can be moved inside

C to a new position where it would containp (away fromγ2). Indeed, one can show that there exists
a directionEn such that

En ·
−→
qp > 0 and En ·

−→
qp′ < 0 for all p′

∈ γ2, (3.1)
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FIG. 1. The geometric situation described in Lemma 4 (the figure corresponds to the caseα > π).

so that ifε is small enough then the ballB(q + εEn, r) is in C and containsp in its interior. By
rescaling we may assume thatq = (0, 0), r = 1, andp± = (± cosβ, sinβ) with β = (π − α)/2 ∈

(−π/2, 0). Assume thatp = (cosθ, sinθ) (β < θ < π − β). By symmetry, we may assume that
|θ | 6 π/2. If θ > 0, then the vectorEn = (0, 1) does the job. Ifβ < θ 6 0, we can takeEn =

−−→
p+p.

Then it is easy to check that (3.1) holds.
Let L− andL+ be the tangent lines to∂B at the pointsp− andp+, respectively. In caseα < π ,

those tangent lines intersect at a pointP and determine an angular sectorQ of vertexP containingC
(see Figure 2). In caseα = π , L− andL+ are parallel lines, bounding a strip which we call againQ.
In this case, we assume that the vertex ofQ is a pointP at infinity. Assume that there is a point
p′

∈ Cr \ B insideQ, betweenB andP . Note that the convex setC is contained inQ. Hence, if
α < π , there cannot exist a ballB ′ of radiusr contained inQ and containingp′; if α = π , the
convexity would imply that there is a ballB ′ of radiusr such thatp ∈ int(B ′), a contradiction. We
deduce that the arcγ1 of ∂B that containsp in its interior is contained in∂Cr . 2

For eachp ∈ int(C) \ CR, we defineν(p) to be the outer unit normal toCr(p) atp. Our purpose is
to prove the following result.

PROPOSITION4 We haver ∈ W1,1(C) andν ∈ W1,1(int(C) \ CR). Moreover,

〈∇r(p), ν(p)〉 = −|∇r(p)| for anyp ∈ C,

and

div ν(p) =
1

r(p)
for anyp ∈ int(C) \ CR.

The rest of this section is devoted to the proof of Proposition 4, which is the main technical
ingredient of the proof of Theorem 2. Readers not interested in this technical part may go directly
to Section 3.3.

The proof of Proposition 4 requires two auxiliary results stated in Proposition 5 and Lemma 7.
To prove the former, we recall the following result which combines Theorems 3.1.8 and 3.1.9
(Stepanoff’s Theorem) of [14].
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FIG. 2. Geometric situation whenα < π ; observe that we cannot move the ball towardsP without going out ofQ andC.

THEOREM 4 If A ⊆ B ⊆ RN , A is measurable,B is open,f : B → R and

lim sup
x→a

|f (x) − f (a)|

|x − a|
< ∞ for all a ∈ A, (3.2)

thenf is differentiable almost everywhere onA. Moreover,A is the union of a countable family
of (Lebesgue) measurable sets such that the restriction off to each member of the family is
Lipschitzian.

Strictly speaking we only need the above result forN = 1 (see Lemma 7). But it will be clear
from the proof of Lemma 7 that we need to prove that bothr andν satisfy condition (3.2) in a
domain ofR2, and therefore we recall the result inRN .

PROPOSITION5 The functionr(p) satisfies

lim sup
q→p

|r(q) − r(p)|

|q − p|
< ∞ for anyp ∈ int(C) \ int(CR). (3.3)

The functionν(p) has a similar property in int(C) \ CR.

To prove Proposition 5 we need the following lemma.

LEMMA 5 Let Γ be the circle of center(0, R0) and radiusR0 > 0. LetΓh be the circle of center
(xh, yh) and radiusRh < R0 such thatx2

h + y2
h < R2

h. Assume that

(xh, yh) → (0, R0) and Rh → R0 ash → 0.

Let vh = (R0 −Rh)/(R0 − yh) andwh = xh/(R0 − yh). Let (Xh, Yh) denote the coordinates of the
intersection points ofΓ andΓh. Then:
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(i) If wh → 0 andvh → v along a sequence, thenXh → ±R0
√

1 − v2.
(ii) If wh → λ ∈ R andvh → v, thenXh tends to some finite value, say,Xλ,v.

(iii) If |wh| → ∞, thenXh → 0.

Suppose that the coordinateXh of the intersection points remains bounded away from zero. Then
wh is bounded andvh is bounded away from 1.

Proof. Our assumptions imply that 06 vh 6 1 andΓh is below Γ near (0, 0) and, thus, it
intersectsΓ . The equations ofΓ andΓh are, respectively,x2

+ (y − R0)
2

= R2
0 and(x − xh)

2
+

(y − yh)
2

= R2
h. The equations of the lower semicircles ofΓ andΓh arey = R0 −

√
R2

0 − x2

and y = yh −

√
R2

h − x2
h − x2

+ 2xxh, respectively. Equating both equations we compute thex

coordinate of the intersection points(X, Y ) of Γ andΓh. After some computations we find thatX

satisfies the second order equation

4(x2
h + (R0 − yh)

2)X2
+ 4(R2

h − R2
0 − x2

h − (R0 − yh)
2)xhX

= −[(R2
h − R2

0) − x2
h]2 + (R0 − yh)

2[2R2
h + 2R2

0 − 2x2
h − (R0 − yh)

2],

which can be written in terms ofvh andwh as

4(1 + w2
h)X

2
− 4(vh(R0 + Rh) + xhwh + (R0 − yh))whX

= −(vh(Rh + R0) + whxh)
2
+ 2R2

h + 2R2
0 − 2x2

h − (R0 − yh)
2. (3.4)

If wh → 0 andvh → v along a sequence ofh, then the solutionXh of equation (3.4) tends to the
solution of

X2
= R2

0(1 − v2).

