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American options and the free boundary exercise region: a PDE approach
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American options are classical financial derivative contracts which lead to free boundary problems.
The objective of this article is to give some qualitative properties of the exercise region of American
options by means of analytic techniques. We prove that the price of an American option is the unique
viscosity solution of an obstacle problem. We also prove comparison principles and strict comparison
principles. These results enable us to localize the exercise region and to prove the propagation of
convexity for American options. As a result, we study the influence of the volatility parameter on the
price of American options.

Introduction

This article is devoted to the study of some qualitative properties of American options. Option
contracts are financial instruments which have been introduced as means to hedge against certain
risks. An American option allows its owner to receive a reward at any time up to the expir§ date
His aim is then to maximize his gain.

We will study options written om underlying assets with priceS,J(, ..., 8. In a generalized
Black—Scholes framework][7], the logarithms of prices

X, = (In(sh, ..., In(sM)

solve a stochastic differential equation (SDE) under the risk-neutral probability which we assume
to exist. We will not discuss here the relevance of such an assumption. As is classical, we assume
that the SDE has the form

dX; =b(t, X)) dt + o (¢, X;) dW,,

where W; is an m-dimensional standard Brownian motion under the risk-neutral probability
associated to th&-completion(F;) of its natural filtration. This kind of SDE takes into account
the interest rate and dividends payed by the asset (notice:tisatot necessarily equal t9.

We are particularly concerned with an American option with finite expiry dat®/hen the
option is exercised at time the owner receives the payaff(X,) corresponding to the logarithms
of pricesX;.

Bensoussan_[5] and then Karatzas![20] first obtained a representation for the price of an
American option as the supremum ov@r r (the set of adapted stopping times inT] a.e.) of
the expectation of the discounted payoff: the price of an American option with payoff) is
given by

0
u(t,x) = sup E(e” )i "%y xhry),
96@,‘17
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where X} is the solution of the SDE at time > ¢ such thatX)”* = x. This point of view relies
on the theoretical link between optimal stopping times and variational inequalities developed in [4],
[5] and [20]. Furthermore, this theory states that the optimal stopping time is given by

™ =inf(s € [r, T] | u(s, X'%) = ¢ (X)),
These results emphasize the key role ofékercise region
E={t,x)e[0, T[ x R" | u(t,x) = ¥(x)}.

Indeed,u is always greater thagy and the first time whem(s, X;) becomes equal t@ (Xj) is
optimal to exercise the option. Moreover, we will see thablves the standard Black—Scholes PDE
in the complement of which is called thecontinuation region
The understanding of the exercise region is thus crucial to evaluating the American option and
is of obvious practical importance. This article is mainly aimed at determining this region and
deriving some mathematical properties of it. The study of an American option is thus equivalent
to the study of a free boundary problem. McKehnl [23] and van Moerheke [29] showed the link
between optimal stopping and free boundary problems. The pricing of American options leads to
equations not unlike several models in physics as the one-phase Stefan problem although the smooth
fit at the free boundary is not the same (see Rodrigues [27] for a review on the subject).
Theobstacle problens modelled by the following nonlinear PDE:

Gl
max<w—u,a—l:+ﬁu) =0

with the operator

Lf =Y aij(t,x) O + Y bt x)% —r()f
i (A 3)(13)(/ 7 ’ 8xl~ ’
whereA = (a;j) = o0o*/2 andr is the instantaneous interest rate.

We recall the equivalence between the obstacle problem and the stopping time problem in
Section{ , particularly in Propositigry 8. From Sectign 3 on, we concentrate on the framework of
the obstacle problem to study American options.

The first authors who studied the exercise region for two-asset American options were Broadie
and Detemple [8]. Villeneuveé [30] further characterized the nonemptiness of the exercise region and

showed a criterion to localize the exercise region in more general cases. He showed that
Ly is a nonzero positive measure £ = ¢.

However, these results are essentially restricted to the cases of constant volatility and constant
interest rate. It is known that in most market situations, these assumptions are too restrictive. The
payoff functions are also less general than in our framework.

After this work was completed, we have learned about a paper by Karnpen [19], independent
of our work. He studied some generalizations of Villeneuve’s resulis [30] using viscosity solutions.
He essentially investigated the shape of the exercise region near expiry and the regularity of the
free boundary when the payoff is a bounded function. He also showed the continuity of the free
boundary for non-time-dependent coefficients; in the case of time-dependent coefficients he needed
additional regularity of the payoff function.
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Our main contribution is an extension of Villeneuve'’s results to a more general framework where
the volatility may depend on the asset prices and on time. We also consider a more general class of
payoff functions, the continuous nonnegative functions with exponential growth with respect to the
logarithm of asset prices.

In this regard, it will be convenient to state that the price of an American option is a solution
of a variational inequality in the viscosity sense; this concept is reviewed in Sé¢tion 2. The link
between optimal stopping theory and viscosity solutions for the present problem is established in
Propositiorf 4.

One of the central notions of this article is tb@mparison principleWe obtain different forms
of such a principle for the obstacle problem, in particular in Secfipns Zland 3 (Theforem$[3 and 9).
The main difficulty in proving these principles is the degeneracy of the operators. These principles
imply many useful properties. In particular, they ensure uniqueness and we use them to compare
the solution of the obstacle problem and the obstacle. With this method, we prove an extension of
Villeneuve’s results (Propositiofs]12 gnd 13).

