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Evolution of characteristic functions of convex sets in the plane by the
minimizing total variation flow
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In this paper we compute the explicit evolution of the minimizing total variation flow when the initial
condition is the characteristic function of a convex stﬁ] or a finite number of them which are
sufficiently separated. We also obtain some explicit solutions of the total variation formulation of the
denoising problem in image processing. We illustrate these results with some experiments.
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1. Introduction

The purpose of this paper is to compute the explicit solution of the minimizing total variation flow
in R? given by the equation

ou Du
= div = in =10, T[ x R?, 1.1
ot IV<|Du|) n Q7 =10, T[ % (1.1)
when the initial datum
u(0,x) = xc(x), xeR? (1.2)

is the characteristic function of a bounded convex@et R2. More generally, we shall compute
the evolution corresponding to initial daig(x) = Y 7. ; b; xc,, whereb; € R andC; are bounded
convex sets ifR? which satisfy some additional condition (condition (c) in Theo@m 5) which
amounts to saying that the selsare sufficiently far apart.
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The study of the explicit solutions df (1.1) was initiated(in[5, 2], where the authors considered
the evolution of characteristic functions of bounded gets finite perimeter ifiR2 which evolve at
constant speed without distortion of the boundary. In the casetl@afR? is connected, those sets
were characterized in][5] by the following result. For notational convenience, we set
P(C)

Il
where P (C) denotes the perimeter 6fand|C| its area.

Cc .=

THEOREM1 ([5]) LetC c R?be abounded set of finite perimeter, and assumetimtonnected.
Let A > 0. The following conditions are equivalent:

(i) C decreases at spegdi.e.,u(t, x) := (1 — At)™ xc(x) is the solution ofl) corresponding
tou(0, x) = xc(x).
(i) C isconvex. = A¢ and minimizes the functional

Gio(D) := P(D) — Ac|D|, D < C, D offinite perimeter
(iii) Cis convexdC is of classC>, A = A¢, and

esssumyc(p) < Ac, (1.3)
pedC

wherex;c (p) denotes the curvature 6" at the pointp.

The main conclusion of this theorem is that the bounded connected subset&R? which
decrease at constant speed are convex sets whose curvature is bourjdefd by (1.3). In particular, the
evolution of polygons irR? is not described by Theore[r]\ 1. Our purpose in this paper will be to
describe the evolution of general convex set&fnIn this case, and depending on the curvature of
the boundary, some distortions may occur. To describe them let us recall some basic concepts useful
in integral geometry.

As usual, ifx € R2andr > 0, we letB(x, r) := {y € R? : |y — x| < r}. The Minkowski
addition and subtraction of a sgt C R? and the ballB(0, r) will be denoted byA @ B(0, r) :=
Uyea Bx,r)yandA © B(0,r) :={x € C: B(x,r) C A}.

Let C be a compact convex setit?, andr > 0. We shall use the notations

Cr = CGB(Ov V),
C"=(CoBO.r®BO.n= |J BG.n.
B(x,r)CC

The family of the set<"”, » > 0, is ordered by inclusion, i.eG" € C* C Cif0 < s < r,
C =J,-0C", and we shall find a valu® > 0 of r characterized by

1 P(CH

R |CR|

for which the setCR decreases at speedR. As we shall prove in Lemr’r@ 4, the sét\ CR is

foliated by the boundarie8C” \ 9C, 0 < r < R, which are a family of circular arcs of radius
tangent todC. If p € C \ CR, we definer(p) as the radius of the arc ¢6C” \ 9C : r € [0, R]}

passing througlp, and if p € CR, we definer(p) = R; that is, we set

r(p)=supre[0,R]: peC'}=inf{re[0,R]: p&C"}, peC. (1.4)
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The evolution ofyc can now be easily described: the point€if decrease at speeg «, the points
p € dC"\0C,0 < r < R, decrease at speedrl until the height reaches the value 0. This is the
main result of the paper.

THEOREM?2 Let C be a nonempty bounded convex seif Let r(x), x € C, be the function
defined in[(1.4). Extend(x) to R? by definingr(x) = 0if x € R?\C, and write(1/r(x))xc(x) = 0

if x e R2\ C. Letu(r,x) = (1 —1t/r(x))* xc(x). Thenu is the solution ofl) corresponding to
the initial conditionu (0, x) = xc(x).

We shall also consider the evolution of sets of the faem= C, U --- U C,,,, where theC; are
nonempty bounded convex sets which are sufficiently far from each other (see Th¢orem 5).

One of the main motivations for our analysis comes from image processing. Equatipn (1.1)
corresponds to the gradient descent flow associated to total variation minimization, which was
introduced by L. Rudin, S. Osher and E. Fatemil[19] in the context of image denoising and
restoration. Denote by2 the image domain which, for simplicity, we assume to be a rectangle
in R2. When dealing with the restoration problem one minimizes the total variation functional

/Q | Dul (L5)

under some constraints which model the process of image acquisition, including blur and noise.
The constraint can be written &= K % u + n, wheref e L?(£2) is the observed imagé is a
convolution operator whose kernel represents the point spread function of the optical sysem,
the noise, and is the ideal image, previous to distortion. The denoising problem corresponds to
K = I and, in this case, the constraint becomes

f=u+n. (1.6)

In practice, the only information we have about the noise is statistical. AssumingithaGaussian
white noise of zero mean and standard deviatipthe constrain{ (1]6) can be imposed in an integral
form as

/(f—u)zdx =o2|R2). (1.7)
2

Among all images satisfying this constraint, the denoised image is chosen as the one minimizing
(L.5) (seel[19]). As proved by A. Chambolle and P. L. Lions(in [9], minimizing](1.5) under the
constraint[(1.J7) amounts to minimizing

. 1 )
uegl\}?g){/g|Du|+Z/;(u—f) dx}, (1.8)

for some Lagrange multipliex > 0. Notice that, as a by-product of our analysis, we shall obtain
some explicit solutions 0.8) (which, for simplicity, we state for= R?). These explicit sol-
utions, together with other ones found fin [5], contribute to display the qualitative behavior of total
variation when denoising the dafaaccording to[(1]8). They also serve as tests for the numerical
algorithms used to minimiz¢ (1.8).

Itis important to recall that one of the main features of total variation denojsing (1.8), confirmed
by numerical experiments, is its ability to restore the discontinuities of the irnagel[19], [0],[11], [12].
Indeed, the underlying functional model is the space of BV functions, i.e., functions of bounded
variation, which admit a set of discontinuities which is countably rectifidble [1], [13], [21]. The
total variation approach to denoising had a strong influence on the use of BV functions in image
processing.
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Finally, observe that the Euler-Lagrange equation correspondifjg o (1.8) coincides with the
first step of an implicit Euler discretization of (1.1) with = Az, also called the Crandall-
Liggett scheme. Thus, studying each of these problems gives information about the other, and
this is reflected by our results in Sectigns|3.3 ghd 4. For an account on existence, uniqueness, and
qualitative behavior of (T]1) under different boundary conditions we reféil ta [2], [5].