If wh → λ andvh → v, thenXh tends to the solution of

(1 + λ2)X2
− 2λR0vX = R2

0(1 − v2).

If |wh| → ∞ along a sequenceh, then, dividing equation (3.4) byw2
h and lettingh → 0, we see

that the solution of (3.4) converges to the solution ofX2
= 0, i.e., toX = 0.

Assume now that the coordinatesXh are bounded away from 0. Then by (iii) we know thatwh

must be bounded. Let us prove that, under the same assumption, alsovh → 1 implies thatwh → 0.
On the contrary, suppose thatvh → 1 and there is a sequencehj → 0 such thatwhj

is bounded
away from 0. Without loss of generality, we may assume thatwhj

→ η 6= 0. Lettingj → ∞ we
observe that both coordinatesXhj

tend to the solutions of

(1 + η2)X2
− 2ηR0X = 0

whose solutions areX = 0 andX = 2R0η/(1 + η2), and thereforeXhj
cannot be bounded away

from 0. This contradiction proves thatwh → 0. Summarizing, ifvh or a subsequence converges to 1,
thenwh → 0 along the same subsequence and, using (i), we deduce that for the same subsequence
Xh → ±R0

√
1 − v2 = 0, contradicting the fact thatXh is bounded away from 0. We conclude that

vh is bounded away from 1. 2

REMARK Observe thatbh := (Rh − yh)/(R0 − yh) is bounded. Indeed,

1 = vh + bh
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and the result follows from the bound 06 vh 6 1. We also note that if 06 vh 6 η < 1 then the
above identity proves that

bh > 1 − η. (3.5)

To be able to use Lemma 5 we prove the following lemma.

LEMMA 6 (i) The functionr(p) is continuous in int(C).
(ii) The functionν(p) is continuous forp ∈ int(C) \ int(CR).

(iii) For eachp ∈ int(C) \ CR, let r̃(t, p) = r̃(p + ν(p)t) be defined for|t | < δ(p) for some
δ(p) > 0. Then for eachp ∈ int(C) \ CR, there isε(p) > 0 such that ifs, t ∈ (−ε(p), ε(p))

with s < t thenr̃(t, p) < r̃(s, p).

Proof. Let us first prove (ii). Letp ∈ int(C) \ int(CR) and letδ > 0 be its distance from∂C.
Let pn ∈ int(C) \ CR, pn → p, pn ∈ B(p, δ/2). Notice that this implies thatr(pn) > δ/2 and
r(p) > δ. Suppose thatν(pn) converges to a unit vectorν′

6= ν(p). Sinceν(pn) is the unit vector
orthogonal to∂Cr(pn) atpn, the fact thatν′

6= ν(p) implies that the circular arc containingpn which
forms part of the boundary ofCr(pn) intersectsCr(p) and its complement. This contradicts the fact
that both sets are nested.

(i) It suffices to prove the continuity in int(C) \ int(CR). Let p ∈ int(C) \ int(CR) andpn ∈

int(C) \ CR, pn → p. Sincepn ∈ Cr(pn), there existqn ∈ C such that

pn ∈ ∂B(qn, r(pn)) ⊆ B(qn, r(pn)) ⊆ C. (3.6)

Sincer(pn) is bounded and bounded away from zero, we may assume thatr(pn) converges to
some valueµ > 0, and also thatqn → q for someq ∈ C. Passing to the limit in (3.6) we
obtainp ∈ ∂B(q, µ) ⊆ B(q, µ) ⊆ C. Henceµ 6 r(p). If there is a subsequence ofpn such
that r(pn) > r(p), thenr(p) = µ. Thus, we may assume thatr(pn) < r(p) for all n. Hence
pn 6∈ Cr(p). If µ < r(p), using (ii), we deduce that∂B(qn, r(pn))∩∂Cr(pn) would intersect∂Cr(p)

nearp, a contradiction. This implies thatr(p) = µ.
(iii) Observe thatp+tν(p) 6∈ Cr(p) for anyt ∈ (0, δ(p)). This implies thatr(p) > r(p+tν(p)),

i.e., r̃(0, p) > r̃(t, p). Observe that, by (ii), this argument can be extended to 0< s < t < ε(p) for
some smallε(p). Indeed, sinceν(p) is a continuous function ofp, we may assume that there is some
η > 0 such that, ifq ∈ B(p, η), then the angle betweenν(p) andν(q) is less thanπ/4. We choose
ε(p) such thatp + tν(p) ∈ B(p, η) for all t ∈ (0, ε(p)). Let 0 < s < t < ε(p). Since the angle
betweenν(p) andν(p + sν(p)) is < π/4, it follows thatν(p) is transversal and points outwards
on ∂C r̃(s,p). Hencep + tν(p) 6∈ C r̃(s,p). We conclude that̃r(s, p) > r(p + tν(p)) = r̃(t, p). In a
similar way we consider the cases < t 6 0. 2

Proof of Proposition 5.Let us prove (3.3). Letp ∈ int(C) \ int(CR). Use Lemma 3.3 of [6] with
∂E = ∂Cr(p) andη(x) = ν(x) for x ∈ ∂Cr(p) to find a neighborhoodV of p where the map
Fη : Cr(p)