Then, in Sectiorj }4, we show how the use of the same kind of methods can lead to other
qualitative properties such as the convexity of the solution or the influence of the volatility parameter
on the option prices. We show that for options written on one underlying assetl], if the payoff
is a convex function of the asset price, then so is the price of the American option (Progogition 16).
In addition, for such options, we study the influence of the volatility parameter on the price by
means of comparison principles. Here we extend the results of Touzi [28] to more general options.
The main result is that the price of an option increases when the volatility parameter increases
(Propositior IJ7).

Finally, in Sectiorj b we study further options such as the American call on the maximum of two
underlying assets.

1. Assumptions and notations

We consider American options written on underlying assets with pricessY, ..., S"). In a
generalized Black—Scholes setting, the logarithms of pries= (In(S}),...,In(S,")) solve a
stochastic differential equation under the risk-neutral probability:

dX[ = b(l, Xl) dr + U(t, X[) th,

where W, is a standard Brownian motion under the risk-neutral probability associated #®- the
completion(F;) of its natural filtration. If the option is exercised at timethe owner receives a

payoff v (X,).
We will assume that the following hypotheses hold:

(H1) b is a bounded function from [@] x R" into R", ando is a bounded function from
[0, T] x R™ into M, ,,(R). Furthermore, there exists > 0 such that for alk, y in R” and
s,t €0, T],

lo(t, x) — o (s, W + 16, x) — bs, )| < K(llx = yll + s — 1))
(H2)  Uniform ellipticity: The matrixA = (a;;) = 00*/2 is coercive, i.e.,

3n > 0V(t,x) € [0, T] x R" V& € R", Zaij(t,x)&sj > |2
ij
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(H3) Theinterest rate — r(¢) is positive and continuous.
(H4) v is a continuous nonnegative function such that

aM >0, Yx) < MMl

(H1) ensures existence and uniqueness of the solution of the SDE. In addition, these hypotheses
will guarantee the validity of the maximum principles. (H2) is essential to demonstrating the strict
comparison principle whereas the maximum principles only require ellipticity and not uniform
ellipticity.
Let .
u(t,x) = sup E(e”Ji "%y x5y,
HEQ,VT

the optimal stopping theory (see elg.l[12]) asserts that

0
u(t, X;) = esssuE (e~ i " &y (x5 | F)
06(’9[’]"

is the value of the American option with payaff. Furthermore, this theory yields the optimal
stopping time in®; 7, the set of al( F;)-adapted stopping times whose values are,iff] a.e. This
time * is defined by

™ =inf{s € [£, T] | u(s, X*) = (X))}
A straightforward adaptation af [18] to the multivariate case yields the continuity of the price option
under the present hypotheses.

PROPOSITION1 u is a continuous function ig9([0, 7] x R").

2. The obstacle problem and viscosity solutions

Jaillet, Lamberton and Lapeyrie |18] showed that the price of an American option is a solution of a
variational inequality, which can be written, when all the functions are smooth, as

ou

max{ ¢ — u,
(Iﬁ ”at

—l—Etu) =0,

whereL’ denotes the operator

’f

fe N 9 oo
L'f= ;au 05 o + Zb x5 =) f.

We denotel’ simply by £ if its coefficients do not depend on time.

In order to study this equation in the most general case, we refer to the concept of viscosity
solutions. After the basic definitions, we show that a comparison principle holds for the obstacle
problem and, finally, that its unique solution is given by a solution of the stopping time problem.
In other words, the solution of the obstacle problem with obstacle funeatias the price of the
American option with payoff.

Let c12([0, T] x R") be the set of all functions twice continuously differentiable iand once
in 7. A function in C12([0, T] x R") will be called atest function Let us recall the definition of
viscosity solutions (seé [11] for more details).
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DEFINITION 1 Let £2 be an open subset &". Let F be a continuous function frolR x R" x

R x R" x M, (R) x R into R, nondecreasing with respect to thg, (R) variable. Let? and y be
two continuous functions from [@'] x R”" into R. A function v upper semicontinuous (u.s.c.) on
2 x [0, T] and defined o2 x [0, T]is said to be aviscosity subsolutioon £2 x [0, T] of

F(ta X, U, D)Cua Dxx’fh MI) = 07
Vxe 2, u(T,x)=0(T,x),
Vxe€d2, t [0, T[, u(t,x)=x(t,x),

if for any ¢ € C12(£2 x 10, T[) such tha — ¢ has a local maximum dato, xg) With v(zo, xg) =
¢ (19, xo) We have

F(to, x0, ¢ (t0, x0), ¢« (t0, X0), dxx (t0, X0), ¢ (to, x0)) = O,
Vxe€d2,te[0, T[, v, x)<0(t,x),
Vx e 2, v(T,x) < x(T,x).

v is asupersolutiorif v is a lower semicontinuous (I.s.c.) function and if the opposite inequalities
are satisfied whenever— ¢ has a local minimum.
A viscosity solutions a continuous function which is both a subsolution and a supersolution.

REMARK 1 As mentioned in[3] or[11], the definition of viscosity solutions can be equivalently
stated with local minima or maxima replaced with global minima or maxima. We can also consider
only strict extrema.

We will show in Propositiofi 4 that the prices of American options with payofolve (S) in
the viscosity sense, where
{maX(I/f —u,0u/dt+L'u)=0 on[0T[ x R",

Vx e R", u(T,x)=vy(x). S

Here, we have
a
F(ta X, U, D)Cu5 DXXM7 Ml) = max(l//(x) - l/l(t,.x), a_l:(t5 x) + ‘Ctu(t’x)>

Under our reasonable hypotheses we demonstrate the uniqueness of solutions for (S) (Proposition 4
states that the unique solution is the price of an American option with paypffFirst, we
demonstrate a comparison principle on a bounded domain. This result will be used to demonstrate
the comparison principle on the whole sp@te We use the methods of [10] and [11] for parabolic
PDEs. This result was shown by Villeneuve [[31] in the case of constant coefficients in a one-
dimensional case.