Let us explain the plan of the paper. In Sec{ign 2 we recall some basic notions on functions of
bounded variation, a generalized Green formula, and the notion of solution for pr¢blénm((I]1), (1.2).
Sectiorﬂ% describes, after some technical preliminaries, the evolution of a general convek%et in
and the evolution of sets which are unions of a finite number of convex sets which are sufficiently
separated (condition (c) of Theoré¢r 5). In Secfipn 4 we construct further explicit solutions of the
denoising problem([ (I]8) for some particular functiofsFinally, in Sectiorf b we present some
numerical experiments which are in agreement with the results of previous sections and have been
obtained using the numerical schemelofi [10].

2. Preliminaries
2.1 BVfunctions

Let QO be an open subset @&". A functionu € L1(Q) whose gradientDu in the sense of
distributions is a (vector-valued) Radon measure with finite total variatigh i called afunction
of bounded variationThe class of such functions will be denoted by @M. The total variation of
Du on Q turns out to be

sup{/ udivzdr 1z € CFP(Q; R"), |lzllzoeo(p) = esssupz(x)| < 1} (2.1)
o xeQ

(where for a vectow = (v1,...,vy) € RY we setjv]? := Y ; v?), and will be denoted by
|Du|(Q) or fQ |Dul. It turns out that the map — |Du|(Q) is LﬁJC(Q)—Iower semicontinuous.
BV(Q) is a Banach space when endowed with the nqgnu| dx + [Du|(Q). We recall that
BV(RN) c LN/WN=D(®RN) and in particular BVR%) C L2(R?). The total variation of; on a
Borel setB C Q is defined as iffDu|(A) : A open B € A C Q}. For more information about
functions of bounded variation we refer o [1], [13], [21].

A measurable sef € R” is said to be ofinite perimeter inQ if ( is finite whenu is the
characteristic functioryg of E. The perimeter of in Q is defined asP(E, Q) := |Dxg|(Q).
We shall use the notatioR(E) := P(E,R"N). For sets of finite perimeteE one can define the
essential boundary*E, which is countablyN — 1)-rectifiable with finite#¥—1 measure, and
compute the outer unit normal® (x) at #"~1-almost all pointsx of 3*E, whereHV~1 is the
(N — 1)-dimensional Hausdorff measure. Moreovéry z| coincides with the restriction oV —1
t0 9*E.

2.2 A generalized Green formula

Let 2 c RY be an open set. Followingl[3], let

X2(2) := (€ € L®(2;RY) : dive € L3(2)). (2.2)
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If & € Xo(£2) andw € L2(£2) N BV (£2) we define the functionak, Dw) : Cy°(82) — R by the
formula

(&, Dw), ) = —/ we div & dx —/ wé - Vodx Ve e C3°(£2). (2.3)
2 2

Then(&, Dw) is a Radon measure 2 (seel[3]), and
/ (€, Dw) =/ £-Vwde Vw e L2(2)nwhi). (2.4)
2 2

If 2 is a bounded open set with Lipschitz boundary, afiddenotes the outer unit normal w2,
we have the following integration by parts formula [3]: givere X2(£2) there exists a function
[£ - v?] e L™(3R) satisfying||[§ - v?][lL~@e) < I§]lxo.rY), and such that for anw €
L2(£2) N BV(£2) we have

/ wdive dx = —/ (€, Dw)—i—/ [, v wdHN L, (2.5)
2 2 952

If 2 =RN, & e Xo(RV) andw € L2RN) N BV (RY) we have the following integration by parts
formula:

/ wdivE dx +f (&, Dw) = 0. (2.6)
RN RN

For convenience, we shall apply the usual notatierDw instead of(&, Dw).

2.3 Existence and uniqueness of solutiong of](1.1)

Consider the energy functiond : L2(RY) — ]—o0, +oc] defined by

D) = {fRN |Du| if u e BV(RN) N L2RN), 27)

+00 if u e L2RN)\ BV(RN).

Since the functionat is convex, lower semicontinuous and prop®®, is a maximal monotone
operator with dense domain, generating a contraction semigrolp(®") (see [8]). Let us recall
the following characterization of the subdifferential®f([2, [5]).

LEMMA 1 Letu, v € L2(R"). The following assertions are equivalent:

(@ (u,v) € 99;
(b) u € L2RN) N BV([RN), v € L2(RY), and there exists € X2(RV) with ||z]lec < 1 such that

v=—divzin D'(RV), and
/ (z, Du) =/ |Dul. (2.8)
RN RN

Thanks to this characterization the semigroup solution of| (1.1) can be expressed in more
classical termg ]2,|5].
THEOREM3 Letug € L2(RM). There is a strong solution € C([0, T]; L3R")) of (L.1),
(L3), ie.u € W20, T; LA®RN)) N LL 0, T[; BV(RM)), u(0,x) = uo(x), and there exists
z € L0, T[ x RY; RN) with ||z]|c < 1 such that

u; =divz inD'(J0, T[ x RY)
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and
/ (z(t), Du(t)) = / |Du(t)| fora.e.r > 0. (2.9)
RN RV

The strong solution is unique and it coincides with the semigroup solution.

3. Evolution of the characteristic function of a convex set

The main purpose of this section is to prove Thedrém 2. Some preparatory results will be proved in
Subsections 31 and 3.2.

3.1 A convex set insid€ which decreases without distortion
The main purpose of this subsection is to prove the following result.

PROPOSITION1 LetC C R? be a nonempty compact convex set. Then there eRists 0 such
thatCR decreases at speedRL The value ofR is characterized by the equatiopR = A .

By int(X) we denote the interior of the s&t C R2. In the next lemma we recall several facts
on convex sets [17, 20]. The proof of (v) can be found, for instance] in [5].

LEMMA 2 LetC C R? be a nonempty compact convex set, ang 0. Then:
(i) C, andC" are compact convex sets.

(i) (€)Y =C"and(C"), = C,.

(i) €, =, Cs,andif,., Cs # ¥, thenC, = | J,., Cs.

(iv) C" =, C* andifJ,., C* # ¥, thenC” = J,., C.

(v) If C = C7,thenC is of classCtL. In particular, any se€” is of classC-1.

PROPOSITION2 LetC c R? be a bounded set of finite perimeter, and assumeihstonnected.
Let A > 0. The equivalent conditions of Theor¢in 1 can be complemented with the following ones:

(iv) Cis convex) = A¢, andC = CV/*,
(v) Cisconvex,C = CY*, and|C1;| = 7/22.

The equivalence of (iii) and (iv) was proved A [5]. The equivalenceiy) follows from the
following lemma.