× (−ε, ε) → V defined byFν(x, t) = x + tν(x) is bilipschitz. Letq ∈ int(C) \ CR be
a point inV . Then eitherq ∈ Cr(p) or q 6∈ Cr(p). Since we can proceed in both cases in a similar
way, we shall only consider the case whereq 6∈ Cr(p) in detail. Letp′

∈ ∂Cr(p) andt > 0, be such
thatq = p′

+ tν(p′) (see Figure 3). Then

|r(q) − r(p)|

|q − p|
6 C′

|r(q) − r(p′)|√
|p′ − p|2 + |q − p′|2

6 C′
|r(q) − r(p′)|

|q − p′|

for some constantC′ > 0. Takep′ as the origin of coordinates and the radius ofCr(p) throughp′

as they-axis, with the positivey-axis directed towards the interior ofCr(p), and thex-axis tangent
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FIG. 3. The construction in the proof of Proposition 5.

to Cr(p). Then the center of the arc contained in∂Cr(p) going throughp′ has coordinates(0, r(p)).
The pointq is the point of intersection of∂Cr(q) with they-axis at distancet = |q − p′

| from the
origin. Let (xq , yq) be the center of the arc contained in∂Cr(q) and containingq (see Figure 3).
Then

|q − p′
| =

√
r(q)2

− x2
q − yq .

We shall denote byC′ a positive constant which may be different from line to line. First observe
that, by Lemma 6, asq → p, thex-coordinates of the intersection points of∂Cr(p) and∂Cr(q) are
bounded away from 0. Thus, using Lemma 5 and (3.5), we obtain

|xq |

r(q) − yq

=
|xq |

r(p) − yq

r(p) − yq

r(q) − yq

6 C′ (3.7)

and

|r(q) − r(p′)|

|q − p′|
=

|r(q) − r(p′)|√
r(q)2

− x2
q − yq

6
|r(q) − r(p′)|

r(q) − x2
q/r(q) − yq

=
r(p′) − r(q)

r(p′) − yq

r(p′) − yq

r(q) − yq

r(q) − yq

r(q) − x2
q/r(q) − yq

and using (3.5), (3.7), andxq → 0

6 C′
r(p′) − r(q)

r(p′) − yq

6 C′.

Let us prove the analogous statement for the functionν. First observe that

|ν(q) − ν(p)|

|q − p|
6 C′

|ν(q) − ν(p′)|√
|p′ − p|2 + |q − p′|2

+ C′
|ν(p′) − ν(p)|√

|p′ − p|2 + |q − p′|2

6 C′
|ν(q) − ν(p′)|

|q − p′|
+ C′

|ν(p′) − ν(p)|

|p′ − p|
.

Since|ν(p′) − ν(p)|/|p′
− p| 6 C′ for some constantC′ depending onr(p), it suffices to prove

that |ν(q) − ν(p′)|/|q − p′
| remains bounded asq → p. The vectorν(q) is the unit vector in the
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direction of the vector joining(xq , yq) andq = (0, yq −

√
r(q)2

− x2
q), i.e.,

ν(q) = −
(xq ,

√
r(q)2

− x2
q)

r(q)
.

Thus

ν(q) − ν(p′) = −
(xq ,

√
r(q)2

− x2
q)

r(q)
− (0, −1) =

(−xq , r(q) −

√
r(q)2

− x2
q)

r(q)
.

Sincexq → 0 andxq/(r(q) − yq) is bounded asq → p, we have

|xq |

|q − p′|
=

|xq |√
r(q)2

− x2
q − yq

6
|xq |

r(q) − x2
q/r(q) − yq

6
|xq |

(r(q) − yq)(1 −
x2
q

r(q)(r(q)−yq )
)

6 C′
|xq |

r(q) − yq

6 C′.

In a similar way,

r(q) −

√
r(q)2

− x2
q

r(q)|q − p′|
=

r(q)(1 −

√
1 − x2

q/r(q)2)

r(q)|q − p′|
6 C′

x2
q/r(q)2

r(q) − x2
q/r(q) − yq

→ 0 asq → p.

We have shown that

lim sup
q→p

|ν(q) − ν(p)|

|q − p|
< ∞ for all p ∈ int(C) \ CR. 2

We prepare the proof of Proposition 6 with the following lemma. Since the proof inR2 andRN ,
N 6= 2, is the same, we state it in the general case. ByL1 we denote the Lebesgue measure inR.

LEMMA 7 LetΩ ⊆ RN be an open set. Ifu ∈ BV(Ω) and satisfies condition (3.2) for anyx ∈ Ω,
thenu ∈ W1,1(Ω).

Proof. Notice that condition (3.2) implies thatu is continuous. First we shall prove the result for
N = 1. By Theorem 4 applied tou (with A = B = Ω), we may writeΩ =

⋃
n En, whereEn

are measurable sets such thatEn ⊆ En+1, andu|En is Lipschitz with a constantLn. Let µ be the
measureµ(A) = |Du|(A) for any Borel setA ⊆ R. Let us prove thatµ � L1. LetA be a subset of
R such thatL1(A) = 0. Sinceµ(A) = limn µ(A∩En), it will follow that µ(A) = 0 if we show that
µ(A ∩ En) = 0 for all n. Thus, we may assume thatA ⊆ En. Let ε > 0. Sinceµ is Borel regular,
there is an open setU ⊃ A such thatL1(U) < ε andµ(U) 6 µ(A) + ε. Let U =

⋃
∞

i=1 Ii , where
Ii = ]xi, yi [. Let Iij = ]xij , yij [, j = 1, . . . , N , be a partition ofIi such that

µ(Ii) −

∑
j

|u(xij ) − u(yij )| 6 ε/2i .

