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American options and the free boundary exercise region: a PDE approach
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American options are classical financial derivative contracts which lead to free boundary problems.
The objective of this article is to give some qualitative properties of the exercise region of American
options by means of analytic techniques. We prove that the price of an American option is the unique
viscosity solution of an obstacle problem. We also prove comparison principles and strict comparison
principles. These results enable us to localize the exercise region and to prove the propagation of
convexity for American options. As a result, we study the influence of the volatility parameter on the
price of American options.

Introduction

This article is devoted to the study of some qualitative properties of American options. Option
contracts are financial instruments which have been introduced as means to hedge against certain
risks. An American option allows its owner to receive a reward at any time up to the expiry dateT .
His aim is then to maximize his gain.

We will study options written onn underlying assets with prices (S1
t , . . . , S

n
t ). In a generalized

Black–Scholes framework [7], the logarithms of prices

Xt = (ln(S1
t ), . . . , ln(S

n
t ))

solve a stochastic differential equation (SDE) under the risk-neutral probability which we assume
to exist. We will not discuss here the relevance of such an assumption. As is classical, we assume
that the SDE has the form

dXt = b(t, Xt )dt + σ(t, Xt )dWt ,

whereWt is an m-dimensional standard Brownian motion under the risk-neutral probability
associated to theP-completion(Ft ) of its natural filtration. This kind of SDE takes into account
the interest rate and dividends payed by the asset (notice thatm is not necessarily equal ton).

We are particularly concerned with an American option with finite expiry dateT . When the
option is exercised at timet , the owner receives the payoffψ(Xt ) corresponding to the logarithms
of pricesXt .

Bensoussan [5] and then Karatzas [20] first obtained a representation for the price of an
American option as the supremum overΘt,T (the set of adapted stopping times in [t, T ] a.e.) of
the expectation of the discounted payoff: the price of an American option with payoffψ(Xt ) is
given by

u(t, x) := sup
θ∈Θt,T

E(e−
∫ θ
t r(s)dsψ(X

t,x
θ )),
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whereXt,xs is the solution of the SDE at times > t such thatXt,xt = x. This point of view relies
on the theoretical link between optimal stopping times and variational inequalities developed in [4],
[5] and [20]. Furthermore, this theory states that the optimal stopping time is given by

τ ∗
= inf{s ∈ [t, T ] | u(s,Xt,xs ) = ψ(Xt,xs )}.

These results emphasize the key role of theexercise region

E = {(t, x) ∈ [0, T [ × Rn | u(t, x) = ψ(x)}.

Indeed,u is always greater thanψ and the first time whenu(s,Xs) becomes equal toψ(Xs) is
optimal to exercise the option. Moreover, we will see thatu solves the standard Black–Scholes PDE
in the complement ofE which is called thecontinuation region.

The understanding of the exercise region is thus crucial to evaluating the American option and
is of obvious practical importance. This article is mainly aimed at determining this region and
deriving some mathematical properties of it. The study of an American option is thus equivalent
to the study of a free boundary problem. McKean [23] and van Moerbeke [29] showed the link
between optimal stopping and free boundary problems. The pricing of American options leads to
equations not unlike several models in physics as the one-phase Stefan problem although the smooth
fit at the free boundary is not the same (see Rodrigues [27] for a review on the subject).

Theobstacle problemis modelled by the following nonlinear PDE:

max

(
ψ − u,

∂u

∂t
+ Lu

)
= 0

with the operator

Lf =

∑
i,j

aij (t, x)
∂2f

∂xi∂xj
+

∑
i

bi(t, x)
∂f

∂xi
− r(t)f,

whereA = (aij ) = σσ ∗/2 andr is the instantaneous interest rate.
We recall the equivalence between the obstacle problem and the stopping time problem in

Section 2, particularly in Proposition 8. From Section 3 on, we concentrate on the framework of
the obstacle problem to study American options.

The first authors who studied the exercise region for two-asset American options were Broadie
and Detemple [8]. Villeneuve [30] further characterized the nonemptiness of the exercise region and
showed a criterion to localize the exercise region in more general cases. He showed that

Lψ is a nonzero positive measure⇔ E = ∅.

However, these results are essentially restricted to the cases of constant volatility and constant
interest rate. It is known that in most market situations, these assumptions are too restrictive. The
payoff functions are also less general than in our framework.

After this work was completed, we have learned about a paper by Kampen [19], independent
of our work. He studied some generalizations of Villeneuve’s results [30] using viscosity solutions.
He essentially investigated the shape of the exercise region near expiry and the regularity of the
free boundary when the payoff is a bounded function. He also showed the continuity of the free
boundary for non-time-dependent coefficients; in the case of time-dependent coefficients he needed
additional regularity of the payoff function.
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Our main contribution is an extension of Villeneuve’s results to a more general framework where
the volatility may depend on the asset prices and on time. We also consider a more general class of
payoff functions, the continuous nonnegative functions with exponential growth with respect to the
logarithm of asset prices.

In this regard, it will be convenient to state that the price of an American option is a solution
of a variational inequality in the viscosity sense; this concept is reviewed in Section 2. The link
between optimal stopping theory and viscosity solutions for the present problem is established in
Proposition 4.

One of the central notions of this article is thecomparison principle. We obtain different forms
of such a principle for the obstacle problem, in particular in Sections 2 and 3 (Theorems 3 and 9).
The main difficulty in proving these principles is the degeneracy of the operators. These principles
imply many useful properties. In particular, they ensure uniqueness and we use them to compare
the solution of the obstacle problem and the obstacle. With this method, we prove an extension of
Villeneuve’s results (Propositions 12 and 13).

Then, in Section 4, we show how the use of the same kind of methods can lead to other
qualitative properties such as the convexity of the solution or the influence of the volatility parameter
on the option prices. We show that for options written on one underlying asset (n = 1), if the payoff
is a convex function of the asset price, then so is the price of the American option (Proposition 16).
In addition, for such options, we study the influence of the volatility parameter on the price by
means of comparison principles. Here we extend the results of Touzi [28] to more general options.
The main result is that the price of an option increases when the volatility parameter increases
(Proposition 17).

Finally, in Section 5 we study further options such as the American call on the maximum of two
underlying assets.