PROPOSITION2 Let(Sp) be the following system of equations:

max(y — u, du/dt + L'u) =0 on [0 T[x$2,
Vx e 2, u(T,x)=0(T,x), (S0)
Vxe€d2,te[0, T[, u(t,x)=0(,x),

with

2f

3 af
L'f= i (L, bi(t, x)=— — c(t, x)u,
f ;au( x)ax,axj +Xi: i ( x)axi c(t, x)u

wherec > 0 andaq;;, b;, c, ¥, 6 are continuous and where thes are locally Lipschitz. I&2 is a
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bounded domainy (resp.v) a viscosity subsolution (resp. a supersolutionj®), andv > u on
the parabolic boundarys2,, of 2, i.e.

Vx e 2, v(T,x)>=u(T,x),
Vxe€d2,te[0, T[, v(,x)=>ut,x),

thenv > uong2 x [0, T].
Proof. The proof is by standard arguments. See [3].of [22] for more details. |

REMARK 2 In fact, we only used the nonnegativity 4f The proof is the same if we only assume

L" to be degenerate elliptic. We can prove a comparison principle for a viscosity elliptic degenerate
equation similar to the previous one, in particular for a parabolic equation (with condition on the

elliptic boundary). We will use this remark several times to demonstrate the strict comparison
principles in Sectiop 3]2.

We next extend the comparison principle Bf for the system (S). This was shown [n[12]
when the functions grow at most polynomially. Here we study the more general case of exponential
growth which allows more general payoff functions (e.g. the American call).

THEOREM 3 Assume that the coefficients 6f are bounded and locally Lipschitz, and thjats a
continuous function. Let (resp.v) be a subsolution (resp. a supersolution) of

)

max(yy — w, dw/dt + L'w) =0,
Vx e R", w(T,x)=1y(x),

such thatu(7T, x) < v(T, x) for all x € R". If in addition there exist positive constan@s A such
that for all (¢, x) € [0, T] x R",

lu(t, x)| < CM o, x)| < €M ()] < cet

thenu(z, x) < v(z, x) for all (z, x).

Proof. We use a change of function in order to use the result on bounded sets (sek e.qg. [6]). Given
a function f, we define
T . eat.f(ta -x)
= ;
ch(Bxy) - - - ch(Buxn)

where ch stands for the hyperbolic cosine, i.qugh= (" + ¢7*)/2 for u € R. In this proof we
also use the notationth) = (e* — e™)/(e" 4+ e~ *). Thus, a simple calculation yields

- 2f _af _. —
L'f = (e ch(Bx1) - "Ch(ﬁxn))[fz Tij ! + bi o7 —Ef] = (ch(Bx1) - - - ch(Bxn) L' f
xiaxj 8)6,'

with _
bi =bi + Y _2Bth(Bxpa; Vi,
j

e=—) ai;BPth(Bxi) th(Bx;) — Y (biBth(Bx;) + 2aii) + ¢ + o
i#] i

We then choose > Zi,j ||a,-,-||ooﬂ2 + > ; IIbillsoB such that > 0 ands > A.
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Letu andv be a viscosity subsolution and supersolution of

{max@ —u, 0u/ot + Lu) =0, S

Vx e R", w(T,x)=y(T,x).

Then uniformly inz,
lim u(t,x)= lim 9@, x)=0.

|x]—o00 [x]—00

So, for everys > O there isRs > 1/8 such that for alk € 9 Bg, andt € ]0, T,

u(t,x) <y +86/2<v(,x)+54.
Let us examine the following system with respecpto

max(yy — g, dg/dt + Lg) =0,
Vx € Bry,, 8T, x)=vy(T,x)+45/2, (Ss)
Vx € 0Bpy, g, x) =y, x)+6/2

Thenv + § is a supersolution ofS;) andu is a subsolution. We can use the comparison principle
for the bounded open s8t;:

Y(t,x) € Bry x [0, T], u(t,x) <v+38.
We fix (¢, x) and leté tend to O to get: (¢, x) < v(z, x). O
In particular, we can conclude that there is at most one viscosity solution of

max(yr — w, dw/adt + L w) = 0,
Vx e R*, w(T,x)=vy(T,x).

REMARK 3 In both the viscosity solution and the optimal stopping context we assumeg ikat
continuous andy (x)| < Ce*™l. It is no more restrictive to assume| < Ce**l. Indeed, in the
optimal stopping viewpoint the price of the American option is

6
u(t,x) = sup E(e~ 7& &y (xhry),
0O,

So if |y (x)| < Ce*, then using the inequality

0,x
VM >03C >0 E( sup eMX )y < ceM!
o<i<T

one gets
lu(t, x)| < C'e*M.

Finally, we state the link between optimal stopping theory and viscosity solutions. We recall that
©,,r is the set of allF;)-adapted stopping times whose values are,iff'] a.s.
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PROPOSITION4 If v is continuous and such thak (x)| < Ce*™! (that is, (H4) is satisfied), then
the function defined by

l/l(t,x) — SUp E(e—'/;er(AS‘)dj‘I/,(Xé,X))
96@;,7'

is a viscosity solution of

Vx e R", u(T,x)=1vx).

