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Critical size of crystals in the plane
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We study a modified Stefan problem (and its quasi-steady approximation) for crystalline motion in
the plane. We are interested in the behaviour of solution for a symmetric problem, in particular we
assume that the Wulff shap® is a regular polygon witlv sides. We describe two situations. In the
first one we show that ice will be melting. In the second one we examine the propertigs) dbr

smallr assuming tha' (0) = 0, whereV is the velocity of the interfacial curve.
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1. Introduction

In this paper we study a modified Stefan problem in the plane. This model describes evolution
of crystals. We assume that the interfacial curve is a polygon, in particular it is nonsmooth (this
assumption is natural from the thermodynamical point of view). We examine the behavior of the
velocity V of the interfacial curve. We are mostly interested in the sigh of

The process of melting and growing is described by thermodynamical laws (see Gurtin's book
[2]). The problem we study here comes from the paper by Matias and Gurtiri_{see [2]). Our crystal
£21(¢) is contained in a bounde@, and $22(r) = 2 \ 21(¢) is a fluid. The temperature is a
continuous function across the interface= 921 N 3£22. In our cases is a polygon with facets
Si, 8§ = U,N:l s;, and we assume that the number of facets is constant. The condition which must
be satisfied by the temperature on the polygon is described by the so-called Gibbs—Thompson law,
which says that the temperature on the interface is proportional to the curvature of the interface.
This yields the equation

/ udl =1; — BiL;(0)Vi(t), i=1...,N.
si (1)

Hererl;, B; are constants and; (¢) is the length of the-th facets;. The meaning of’; and g; will
be explained in the next sectio. is the velocity ofs; in the direction of the outer norma). We
will work with the following system:

Au = su, in ) @0 ue0),

O<t<T
fooud =T = BLIOVi(D), i=1....N, (1)
Vi = [Vu]v;, i=1,...,N.
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We must add initial and boundary conditions to the above system. We consider only Dirichlet
boundary data. In the case= 0 we require that

s(0) =50, upe =0 forr > 0,
and fore > 0,
u(0,x) =uo(x), s0)=s0, upe=0 forr>0.

We wish to find the time evolution of the temperaturas well as the interface
In this paper we will be particularly interested in solutions to the so-caj@imetric problem
Let us define what it means.

DEFINITION We say that problem (1) symmetridf the following conditions are satisfied:

(i) £21is aregular polygon witlV sides,f2; is a ball, and2; and$2, have common center,
(i) =r,p=8,Vi=Vviorali=1,...,N.

A similar problem was examined by Herrero and Velazquez (see [4]). They considered the
melting of an ice ball surrounded by water, and obtained an asymptotic expansion for the radius of
the melting ball. Here we have a new situation: we examine a critical configuration of our system;
we can say something about the dependence of the velocity (for gnoalithe initial temperature,
but we do not examine the asymptotic behaviouv of

We consider only the symmetric problems. We shall look at the velocity of the interface. In
Subsection 3.1 we work with system (1) when= 0. We recall the definition of weak solution and
theorems about existence and uniqueness. The main result tells usstka0ifthen the velocity is
negative for all time. In Subsection 3.2 we examine the problem in thescas@. Again, we recall
the definition of weak solution and theorems about existence and unigueness. We examine the sign
of the velocity for small time assuming th&t{0) = 0 and thatV solves a symmetric problem. This
is interesting because the conditio{0) = 0 describes the critical configuration of our model. In
order to obtain this estimate we have to divide the expression for a weak solution into two pieces:
regular and singular, and control each of them.

In the next section we explain some notation and complete the description of our problem.

2. Preliminaries

We assume that sef8, 21(1), £22(¢) are bounded regions &2, where2 = §21(r) Us(r) U £22(¢).
We also assume th&;(r) CC £2 and the boundar§s2 is smooth. The interfacg(r) = 921(r) N
0£22(¢) is a polygon with facets;, ands(z) = UlNzl si (). The length ofs; is L; = |w; — wiy1],
wherew; andw; 1 are the vertices of;. The length ofs(¢) is L = Z?’Zl L;(t). We shall consider
only admissible polygonal interfaces, which means that the outer nogiaishe facets; belong
to the set of normals of a given Wulff shapé Moreover, we require that the normals to successive
facets must be neighbouring normalsito(for our purposes we can think &f as a given convex
polygon; see |1, Sections 7 and 12]).