1. Assumptions and notations

We consider American options written onn underlying assets with prices (S1
t , . . . , S

n
t ). In a

generalized Black–Scholes setting, the logarithms of pricesXt = (ln(S1
t ), . . . , ln(S

n
t )) solve a

stochastic differential equation under the risk-neutral probability:

dXt = b(t, Xt )dt + σ(t, Xt )dWt ,

whereWt is a standard Brownian motion under the risk-neutral probability associated to theP-
completion(Ft ) of its natural filtration. If the option is exercised at timet , the owner receives a
payoffψ(Xt ).

We will assume that the following hypotheses hold:

(H1) b is a bounded function from [0, T ] × Rn into Rn, andσ is a bounded function from
[0, T ] ×Rn intoMn,m(R). Furthermore, there existsK > 0 such that for allx, y in Rn and
s, t ∈ [0, T ],

‖σ(t, x)− σ(s, y)‖ + ‖b(t, x)− b(s, y)‖ 6 K(‖x − y‖ + |s − t |).

(H2) Uniform ellipticity: The matrixA = (aij ) = σσ ∗/2 is coercive, i.e.,

∃η > 0 ∀(t, x) ∈ [0, T ] × Rn ∀ξ ∈ Rn,
∑
i,j

aij (t, x)ξiξj > η|ξ |2.
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(H3) The interest ratet 7→ r(t) is positive and continuous.
(H4) ψ is a continuous nonnegative function such that

∃M > 0, ψ(x) 6 MeM‖x‖.

(H1) ensures existence and uniqueness of the solution of the SDE. In addition, these hypotheses
will guarantee the validity of the maximum principles. (H2) is essential to demonstrating the strict
comparison principle whereas the maximum principles only require ellipticity and not uniform
ellipticity.

Let
u(t, x) := sup

θ∈Θt,T

E(e−
∫ θ
t r(s)dsψ(X

t,x
θ ));

the optimal stopping theory (see e.g. [12]) asserts that

u(t, Xt ) = ess sup
θ∈Θt,T

E(e−
∫ θ
t r(s)dsψ(X

t,x
θ ) |Ft )

is the value of the American option with payoffψ . Furthermore, this theory yields the optimal
stopping time inΘt,T , the set of all(Ft )-adapted stopping times whose values are in [t, T ] a.e. This
time τ ∗ is defined by

τ ∗
= inf{s ∈ [t, T ] | u(s,Xt,xs ) = ψ(Xt,xs )}.

A straightforward adaptation of [18] to the multivariate case yields the continuity of the price option
under the present hypotheses.

PROPOSITION1 u is a continuous function inC0([0, T ] × Rn).

2. The obstacle problem and viscosity solutions

Jaillet, Lamberton and Lapeyre [18] showed that the price of an American option is a solution of a
variational inequality, which can be written, when all the functions are smooth, as

max

(
ψ − u,

∂u

∂t
+ Ltu

)
= 0,

whereLt denotes the operator

Ltf =

∑
i,j

aij (t, x)
∂2f

∂xi∂xj
+

∑
i

bi(t, x)
∂f

∂xi
− r(t)f.

We denoteLt simply byL if its coefficients do not depend on time.
In order to study this equation in the most general case, we refer to the concept of viscosity

solutions. After the basic definitions, we show that a comparison principle holds for the obstacle
problem and, finally, that its unique solution is given by a solution of the stopping time problem.
In other words, the solution of the obstacle problem with obstacle functionψ is the price of the
American option with payoffψ .

LetC1,2([0, T ] × Rn) be the set of all functions twice continuously differentiable inx and once
in t . A function inC1,2([0, T ] × Rn) will be called atest function. Let us recall the definition of
viscosity solutions (see [11] for more details).
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DEFINITION 1 LetΩ be an open subset ofRn. Let F be a continuous function fromR × Rn ×

R × Rn ×Mn(R) × R into R, nondecreasing with respect to theMn(R) variable. Letθ andχ be
two continuous functions from [0, T ] × Rn into R. A function v upper semicontinuous (u.s.c.) on
Ω × [0, T ] and defined onΩ × [0, T ] is said to be aviscosity subsolutiononΩ × [0, T ] ofF(t, x, u,Dxu,Dxxu, ut ) = 0,

∀x ∈ Ω, u(T , x) = θ(T , x),

∀x ∈ ∂Ω, t ∈ [0, T [, u(t, x) = χ(t, x),

if for any φ ∈ C1,2(Ω × ]0, T [) such thatv − φ has a local maximum at(t0, x0) with v(t0, x0) =

φ(t0, x0) we haveF(t0, x0, φ(t0, x0), φx(t0, x0), φxx(t0, x0), φt (t0, x0)) > 0,
∀x ∈ ∂Ω, t ∈ [0, T [, v(t, x) 6 θ(t, x),

∀x ∈ Ω, v(T , x) 6 χ(T , x).

v is asupersolutionif v is a lower semicontinuous (l.s.c.) function and if the opposite inequalities
are satisfied wheneverv − φ has a local minimum.

A viscosity solutionis a continuous function which is both a subsolution and a supersolution.

REMARK 1 As mentioned in [3] or [11], the definition of viscosity solutions can be equivalently
stated with local minima or maxima replaced with global minima or maxima. We can also consider
only strict extrema.

We will show in Proposition 4 that the prices of American options with payoffψ solve (S) in
the viscosity sense, where{

max(ψ − u, ∂u/∂t + Ltu) = 0 on [0, T [ × Rn,
∀x ∈ Rn, u(T , x) = ψ(x).

(S)

Here, we have

F(t, x, u,Dxu,Dxxu, ut ) = max

(
ψ(x)− u(t, x),

∂u

∂t
(t, x)+ Ltu(t, x)

)
.

Under our reasonable hypotheses we demonstrate the uniqueness of solutions for (S) (Proposition 4
states that the unique solution is the price of an American option with payoffψ). First, we
demonstrate a comparison principle on a bounded domain. This result will be used to demonstrate
the comparison principle on the whole spaceRn. We use the methods of [10] and [11] for parabolic
PDEs. This result was shown by Villeneuve [31] in the case of constant coefficients in a one-
dimensional case.