Sinceu is continuous the measureµ does not charge points and we haveµ(Ii) =
∑

j µ(Iij ). Hence∑
j

(µ(Iij ) − |u(xij ) − u(yij )|) 6 ε/2i .
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Let I ′

ij = ]x′

ij , y
′

ij [ be the largest subinterval ofIij with end points inA ∩ Ii . We have

µ(A ∩ Ii) =

∑
j

µ(A ∩ Iij ) 6
∑
j

µ(I ′

ij ).

Now, ∑
j

(µ(I ′

ij ) − |u(x′

ij ) − u(y′

ij )|) 6
∑
j

(µ(Iij ) − |u(xij ) − u(yij )|) 6 ε/2i .

Thus

µ(A ∩ Ii) 6
∑
j

|u(x′

ij ) − u(y′

ij )| + ε/2i 6 Ln

∑
j

|x′

ij − y′

ij | + ε/2i

6 Ln|xi − yi | + ε/2i .

Hence

µ(A) =

∑
i

µ(A ∩ Ii) 6 Ln

∑
i

|xi − yi | + ε 6 LnL1(U) + ε 6 (Ln + 1)ε.

Since the above inequality holds for allε > 0 we conclude thatµ(A) = 0.
Now we consider the general caseN > 2. Let Ee be any direction inRN , let πEe be the plane

through the origin orthogonal toEe, and letΩEe be the projection ofΩ ontoπEe. For anyy ∈ ΩEe, let
Ω Ee

y = {t ∈ R : y + t Ee ∈ Ω}. Let uEe
y : Ω Ee

y → R be defined byuEe
y(t) = u(y + t Ee) for t ∈ Ω Ee

y . Since

u ∈ BV(Ω) there existN independent directionsEei , i = 1, . . . , N , such thatuEei
y ∈ BV(Ω

Eei
y ) for

LN−1-a.e.y ∈ ΩEei
(say fory ∈ Ω ′

Eei
with LN−1(ΩEei

\ Ω ′

Eei
) = 0) and∫

ΩEei

|DuEei
y |(Ω Eei

y ) dy < ∞ ∀i = 1, . . . , N . (3.8)

Fix i ∈ {1, . . . , N} andy ∈ Ω ′

Eei
. SinceuEei

y also satisfies condition (3.2), by the first part of the proof,

we conclude thatuEei
y ∈ W1,1(Ω

Eei
y ) and∫

Ω
Eei
y

|∇uEei
y (t)| dt = |DuEei

y |(Ω Eei
y ).

Now, using (3.8) we conclude thatu ∈ W1,1(Ω). 2

WhenN = 1 andu is increasing the above result is contained in [18, Corollary to Theorem 8.1.11].

Proof of Proposition 4.Observe that the coarea formula applied tor implies thatr ∈ BV(C). Since
also r ∈ C(int(C)), by Proposition 5 and Lemma 7 we conclude thatr ∈ W1,1(C). Moreover,
using Lemma 6(iii) we deduce that∂r̃(t, p)/∂t > 0 for almost allt ∈ (−ε(p), ε(p)) and any
p ∈ int(C)\CR. Therefore∇r(p) 6= 0 for almost allp ∈ int(C)\CR. At each pointp ∈ int(C)\CR,
let X(p) be the unit tangent vector toCr(p) atp oriented so that{X(p), ν(p)} forms an orthonormal
frame. Then

∇r(p) = 〈∇r(p), ν(p)〉ν(p) + 〈∇r(p), X(p)〉X(p) = 〈∇r(p), ν(p)〉ν(p)

onC, and this implies that

|〈∇r(p), ν(p)〉| = −〈∇r(p), ν(p)〉 = |∇r(p)| onC.
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Observe thatν is also a (vector) function of bounded variation in int(C) \CR. For that, it suffices to
note that, sinceν(p) is continuous, it suffices to integrate its variation on the arcs of the family of
circles∂Cr ′

, r ′
∈ [0, R], contained in int(C) \ CR. Now, since the setsCr ′

, r ′
∈ [0, R], are convex

the variation of the functionν(p) on the boundary of each setCr ′

is bounded by 2π . Integrating all
these variations we find thatν is of bounded variation in int(C)\CR. Using again Proposition 5 and
Lemma 7 we deduce that each coordinate ofν(p) is in W1,1(int(C) \ CR), hence is differentiable
a.e. Moreover, the computations made forν in Proposition 5 prove that

lim
t→0

ν(p) ·
ν(p + tν(p)) − ν(p)

t
= 0.

In other words, at any point of differentiability ofν we have

〈Dν(p)(ν(p)), ν(p)〉 = 0.

Finally, on int(C) \ CR we have

div ν(p) = 〈Dν(p)(X(p)),X(p)〉 + 〈Dν(p)(ν(p)), ν(p)〉 = 1/r(p).

3.3 Proof of Theorem 2 and some extensions

Let C be a nonempty bounded convex set inR2; we will apply the notation introduced in Sections 1,
3.1, and 3.2. LetR > 0 be the radius given in Proposition 1. SinceCR decreases at speed 1/R, we
know ([5]) that there exists a vector fieldzCR

∈ L∞(R2
; R2) with |zCR

| 6 1 such thatzCR
(x) =

−ν(x)H1-a.e. in∂CR, and

div zCR

= −
P(CR)

|CR|
in D′(R2).