Let V;(¢) denote the velocity of; () in the direction of the outer normal. We can write

d
Vi) = EZ[ ®,
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where

(2)

oy = OISO ©) i ()~ (@) i > 0.
ST —dists (1), 4:0) i (wi(6) — wi (0)) - vi < O,

andl; (¢) is the line containing; (¢). In factz; is a signed distance between the lines contaigi(®
ands; (7).
The symbol [<] used in our equations denotes the jump acsgsk Its definition is as follows:

[o](x) =92(llgrar}ﬂ¢(y)—Ql(tlgrsnyﬂqﬁ(x), wherey € s(t).

Therl;,i =1,..., N, are constants defined by
I =l

(in this paperl; = —I), wherel; denotes the length of the facet®W that has normal; (seel[1,
Section 12.5]). We note that it is possible to interpfetL; as the crystalline curvature of. The
kinetic coefficientss; are constant and positive.

3. Main results
3.1 Quasi-steady approximation

In this case our equation becomes the Laplace equation with a free boundary. First of all we show
that if the initial data are symmetric, then this property is preserved at later times. The main result
is that for any symmetric problem the normal velocity of the fadétbori = 1,..., N is always
negative.

A weak solution of (1) in the case = 0 was defined in[[5]. Namely, we say that €
c(o, 1], H&(Q)) is aweak solutiorto problem (1) if the following conditions are satisfied:

N
/ VoVud2 —Zf Vipdl =0 Vo € H}(2),
£ =175 (3)

/ =T = BLOVID), i=1...N.
s5i (1)

Let us recall some existence and unigueness results for our problern/(see [5, Corollary 5]). There
exists a unique weak solution to problem (1) fo= 0, which satisfies

u € CY2([0, Tmax, Hy(2)), Vi € COX([0, Timax).-
Now we have to show the symmetry for solution of our problem.
PrRoPOSITION1 Assume that = 0 and the system is symmetricrat 0. Then:

(a) the system is symmetric for alk [0, Tmax),
(b) Vi(t) <Oforalli=1,..., N.

Proof. (a) Recall that the Laplace equation is invariant under rotations, thatds,(if) = O then
Au(Lx) = 0, whereL € SO(n, R).

Now suppose that our claim is false, so there exigtands such thatV;(r) # V;(z). We can
assume thaj = i + 1. Now we rotate our polygon byx2 N. We get the same Laplace equation
with the same initial data. Uniqueness of solution (5¢e [5, Corollary 5]) implieditiat= V; (¢).
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(b) Takingu as a test function in the definition of a weak solution, we obtain

N
/|Vu|2dQ=Z/V,-udl.
§2 i=1Ysi

f |Vu?de = V/udl,
2 s

/udl:NF—,BLV,

N

HereV; =V, so
N
wheres = [ J;_4 s;. But

whereL = YV, L;, and we get
/ |Vu|?d2 = VNI — V2BL.
2

Viewing this as a quadratic equation ¥ it is easy to see that < 0; for example V1V> > 0 and
Vi+ Vo <O. O

3.2 Full system

In this subsection we examine the solution to a symmetric problem for snadbuming that
V(0) = 0. This situation is interesting becaus&if0) < 0 thenV (¢) < 0 for smallr and similarly
if V(0) > 0thenV (¢) > 0 for smalls (V is continuous).

We first recall some facts about the weak formulation for (1). A weak solution of (1),dh)[0
was defined in[6] as a pait, u), wherez € C1([0, T),R"), z(0) = 0,u € C*([0, T), H3(£2)),

a € (0,1/2), with u(0) = uo, u; € L.([0, T), H~1(£2)), and the following conditions hold:

N

elur, @) = —/ VuVeds2 + Z/ Vipd, Vg e Hy(Q), (4)

2 i=17si
/ wdl = I} — BiLi()Vi(t), i=1,...,N. (5)

si (1)
Here (-, -) is the pairing betweed/ ! and H}. Define elements; € H}(22),i = 1,..., N, as
follows:
fi =—-a715,.