PROPOSITION2 Let (S0) be the following system of equations:max(ψ − u, ∂u/∂t + Ltu) = 0 on [0, T [×Ω,
∀x ∈ Ω, u(T , x) = θ(T , x),

∀x ∈ ∂Ω, t ∈ [0, T [, u(t, x) = θ(t, x),

(S0)

with

Ltf =

∑
i,j

aij (t, x)
∂2f

∂xi∂xj
+

∑
i

bi(t, x)
∂f

∂xi
− c(t, x)u,

wherec > 0 andaij , bi, c, ψ, θ are continuous and where thebis are locally Lipschitz. IfΩ is a
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bounded domain,u (resp.v) a viscosity subsolution (resp. a supersolution) of(S0), andv > u on
the parabolic boundary∂Ωp of Ω, i.e.{

∀x ∈ Ω, v(T , x) > u(T , x),

∀x ∈ ∂Ω, t ∈ [0, T [, v(t, x) > u(t, x),

thenv > u onΩ × [0, T ].

Proof. The proof is by standard arguments. See [3] or [22] for more details. 2

REMARK 2 In fact, we only used the nonnegativity ofA. The proof is the same if we only assume
Lt to be degenerate elliptic. We can prove a comparison principle for a viscosity elliptic degenerate
equation similar to the previous one, in particular for a parabolic equation (with condition on the
elliptic boundary). We will use this remark several times to demonstrate the strict comparison
principles in Section 3.2.

We next extend the comparison principle onRn for the system (S). This was shown in [12]
when the functions grow at most polynomially. Here we study the more general case of exponential
growth which allows more general payoff functions (e.g. the American call).

THEOREM 3 Assume that the coefficients ofLt are bounded and locally Lipschitz, and thatψ is a
continuous function. Letu (resp.v) be a subsolution (resp. a supersolution) of{

max(ψ − w, ∂w/∂t + Ltw) = 0,
∀x ∈ Rn, w(T , x) = ψ(x),

(S)

such thatu(T , x) 6 v(T , x) for all x ∈ Rn. If in addition there exist positive constantsC, λ such
that for all(t, x) ∈ [0, T ] × Rn,

|u(t, x)| 6 Ceλ|x|, |v(t, x)| 6 Ceλ|x|, |ψ(x)| 6 Ceλ|x|,

thenu(t, x) 6 v(t, x) for all (t, x).

Proof. We use a change of function in order to use the result on bounded sets (see e.g. [6]). Given
a functionf , we define

f :=
eαtf (t, x)

ch(βx1) · · · ch(βxn)
,

where ch stands for the hyperbolic cosine, i.e. ch(u) = (eu + e−u)/2 for u ∈ R. In this proof we
also use the notation th(u) = (eu − e−u)/(eu + e−u). Thus, a simple calculation yields

Ltf = (e−αt ch(βx1) · · · ch(βxn))

[
f t + aij

∂2f

∂xi∂xj
+ bi

∂f

∂xi
− cf

]
= (ch(βx1) · · · ch(βxn))Ltf

with
bi = bi +

∑
j

2β th(βxj )aij ∀i,

c = −

∑
i 6=j

aijβ
2 th(βxi) th(βxj )−

∑
i

(biβ th(βxi)+ β2aii)+ c + α.

We then chooseα >
∑
i,j ‖aij‖∞β

2
+

∑
i ‖bi‖∞β such thatc > 0 andβ > λ.
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Let u andv be a viscosity subsolution and supersolution of{
max(ψ − u, ∂u/∂t + Lu) = 0,
∀x ∈ Rn, u(T , x) = ψ(T , x).

(S)

Then uniformly int ,

lim
|x|→∞

u(t, x) = lim
|x|→∞

v(t, x) = 0.

So, for everyδ > 0 there isRδ > 1/δ such that for allx ∈ ∂BRδ andt ∈ ]0, T [,

u(t, x) 6 ψ + δ/2 6 v(t, x)+ δ.

Let us examine the following system with respect tog:max(ψ − g, ∂g/∂t + Lg) = 0,
∀x ∈ BRδ , g(T , x) = ψ(T , x)+ δ/2,
∀x ∈ ∂BRδ , g(t, x) = ψ(t, x)+ δ/2.

(Sδ)

Thenv + δ is a supersolution of(Sδ) andu is a subsolution. We can use the comparison principle
for the bounded open setBRδ :

∀(t, x) ∈ BRδ × [0, T ], u(t, x) 6 v + δ.

We fix (t, x) and letδ tend to 0 to getu(t, x) 6 v(t, x). 2

In particular, we can conclude that there is at most one viscosity solution of{
max(ψ − w, ∂w/∂t + Ltw) = 0,
∀x ∈ Rn, w(T , x) = ψ(T , x).

REMARK 3 In both the viscosity solution and the optimal stopping context we assumed thatψ is
continuous and|ψ(x)| 6 Ceλ|x|. It is no more restrictive to assume|u| 6 Ceλ|x|. Indeed, in the
optimal stopping viewpoint the price of the American option is

u(t, x) = sup
θ∈Θt,T

E(e−
∫ θ
t r(s)dsψ(X

t,x
θ )).

So if |ψ(x)| 6 Ceλ|x|, then using the inequality

∀M > 0 ∃C > 0 E( sup
06t6T

eM|X
0,x
t |) 6 CeM|x|

one gets

|u(t, x)| 6 C′eλ|x|.

Finally, we state the link between optimal stopping theory and viscosity solutions. We recall that
Θt,T is the set of all(Ft )-adapted stopping times whose values are in [t, T ] a.s.
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PROPOSITION4 If ψ is continuous and such that|ψ(x)| 6 Ceλ|x| (that is, (H4) is satisfied), then
the function defined by

u(t, x) = sup
θ∈Θt,T

E(e−
∫ θ
t r(s)dsψ(X

t,x
θ ))

is a viscosity solution of {
max(ψ − u, ∂u/∂t + Ltu) = 0,
∀x ∈ Rn, u(T , x) = ψ(x).

Moreover,u is the unique solution such that there existC′ > 0 andλ > 0 such that|u(t, x)| 6
C′eλ|x|.