LEMMA 3 LetC < R? be a nonempty bounded convex set ans 0.

(@) P(C @ B(0,r))/|C & B(0,r)| = 1/r ifand only if |C| = 7r2.
(b) Assume tha€ = C”. ThenP(C)/|C| = 1/r if and only if |C,| = 7r2.

Proof. (a) By Steiner's formulas in the plane_[20], we have Xifis reduced to a segment, then
P(X) denotes its length)

P(C® B(0,r)) = P(C)+2nr, |C&®B(O,r)| =|C|+ar®>+ P(O)r,
hence
|IC| —r? = |C & B(O, r)| — P(C & B(O, r)r.

We conclude thaf @ B(0, r) decreases at speedrlif and only if |C| = 772
(b) SinceC” = C, ® B(0, r), we see tha€, is a nonempty bounded convex set and the result
follows from (a). O
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PROPOSITION3 LetC C R? be a compact convex set. There [0, o) > |C,| is a continuous
decreasing function. Moreover, there is safe- 0 such thatC,| = 0 for allr > rpand|C,| > 0
for r < ro. As a consequence, there is a unique valug ¢f 0 such thatCr| = 7 R2.

Proof. Obviously, the functionQ(r) = |C,| is decreasing, anfC,| = O for r large enough. Let
ro =inf{r > 0:|C,| = 0}. Then|C,| > Oforall0< r < rg, and|C,| = O for allr > rg. Thus it
suffices to check tha@ (r) is continuous for € [0, ro]. Note thatC,, = (1, _,, C» # ¥, being the
intersection of a decreasing sequence of nonempty compact gé€tg/ It 0, then intC,,) # 9. In
that case, there ade> 0 andp € C,, such thatB(p, §) € C,,. This implies thatB(p, §/2) < C;
for anys € (ro, ro + 8/2). This contradicts our definition ofy. Hence|C,,| = 0 and Q(r) is
continuous at = rg. The continuity ofQ whenr < rg is a consequence of Lemipnh 2(iii) and the
fact that the boundary of a convex set has null measure.

We have proved tha® (r) is a continuous function. Finally, note that, since the curves 7 r?
andr — |C,| intersect, they do it in a single poiit > 0. |

Proof of Propositioff [L.Observe thatC®)® = C®. ThusC® decreases at speegR if and only if
[(CRYg| = 7 R2. But (C®)g = Cg. Since|Cg| = 7 R?, we conclude tha€ ¥ indeed decreases at
speed 1R. O

3.2 Some preparatory results

From now on, we assume that C R? is a fixed nonempty compact convex set ad- 0 is the
radius given by Propositidr] 3. Letp) be the radius function defined in (1.4), apds C. Recall
thatr(p) = Rif p € CR. By Propositior[ll we know that® decreases at speedRL Our first
purpose is to prove that the set(@y\ C* is foliated by circles whose radiugyoes from 0 taR; this
will permit us to define the field of unit normais p) to this family of circles forp € int(C) \ CX.
Then we shall prove thate W1(int(C) \ C¥), and divw(p) = 1/r(p) for p € int(C) \ CX. This
will imply that the solution of[(L.]1) with«(0, p) = xc(p) decreases at speedrlondC” \ 9C, for
0 < r < R, until it reaches the value 0 (see Subsedioh 3.3).
Using Lemma P, it is not difficult to prove thate 9C”(” foranyp € C \ CX.

LEMMA 4 Letp € 9C”" \ aC. Thenp is contained in a circular arc of radiughat is part ofdC",
and tangent tdC. HencedC” is contained in the union &fC and a family of circular arcs of radius
r which are tangent taC.

Proof. SinceC” is closed, we have € C". Letq € C be suchthap € B = B(q,r) € C. Observe
thatp € 9B. If 9B N C consists at most of one point, then one can find a direction (ejihéfr

aBNaC =y, Orp_';a if {p’} = 9B N dC) such that moving slightl\B in that direction we find a
new ballB(¢’, r) C C with p inits interior, a contradiction. HendeB N dC has at least two points.
Denote byp_ and p, the two (different) end points of the connected componenthf dC that
containsp. Note that, since8 C C andC is convex,d0 B andaC are tangentap_ andp.. Lety;
be the arc ob B betweenp_ and p, that containg, and lety, be the complementary arc B
(see Figur€]1). We have to show thatC dC”. Leta be the angular span gf.

It must be thatr < 7, otherwise, again, one can find a direction in whizhan be moved inside
C to a new position where it would contagn(away fromy»). Indeed, one can show that there exists
a directioni such that

-

H
i-gp>0 and ii-qgp’ <0 forallp’ € ys, (3.1)
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FiG. 1. The geometric situation described in Lenjrha 4 (the figure corresponds to the sas

so that ife is small enough then the bali(q + ¢7, r) is in C and containg in its interior. By
rescaling we may assume that= (0, 0), r = 1, andp+ = (£ cosg, sing) with 8 = (7 —«)/2 €
(—m/2,0). Assume thap = (cos9, sind) (B < 0 < = — B). By symmetry, we may assume that
6] < 7/2.1f6 > 0, then the vectoi = (0, 1) does the job. If8 < 6 < 0, we can také = p1p.
Then it is easy to check that (3.1) holds.

Let L_ andL be the tangent lines B at the pointgy_ and p., respectively. In case < 7,
those tangent lines intersect at a paand determine an angular sect®@of vertex P containingC
(see Figurg[2). In case= n, L_ andL are parallel lines, bounding a strip which we call ag@in
In this case, we assume that the vertexofs a pointP at infinity. Assume that there is a point
p’ € C,\ Binside O, betweenB and P. Note that the convex sét is contained inQ. Hence, if
a < m, there cannot exist a balt’ of radiusr contained inQ and containingy’; if « = 7, the
convexity would imply that there is a ba#l’ of radiusr such thatp < int(B’), a contradiction. We
deduce that the ang of 3 B that containg in its interior is contained idC". O

For eachp € int(C) \ CR, we definev(p) to be the outer unit normal 16" ?) at p. Our purpose is
to prove the following result.

PROPOSITION4 We haver € WL1(C) andv € Wl-L(int(C) \ C¥). Moreover,

(Vr(p),v(p)) =—IVr(p)| foranyp e C,
and
. 1 . R
divv(p) = —— foranyp € int(C) \ C*.
r(p)

The rest of this section is devoted to the proof of Proposftion 4, which is the main technical
ingredient of the proof of Theorefn} 2. Readers not interested in this technical part may go directly
to Sectiori 3.B.

The proof of Propositiof]4 requires two auxiliary results stated in Propo§ition 5 and Liemma 7.
To prove the former, we recall the following result which combines Theorems 3.1.8 and 3.1.9
(Stepanoff’'s Theorem) of [14].
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FiG. 2. Geometric situation whan < r; observe that we cannot move the ball towakdwithout going out ofQ andC.