Theorem 2 will be a consequence of the following proposition.

PROPOSITION6 LetC be a nonempty bounded convex set inR2. Let

z(x) =


−ν(x) if x ∈ int(C) \ CR,

zCR
(x) if x ∈ CR,

zR2
\C if x ∈ R2

\ C.

Extendr to R2 by definingr(x) = 0 if x ∈ R2
\ C, and set 1

r(x)
χC(x) = 0 if x ∈ R2

\ C. Then

z · Dr = |Dr| in R2, (3.9)

div z = −1/rχC in D′(R2). (3.10)

Proof. The coarea formula applied tor implies thatr ∈ BV(R2). By Proposition 4, (3.9) holds
in C. Sincer(x) = 0 outsideC, andz(x) = −νC(x)H1-a.e. on∂C, it follows that (3.9) holds.

Since divz = −P(CR)/|CR
| = −1/R in CR, div z = 0 in R2

\ C, −ν(x) = νR2
\C(x)

HN−1-a.e. in∂C, andνCR
(x) = −ν(x) on ∂CR, we obtain (3.10). 2

Let us finally mention that, though stated in a different form, related results have been obtained in
the case of crystalline norms by G. Bellettini, M. Novaga, and M. Paolini [7].
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Proof of Theorem 2.We have

ut (t, x) = −sign+

(
1 −

t

r(x)

)
1

r(x)
χC(x).

Now, observe that sign+(1 − t/r)+ = 1 if and only if t 6 r(x), i.e., x ∈ Ct . Otherwise,
sign+(1 − t/r(x)) = 0. In particular, fort > R we haveut = 0 and alsou(t) = 0. Thusut (t, x) =

−(1/r(x))χCt (x)χ[0,T ](t). SinceCt is a convex set, there is a vector fieldzR2
\Ct

∈ L∞(R2
\ Ct )

with ‖zR2
\Ct

‖∞ 6 1 such that

div zR2
\Ct

= 0 in R2
\ Ct , zR2

\Ct

· νR2
\Ct

= 1.

Let z(x) be the vector field defined in Proposition 6. Whent 6 R, let

z(t, x) =

{
z(x) if x ∈ Ct ,

zR2
\Ct

(x) if x ∈ R2
\ Ct .

Whent > R, let z(t, x) = 0. Now, using the results in [3], we have∫
R2

(z(t), Du(t)) =

∫
‖u(t)‖∞

0

∫
R2

(z(t), Dχ[u(t)>λ]) dλ

=

∫
‖u(t)‖∞

0

∫
∂∗[u(t)>λ]

(z(t), ν[u(t)>λ]) dλ

for any t > 0. Since for anyλ ∈ (0, ‖u(t)‖∞), ∂∗[u(t) > λ] = ∂[u(t) > λ] is of classC1, by the
results in [4], we have(z(t), ν[u(t)>λ]) = 1H1-a.e. on∂[u(t) > λ]. Thus we obtain∫

R2
(z(t), Du(t)) =

∫
‖u(t)‖∞

0
P(∂∗[u(t) > λ]) dλ =

∫
R2

|Du(t)|.

On the other hand, by construction ofz(t, x) we have

div z(t) = −
1

r(x)
χCt (x)

if t 6 R. If t > R, we have divz(t) = 0. Thusut (t) = div z(t) for almost allt ∈ (0, T ) (also
in D′((0, T ) × R2) for any T > 0). By the characterization of∂Φ given in Lemma 1,u(t) is
a strong solution in the sense of semigroups of (1.1) which coincides with the solution given by
Theorem 3. 2

EXAMPLES (i) Let C = [0, L]2. If we compute the value ofR such thatP(CR)/|CR
| = 1/R, we

obtain

R =
16−

√
24π

32− 3π
L.

We can also compute the value ofr(x, y), (x, y) ∈ R2, in the connected component ofC \ CR

containing(0, 0). In this caser(x, y) = x + y +
√

2xy. The arcs foliatingC \ CR are quadrants of
circles which are tangent toC. The solution is

u(t, x, y) =

(
1 −

t

r(x, y)

)+

χC(x, y), (x, y) ∈ R2.
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(ii) We can also compute the solution of (1.1) corresponding to the characteristic function of an
angular sector inR2. Let

Sθ,Ev = {(x, y) ∈ R2 : the angle formed by(x, y) andEv is less thanθ}, Ev ∈ R2.

Even if angular sectors are not bounded, the ideas above can be applied to compute the explicit
solution uθ,Ev of (1.1) with uθ,Ev(0, x, y) = χSθ,Ev

(x, y) (whose existence and uniqueness is
guaranteed by the results in [5]). Moreover, these solutions exhibit the behavior of solutions
u(t, x, y) of (1.1) withu(0, x, y) = χC(x, y) at corners of∂C for any bounded convex setC ⊆ R2.
Indeed, ifC has a corner atp ∈ ∂C of angular aperture 2θ , then, by a blow-up ofu(t, x, y) aroundp,
we obtain a solutionuθ,Ev for someEv ∈ R2 (the bisector of the corner atp). Notice thatuθ,Ev is self-
similar, i.e.,uθ,Ev(λt, λx, λy) = uθ,Ev(t, x, y) for anyλ > 0, t > 0, (x, y) ∈ R2. Let us compute it.