Proof. The argument is standard and can be found in [22]. 2

The comparison principle enables us to recover some well known qualitative results. Indeed, the
European option is clearly a subsolution of (S). Therefore the American option is more expensive
than the European one.

PROPOSITION5 (1) u(t, x) > ψ(x) for all (t, x) ∈ [0, T ] × Rn.
(2) If σ , r andb do not depend on time (we say that the diffusion is homogeneous) thenu(·, x) is

nonincreasing for eachx ∈ Rn.

Proof. (1) is true sinceψ is a subsolution of (S). To prove (2) we use the comparison principle again,
lettingv(t, x) = u(t − h, x) for h > 0 andt ∈ [h, T ]. We havev(T , x) = u(T − h, x) > ψ(x). So
v is a subsolution of {

max(ψ − u, ∂u/∂t + Ltu) = 0,
∀x ∈ Rn, u(T , x) = ψ(T , x),

andu(t − h, x) > u(t, x). 2

REMARK 4 The price of an European option is more expensive than its payoff iff the
corresponding American option coincides with the European option.

This remark can be used to derive directly Villeneuve’s results [30] characterizing the American
options which are in fact European options. The advantage is that we can allow here the diffusion to
be homogeneous and not only constant to deduce that the class of such options is the options whose
payoffψ is such thatLψ is a nonzero positive measure. However, the results of the next section are
even more general.

3. Comparison principles and the exercise region

3.1 Definition and first properties

The goal of this section is to study theexercise region

E = {(t, x) ∈ [0, T [ × Rn | u(t, x) = ψ(x)}.

Such a denomination has a financial interpretation. Whenever the price of the option is larger than
the payoff, it is more profitable to sell the option than exercise it. Thus, it is not reasonable to
exercise the option outside of the exercise region.

On the other hand, the first time this area is reached, it is optimal to exercise the option
(according to the stopping time theory).
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In order to understand the behavior of American options, it is crucial to determine this region. On
the one hand,ψ is known (thusu is known inE) and on the other handu solves the standard Black–
Scholes PDE in the complement ofE , which is called thecontinuation region. When the regionE is
empty, it is never optimal to exercise the option before expiry; the option is then a European option.
This is the case for an American call written on a non-dividend-paying asset (Merton’s result [24]).

The next result was shown by Villeneuve [30] in the case of constant coefficients. Using the
comparison principle, we extend it to a general diffusion.

PROPOSITION6 The exercise region of an American option with bounded payoff is nonempty.

Proof. If the exercise region were empty, the priceu of the option would solve

∂u

∂t
+ Ltu = 0

with final condition u(T , x) = ψ(x). The functionw(t, x) = exp(−
∫ T
t
r(s)ds)‖ψ‖∞ is a

supersolution of the last equation. So the comparison principle implies

u(t, x) 6 w(t, x),

and asu > ψ , we would get

ψ(x) 6 exp

(
−

∫ T

t

r(s)ds

)
‖ψ‖∞,

which is false. 2

REMARK 5 If ψ reaches its supremum atx0, then it is optimum to exercise the option at any
time when the price isx0. Thus,ψ(x0) = u(t, x0). For example, the American put with payoff
ψ(x) = (K − x)+ has a nonempty exercise region andu(t,0) = K for all t .

We want to exhibit some criteria to localize the exercise region. IfLt is the diffusion operator

Ltf =

∑
i,j

aij (t, x)
∂2f

∂xi∂xj
+

∑
i

bi(t, x)
∂f

∂xi
− r(t)f

a necessary and sufficient condition for the emptiness of the exercise region whenaij , bi, r are
constant is given by Villeneuve [30]:

Lψ is a nonzero positive measure⇔ E = ∅.

We give an extension of this result:

PROPOSITION7 Assume that, for allt ∈ [0, T [, Ltψ is positive in the viscosity sense but differs
from 0 on an open connected subsetU (i.e.ψ is a strict viscosity subsolution ofLtw = 0). Then

∀(t, x) ∈ [0, T [ × U, u(t, x) > ψ(x).

That is to say,
E ∩ ([0, T [ × U) = ∅.

To achieve this objective, we show a strict comparison principle between viscosity subsolutions
and supersolutions for a linear problem. This principle will give a strict comparison between the
price u of an American option and its payoffψ . Such a comparison means that we are in the
continuation region. Nirenberg [25] first showed a strict comparison principle for classical parabolic
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equations. Bardi and Da Lio [2] showed a strict maximum principle (i.e. a comparison between
a supersolution and 0) in the viscosity context for parabolic nonlinear equations. However, the
nonlinearity of viscosity solutions prevents us from using these results to get a comparison principle
between a supersolution and a subsolution.

Following [25] and [2], we first show a propagation at a given time, then a propagation in the
space variables. In other words, we first show that a supersolutionv and a subsolutionu are such
thatv > u or v = u by proving it first on the linest = const.

3.2 Strict comparison principle for a linear problem in the viscosity sense

PROPOSITION8 Assume that the coefficients ofLt are bounded and locally Lipschitz, and thatψ

is a continuous function. LetU be a domain inRn. Let u (resp.v) be a viscosity subsolution (resp.
a viscosity supersolution) of {

∂w/∂t + Ltw = 0,
∀x ∈ U, w(T , x) = ψ(T , x),

such thatu(t, x) 6 v(t, x) for all t ∈ [0, T ] andx ∈ U . If there existt0 ∈ ]0, T [ andx0 ∈ U such
thatu(t0, x0) = v(t0, x0), thenu(t0, x) = v(t0, x) for all x ∈ U .

Proof. We first prove that if there exists a closed ballB with radiusR and centerP = (t1, x1)

included in ]0, T [ × U such thatu < v in the interior ofB and there is a pointP2 = (t2, x2)

belonging to the boundary ofB such thatu(P2) = v(P2), thenx2 = x1. Indeed, suppose that
x2 6= x1; we can also assume thatP2 is the only point such thatu = v in B (or else we can change
the center and decrease the radius of the ball). We then introduce a ball with centerP2 included in
]0, T [ × U whose radius isr < ‖x1 − x2‖. We also introduce an auxiliary function

Φ(t, x) := e−γ (‖x−x1‖
2
+|t−t1|

2)
− e−γR

2
.