THEOREM4 If A € B C RV, A is measurableB is open,f : B — R and

lim Supw < 00

foralla € A, (3.2)
x—a |x —al

then f is differentiable almost everywhere oh Moreover,A is the union of a countable family
of (Lebesgue) measurable sets such that the restrictiofi f each member of the family is
Lipschitzian.

Strictly speaking we only need the above resultfoe= 1 (see Lemmf]7). But it will be clear
from the proof of Lemm4]7 that we need to prove that bo#nd v satisfy condition[(3]2) in a
domain ofR?, and therefore we recall the resulti".

PROPOSITIONS The functionr(p) satisfies

lim sup Ir(q) —r(p)l

< oo foranyp eint(C)\ int(CR). (3.3)
q—p lg — pl

The functionv(p) has a similar property in in€) \ CX.

To prove Proposition]5 we need the following lemma.

LEMMA 5 Let I be the circle of centetO, Rg) and radiuskRg > 0. Let I, be the circle of center
(xn, yn) and radiusk;, < Ro such that? + y2 < R2. Assume that

(xn, yn) = (0, Rp) and R, — Rg ash — 0.

Letv, = (Ro— Rp)/(Ro— yr) andwy, = x5 /(Ro — yn). Let (X, Y3,) denote the coordinates of the
intersection points of” andI7,. Then:



38 F. ALTER ET AL.

() If w, — 0 andv, — v along a sequence, théf), — +Rov/1 — v2.
(i) If wy, - 1 € Randv, — v, thenX), tends to some finite value, say; .
(i) If Jwp| — oo, thenX; — 0.

Suppose that the coordinakg, of the intersection points remains bounded away from zero. Then
wy, is bounded andy, is bounded away from 1.

Proof. Our assumptions imply that & v, < 1 andr}, is below I near (0, 0) and, thus, it
intersects”. The equations of” and I}, are, respectivelys? + (y — Ro)?> = R3 and (x — x;)? +

(y — yn)? = RZ. The equations of the lower semicircles Bfand I, arey = Rg —/R3 — x?
andy = y, —/R? — x? — x? 4 2xx,, respectively. Equating both equations we computexthe
coordinate of the intersection pointX, Y) of I" andI},. After some computations we find th&t
satisfies the second order equation

A(xZ + (Ro — y)?) X% + ARZ — R — x2 — (Ro — yn)Hxn X
= —[(RZ — R3) — x2)? + (Ro — yn)?[2RZ + 2R3 — 2x2 — (Ro — wn)?],

which can be written in terms af, andw; as

41+ wP) X2 — 4wy (Ro + Rp) + xpwp, + (Ro — yn)wi X
= —(un(Ry + Ro) + wpxp)? + 2R2 + 2R — 2x2 — (Ro — yn)>.  (3.4)

If w, — 0 andv, — v along a sequence @&f, then the solutiorX; of equation|(3.4) tends to the
solution of
X2 = R3(1—v?).

If wy, — A andv, — v, thenX), tends to the solution of
(14 1% X? — 20RouX = R5(1 —v?).

If lw,| — oo along a sequende, then, dividing equatio.4) bwfl and lettingh — 0, we see
that the solution 04) converges to the solutioXéf= 0, i.e., toX = 0.

Assume now that the coordinat&g are bounded away from 0. Then by (iii) we know that
must be bounded. Let us prove that, under the same assumption, alsd implies thatw;, — 0.
On the contrary, suppose that — 1 and there is a sequengg — 0 such thatwy,; is bounded
away from 0. Without loss of generality, we may assume that— n # 0. Lettingj — oo we
observe that both coordinaté’:ﬁj tend to the solutions of

1+n%X?—27RpX =0

whose solutions ar& = 0 andX = 2Ron/(1 + n?), and therefor@(hj cannot be bounded away

from 0. This contradiction proves tha}, — 0. Summarizing, i, or a subsequence convergesto 1,
thenw;, — 0 along the same subsequence and, using (i), we deduce that for the same subsequence
X, — £Rov1—v4 = 0, contradicting the fact thaf;, is bounded away from 0. We conclude that

vy, iIs bounded away from 1. O

REMARK Observe thab, := (R, — yn)/(Ro — yr) is bounded. Indeed,

l1=v,+ by
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and the result follows from the bound<Q v, < 1. We also note that if & v, < n < 1 then the
above identity proves that
by 21—n. (3.5)

To be able to use Lemnia 5 we prove the following lemma.

LEMMA 6 (i) The functionr(p) is continuous in intC).

(i) The functionv(p) is continuous fop € int(C) \ int(CF).

(iii) For eachp e int(C) \ CR, let7(z, p) = 7(p + v(p)t) be defined fort| < §(p) for some
8(p) > 0. Then for eaclp € int(C) \ CX, there ise(p) > 0 such that ifs, r € (—e(p), €(p))
with s < r thenr (¢, p) < 7 (s, p).

Proof. Let us first prove (ii). Letp € int(C) \ int(C®) and lets > 0 be its distance frondC.
Let p, € int(C) \ Cg, p» — p, pn € B(p, 8/2). Notice that this implies that(p,) > §/2 and
r(p) > 8. Suppose that(p,) converges to a unit vecter # v(p). Sincev(p,) is the unit vector
orthogonal tddC”(P») at p,,, the fact thai’ # v(p) implies that the circular arc containing which
forms part of the boundary @’ (?») intersectsC”(”) and its complement. This contradicts the fact
that both sets are nested.

(i) It suffices to prove the continuity in it€) \ int(CF). Let p € int(C) \ int(CR) and p, €
int(C) \ CR, p, — p. Sincep, € C"P») there exisy, € C such that

Pn € 0B(qn, r(pn)) € B(gn, r(pn)) € C. (36)

Sincer(py) is bounded and bounded away from zero, we may assume- tpgt converges to
some valueu > 0, and also thay, — ¢ for someqg € C. Passing to the limit in[(3]6) we
obtainp € 9B(q, n) € B(g,u) € C. Henceu < r(p). If there is a subsequence pf such
thatr(p,) > r(p), thenr(p) = n. Thus, we may assume thatp,) < r(p) for all n. Hence
pn & C™P)If u < r(p), using (ii), we deduce thatB(g,, r (p,)) NdC"P») would intersecd C" (P
nearp, a contradiction. This implies thatp) = u.