To fix ideas, letEv = (1, 1) and Sθ := Sθ,(1,1). Observe that for each(x, y) ∈ Sθ there is
a unique circle centered at some point(a(x, y), a(x, y)) and tangent to the boundary ofSθ . Let
r(x, y) be the radius of this circle. Thenr(x, y) =

√
2 sin θ a(x, y) anda(x, y) solves the equation

2a2 cos2 θ − 2a(x + y)+ x2
+ y2

= 0. Then the solution isu(t, x, y) = (1− t/r(x, y))+χSθ . Note
that this solution lives inL1

loc(R
N ).

Let us recall the following result which was proved in [5], though stated in a different context.

THEOREM 5 LetΩ ⊂ R2 be a set which is the union of a finite number of connected components
C1, . . . , Cm which are nonempty bounded convex sets. Then there is a vector fieldz ∈ L∞(R2

\Ω)

with ‖z‖∞ 6 1 such that
div z = 0 in R2

\ Ω (3.11)

and
z(x) · νR2

\Ω(x) = 1 in ∂Ω (3.12)

if and only if the following condition (c) holds: let 06 k 6 m and let{i1, . . . , ik} ⊆ {1, . . . , m} be
anyk-tuple of indices; if we denote byEi1,...,ik a solution of the variational problem

min
{
P(E) : E of finite perimeter,

k⋃
j=1

Cij ⊆ E ⊆ R2
\

m⋃
j=k+1

Cij

}
, (3.13)

then

P(Ei1,...,ik ) >
k∑

j=1

P(Cij ). (3.14)

In particular, ifΩ ⊆ R2 is convex, a vector fieldzR2
\Ω satisfying (3.11), (3.12) always exists.

Condition (c) amounts to saying that the setsCi , i = 1, . . . , m, are sufficiently separated from
each other. Indeed, the perimeter of the convex envelope of anyk-tuple of them is larger than the
sum of the perimeters of the sets in thek-tuple. As an example (see [5]), ifΩ ⊆ R2 is the union of
two disjoint balls of radiusr whose centers are at distanceL > 0, then condition (c) is equivalent to
L > πr. If Ω is the disjoint union of three balls of radiusr > 0 whose centers are the vertices of an
equilateral triangle with edges of lengthL, then condition (c) amounts to the inequalityr 6 3L/4π

(see [5]).
By using Theorem 5, Proposition 6 can be extended to the more general situation formulated in

the next result.
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PROPOSITION7 Let Ω = C1 ∪ · · · ∪ Cm ⊆ R2, where theCi are nonempty bounded convex
sets satisfying condition (c) in Theorem 5. Letri(p) andνi(p) be the functions constructed above
associated toCi , i = 1, . . . , m. Let CRi

i be the opening ofCi such that|(Ci)Ri
| = πR2

i . Let

z(x) =


−νi(x) if x ∈ int(Ci) \ C

Ri

i ,

zC
Ri
i (x) if x ∈ C

Ri

i ,

zR2
\Ω if x ∈ R2

\ Ω.

Let

r(x) =

{
ri(x) if x ∈ Ci,

0 if x ∈ R2
\ Ω.

Set(1/r(x))χΩ(x) = 0 if x 6∈ Ω. Then

z · Dr = |Dr| in R2, (3.15)

div z = −
1

r
χΩ in D′(R2). (3.16)

As a consequence, the functionu(t, x) =
∑m

i=1 sign(bi)(|bi |− t/ri(x))+χCi
is the solution of (1.1)

corresponding to the initial conditionu(0, x) =
∑m

i=1 biχCi
.

4. Explicit solutions of the denoising problem

The previous results allow us to explicitly compute the minimum of the denoising problem

min
u∈BV(R2)

{ ∫
R2

|Du| +
1

2λ

∫
R2

(u − f )2 dx

}
, (4.1)

whereλ > 0, for some dataf ∈ L2(R2). We shall only compute the explicit solutions of (4.1)
which can be derived from Propositions 6 and 7; other explicit solutions have been given in [5].

PROPOSITION8 Let Ω = C1 ∪ · · · ∪ Cm ⊆ R2, whereCi are bounded convex sets satisfying
condition (c) in Theorem 5, and such thatCi = C

ri
i for someri > 0, i = 1, . . . , m. Let ri(x)

be the corresponding functions defined in Proposition 7. Letbi ∈ R for i = 1, . . . , m, andf :=∑m
i=1(bi/ri(x))χCi

. Let λ > 0. The solutionu of the variational problem (4.1) is

u :=
m∑

i=1

sign(bi)
(|bi | − λ)+

ri(x)
χCi

.

Proof. Observe that, under the assumptions of the proposition,f ∈ L2(R2). Recall that a function
u ∈ BV(R2) is the solution of (4.1) if and only ifu is the solution of

u − λ div

(
Du

|Du|

)
= f. (4.2)

We have to prove thatu =
∑m

i=1 sign(bi)
(|bi |−λ)+

ri (x)
χCi

is the solution of (4.2). Let us define
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Iλ := {i ∈ {1, . . . , m} : |bi | > λ} andJλ := {i ∈ {1, . . . , m} : |bi | < λ}. Since, in this case,

f − u = λ
∑
i∈Iλ

sign(bi)
χCi

ri(x)
+

∑
i∈Jλ

bi

χCi

ri(x)
,

to prove thatu is a solution of (4.2) we have to construct a vector fieldξ ∈ L∞(R2
; R2) with

‖ξ‖∞ 6 1 such that

− div ξ =

∑
i∈Iλ

sign(bi)
χCi

ri(x)
+

∑
i∈Jλ

bi

λ

χCi

ri(x)
(4.3)

and (ξ, Du) = |Du|. Let F ∈ L2(R2) denote the right-hand side of (4.3). As proved in [5], a
solutionξ ∈ L∞(R2

; R2) with ‖ξ‖∞ 6 1 exists if and only if‖F‖∗ 6 1, where

‖F‖∗ := sup

{∣∣∣∣ ∫R2
F(x)v(x) dx

∣∣∣∣ : v ∈ L2(R2) ∩ BV(R2),

∫
R2

|Dv| 6 1

}
.