We notice thatΦ ∈ C∞,Φ > 0 inB,Φ = 0 on∂B andΦ < 0 outside ofB. Let

α(t, x) = e−γ (‖x−x1‖
2
+|t−t1|

2).

A simple calculation yields

Φt (t, x) = −2γ (t − t1)α(t, x),

Φxi (t, x) = −2γ (xi − x1,i)α(t, x),

Φxixj (t, x) = −2γ δijα(t, x)+ 4γ 2(xi − x1,i)(xj − x1,j )α.

Therefore,

∂Φ

∂t
+ Ltφ(t, x) = − 2γ

∑
aiiα + 4γ 2

∑
aij (xi − x1,i)(xj − x1,j )α

+

∑
bi(−2γ (xi − x1,i)α(t, x))− rΦ.

According to the ellipticity hypothesis (H2), we have

4γ 2
∑

aij (xi − x1,i)(xj − x1,j )α > η4γ 2
‖x − x1‖

2.
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Thus, as‖x2 − x1‖ is positive, there existsγ large enough such that(
∂Φ

∂t
+ Ltφ

)
(t2, x2) > 0.

Then,Φ being smooth, there exists a ballB(P2, r0) with r0 < R such that∂Φ/∂t + Ltφ > 0 on
B(P2, r0). LetX := B(P2, r0) ∩ B(P,R). On ∂X, we haveu < v andΦ > 0 on∂B(P2, r0), and
u 6 v andΦ = 0 on∂B(P,R). So, by semicontinuity, there existsε > 0 such thatu + εΦ 6 v

on ∂X. As Φ ∈ C∞, it follows thatu + εΦ is a viscosity subsolution of∂w/∂t + Ltw = 0 on
X. It suffices to notice that the comparison principle is valid for linear degenerate elliptic equations
such aswt + Ltw = 0 onX (see Remark 2). We conclude thatu + εΦ 6 v onX. Indeed, this
is true onB(P2, r0) becauseu 6 v andΦ < 0 outside ofB((t1, x1), R). ThusP2 is a point of
local maximum foru − v − εΦ on B(P2, r0) (which will be denoted byB from now on), with
u(P2)+ εΦ(P2) = v(P2).We can assume that this maximum is strict, otherwise we replacev with
v + ‖x2 − x‖4

+ |t2 − t |4, which is still a viscosity supersolution atP2.
We would like to differentiate the functions atP2 and derive a contradiction (this method often

used to establish strict comparison principle is called the Hopf lemma; see Nirenberg [25]). To
circumvent the lack of regularity, we use a variable doubling procedure. Let

φα(t, x, y) = u(t, x)+ εΦ(t, x)− v(t, y)−
1

2α
‖x − y‖2 with ε > 0,

w(t, x) = u(t, x)+ εΦ(t, x).

Let
Mα = sup

(t,x), (t,y)∈B

φα(t, x, y).

This quantity is finite and reached at some(tα, xα, yα) (by a compactness argument). Using
compactness, we can assume that(tα, xα, yα) → (t, x, y) as α → 0 with (t, x), (t, y) ∈ B.
Moreover, for all(t, x) ∈ B we have

φα(t, x, x) 6 Mα,

which implies, on taking the supremum, thatMα > 0. Thus

‖xα − yα‖
2 6 2α(w(tα, xα)− v(tα, yα)).

Now,w and−v are u.s.c. and thus bounded above onB. In addition,

Mα 6 w(tα, xα)− v(tα, yα)

so passing to the limit yieldsx = y and

lim supMα 6 lim sup(w(tα, xα)− v(tα, yα)) = w(t, x)− v(t, x) 6 0.

Thus, we can assert thatMα tends to 0 asα tends to 0, and

0 6 w(tα, xα)− v(tα, yα)

becauseMα > 0. Thus, 06 lim sup(w(tα, xα)− v(tα, yα)) 6 0. Therefore

w(t, x)− v(t, x) = 0

and lim 1
2α ‖xα−yα‖

2
= 0. The maximum ofw−v being strict onB, we conclude that(t, x) = P2.

In particular, forα small enough,(tα, xα) ∈ B and(tα, yα) ∈ B.
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Using Theorem 9 in [10] once again applied toφα at (tα, xα, yα), and the viscosity properties of
u andv, we deduce that for everyα > 0 there areX, Y ∈ Sn andξ, η ∈ R such that{

ξ + η = 0,
X + Y 6 0,

and 
ξ − ε

∂Φ

∂t
(tα, xα)+ tr(AX)− ε tr(AD2

xΦ(tα, xα))

+ Eb(tα, xα) ·

(
xα − yα

α

)(
−ε
∂Φ

∂t
(tα, xα)

)
− r(tα, xα)u(tα, xα) > 0,

−η − tr(AY )+ Eb(tα, yα) ·

(
xα − yα

α

)
− r(tα, yα)v(tα, yα) 6 0.

Subtracting the two inequalities, using tr(A(X+Y )) 6 0 and taking the limsup asα → 0, we obtain

lim sup[r(tα, yα)v(tα, yα)− r(tα, xα)u(tα, xα)] = r(P2)(εΦ(P2)).

Furthermore, the coefficients of the operator are continuous,Φ ∈ C∞, Eb is Lipschitz and
1

2α ‖xα − yα‖
2

→ 0, thus

Eb(tα, xα) ·

(
xα − yα

α

)
− Eb(tα, yα) ·

(
xα − yα

α

)
→ 0.

We finally get
−εLtΦ(P2) > 0.

This contradictsLtΦ(P2) > 0, and so necessarilyx1 = x2.
We could have proved this result for an ellipsoid which is an affine image of a ball: ifu = v at

some point of the boundary of an ellipsoid whereasu < v in its interior, then the space coordinate
of this point is the same as the one of the center of the ellipsoid.