(iii) Observe thaip+rv(p) ¢ C"P) foranyr € (0, 8(p)). Thisimpliesthat (p) > r(p+tv(p)),
i.e.,7(0, p) > 7(t, p). Observe that, by (ii), this argument can be extended<osO< ¢ < ¢(p) for
some smalé (p). Indeed, since(p) is a continuous function gf, we may assume that there is some
n > 0 such that, iy € B(p, n), then the angle betweer{p) andv(g) is less thanr /4. We choose
€(p) such thatp + rv(p) € B(p,n) forallr € (0,¢(p)). Let0 < s < t < €(p). Since the angle
betweernv(p) andv(p + sv(p)) is < 7 /4, it follows thatv(p) is transversal and points outwards
ondC’ P Hencep + tv(p) ¢ C7:P), We conclude thak(s, p) > r(p + tv(p)) = #(t, p). Ina
similar way we consider the case< ¢t < 0. O

Proof of Propositior p.Let us prove). Lep € int(C) \ int(CX). Use Lemma 3.3 of [6] with
AE = 3C"P) andn(x) = v(x) for x € 3C"P to find a neighborhood of p where the map
F, . C'(P) x (—e,€) — V defined byF, (x, 1) = x + tv(x) is bilipschitz. Letg € int(C) \ CX be
apointinV. Then eithey € C"?) orq ¢ C"P. Since we can proceed in both cases in a similar
way, we shall only consider the case wherg C"(P) in detail. Letp’ € 3C"?) andt > 0, be such
thatg = p’ + tv(p’) (see Figurg[3). Then

Ir@) —r»l _ c' Ir(g) —r(pHl < Ir(g) —r(pHl
la—rl " VP —pP+lg—pR lg = p'l

for some constant’ > 0. Takep’ as the origin of coordinates and the radius6f” throughp’
as they-axis, with the positivey-axis directed towards the interior 6F (), and thex-axis tangent



40 F. ALTER ET AL.

FIG. 3. The construction in the proof of Proposit[gn 5.

to C"(P), Then the center of the arc containedifi” () going throughp’ has coordinate€, r(p)).
The pointg is the point of intersection afC” @) with the y-axis at distance = |¢ — p’| from the
origin. Let (x4, y;) be the center of the arc containeddd” @ and containing; (see Figur{|3).

Then
lg — p'l = Vr@)? —xZ - yq.

We shall denote by’ a positive constant which may be different from line to line. First observe
that, by Lemm&6, ag — p, thex-coordinates of the intersection pointsaf’””) andaC”@ are
bounded away from 0. Thus, using Lempnja 5 4nd](3.5), we obtain

xg | _ xg| r(p)—ngc/
r@) —yg r(p)—yg7r(@)—yq

(3.7)

and

Ir(@) —r)Hl _ _Ir@) —r(p) c_Ir@—r@)l
lg — 'l Jr@?—x2—y, 1@ =xF/r@ =y
() =r(@r(p) =y r(q) — ¥q
() =g (@) =g (@) —x2/r (@) — Y4
and using[(3p)][ (3]7), and, — O
7 (p) —r(g) <cC
r(p') — Yq

Let us prove the analogous statement for the funatidfirst observe that

@ — vl _ lv(g) —v(pHl c w(p) —v(p)l
19 = pl VIP =plP+lg=p'12 VIp = plP+lg—p'?
<C/I\f(q)—V(p)l C,IV(p)—V(p)I‘
lg — P’ lp" — pl

Sincelv(p’) — v(p)|/|p’ — p| < C’ for some constant’ depending om(p), it suffices to prove
that|v(g) — v(p')|/|lq — p’| remains bounded as — p. The vector(q) is the unit vector in the
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direction of the vector joiningx,, y,) andg = (0, y, — yr(¢)* — x3), i.e.,

(g Vr@? =19

r(q)

v(g) =

Thus

—(xq’m) —(0,-1) = (_xqa r(Q)_m)
r@) ’ r@) '
Sincex, — 0 andx,/(r(¢) — y,) is bounded ag — p, we have

v(g) —v(p) =

|xq| |xq| |xq|

|61—P/| B ,/r(q)z—xg—yq h r((’I)_xg/r(Q)_yq
|xq| / |xl]| < /
’"(CI)_yq

<

X2 =
@ =)= s

In a similar way,

r(g) —r(g)? — x2 r(q)(l—\/l—xi/r<q)2)< c x2/r(q)?

r@lg—pl r@lg — p| ST r ) = 22/r(@) — g
-0 asq — p.

We have shown that

lim supM <oo forall p €int(C)\ CR. O

qg—p lg — pl

We prepare the proof of Propositiﬂw 6 with the following lemma. Since the proBfiandRR”,
N # 2, is the same, we state it in the general caseLBwe denote the Lebesgue measur®in

LEMMA 7 Lets2 € RN be an open set. If € BV(£2) and satisfies conditio@.Z) for amye £2,
thenu € wWi1(0).

Proof. Notice that condition[(3]2) implies thatis continuous. First we shall prove the result for
N = 1. By Theoren[]4 applied to (with A = B = £2), we may write2 = | J,, E,, whereE,
are measurable sets such titat € E,;1, andulg, is Lipschitz with a constant,,. Let u be the
measure.(A) = |Du|(A) for any Borel setd C R. Let us prove that < £1. Let A be a subset of
R such that’1(A) = 0. Sinceu(A) = lim, w(ANE,), it will follow that x(A) = 0 if we show that
w(A N E,) = 0foralln. Thus, we may assume thatC E,. Lete > 0. Sinceu is Borel regular,
there is an open sét > A such thatC (U) < e andu(U) < u(A) + €. LetU = U2, i, where

I =1x;, yil. Let I;; = ]xi5, yi;[, j = 1, ..., N, be a partition off; such that

u(l) =) lutxi) — ulyip)| < €/2'.

J

Sinceu is continuous the measugedoes not charge points and we havd;) = Zj w(l;j). Hence

D (eli) = uCxij) — u(yip)) < €/2'.
J
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Let Il.’j = ]xl.’j, yl.’j[ be the largest subinterval @f; with end points inA N /;. We have

mwANIL) = ZM(A N1ij) < Z'M(Ii/f)'
i J

J

Now,

Dy = ) = uy[ph < Y (i) = luCeij) = ulyip))) < €/2.

J J
Thus

AN <D lulxy) —uGipl+€/2 < Lo Yl = yigl + /2
J J
< Lalx; — il +¢€/2.

Hence

wA) =) AN <Ly Y |6 —yil +€ < Ly LYNU) + € < (Ly + De.
i i

Since the above inequality holds for alb- 0 we conclude that(A) = 0.

Now we consider the general cade> 2. Lete be any direction irR", let 7; be the plane
through the origin orthogonal & and lets2; be the projection of2 ontor;. For anyy € £2;, let
{25 ={teR:y+tée R} Letuf, : Qf — R be defined byti(t) =u(y +te)fort e .QyE Since

u € BV(£) there existV independent directiong, i = 1,..., N, such tham‘;" € BV(.Qf") for
LVl-ae.y € 2 (say fory e 2, with LN"1(2; \ 2 ) = 0) and

/ 1DuS|(25)dy <00 Yi=1,... N. (3.8)
Fixi e {1,...,N}andy € QLL Sinceuf," also satisfies conditio.2), by the first part of the proof,
we conclude that$ € W11(2¢) and

/Q VU (0)| dr = | Dui |(2%).
oy ’

Now, using [(3.B) we conclude thate W11(£2). O
WhenN = 1 andu is increasing the above result is containedin [18, Corollary to Theorem 8.1.11].