As in [5, Proposition 8],‖F‖∗ 6 1 follows from the inequality

|F(x)| 6
m∑

i=1

χCi

ri(x)

and the fact that, by Proposition 7, we have‖
∑m

i=1 χCi
/ri(x)‖∗ 6 1.

Let C be any of the setsCi andr(x) the correspondingri(x). Multiplying (3.10) byχC(x)/r(x),
integrating by parts the divergence term, and using (3.9), we obtain∫

R2

χC(x)

r(x)2
dx =

∫
R2

∣∣∣∣DχC(x)

r(x)

∣∣∣∣. (4.4)

Since(|bi | − λ)+ = 0 for all i ∈ Jλ, we have∫
R2

|Du| =

∑
i∈Iλ

(|bi | − λ)

∫
R2

∣∣∣∣DχCi
(x)

ri(x)

∣∣∣∣
Since ∫

R2
(ξ, Du) = −

∫
R2

div ξ u dx =

∫
R2

Fu dx =

∑
i∈Iλ

(|bi | − λ)

∫
R2

χCi
(x)

ri(x)2
dx,

and we may apply the equality in (4.4) toCi , we obtain∫
R2

(ξ, Du) =

∑
i∈Iλ

(|bi | − λ)

∫
R2

∣∣∣DχCi
(x)

ri(x)

∣∣∣ dx =

∫
R2

|Du|,

which in turn implies that(ξ, Du) = |Du|, since‖ξ‖∞ 6 1. 2
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5. Experimental results

In this section, we show some numerical examples of evolutions. In order to implement
equation (1.1), we first discretize the evolution in time. We choose a time stepδt > 0 and, given the
initial valueu0, we define a sequence(un)n>0 by letting, for everyn > 0,

un+1 = arg min
u∈BV(R2)

{ ∫
R2

|Du| +
1

2δt

∫
R2

(u − un)
2 dx

}
. (5.1)

It is standard that if we letuδt (t, x) = u[t/δt ](x) ([·] denotes the integer part) for everyt > 0 and
x ∈ R2, thenuδt

→ u(t, x) asδt → 0, whereu is the solution of (1.1), (1.2) (see, for instance, [8]).
Then we discretize the problem (5.1) in space. We fix a space stepδx > 0. We will consider the

case whereu0 = χC , with C a bounded convex subset ofR2, and we discretize (5.1) on a bounded
open subsetR = ]a, b[ × ]c, d[ ⊂ R2, containing the initial setC, and impose the Dirichlet
conditionu = 0 on the boundary∂R. This agrees with the fact that the solution of (1.1) inR2 is
shown to remain constant, equal to zero, offC.

We follow the algorithm proposed in [10] based on a dual formulation of the problem (see [16]
for a related approach). We consider the fixed gridR ∩ δxZ2, which, up to translation, consists
of the points{(iδx, jδx) : i = 1, . . . , N, j = 1, . . . ,M} for two integersN, M > 0. The
discretization ofu is a matrix(ui,j )16i6N,16j6M ∈ X = RN×M , whereui,j represents the value
of u at (iδx, jδx). The gradient ofu is represented by the linear operator∇ : X → Y , with
Y = R(N+1)×(M+1)

× R(N+1)×(M+1), defined fori = 0, . . . , N , j = 0, . . . ,M by

(∇u)i,j = ((∇u)1
i,j , (∇u)2

i,j ),

with (∇u)1
i,0 = 0 for all i, and, forj > 1,

(∇u)1
i,j =


u1,j/δx if i = 0,

(ui+1,j − ui,j )/δx if 0 < i < N,

−uN,j/δx if i = N,

and(∇u)2
0,j = 0 for all j , and, fori > 1,

(∇u)2
i,j =


ui,1/δx if j = 0,

(ui,j+1 − ui,j )/δx if 1 < j < M,

−ui,M/δx if j = M.

This definition takes into account the fact that we have imposed the Dirichlet conditionu = 0 on
∂R. Then the discrete total variation ofu is

V (u) = δx2
N∑

i=0

M∑
j=0

|(∇u)i,j |.

In X andY we consider the Euclidean scalar products

〈x, x′
〉 = δx2

N∑
i=1

M∑
j=1

xi,jx
′

i,j , ∀x, x′
∈ X,
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〈y, y′
〉 = δx2

N∑
i=0

M∑
j=0

yi,j · y′

i,j = δx2
N∑

i=0

M∑
j=0

(y1
i,jy

′1
i,j + y2

i,jy
′2
i,j ), ∀y, y′

∈ Y.

In order to find a definition ofV (u) similar to (2.1), we introduce the operator div :Y → X,
defined by div= −∇

∗, that is, forξ = (ξ1, ξ2) ∈ Y ,

(div ξ)i,j =
ξ1
i,j − ξ1

i−1,j

δx
+

ξ2
i,j − ξ2

i,j−1

δx
.