We can then conclude as in Nirenberg [25], assuming that there existsP0 = (t0, x0) with t0 ∈

]0, T [ such thatu(t0, x0) = v(t0, x0) without u − v being constant ont = t0 (that is to say, that
u < v at some pointQ = (t0, x

∗)). On a path between these two points, witht constant, there
exists, by semicontinuity, a first pointP1 such thatu(P1) = v(P1). Then, on the path [Q,P1[, we
haveu < v. We choose a pointP = (t0, x1) on this path such that the ball with centerP and radius
d(P, P1) is included in ]0, T [ × U . By semicontinuity, there exists a neighborhood ofP in which
u < v, and then a segment∆ with centerP perpendicular to thet = t0 plane, with half length
l < d(P, P1), such thatu < v on it. We consider the family of ellipsoids centered atP obtained by
a revolution around the axis∆ and whose projection onto the planet = t0 is a sphere centered atP
and with radiusβ. We then letβ vary from 0 tod(P, P1). Forβ = 0 it corresponds to∆ on which
u < v. By semicontinuity there is a firstβ for which the ellipsoid has a point on its boundary such
thatu = v. For such a pointR = (s, y) we showed thaty = x1, thusR ∈ ∆, which contradicts the
fact thatu < v on∆.

We thus conclude thatu(t0, x) = v(t0, x) for all x ∈ U . 2

Now, we give a strict comparison principle on a region [t, T [ × U .

THEOREM 9 Assume that the coefficients ofLt are bounded and locally Lipschitz, and thatψ is
a continuous function. LetU be a domain inRn. Let u (resp.v) be a viscosity subsolution (resp. a
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viscosity supersolution) of {
∂w/∂t + Ltw = 0,
∀x ∈ U, w(T , x) = ψ(T , x),

such thatu(t, x) 6 v(t, x) for all t ∈ [0, T ] andx ∈ U . If there exists(t0, x0) ∈ ]0, T [ × U such
thatu(t0, x0) = v(t0, x0), thenu(t, x) = v(t, x) for all (t, x) ∈ [t0, T [ × U .

We first show a lemma:

LEMMA 10 Let t0 > 0. If there existsP0 = (x0, t0) such thatu(P0) = v(P0), then for every
rectangle

R0 = {(t, x) : t ∈ [t1, t2], xi0 − ai 6 xi 6 xi0 + ai},

there existsQ ∈ R0 with Q 6= P0 andu(Q) = v(Q).

Proof. Otherwise, we chooseR0 in which u < v. We leth(t, x) = t0 − t + K‖x − x0‖
2, where

K is chosen such thatLth(P0) + (∂h/∂t)(P0) > 0. By continuity, there existsr > 0 such that
Lth+ ∂h/∂t > 0 onB(P0, r) ⊂ ]0, T [ × U . LetA = B(P0, r) ∩ {(t, x) : h(t, x) < 0}. There are
two parts of the boundary ofA: the first whereh = 0 and the second which is part of the sphere.
∂A is a compact subset; so by lower semicontinuity, there existsε > 0 such thatu 6 v+ εh on∂A.
We then conclude with the same kind of argument as in the previous proposition: we getu 6 v+εh

onA and derive a contradiction. 2

COROLLARY 11 If there existsP0 = (x0, t0) with t0 > 0 such thatu(P0) = v(P0), thenu = v for
all (t, x) ∈ [t0, T ] × U .

Proof. We first prove that there existsP0 = (x0, t0) such thatu(P0) = v(P0), thenu = v on every
rectangle

R0 = {(t, x) : t ∈ [t0, t2], xi0 − ai 6 xi 6 xi0 + ai}.

LetR0 be such a rectangle withu(P0) = v(P0) atP0 = ((x1 + x2)/2, t1). If we assume thatu− v

is not constant inR0, there existsQ ∈ R0 such thatu(Q) < v(Q). According to Proposition 8,Q
does not belong to the planet = t1. On the segment [P0,Q] there is a first pointP1 fromQ such
thatu(P1) = v(P1). We can assumeP1 = P0, otherwise we modify the rectangle. In the interior of
the rectangle, we cannot haveu = v; otherwise on the planest = const, we would haveu = v and
thus on ]P0,Q], we would have a point such thatu = v. If necessary we again make the rectangle
smaller to haveu < v except on the planet = t1. This contradicts Lemma 10. 2

REMARK 6 This strict comparison principle remains valid for any domainU . We will derive from
it a local characterization similar to the one of Villeneuve [30] with much less restrictive hypotheses.

3.3 Characterization of the exercise region

PROPOSITION12 Assume that for everyt ∈ [0, T [, Ltψ is positive nonzero in the viscosity sense
on a domainU (i.e.ψ is a viscosity subsolution ofLtw = 0 but is not a solution). Then

∀(t, x) ∈ [0, T [ × U, u(t, x) > ψ(x).

In other words,
E ∩ ([0, T [ × U) = ∅.
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Proof. Assume that there exists(t0, x0) ∈ [0, T [ ×U such thatu(t0, x0) = ψ(x0). Recall thatu, the
solution of the obstacle problem, is a viscosity supersolution andψ a subsolution ofwt +Ltw = 0.
According to Corollary 11,u(t, x) = ψ(x) for all t ∈ [t0, T ] andx ∈ U . However, ifu 6 w in
]t0, T [×U with w a test function, we can choosew which does not depend on time becauseu does
not (we can choosex 7→ w(t, x)). Then it is enough to notice thatu is the viscosity solution of{

max(ψ − w, ∂w/∂t + Ltw) = 0,
∀x ∈ U, w(T , x) = ψ(T , x),

and soLtψ = 0 in the viscosity sense. This is a contradiction. 2

REMARK 7 In particular, we derive the result forU = Rn, i.e.,

Ltψ > 0 in the viscosity sense for allt ∈ [0, T [ ⇒ E = ∅.

We next show the converse.

PROPOSITION13 If E = ∅ thenLTψ is a nonnegative measure onRn.

Proof. Let θ be a nonnegative function inC∞

0 (R
n), the set of smooth functions with compact

support. We know thatu ∈ C1,2([0, T [ × Rn) becauseE = ∅ andu is a classical solution of
ut + Ltu = 0 on [0, T [ × Rn. We also know from Proposition 1 thatu ∈ C0([0, T ] × Rn).
According to Heine’s theoremu is uniformly continuous on [0, T ] × suppθ . Thusu(t, ·) → ψ(·)

uniformly on suppθ whent tends toT . Integrating the equation fromt < T to T , we get

0 6 ψ(x)− u(t, x) =

∫ T

t

Lsu(s, x)ds.