Proof of Propositior 4. Observe that the coarea formula applied toplies that- € BV (C). Since
alsor e C(int(C)), by Propositiorﬂi and Lemn@ 7 we conclude that W11(C). Moreover,
using Lemmd |6(iii) we deduce thaf (¢, p)/dt > 0 for almost allz € (—e(p), e(p)) and any
p €int(C)\CK. ThereforeVr(p) # 0 for almostallp € int(C)\C®. Ateach poinip e int(C)\C~.,
let X (p) be the unit tangent vector & (7 at p oriented so thatX (p), v(p)} forms an orthonormal
frame. Then

Vr(p) = (Vr(p), v(p)v(p) + (Vr(p), X(p))X(p) = (Vr(p), v(p))v(p)
on C, and this implies that

[(Vr(p), v(p))| = =(Vr(p),v(p)) = [Vr(p)| onC.
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Observe that is also a (vector) function of bounded variation i@ \ CX. For that, it suffices to
note that, since(p) is continuous, it suffices to integrate its variation on the arcs of the family of
circlesaC”’, ¥’ € [0, R], contained in intC) \ CR. Now, since the set§”’, ' € [0, R], are convex

the variation of the functiom(p) on the boundary of each s&t’ is bounded by 2. Integrating all
these variations we find thatis of bounded variation in iG€) \ CX. Using again Propositidﬂ 5and
Lemmeﬁ we deduce that each coordinate @f) is in W1(int(C) \ CX¥), hence is differentiable
a.e. Moreover, the computations madeifan Propositiorf b prove that

v(p +tv(p)) —v(p) _
t

li . .
t[)nov(p) 0

In other words, at any point of differentiability ofwe have

(Dv(p)(v(p)), v(p)) =0.

Finally, on in{C) \ C® we have

divv(p) = (Dv(p)(X(p)), X (p)) + (Dv(p)(v(p)), v(p)) = 1/r(p).

3.3 Proof of Theorern]2 and some extensions

Let C be a nonempty bounded convex seRif) we will apply the notation introduced in Sectic[r]s 1,
3.1, and 3p. LeR > 0 be the radius given in Propositiph 1. Sinc& decreases at speeglR, we
know ([5]) that there exists a vector field" e L®(R2; R?) with [z€°| < 1 such thatC" (x) =
—v(x) Hl-a.e.ingCRk, and

: pcky
divzC =—"— inD(R?).
: ICR| 9
Theorenj 2 will be a consequence of the following proposition.
PROPOSITION6 LetC be a nonempty bounded convex seRi Let
—v(x) if x €int(C)\ CK,
20 =1 ") ifxecCk,
FACjf x e R2 \ C.

Extendr to R? by definingr(x) = 0if x € R?\ C, and Se%xc(x) =0ifx e R?\ C. Then

z-Dr = |Dr| in R, (3.9)
divz = —1/rxc inD'(R?). (3.10)

Proof. The coarea formula applied toimplies thatr € BV(R?). By Propositior] 4,[(3]9) holds
in C. Sincer(x) = 0 outsideC, andz(x) = —vC(x) H1-a.e. omdC, it follows that (3.9) holds.

Since divz = —P(CR)/|CR| = —1/R in CR, divz = 0inR?\ C, —v(x) = vE\C(x)
HN-1a.e.indC, andvC" (x) = —v(x) onaCk, we obtain). 0O

Let us finally mention that, though stated in a different form, related results have been obtained in
the case of crystalline norms by G. Bellettini, M. Novaga, and M. Paalini [7].
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Proof of Theorerpi]2.We have

— aiant (1 )L
u (t, x) = —sign (1 r(x)>r(x)XC(x)-

Now, observe that signl — ¢/r)* = 1 if and only ift < r(x), i.e., x € C'. Otherwise,
sign™ (1 —t/r(x)) = 0. In particular, for > R we haveu; = 0 and alsa:(z) = 0. Thusu, (t, x) =

—(1/r(x)) xct (x) x[0,71(t). SinceC’ is a convex set, there is a vector fiefff\C' e L®(R2\ ¢!

with [|z8*\¢" || < 1 such that

divzB\C =0 inR2\ ¢!, RAC L RACT g
Let z(x) be the vector field defined in Propositioh 6. Wheq R, let

z(x) if x € C,

dn = {ZRZ\C’ () ifxeR2\C".

Whent > R, letz(z, x) = 0. Now, using the results in][3], we have

(@)oo
/(z(t),Du(t))=/ /(z(t),DX[umgx])d/\
R2 0 R2

la)los N
— f f (z(2), VI OZHy dy,
0 *[u() 2]

for anyr > 0. Since for any € (0, [|u(t) o), 3*[u(r) > A] = d[u(r) > 1] is of classC?, by the
results in[[4], we havez(r), vl*®>4) = 1 H1-a.e. ond[u(r) > A]. Thus we obtain

llu@lloo
/ (z(2), Du(1)) = / P@*[u@®) > A dr = / | Du(t)].
R? 0 R?
On the other hand, by constructionzgf, x) we have
. 1
divz(r) = ———xcr (%)

r(x)

if t < R.Ifr > R, we have di¢(r) = 0. Thusu,(r) = divz(t) for almost all: € (0, T) (also
in D'((0, T) x R?) for any T > 0). By the characterization df® given in Lemmd [Lu(t) is
a strong solution in the sense of semigroups of](1.1) which coincides with the solution given by

TheoreniB. O
ExAMPLES (i) Let C = [0, L]?. If we compute the value ok such thatP (C®)/|CR| = 1/R, we
obtain
_ 16— V2
32—3r

We can also compute the value i, y), (x, y) € R?, in the connected component 6f\ CR
containing(0, 0). In this case (x, y) = x + y + +/2xy. The arcs foliating” \ C* are quadrants of
circles which are tangent 6. The solution is

+
u(t, x.y) = (1— ;) xe(.y),  (x.y) € RZ.
()
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(if) We can also compute the solution pf (L.1) corresponding to the characteristic function of an
angular sector ifR2. Let

Sp.5 = {(x. y) € R? : the angle formed byx, y) andi is less tha}, o € R?.