Moreover,u is the unique solution such that there exi$t> 0 andA > 0 such thafu(z, x)| <
C’eMl,

{max(w —u,du/dt + L'u) =0,

Proof. The argument is standard and can be found.in [22]. O

The comparison principle enables us to recover some well known qualitative results. Indeed, the
European option is clearly a subsolution of (S). Therefore the American option is more expensive
than the European one.

PROPOSITIONS (1) u(z, x) > ¢ (x) forall (¢, x) € [0, TT x R".
(2) If o, r andb do not depend on time (we say that the diffusion is homogeneousyther) is
nonincreasing for each € R”.

Proof. (1) istrue sincea) is a subsolution of (S). To prove (2) we use the comparison principle again,
lettingv(¢, x) = u(t — h, x) for h > 0 andt € [k, T]. We havev(T, x) = u(T — h, x) > ¥ (x). SO
v is a subsolution of
max(yy — u, du/dt + L'u) = 0,
{Vx e R, u(T,x)=y(T,x),

andu(t — h,x) > u(t, x). O

REMARK 4 The price of an European option is more expensive than its payoff iff the
corresponding American option coincides with the European option.

This remark can be used to derive directly Villeneuve’s results [30] characterizing the American
options which are in fact European options. The advantage is that we can allow here the diffusion to
be homogeneous and not only constant to deduce that the class of such options is the options whose
payoff is such thatZy is a nonzero positive measure. However, the results of the next section are
even more general.

3. Comparison principles and the exercise region
3.1 Definition and first properties

The goal of this section is to study tle&ercise region
E={(t,x)e[0, T[ x R" | u(t, x) = ¥ (x)}.

Such a denomination has a financial interpretation. Whenever the price of the option is larger than
the payoff, it is more profitable to sell the option than exercise it. Thus, it is not reasonable to
exercise the option outside of the exercise region.

On the other hand, the first time this area is reached, it is optimal to exercise the option
(according to the stopping time theory).
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In order to understand the behavior of American options, it is crucial to determine this region. On
the one handy is known (thus: is known in&) and on the other handsolves the standard Black—
Scholes PDE in the complement&fwhich is called theontinuation regionWhen the regioi is
empty, it is never optimal to exercise the option before expiry; the option is then a European option.
This is the case for an American call written on a non-dividend-paying asset (Merton’s [result [24]).

The next result was shown by Villeneuve [30] in the case of constant coefficients. Using the
comparison principle, we extend it to a general diffusion.

PROPOSITIONG The exercise region of an American option with bounded payoff is nonempty.
Proof. If the exercise region were empty, the pricef the option would solve
ou
o

with final conditionu(T,x) = ¥ (x). The functionw(z, x) = exp(— ftTr(s) d) ||V ]leo IS @
supersolution of the last equation. So the comparison principle implies

+L'u=0

u(t,x) < wlt,x),

and ast > v, we would get

T
¥ (x) < exp(—/ V(S)dS>||1ﬂI|oo,
t

which is false. O

REMARK 5 If ¢ reaches its supremum ag, then it is optimum to exercise the option at any
time when the price isg. Thus, ¥ (x0) = u(t, xo). For example, the American put with payoff
¥ (x) = (K — x)+ has a nonempty exercise region ai{d, 0) = K for all 7.

We want to exhibit some criteria to localize the exercise regiof! i the diffusion operator

0
0x

Etf=Za~(t x) °f +Zb<(t x)i—r(t)f
i S ,'3Xj 7 e 3)6,'

a necessary and sufficient condition for the emptiness of the exercise regionayhenr are
constant is given by Villeneuvé [30]:

Ly is a nonzero positive measure: £ = (.

We give an extension of this result:

ProPOSITION7 Assume that, for all € [0, T[, £y is positive in the viscosity sense but differs
from 0 on an open connected subgefi.e. v is a strict viscosity subsolution @’ w = 0). Then

V(t,x) €0, T[ x U, u(,x)> ¥x).
That is to say,
EN(O, T[ xU)=4.

To achieve this objective, we show a strict comparison principle between viscosity subsolutions
and supersolutions for a linear problem. This principle will give a strict comparison between the
price u of an American option and its payoff. Such a comparison means that we are in the
continuation region. Nirenberg[25] first showed a strict comparison principle for classical parabolic
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equations. Bardi and Da Li0][2] showed a strict maximum principle (i.e. a comparison between
a supersolution and 0) in the viscosity context for parabolic nonlinear equations. However, the
nonlinearity of viscosity solutions prevents us from using these results to get a comparison principle
between a supersolution and a subsolution.

Following [25] and [[2], we first show a propagation at a given time, then a propagation in the
space variables. In other words, we first show that a supersolutéomd a subsolution are such
thatv > u orv = u by proving it first on the lineg = const.

3.2 Strict comparison principle for a linear problem in the viscosity sense

PrRoPOSITION8 Assume that the coefficients 6f are bounded and locally Lipschitz, and thiat
is a continuous function. Lt be a domain irR". Letu (resp.v) be a viscosity subsolution (resp.
a viscosity supersolution) of

dw/dt + L'w = 0,
VxeU, w(T,x)=vy(T,x),

such that(z, x) < v(t, x) forallr € [0, T] andx € U. If there existg € 10, T[ andxg € U such
thatu(rg, xg) = v(to, x0), thenu(tg, x) = v(zg, x) forall x € U.