Multiplying by θ and integrating with respect tox yields

1

t − T

∫ T

t

∫
suppθ

Lsu(s, x)θ(x)dx ds 6 0.

One easily concludes using integration by parts and lettingt tend toT , the convergence being
uniform. 2

Fianlly, we establish another localization criterion (shown in Villeneuve [30] in the case of constant
coefficients). Consider thet-sections of the exercise region:

Et = {x | u(t, x) = ψ(x)}.

PROPOSITION14 (1) E ⊂ {(t, x) : ψ(x) > 0}.

(2) Ltψ 6 0 in the viscosity sense on
⋃
t<T Et .

(3) In the homogeneous case,Lψ > 0 in the viscosity sense on(
⋃
t<T Et )c.

Proof. (1) holds because the price of the American option takes the 0 value only whent = T

according to the strict maximum principle.
(2) is a consequence of the viscosity PDE solved byu.
To prove (3), we notice thatut + Lu = 0 in the classical sense on ]0, T [ × (

⋃
t<T Et )c and that

ut 6 0. ThereforeLu > 0 and we can conclude as in the proof of Proposition 13. 2
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4. Influence of parameters on prices and convexity for one underlying asset

In this section we investigate the influence of the volatility parameter on the price of an American
option when its payoff isconvexwith respect to the price of the asset. In particular, we show by
means of PDE technics that the price is nondecreasing with respect to the volatility parameter.
The understanding of the influence of this parameter is very relevant from a market point of view.
Volatility parameters are often obtained by calibrating prices and the price of options is given in
terms of volatility.

In this section we only studyone asset option. The price of this asset is assumed to solve

dst = stµ(t)dt + stσ(t, st )dWt .

Hereµ is the drift term which can typically take into account dividends paid by the asset.µ is
assumed to be aLipschitz function. The study includes the case of the American put with payoff
ψ(s) = (K−s)+, which is a convex function. The price of the American option solves the viscosity
PDE∀s ∈ R+

∀t ∈ [0, T ], max

(
ψ − u,

∂u

∂t
+
σ(t, s)2

2
s2uss + µ(t)sus − r(t)u

)
= 0,

∀s ∈ R+, u(T , s) = ψ(s).

We restate the comparison principle of Theorem 3 using the change of variablesx = ln(s).

PROPOSITION15 Assume that the coefficients ofLt are bounded and locally Lipschitz, and that
ψ is a continuous function. Letu (resp.v) be a subsolution (resp. a supersolution) of{

max(ψ − w, ∂w/∂t + Ltw) = 0,
∀s ∈ R+, w(T , s) = θ(T , s),

such thatu(T , s) 6 v(T , s) for all s ∈ R∗
+. Moreover, assume that there exist positive constants

C1, C2, λ such that for all(t, s) ∈ [0, T ] × R∗
+,

|u(t, s)| 6 C1s
λ

+ C2s
−λ,

|v(t, s)| 6 C1s
λ

+ C2s
−λ,

|ψ(s)| 6 C1s
λ

+ C2s
−λ.

We now use a penalized problem to show the propagation of convexity. We can assumeσ , µ
andr to be smooth enough, otherwise we use a smooth approximation.

PROPOSITION16 If ψ is a convex function, then so isu(t, ·) for everyt ∈ [0, T [.

Proof. We introduce the penalized PDE which has a unique solution which converges tou. We
assume thatψ is bounded, otherwise we use a cut-off procedure. Consider the PDE∀s ∈ R+

∀t ∈ [0, T [, −
∂v

∂t
−
σ 2

2
s2vss − µsvs + rv −

1

ε
φε(ψε − v) = 0,

∀s ∈ R+, v(T , s) = ψε(s),

(Sε)

whereφε is a function twice continuously differentiable fromR into R with polynomial growth
together with its first and second derivatives; moreoverφε(0) = 0. We also chooseφε to be
nondecreasing, convex and to converge to the functionx 7→ x+ pointwise whenε tends to 0. The
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functionψε is an approximation ofψ which is convex, twice continuously differentiable fromR
into R with polynomial growth together with its first and second derivatives (a mollification fulfills
these conditions). This PDE penalizes the solution being belowψ whenε tends to 0.

Under these conditions(Sε) has a unique solutionvε ∈ C1,4(]0, T [ × R+) with polynomial
growth together with its first and second derivatives. The stability theory for viscosity solutions (see
[11] for details) asserts thatvε tends tou uniformly on each compact subset.

To prove thatu is convex we first prove thatvε is convex by differentiating(Sε) twice. This
leads to a system solved byw = (vε)ss :

∀s ∈ R+
∀t ∈ [0, T [, −

∂w

∂t
−
σ 2

2
s2wss + (−2σσ ′s2

− 2sσ 2
− µs)ws

+

(
r − 2µ− σ ′2s2

− σσ ′′s2
− 4σσ ′s − σ 2

+
1

ε
φ′
ε(ψε − vε)

)
w

=
1

ε
((ψε)s − (vε)s)

2φ′′
ε (ψε − vε)+

1

ε
(ψε)ssφ

′
ε(ψε − vε) > 0,

∀s ∈ R+, w(T , s) = (ψε)ss(s) > 0.

(S′′
ε )

The classical maximum principle for parabolic PDEs asserts thatw is nonnegative. Thus,vε is
convex. The result is then obtained by lettingε tend to 0. 2

We now study the behavior of the price when the volatility changes. We compare the price of two
options with the same payoff but whose asset prices are not the same. We then generalize Touzi’s
results on the American put [28].

For i = 1,2, the option whose price isui corresponds to the diffusion

dst = stµ(t)dt + stσi(t, st )dWt .

We now want to show thatu1 6 u2 whenσ1 6 σ2. To do this, we show thatu1 is a viscosity
subsolution of the PDE solved byu2.

PROPOSITION17 The price of an American option on a convex payoff is nondecreasing with
respect to the volatility parameter:u2 > u1 pointwise ifσ2 > σ1 pointwise.