Even if angular sectors are not bounded, the ideas above can be applied to compute the explicit
solution ugy 3 of @) with ug 5(0,x,y) = xs,;(x,y) (whose existence and uniqueness is
guaranteed by the results in! [5]). Moreover, these solutions exhibit the behavior of solutions
u(t, x,y) of ) withu (0, x, y) = xc(x, y) at corners obC for any bounded convex s€tC R2.
Indeed, ifC has a corner g € dC of angular aperture then, by a blow-up ai(z, x, y) aroundp,
we obtain a solutiomg ; for somev € IR? (the bisector of the corner af). Notice thatu, 3 is self-
similar, i.e.,ug 5 (A1, Ax, Ly) = ug 3(t, x, y) foranyr > 0,7 > 0, (x, y) € R2. Let us compute it.

To fix ideas, letv = (1, 1) andSy := Sy 1.1). Observe that for eactx, y) € Sy there is
a unique circle centered at some poiatx, y), a(x, y)) and tangent to the boundary §§. Let
r(x, y) be the radius of this circle. Thetix, y) = v/2sin6 a(x, y) anda(x, y) solves the equation
242 cog 6 — 2a(x +y) +x2+ y? = 0. Then the solution i8(z, x, y) = (1—1t/r(x, ¥)) T xs,- Note
that this solution lives irL- .(RY).

Let us recall the following result which was proved|in [5], though stated in a different context.
THEOREMS5 Let2 c R? be a set which is the union of a finite number of connected components

C1, ..., C, which are nonempty bounded convex sets. Then there is a vector field™® (R? \ £2)
with ||z|lco < 1 such that

divz=0 inR?\ (3.11)

and ,
zx) V() =1 inoe (3.12)
if and only if the following condition (c) holds: let & k < m and let{i1, ..., i} € {1,...,m} be

anyk-tuple of indices; if we denote b;, . ;, a solution of the variational problem

k m
min {P(E) . E of finite perimeter U Ci;, CEC RZ\ U Ci; } (3.13)
Jj=1 Jj=k+1
then
k
i) =) P(Cip). (3.14)
j=1
In particular, if$2 € R? is convex, a vector fielgR*\ satisfying ),2) always exists.
Condition (c) amounts to saying that the s€fsi = 1, ..., m, are sufficiently separated from

each other. Indeed, the perimeter of the convex envelope of-amgle of them is larger than the
sum of the perimeters of the sets in theuple. As an example (seg [5]),42 < R? is the union of
two disjoint balls of radius whose centers are at distance- 0, then condition (c) is equivalent to
L > nr. If 2 is the disjoint union of three balls of radius> 0 whose centers are the vertices of an
equilateral triangle with edges of lengkh then condition (¢) amounts to the inequalityl 3L /4n
(seel[5)]).

By using Theorerp]5, Propositipf 6 can be extended to the more general situation formulated in
the next result.
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PROPOSITION7 Let2 = C1U---UC, C R? where theC; are nonempty bounded convex
sets satisfying condition (c) in Theorér 5. Letp) andv;(p) be the functions constructed above
associated t@’;,i =1, ..., m. Let Cl.R" be the opening of; such thai(C;)g,| = an.Z. Let
—vi(x) ifx eint(C)\
2(x) = zCiRi (x) ifxe CI-R",
FAL2 jf x e R2 \ £2.

Let
) = ri(x) ifxecdC;,
=10 if x € R2\ 0.

Set(1/r(x))xe(x) =0if x ¢ £2. Then
z-Dr =|Dr| inR2 (3.15)
divz = —}XQ in D' (R2). (3.16)
r

As a consequence, the functiotr, x) = YL, sign(b;)(|b;| —t/ri (x))T xc, is the solution 01)
corresponding to the initial conditian0, x) = > ; b; x¢; -

4. Explicit solutions of the denoising problem

The previous results allow us to explicitly compute the minimum of the denoising problem

min {/ |Du|+i/ (u—f)zdx}, (4.1)
ueBV(R?) | Jr2 2\ Jr2

wherex > 0, for some datgf € L?(R?). We shall only compute the explicit solutions @4.1)
which can be derived from Propositidnis 6 &fid 7; other explicit solutions have been given in [5].

PROPOSITIONS8 Letf2 = C1U---U C,, C R2 whereC; are bounded convex sets satisfying
condition (c) in TheorerﬂS, and such that = Ci’" for somer; > 0,i = 1,...,m. Letr;(x)

be the corresponding functions defined in Proposftion 7.5ket Rfori = 1,...,m,andf =

> (bi/ri(x)) xc;- Leta > 0. The solution: of the variational problen} (4.1) is

m IS
= b; .
Z signbn) =X

Proof. Observe that, under the assumptions of the proposifioa,L2(R?). Recall that a function
u € BV(R?) is the solution of[(4]1) if and only if is the solution of

u_m.v(g") p (4.2)

We have to prove that = ) /", sign(bl-)%xci is the solution of ). Let us define
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Lo={ie{l, ....,m}:|bj| = 2tandJ, :={i € {1,...,m}: |b;] < A}. Since, in this case,

fou=21Y"signb) Lo Zb,- Ly

& ri(x) ri(x)

to prove thatu is a solution of[(4.p) we have to construct a vector figld L (R?; R?) with
l€lloo < 1 such that

bi xc
ner + &0

—divg = sign(b; ) LG (4.3)

i€l

and (¢, Du) = |Dul. Let F € L%(R?) denote the right-hand side df (.3). As proved![ih [5], a
solutiong € L (R2; R?) with ||£ ||« < 1 exists if and only if| F|l. < 1, where

I Flls« = SUDH/ F(x)v(x) dx
R2

‘v e LAR% NBV(R?), / |Dv| < 1}.
RZ

As in [5, Proposition 8] F|. < 1 follows from the inequality

Fl< Y Xc")

i=1 ri(x

and the fact that, by Propositi@‘n 7,we haVB 1 xc, /ri(®)]l« < 1
Let C be any of the set§; andr (x) the corresponding (x). Multiplying (3.1Q) by xc (x)/r (x),
integrating by parts the divergence term, and ugingd (3.9), we obtain

f XC(X)dx:/ DXC(X) _ (4.4)
r2 7 (x)2 r2| r(x)
Since(|b;| — A)* = 0foralli € J;, we have
/ \Du| = pXei (x)
ri(x)

i€l

Since

XC;i (X)
/Rz(‘f;‘,Du) [ divE udr = / Fudx = Z(|b|—x)/2r(x)2

i€l

and we may apply the equality in (#.4) @, we obtain

Xc‘(X)
[ &0 =Y b= [ |pZeB = [ ipul

i€l ri(x)

which in turn implies that&, Du) = |Dul|, since||§ |l < 1. O
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5. Experimental results

In this section, we show some numerical examples of evolutions. In order to implement
equation[(I.]L), we first discretize the evolution in time. We choose a timéstef® and, given the
initial valueuo, we define a sequence; ), o by letting, for every: > 0,