Proof. We first prove that if there exists a closed ballwith radiusR and centerP = (¢1, x1)
included in ]Q T[ x U such thatu < v in the interior of B and there is a poinP, = (2, x2)
belonging to the boundary a8 such thatu(P2) = v(Py), thenx, = x;. Indeed, suppose that
X2 # x1; We can also assume thaj is the only point such that = v in B (or else we can change
the center and decrease the radius of the ball). We then introduce a ball with Bgimeluded in
10, T[ x U whose radius is < ||x1 — x2||. We also introduce an auxiliary function

D(t,x) = oV (Ux—x1l2+r—n?) _ ~yR?
We notice thatt € C*°, @ > 0in B, ® = 00ondB and® < 0 outside ofB. Let
a(t,x) = e—y(l\x—x1||2+\t_,l|2)‘
A simple calculation yields

¢l(t7 -x) = _ZV(I - tl)a(ta -x)v
D, (t,x) = =2y (x; — x1,)a(t, x),
By (1,%) = =2y 8ja(t, x) + 4y?(xj — x1,0)(xj — x1,j)er.

Therefore,

0P
— + L, x) = —2y Zaiia + 4)/2201']‘(&' —x1,i)(xXj — x1, /)

at
+ Y bi(=2y(x; — x1)e(t, X)) = rd.
According to the ellipticity hypothesis (H2), we have

4y? " aij(xi — x1.0)(xj — x1 ) = ndy®lx — x1)?.
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Thus, ag|x2 — x1]| is positive, there existg large enough such that

oD
(W + .cf¢>) (t2.x2) > O.

Then,® being smooth, there exists a ba&l(P», o) with g < R such thatd® /9t + L'¢ > 0 on
B(P>,rg). Let X := B(P2,r9) N B(P, R). OndX, we haveu < v and® > 0 ondB(P, rg), and
u < vand® = 0ondB(P, R). So, by semicontinuity, there exists> 0 such thait + ¢® < v
onoX. As @ € C%, it follows thatu + ¢® is a viscosity subsolution dfw/dt + L'w = 0 on
X. It suffices to notice that the comparison principle is valid for linear degenerate elliptic equations
such asw; + £L'w = 0 on X (see Remark 2). We conclude that- e® < v on X. Indeed, this
is true onB( Py, rg) because: < v and® < 0 outside ofB((t1, x1), R). Thus P, is a point of
local maximum foru — v — €e® on B(P2, rg) (which will be denoted byB from now on), with
u(Pp) + e®(P2) = v(P2). We can assume that this maximum is strict, otherwise we replagth
v+ [lx2 — x||* + |12 — t]*, which is still a viscosity supersolution &b.

We would like to differentiate the functions & and derive a contradiction (this method often
used to establish strict comparison principle is called the Hopf lemma; see Nirehbkrg [25]). To
circumvent the lack of regularity, we use a variable doubling procedure. Let

1
Galt, %, y) = u(t, ) +€P(t, 1) = v(t, ) = o lx = yI?  withe > 0,

w(t,x) =u(t,x) +ed(t, x).

Let

MO[: Sup ¢a(f»x,)’)~
(t,x), (t,y)eB

This quantity is finite and reached at sortg, x4, yo) (by @ compactness argument). Using
compactness, we can assume that xq, yo) — (f,x,y) asa — 0 with (7,x), (f,y) € B.
Moreover, for all(¢, x) € B we have

Ga(t, x,x) < Mg,
which implies, on taking the supremum, thid, > 0. Thus
e = Yell? < 20 (wlte Xa) = vlias ¥a))-

Now, w and—v are u.s.c. and thus bounded aboveRorin addition,

My < w(ty, Xo) — V(la, Ya)
S0 passing to the limit yields = y and

limsupM, <Ilimsup(w(ty, xq) — v(ty, yo)) = w(#, x) — v(z, x) < 0.

Thus, we can assert thaf, tends to 0 ag tends to 0, and

0 < w(ty, xo) — v(ta, Ya)
becausé/, > 0. Thus, 0< limsup(w(ty, xo) — v(ty, Yo)) < 0. Therefore

w(,x)—v(,x)=0

and lim s ||xo — yo 1> = 0. The maximum ofw — v being strict onB, we conclude thaf, X) = P,.
In particular, fore small enough(z,, x,) € B and(ty, yo) € B.
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Using Theorem 9 in[10] once again appliedfpat (z,, x4, yo), and the viscosity properties of
u andv, we deduce that for every > 0 there areX, Y € $" and&, n € R such that

E+n=0,
X+Y <0,

and
Gl )
§ —e—(lq, xo) +r(AX) — etr(AD; D (ty, X))

N Xy — oD
+ bty Xa) - (Ty) (—eg(ra, m) — (s Xe)t(te, Xer) > 0,

Xa = Ya

—1 = U(AY) + b(ty, ya) ( — 7 (ta, Yo )V (tars Yar) < O,
Subtracting the two inequalities, using4r X +Y)) < 0 and taking the limsup as— 0, we obtain
lim suplr (ta, yo)v(ta, Yo) — 1 (tas X))t (ta, Xo)] = 1 (P2) (e @ (P2)).

Furthermore, the coefficients of the operator are continugusg C°, b is Lipschitz and
2 llXe — yall? = 0, thus

&%My(ﬁlﬁ>—&%m%(h_m>»a
o o

We finally get
—eL'®(Py) > 0.

This contradictsC’ @ (P,) > 0, and so necessarikyf = x».

We could have proved this result for an ellipsoid which is an affine image of a ball=ifv at
some point of the boundary of an ellipsoid whereas v in its interior, then the space coordinate
of this point is the same as the one of the center of the ellipsoid.