Proof. LetΦ be a test function such thatu1 −Φ has a local maximum at(t0, x0). By the definition
of viscosity subsolutions,{

max(ψ −Φ, ∂Φ/∂t + Lt1Φ)(t0, x0) > 0,
Φ(t0, x0) 6 ψ(x0).

We next show thatu1 is a subsolution of the PDE corresponding toσ2. In fact, it is sufficient to
show thatLt1Φ(t0, x0) 6 Lt2Φ(t0, x0). This is equivalent to

(σ 2
1 − σ 2

2 )D
2
xΦ(t0, x0) 6 0.

By Lemma 3 in [10], sinceu1(t, ·) is convex andu1(t, ·) − Φ(t, ·) has a local maximum atx0, we
getD2

xΦ(t0, x0) > 0. Finally,σ 2
1 − σ 2

2 6 0 and the result is shown. 2

5. Examples

We are going to show how our results can be applied to some standard cases like the American call
or American put. It is well known that an American put on one underlying asset has a nonempty
exercise region unlike an American call on one asset paying no dividend.
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The American put

We can give the shape of the exercise region for an American put even in a case where the volatility
varies. To treat this example we work directly on the price of the asset and not on its logarithm (using
the standard change of variable). The price process(St ) solves, under the risk-neutral probability,

dSt = Stµ(t)dt + Stσ(t, St )dWt ,

whereWt is a standard Brownian motion andµ is the drift term which can take dividend into
account.

PROPOSITION18 The exercise region of the American put with payoffψ(S) = (K − S)+ is
nonempty and there exists a functionϕ with ϕ(t) < K for t < T such that thet-sectionsEt are
given byEt = [0, ϕ(t)].

Proof. The fact that 0∈ Et comes from Remark 5. Moreover, in Section 4, we showed that the put
price is convex with respect to the asset price. Therefore, Proposition 16 implies that thet-sections
are closed intervals included in [0,K[. 2

The American call with stochastic volatility

Let us examine the American call with anon-dividend-payingasset when the volatility is stochastic.
We consider an asset whose log price processXt is described by the following bivariate SDE:

dXt = r(t)dt + σ(t, Xt , Yt )(
√

1 − ρ2(t, Xt , Yt )dW1
t + ρ(t, Xt , Yt )dW2

t ),

dYt = ν(t, Yt )+ γ (t, Yt )dW2
t ,

whereW = {Wt = (W1
t ,W

2
t ),Ft ,0 6 t 6 T } is a standard Brownian motion under the risk-neutral

probabilityP , andr is the instantaneous interest rate. This is an extension of the model introduced
by Hull and White [16].

The payoff of an American call is thenψ(x, y) = (ex − K)+. To use our results, we assume
that this option has two underlying assets but that the payoff depends only on the first asset.

We haveLtψ(x, y) = r(t)K if x > ln(K), andLtψ = 0 if x < ln(K). Thus, to prove that
Ltψ is positive in the viscosity sense it suffices to examine its behavior arounda = ln(K). In fact,
it is not possible to find a functionw ∈ C2 such thatw(a) = 0 andw > ψ in a neighborhood of
a = ln(K) because the left derivative ata would differ from the right derivative.

Thus, we can assert that for everyt ∈ [0, T [, Ltψ > 0 in the viscosity sense onR2. According
to Proposition 12, we recover Merton’s result [24] even when we have a stochastic volatility:

PROPOSITION19 It is never optimal to exercise the American call written on a non-dividend-
paying asset before expiry. It coincides with the European call.

REMARK 8 Ishii [17] showed, under some reasonable hypotheses on the coefficients of the
diffusion, thatLtψ > 0 in the viscosity sense onRn is equivalent toLtψ > 0 in the distribution
sense onRn whenψ is a continuous function. We could have calculated onlyLtψ in the distribution
sense but we wanted to illustrate the viscosity theory.
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The call on the minimum of two assets

We can study another example treated in Villeneuve [30]: the American call written on the minimum
of two non-dividend-paying assets. Unlike the American call, its exercise region is not empty.

In order to study such examples, we use the Black–Scholes framework. The stochastic
differential equation solved by the logarithms of prices is then

dXit =

(
r(t)−

1

2

2∑
j=1

σij (t, Xt )
2
)

dt +
2∑

j=1

σij (t, Xt )dW j
t , i = 1,2,

whereW = {Wt = (W1
t ,W

2
t ),Ft ,0 6 t 6 T } is a standard Brownian motion underP , andr is the

instantaneous interest rate. We have the payoff functionψ(x) = (min(ex1, ex2) − K)+). We then
calculate

Ltψ = −

√
2

2
(a11 − 2a12 + a22)e

x1 dλ+ rKχ{x1 6=x2|min(x1,x2)>ln(K)},

whereσσ ∗/2 = (aij ), dλ is the Lebesgue measure on the half-line of equationx1 = x2, x1 > ln(K),
andν is the normal to this line.

Moreover this distribution is not positive fort = T . Indeeda11(T , x)− 2a12(T , x)+ a22(T , x)

> 0 sinceA is a positive definite matrix. Using Proposition 13, we getE 6= ∅.
Sinceψ is smooth on{x1 > x2} ∩ {x1 6= ln(K)} and satisfiesLtψ > 0 in the classical way, we

proceed as in the one-dimensional case to show that fort ∈ [0, T [, Ltψ > 0 in the viscosity sense
on the domain{x1 > x2}. The same holds on{x1 < x2}. Using again Proposition 12, we conclude
thatE is included in{x1 = x2} × [0, T [.

Basket options

As a last example, we investigate a basket put option, that is, an option with payoff(K−
∑n
i=1 e

xi )+.
It is one of the most often used contracts by practitioners. The logarithms of prices solve the
following SDE:

dXit =

(
r(t)− δi(t, Xt )+

1

2

n∑
j=1

σij (t, Xt )
2
)

dt +
n∑
j=1

σij (t, Xt )dW j
t , i = 1, . . . , n.

The previous results show that the exercise region is nonempty and that⋃
t<T

Et ⊂

{ ∑
δi(t, x)exp(xi) 6 rK,

∑
exp(xi) < K

}
.

In the case of constant coefficients Villeneuve [30] proved⋃
t<T

Et =

{ ∑
δi exp(xi) < rK,

∑
exp(xi) < K

}
.
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