It satisfies〈div ξ, u〉 = −〈ξ, ∇u〉 for anyξ ∈ Y andu ∈ X. Then one easily checks that

V (u) = sup{〈u, div ξ〉 : max
i,j

‖ξi,j‖ 6 1} = δ∗

K(u),

where the setK is given by

K = {div ξ : ξ ∈ Y, max
i,j

‖ξi,j‖ 6 1}, (5.2)

the functionδK(v) is 0 if v ∈ K, +∞ otherwise, andδ∗

K(u) = supv∈X(〈u, v〉 − δK(v)) denotes the
Legendre–Fenchel transform ofδK . SinceK is closed and convex, one also hasV ∗

= δK .

The evolution (5.1) is discretized in space by first considering a discretizationu0 of the initial
data, and letting, for alln > 0, un+1 be the (unique) solution of

un+1 = arg min
u∈X

{
V (u) +

1

2δt
‖u − un‖

2
X

}
. (5.3)

It is shown in [10], by classical convex duality techniques, that the solution of this problem is given
by

un+1 = un − ΠδtK(un),

where ΠδtK denotes the projection onto the convex setδtK. Hence, the problem amounts to
computing the nonlinear projectionΠδtK(un), that is, in view of the definition (5.2) ofK, to solving

min{‖δt div ξ − un‖
2
X : max

i,j
‖ξi,j‖ 6 1}.

This can be done through the following fixed point algorithm:

• Fix an initial ξ0
∈ Y with maxi,j ‖ξ0

i,j‖ 6 1, and chooseτ > 0;

• For eachk > 0, computeξ k+1
∈ Y by the following iteration:

ξ k+1
i,j =

ξ k
i,j + τ(∇(div ξ k

− un/δt))i,j

1 + τ |(∇(div ξ k − un/δt))i,j |
,

i = 1, . . . , N , j = 1, . . . ,M.

It is shown in [10, Thm. 3.1] that ifτ 6 δx2/8, thenδt div ξ k converges toΠδtK(un) ask → ∞.
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FIG. 4. The valuesu(t, 0) whenu(0, x) = χC (x).

FIG. 5. The value ofu at timet = 0.05,t = 0.25, andt = 0.5 when the initial condition isχC (x). The grey scale is different
for the last image, since the maximum value ofu at time 0.5 is around 0.03.

Although the convergence of this algorithm is experimentally quite fast for an arbitraryun, when
un has large “flat” areas (which is the case we are considering in this paper), it is not as efficient,
since the information has to propagate from the boundaries of the flat zones into the middle. For this
reason, the first iterations (in particular,n = 0) are computed in our example with a very small error,
that is, largek. The first iteration (computingu1 from u0) is done with an initialξ0

= 0. Then, when
computingun+1 from un with n > 1, we choose forξ0 the last value ofξ k found in the iteration for
computingun. After a few iterations (n = 1 to 3), the convergence is obtained in a few steps.

We show the results of two experiments, with two different initial convex setsC. The firstC is
the union of the rectangle [0, 1] × [−1, 1] and the half-disc{(x, y) : x2

+ y2 6 1, x 6 0}. For
this convex set, it is easy to check thatCr = (1 − r)C if r ∈ [0, 1] (andCr = ∅ if r > 1), so that
|Cr | = (1 − r)2

|C|. Thus,|CR| = πR2 if and only if R = 1/(1 +
√

π/|C|). Since|C| = π/2 + 2,
we find the approximate value ofR to be

R = 0.5160019.

In Fig. 4, the valueu(t, 0) is plotted as a function of the timet , together with the line(1 − t/R)+.
The actual slope corresponds to an effective radiusR ' 0.513, that is, less than 0.6% smaller.
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FIG. 6. The fieldz at timet = 0.05, 0.25, 0.5 and 0.515 for the evolution ofχC (x).

Figure 5 shows the functionu (plotted as the grey-level function of an image) at three successive
values oft , while Fig. 6 shows the vector fieldz at the same times, and after disappearance of the
convexC.

A second experiment was performed with the convex setK defined as the union of the disc of
center zero and radius 1, and the triangle of vertices(0, −1), (2/

√
5, 1/

√
5), ((1 +

√
5)/2, −1).

The area ofK is now 1/tan(α/2) + (π + α)/2, whereα = arc tan 2, and since again one has
|Kr | = (1 − r)2

|K|, this gives a value ofR of approximately

R = 0.5218609.

Again, the computed value, of about 0.519, is very close to the theoretical value (see Fig. 7). Figures
8 and 9 show respectively the functionu and the fieldz at timest = 0.05 andt = 0.25.
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FIG. 7. The valuesu(t, 0) whenu(0, x) = χK (x).

FIG. 8. The value ofu at timet = 0.05 andt = 0.25 for the convex setK which is the union of a disc and a triangle (as in
the text.

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5 2

FIG. 9. The fieldz at timet = 0.05 andt = 0.25 for the evolution of the convex setK.
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Societat de la Informació de la Generalitat de Catalunya and by PNPGC projects, references
BFM2000-0962-C02-01 and BFM2003-02125. The third author was supported by CNRS.

REFERENCES

1. AMBROSIO, L., FUSCO, N., & PALLARA , D. Functions of Bounded Variation and Free Discontinuity
Problems. Oxford Math. Monographs, Oxford Univ. Press (2000). Zbl 0957.49001 MR 1857292
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