We can then conclude as in Nirenbergl[25], assuming that there &ists (7o, xo) With 1 €
10, T[ such thatu(zo, xo) = v(to, xo) Withoutu — v being constant on = 7o (that is to say, that
u < v at some pointD = (7, x*)). On a path between these two points, witbonstant, there
exists, by semicontinuity, a first poify such that«(P1) = v(P1). Then, on the path@, P1[, we
haveu < v. We choose a poin® = (fp, x1) on this path such that the ball with centeiand radius
d(P, P1) isincluded in JQ T[ x U. By semicontinuity, there exists a neighborhoodroin which
u < v, and then a segment with center P perpendicular to the = 7 plane, with half length
I < d(P, P1), such thaiz < v on it. We consider the family of ellipsoids centeredPabbtained by
a revolution around the axid and whose projection onto the plane- rg is a sphere centered At
and with radiug8. We then let8 vary from 0 tod(P, P;). For 8 = 0 it corresponds ta\ on which
u < v. By semicontinuity there is a firgt for which the ellipsoid has a point on its boundary such
thatu = v. For such a poinR = (s, y) we showed thay = x1, thusR € A, which contradicts the
fact thatu < v on A.

We thus conclude thai(rg, x) = v(tg, x) forall x € U. |

Now, we give a strict comparison principle on a regioni[[ x U.

THEOREM9 Assume that the coefficients 6f are bounded and locally Lipschitz, and thais
a continuous function. La be a domain iR”. Letu (resp.v) be a viscosity subsolution (resp. a
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viscosity supersolution) of

VxeU, w(T,x)=vy(T,x),

such thatu(z, x) < v(¢,x) forall ¢ € [0, T] andx € U. If there existdtg, xo) € ]0, T[ x U such
thatu(ro, x0) = v(to, x0), thenu(z, x) = v(¢, x) for all (¢, x) € [t0, T[ x U.

{Bw/at +L'w=0

We first show a lemma:

LEMMA 10 Letzg > O. If there existsPy = (xg, fp) such thatu(Pg) = v(Pop), then for every
rectangle ‘ ‘ ‘ _ '
Ro={(t,x):t €[t 12, xg—a' <x' <xg+a'},

there exist) € Rg with O # Py andu(Q) = v(Q).

Proof. Otherwise, we choosRg in whichu < v. We leth(z, x) = tg — t + K ||x — xol|%, where

K is chosen such that’n(Py) + (dh/31)(Po) > 0. By continuity, there exists > 0 such that
L'h+0h/0t > 00nB(Py,r) C]0, T[ x U.LetA = B(Py,r) N{(t, x) : h(t,x) < 0}. There are
two parts of the boundary of: the first whereh = 0 and the second which is part of the sphere.
dA is a compact subset; so by lower semicontinuity, there exist9 such that: < v+ ¢h ondA.

We then conclude with the same kind of argument as in the previous proposition: weget- ¢

on A and derive a contradiction. O

COROLLARY 11 If there existsPy = (xq, fg) With 1o > 0 such that:(Ppy) = v(Pg), thenu = v for
all (¢, x) €10, T] x U.

Proof. We first prove that there exisi& = (xo, 7o) such that(Pp) = v(Pp), thenu = v on every
rectangle

Ro={(t,x):t €to,12], xj—a' <x' < xh+a'}.

Let Rp be such a rectangle with(Py) = v(Pg) at Pp = ((x1 + x2)/2, t1). If we assume thai — v
iS not constant iR, there exist) € Rg such that«(Q) < v(Q). According to ProposmoE]SQ
does not belong to the plame= ¢1. On the segmentHp, Q] there is a first pointP; from Q such
thatu(P1) = v(P1). We can assum@, = Py, otherwise we modify the rectangle. In the interior of
the rectangle, we cannot have= v; otherwise on the planes= const, we would have = v and
thus on Py, Q], we would have a point such that= v. If necessary we again make the rectangle
smaller to have: < v except on the plane= ;. This contradicts Lemnfa ]10. U

REMARK 6 This strict comparison principle remains valid for any dontainNVe will derive from
it a local characterization similar to the one of Villeneuve [30] with much less restrictive hypotheses.

3.3 Characterization of the exercise region

PrROPOSITION12 Assume that for evenye [0, T[, L'+ is positive nonzero in the viscosity sense
on a domairl/ (i.e. ¥ is a viscosity subsolution af’w = 0 but is not a solution). Then

V(t,x) e [0, T[ x U, u(, x)> ).

In other words,
ENAO, T[xU) =0
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Proof. Assume that there exists), xg) € [0, T[ x U such that(tg, xg) = ¥ (xo). Recall thats, the
solution of the obstacle problem, is a viscosity supersolutiorvaadsubsolution ofv, + £ w = 0.
According to Corollary Tflu (¢, x) = ¢ (x) for all ¢ € [to, T] andx € U. However, ifu < w in
170, T[ x U with w a test function, we can choosewhich does not depend on time becausioes
not (we can choose — w(t, x)). Then it is enough to notice thatis the viscosity solution of

max(yy — w, dw/dt + L'w) =0,
VxeU, w(T,x)=vy(T,x),
and soL’yr = 0 in the viscosity sense. This is a contradiction. |

REMARK 7 In particular, we derive the result for = R”, i.e.,
L > 0inthe viscosity sense for alle [0, T[ = £ = 0.

We next show the converse.
PROPOSITION13 If £ = ¢ thenL” y is a nonnegative measure Bf.