It was shown in[[B, Corollary 3.2] that if > 0, ug € Hol(.Q) and
N
uo— Y Vi(0)f;(0) € H*(2) N Hy(£2),
j=1
then there exists exactly one weak solution to (1) on the interydh{g, and
u € C*([0, Tmaw, Hy),  zi € C1*([0, Tmaw)
foranyoa < 1/2.
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We shall use the following expression for the weak solution (see [7]):

1 t N
u(t) = e194uq — —/ A TORAN Y () f(1) dr. (6)
& Jo ‘

j=1

Using the same argument as in Proposition 1(a), based on invariantcerder rotations, we
can show that if (1) is a symmetric problemz> 0 andug is invariant under rotation by2/ N, then
Vie)=V@ foralli=1,...,N

We now state a fact which will be useful in the proof of our main theorem.

LEMMA 1 Lety :[0, 1] x [a, 8] — R? be a parameterization of a union of curs&s). Then

d oF
—/ F(x,t)dl(x) =/ —dix) + F(y(t, 1), 0y, )k,
dt Jsa s 01

where the dot denotes the derivative with respect to

Proof. We have

d

B
E(/ F(x,t)dl(x)) / —F(y(t 7), t) y(t 7) dr+/ F(y@, 1), t) y(t 7)dt
s(t) o

=/ —dl(x)—i—/ v—(x,t)dl(x)+F(y(t,r),z)y(t,mg
sty 0t sty 0X

B 3 dy .
—/a a—F(y(t,t),t)d—y(t,r)dr

_ f W ) + For o, 09 0 lF. o
v 9t

Now we can formulate our theorem.

THEOREM1 Assume thaty = 0, ug is invariant under rotation by=2/ N andfs(o) Aupgdl > 0

(respectivelyfv(o) Augdl < 0). Then there existg > 0 such thatV () < 0 for all r € (0, n)
(respectivelyV (r) > 0 for allt € (O, n)).

REMARK We assume high regularity on initial datay € H?, in order to compute the trace of
Augons(0).

Proof. We give a proof only in the case Whgf Augdl > 0. The other case is similar. Suppose
that there exist8 > 0 such that/ () > 0 for aII t € (0, 8). We know that

1
V(t)=—<NF—/ udl).
ﬂL s(t)

/ ugdl = NI
s(0)

we can rewrite our expression forin the following way:

1
LIB s(0) 1o s(t) !

Because
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We shall look at the upper limiim,_, o+ V (r)BL(z)/t. By formula (6),
— V L

i (BL(1)

t—0t t

1 1 [t al
= lim —(/ uodl — / (e(’/smug - —/ AeU=D/OANT v (1) £i(T) dt))
t—0t 5(0) s(1) & Jo ];_ I J

e 1
(f uodl—/ 9%, dl)
t—0t 1 5(0) s@t)

= 11 [ (—)/e)a B
+Iim——//Ae —U/E V"L’"L'd‘L’)
Hm,(g o o ; 5(0) f(7)

=11+ 17

N
5
|

We begin by estimating; :

I1 < lim —(/ uodl—/ eWg)Auodl)—}- lim —(/ e(t/g)Auodl—/ e(t/€>Auodl).
t—0t 1 5(0) 5(0) t—0t 1 5(0) s(t)

From the previous lemma we have

t—0t 1

e 1
I1 < lim —(— (e«/g)Auo —uo) dl).
s(0)

It is essential to assume tha is in H3. This guarantes that the tracesfiq is well defined oro,
and the above expression makes sense. From the Fatou lemma and the #dtighthie semigroup
generated by the Laplacian (séé [3]) we have

I < / —Augdl,
s(0)

which implies that’/; < 0.

Turning to
e 1L (—0/0a
I=|im——//Ae*’€ Vi(r) fi(v)dr ),
2 t%O‘*‘l‘(S 0 Js@) /Z::]_ i1 )

from the fact that-Ae’2 f; > 0 (seel[6, Lemma 4.5]) and the assumption that) < 0 we get
I>» < 0. We conclude that
I1+ 1 <O.

This ends the proof, because it implies thdt) < O for all ¢ € (0, ) and sufficiently smalh. O

The previous theorem does not cover the situation whea: 0 andfs(o) Augdl = 0. In this case
we do not know what will happen witi for smallz.
It is not difficult to show that if

1/1 (! N
lim -(- / / A UDDANT Y1) f(7) dr) =0
=0T 1\ € Jo Js(r) 1

J

thenfsw) Augdl = 0 is equivalent to the condition th%’ﬂt:o exists and is equal to zero.
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