. 1
Up+1 =arg min { / |Du| + —/ (u — un)zdx}. (5.1)
ueBV(R?) | JRr2 25t Jr2

It is standard that if we let® (1, x) = u[:/s11(x) ([-] denotes the integer part) for every> 0 and
x € R?, thenu® — u(t, x) asst — 0, whereu is the solution of1)2) (see, for instance, [8]).
Then we discretize the problefn (b.1) in space. We fix a spacéstep0. We will consider the
case whereg = x¢, with C a bounded convex subset®f, and we discretiz@.l) on a bounded
open subseR = Ja, b[ x ]Jc,d[ C R?, containing the initial seC, and impose the Dirichlet
conditionz = 0 on the boundargR. This agrees with the fact that the solution 1.1)@'?1 is
shown to remain constant, equal to zero,©ff
We follow the algorithm proposed ih [1L0] based on a dual formulation of the problem (See [16]
for a related approach). We consider the fixed gtich §xZ2, which, up to translation, consists
of the points{(iéx, jéx) : i = 1,...,N, j = 1,..., M} for two integersN,M > 0. The
discretization of« is a matrix(u; )1<i<y.i<j<m € X = RV*M 'whereu; ; represents the value
of u at (i8x, jéx). The gradient oz is represented by the linear operafdr: X — Y, with
Y = RIVEDXM+D) o RIN+DX(M+D) defined foi =0,...,N, j =0,..., M by

(Vu)ij = (Vi)} ;. (V).

with (V”)il,o = Oforalli, and, forj > 1,

uy,j/8x if i =0,
(Vu)}; ={ (wisrj —uij)/éx #0<i<N,
—uN,j/Sx ifiZN,

and(Vu)g’j =0 forall j, and, fori > 1,

ui1/8x if j =0,
(Vu?; =1 (wijpr—uij)/sx ifl<j<M,
—ui pm/dx if j =M.

This definition takes into account the fact that we have imposed the Dirichlet conditio® on
dR. Then the discrete total variation ofis

N M
V) =68x2 " " |(Vu)i .
i=0 j=0
In X andY we consider the Euclidean scalar products

N M
(x,x"y = SxZZin,jxl{,j, Vx,x' € X,
i=1;=1
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2 2
(v, ¥) = ox ZZM Vi,j = 0x Zz(ywylj + ), Yeyey.
i=0 j= i=0j=0

In order to find a definition oV (1) similar to [2.]), we introduce the operator div Y. — X,
defined by div= —V*, that is, fort = (1, £2) e Y,

";: ‘i: 1 %-2 - 5'2',1
dive), ; = i-1j iJ Li—t
(dv )i ox + dx
It satisfies(div &, u) = —(&, Vu) for anyé € Y andu € X. Then one easily checks that

V(u) = supl(u, divé) : maXIISZ jl <1} =68k ),

where the seK is given by

K ={dive : & € ¥, max|l& ;|| < 1}, (5.2)
LJ

the functiondg (v) is 0 if v € K, +o00 otherwise, andy (u) = sup,cx ({4, v) — dx (v)) denotes the
Legendre—Fenchel transform&f. Sincek is closed and convex, one also H&s = §k .

The evolution[(5]1) is discretized in space by first considering a discretizaiofithe initial
data, and letting, for ak > 0, u,,+1 be the (unique) solution of

1
umﬂ-—a@nm{v«m-%Z;uu—uﬂﬁ}. (5.3)

It is shown in[10], by classical convex duality techniques, that the solution of this problem is given
by
Upi1 = Uy — Mg (uy),

where IT5, ¢ denotes the projection onto the convex 8ek. Hence, the problem amounts to
computing the nonlinear projectidis, x (u,), that is, in view of the definitior] (5/2) dof, to solving

min{||8¢ divE — u, % - max|i& ;|| < 1).
l’]

This can be done through the following fixed point algorithm:

e Fixaninitial£° € ¥ with max ||§O | < 1, and choose > 0;
e For eacht > 0, computektt e ¥ by the following iteration:

o & T T(VAVER — i /80);
gj__l+TKvmwy—ﬁmﬁﬂhﬂ’

i=1..,N,j=1....M

It is shown in [10, Thm. 3.1] that if < 8x2/8, thenst div X converges tdTs; k (u,) ask — oo.
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FiG. 4. The valuex(z, 0) whenu (0, x) = xc(x).

FIG. 5. The value of: attimer = 0.05,# = 0.25, andr = 0.5 when the initial condition ig¢ (x). The grey scale is different
for the last image, since the maximum value:adt time Q5 is around M3.

Although the convergence of this algorithm is experimentally quite fast for an arhitgawhen
u, has large “flat” areas (which is the case we are considering in this paper), it is not as efficient,
since the information has to propagate from the boundaries of the flat zones into the middle. For this
reason, the first iterations (in particular= 0) are computed in our example with a very small error,
that is, largek. The first iteration (computing; from ug) is done with an initiak® = 0. Then, when
computingu,+1 fromu, with n > 1, we choose fok ¥ the last value of* found in the iteration for
computingu,,. After a few iterations{ = 1 to 3), the convergence is obtained in a few steps.

We show the results of two experiments, with two different initial convex €etbhe firstC is
the union of the rectangle [a] x [—1, 1] and the half-disd(x, y) : x2 + y2 < 1, x < 0}. For
this convex set, it is easy to check ti@at = (1 — »)C if r € [0, 1] (andC, = @ if r > 1), so that
|Cr| = (1 —r)?|C|. Thus,|Cg| = mR?ifand only if R = 1/(1 + /7 /IC]). Since|C| = 7/2 + 2,
we find the approximate value & to be

R =0.5160019

In Fig.@, the value:(z, 0) is plotted as a function of the time together with the lingl — t/R)™.
The actual slope corresponds to an effective raddus: 0.513, that is, less than.®@% smaller.
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FiIG. 6. The field; at timer = 0.05, 025, 05 and 0515 for the evolution of(¢ (x).

Figure[$ shows the functiom (plotted as the grey-level function of an image) at three successive
values oft, while Fig.[6 shows the vector fieldat the same times, and after disappearance of the

convexcC.
A second experiment was performed with the convexiselefined as the union of the disc of

center zero and radius 1, and the triangle of verti@s-1), (2/+/5, 1/+/5), (1 + v/5)/2, —1).
The area ofK is now 1/tan(e/2) + (m + «)/2, wherea = arctan2, and since again one has
|K,| = (1—r)?|K]|, this gives a value oR of approximately

R =0.5218609

Again, the computed value, of aboubQ9, is very close to the theoretical value (see[Hig. 7). Figures
and 9 show respectively the functierand the field; at timess = 0.05 andr = 0.25.
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FIG. 8. The value of; at timer = 0.05 andr = 0.25 for the convex sek which is the union of a disc and a triangle (as in

the text.
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