Proof. Let & be a nonnegative function i@g°(R"), the set of smooth functions with compact

support. We know that € C12([0, T[ x R") becaus&€ = @ andu is a classical solution of
u; + L'u = 0on [0 T[ x R". We also know from Propositi 1 that € C9([0, T] x R").
According to Heine’s theorem is uniformly continuous on [0T] x suppd. Thusu(z, ) — ¥ ()
uniformly on sup@ whenr tends toT. Integrating the equation from< T to T, we get

T
0<Y(x) —u(t,x) = / L5u(s, x) ds.
t

Multiplying by 6 and integrating with respect toyields

1
t—T

T
/ / Lu(s, x)0(x)dx ds < 0.
t  Jsupp

One easily concludes using integration by parts and lettitgnd to T, the convergence being
uniform. O

Fianlly, we establish another localization criterion (shown in Villenelve [30] in the case of constant
coefficients). Consider thesections of the exercise region:

& ={xlu@ x)=9yx)}

PrRoOPOSITION14 (1) € C {(¢,x) : ¥(x) > O}.
(2) L'y < 0inthe viscosity sense drj, _ &;.
(3) Inthe homogeneous cag®) > 0 in the viscosity sense df J, _; &)°.

Proof. (1) holds because the price of the American option takes the O value only wher
according to the strict maximum principle.

(2) is a consequence of the viscosity PDE solved by

To prove (3), we notice that, + Lu = 0 in the classical sense on J0[ x (J,.; &) and that
u; < 0. ThereforeCu > 0 and we can conclude as in the proof of Propositign 13. O
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4. Influence of parameters on prices and convexity for one underlying asset

In this section we investigate the influence of the volatility parameter on the price of an American
option when its payoff iconvexwith respect to the price of the asset. In particular, we show by
means of PDE technics that the price is nondecreasing with respect to the volatility parameter.
The understanding of the influence of this parameter is very relevant from a market point of view.
\olatility parameters are often obtained by calibrating prices and the price of options is given in
terms of volatility.

In this section we only studgne asset optiariThe price of this asset is assumed to solve

ds; = s;u(t) dt + s;0 (2, s;) AW,

Here u is the drift term which can typically take into account dividends paid by the agsist.
assumed to be Bkipschitz function The study includes the case of the American put with payoff
¥(s) = (K —s)4, which is a convex function. The price of the American option solves the viscosity
PDE

du oft, s)2 2

Vs e Rt vt e[0,T], max| v —u, ™ + 5 SUugs + w(t)sus — r(t)u) =0,

Vs e RT,  u(T,s)=y(s).

We restate the comparison principle of Theofém 3 using the change of vanablés(s).

ProPOSITION15 Assume that the coefficients 6f are bounded and locally Lipschitz, and that
Y is a continuous function. Let (resp.v) be a subsolution (resp. a supersolution) of

max(yy — w, dw/dt + L'w) =0,
Vs e Ry, w(T,s)=06(T,s),

such that (7T, s) < v(T,s) for all s € R%. Moreover, assume that there exist positive constants
C1, C2, A such that for allz, s) € [0, T] x R,

lu(t, s)] < C1s* + Cas™*,
lu(t, s)| < C1s* + Cas ™%,
[ (s)| < Crs* + Cos ™.

We now use a penalized problem to show the propagation of convexity. We can assume
andr to be smooth enough, otherwise we use a smooth approximation.

PROPOSITION16 If  is a convex function, then soist, -) for everyr € [0, TT.

Proof. We introduce the penalized PDE which has a unique solution which convergesife

assume that is bounded, otherwise we use a cut-off procedure. Consider the PDE
v o? 1

TR 752vss — U8V + TV — ;(be(we —v) =0,

VS S R-"_y U(T’ S) = I/IS(S)7

Vs e Rt vr € [0, T, (S)

whereg, is a function twice continuously differentiable froR into R with polynomial growth
together with its first and second derivatives; moreaget0) = 0. We also chooseé. to be
nondecreasing, convex and to converge to the funatiest x; pointwise where tends to 0. The
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function . is an approximation ofy which is convex, twice continuously differentiable frdin
into R with polynomial growth together with its first and second derivatives (a mollification fulfills
these conditions). This PDE penalizes the solution being bélavhene tends to 0.

Under these conditionS,) has a unique solution, € C1#(]0, T[ x R*) with polynomial
growth together with its first and second derivatives. The stability theory for viscosity solutions (see
[11] for details) asserts that tends ta: uniformly on each compact subset.

To prove thatu is convex we first prove that, is convex by differentiatindS,) twice. This
leads to a system solved by = (ve)ss:

2
ow o,

Vs e RT Vvt € [0, T, o T S W + (=200's% — 2502 — ps)ws

1
+ (r —2u—0"%2—-00"s?—4o0's — 02+ Z¢. (Ve — UG)>U} )
€
€

1 1
= g((lﬁe)s — ()s)?9! (Ve — ve) + E(We)ssqﬁé(lﬁe —ve) 20,

Vs € RT,  w(T,s) = (Ye)ss(s) = 0.

The classical maximum principle for parabolic PDEs assertsith&t nonnegative. Thusgy. is
convex. The result is then obtained by lettintend to 0. |

We now study the behavior of the price when the volatility changes. We compare the price of two
options with the same payoff but whose asset prices are not the same. We then generalize Touzi’'s
results on the American put [28].

Fori = 1, 2, the option whose price ig corresponds to the diffusion

ds; = s;u(2) dt + s;0;(¢, s;) dW,.
We now want to show thai1 < uz whenoy < o2. To do this, we show thai; is a viscosity
subsolution of the PDE solved log.

PrROPOSITION17 The price of an American option on a convex payoff is nondecreasing with
respect to the volatility parameter; > u1 pointwise ifo, > o1 pointwise.

Proof. Let @ be a test function such that — @ has a local maximum dtg, xo). By the definition
of viscosity subsolutions,
{max(w — @, 3P /3t + L1P)(t0, x0) = O,
D (to, x0) < Y (x0)-
We next show thati; is a subsolution of the PDE correspondingoto In fact, it is sufficient to
show thatl) @ (1, xo) < Efzq)(to, xo0)- This is equivalent to

(0 — 05) DF® (19, x0) < O.

By Lemma 3 in[[10], since1(z, -) is convex andi1 (¢, -) — @ (¢, -) has a local maximum aty, we
get D2d (to, x0) > 0. Finally,o? — 02 < 0 and the result is shown. O

5. Examples

We are going to show how our results can be applied to some standard cases like the American call
or American put. It is well known that an American put on one underlying asset has a nonempty
exercise region unlike an American call on one asset paying no dividend.
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The American put

We can give the shape of the exercise region for an American put even in a case where the volatility
varies. To treat this example we work directly on the price of the asset and not on its logarithm (using
the standard change of variable). The price pro¢&sssolves, under the risk-neutral probability,

ds; = Siu@) dt + Sio (2, Sp) dW;,

where W, is a standard Brownian motion and is the drift term which can take dividend into
account.

PROPOSITION18 The exercise region of the American put with paygffS) = (K — S); is
nonempty and there exists a functiprwith ¢(t) < K for t < T such that the-sections; are
given by&, = [0, (1)].

Proof. The fact that 0= & comes from Remailk| 5. Moreover, in Sectjgn 4, we showed that the put
price is convex with respect to the asset price. Therefore, Propdsiion 16 implies thestettigons
are closed intervals included in,[® . O

The American call with stochastic volatility

Let us examine the American call witan-dividend-payingasset when the volatility is stochastic.
We consider an asset whose log price procgsis described by the following bivariate SDE:

dX, = r()dt + o (t, X, Y)/1— p2(t, Xy, Y AW + p(t, X, ¥y) dW?),
dY, = v(, Y)) + y (¢, ¥;) dW?,

whereW = {W, = (W}, W,z), F:, 0 <t < T}isastandard Brownian motion under the risk-neutral
probability P, andr is the instantaneous interest rate. This is an extension of the model introduced
by Hull and White [[16].
The payoff of an American call is thep(x, y) = (¢* — K).. To use our results, we assume
that this option has two underlying assets but that the payoff depends only on the first asset.
We havel'vy(x,y) = r(t)K if x > In(K), andL'y = 0 if x < In(K). Thus, to prove that
L'y is positive in the viscosity sense it suffices to examine its behavior arowath(K). In fact,
it is not possible to find a functiom € C? such thatw(a) = 0 andw > v in a neighborhood of
a = In(K) because the left derivative atwould differ from the right derivative.
Thus, we can assert that for everg [0, T[, £’y > 0 in the viscosity sense dk?. According
to Proposition 12, we recover Merton’s result[24] even when we have a stochastic volatility:

PROPOSITION19 It is never optimal to exercise the American call written on a non-dividend-
paying asset before expiry. It coincides with the European call.

REMARK 8 Ishii [17] showed, under some reasonable hypotheses on the coefficients of the
diffusion, that£’+ > 0 in the viscosity sense dR" is equivalent taZ’y > 0 in the distribution
sense oiR” wheny is a continuous function. We could have calculated dtily in the distribution
sense but we wanted to illustrate the viscosity theory.
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The call on the minimum of two assets

We can study another example treated in Villenelve [30]: the American call written on the minimum
of two non-dividend-paying assets. Unlike the American call, its exercise region is not empty.

In order to study such examples, we use the Black—Scholes framework. The stochastic
differential equation solved by the logarithms of prices is then

' 12 2 _
dxi = <r(t) -5 > oy, X,)2> dt + ) oyt Xpdw/ . i=12,
j=1 j=1

whereWw = {W, = (W1, W,Z), Fi,0< t < T}isastandard Brownian motion undBr andr is the
instantaneous interest rate. We have the payoff funatior) = (min(e*t, e*2) — K)). We then
calculate

Nz

2
Ly = —7(011 — 2a10+ azp)e’ dh + 1 K X(x; £xp|min(er,x2)>In(K)}»

whereoo*/2 = (a;;), di is the Lebesgue measure on the half-line of equatios x2, x; > In(K),
andv is the normal to this line.

Moreover this distribution is not positive for= T. Indeeda11(T, x) — 2a12(T, x) + a22(T, x)
> 0 sinceA is a positive definite matrix. Using Proposition 13, we §et @.

Sincey is smooth on{x; > x2} N {x1 # In(K)} and satisfie€’y > 0 in the classical way, we
proceed as in the one-dimensional case to show thatddi0, 7[, £’y > 0 in the viscosity sense
on the domair{x; > x2}. The same holds ofx1 < x2}. Using again Propositidn 12, we conclude
that€ is included in{x; = x»} x [0, T.

Basket options

As alast example, we investigate a basket put option, that is, an option with p&yeff ;_; ¢*/)..
It is one of the most often used contracts by practitioners. The logarithms of prices solve the
following SDE:

) 1 n ) .
dx’ = <r(t) —8i(t, X)) + Ej;(r,-j(t, Xt)2> dt+;oij(t,X,)dW,], i=1...,n.

The previous results show that the exercise region is nonempty and that
& c { 3 s x)expx) < rK. Y expl) < K}.
t<T

In the case of constant coefficients Villeneuvel [30] proved

U&= { 3 siexpx) < rk, Y expl) < K}
t<T
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