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We consider a quasi-steady version of thé model of flame front dynamics introduced in [EFG$03].

In this case the mathematical model reduces to a single integro-differential equation. We show that
a periodic problem for the latter equation is globally well-posed in Sobolev spaces of periodic
functions. We prove that near the instability threshold the solutions of the equation are arbitrarily
close to these of the Kuramoto—Sivashinsky equation on a fixed time interval if the evolution starts
from close configurations. We present numerical simulations that illustrate the theoretical results,
and also demonstrate the ability of the quasi-steady equation to generate chaotic cellular dynamics.
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1. Introduction

The laminar flames of low-Lewis-number premixtures are known to display the so-called diffusive-
thermal instability responsible for the formation of a non-steady cellular structure [S83]. The
real-life flames constitute rather an intricate physical system involving the fluid dynamics of the
multicomponent gaseous mixture, the multistep chemical kinetics, as well as the molecular and
radiative transfer. It transpires, however, that the cellular instability is quite robust against these
aero-thermo-chemical complexities and may be successfully captured by a simple reaction-diffusion
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model comprised of only two equations: the heat equation for the system’s temperature and the
diffusion equation for the deficient reactant’s concentration. In suitably chosen units the model
reads

O = Oy + Oy, + 2(Y, ), (1.2)
Y, = Le (Y, + Yyy) — 2(Y, 0), (1.2)
Q= % Le 1 B2Y exp[B(® — 1)/(c + (1 — 0)®)]. (1.3)

Here® = (T — T,)/(T,a — T,) is the scaled temperature, whefg and 7,,; correspond to the
temperature of the unburned gas and the adiabatic temperature of combustion products respectively;
Y = C/C, is the scaled concentration of the deficient reactant wWithbeing its value in the
unburned gasy, y, ¢t are the scaled spatiotemporal coordinates referrefl,4g U and D,h/UZ,
respectivelyD,;, is the thermal diffusivity of the mixturdy is the velocity of the undisturbed planar
flame; Le is the Lewis number (the ratio of thermal and molecular diffusivites)y= T,/ T,4;

B :=T,(1—0)/T,, is the Zeldovich number, assumed to be lafeis the activation temperature;

£2 is the scaled reaction rate, where the normalizing fagtbe* 52 ensures that a8 >> 1 the

planar flame propagates at the velocity close to unity.

The instability occurs when the Lewis number Le falls below a certain critical value
Le.(B,0) < 1. Close to the instability thresholde < Le.) the flame structure becomes almost
steady and near-planar. This allows for the asymptotic separation of the spatiotemporal coordinates
and, as a consequence, reduction of the effective dimensionality of the system. As a result the flame
dynamics may be described by a single geometrically invariantf¢@ijh-order PDEfor the flame
interface. In suitably chosen units it reads (see [FS87])

Vo =14 (@ — Dk + kys. (1.4)

HereV, is the normal velocity of the flame-interfaceis its curvaturey is the arc-length along the
curved interface, and = 38(1 — Le).

The coordinate-freg (1.4) and especially its weakly nonlinear twin, the Kuramoto—Sivashinsky
(K-S) equation[(1.22) appear in a variety of physical problems typically including free interface, as,
for instance, in the dynamics of the solid-liquid interface of an overcooled pure substance [F88].

However, [(T.}) is not the only low-dimensional model generating cellular instability. As has
been realized recently, the effect may also be covered by models based on coupled second order
coordinate-free systems for the flame interface and its temperature. For example, in the adiabatic
case the linear stability analysis suggests the following Gl system (see [FGSO03]):

Vio=1+k+ 0O, (1.5)
D © = O —ak — 6. (1.6)
Here D;® is the Lagrangian time derivative of the interface temperature field along the “flow”
generated by the normal velocity. In the intrinsic coordinde® may be written as

N
D;® =6, + (—95/ k(s',t)ds’. x.7)

Thus, on the one hand, as one can easily verifyxthenodel [1.5] 1.6) reduces formally {o (IL.4)
whena approaches unity, while, on the other hand, including the interface temperature is likely to
provide a deeper connection with the original reaction-diffusion systerp (fL.1), (1.3). Moreover, the
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k-6 model may serve as a basis for the description of the flame interaction with the background flow-
field, which so far has been developed only for cellularly stable flamesc ‘Bhmodel may be either
derived using the appropriate gradient expansion in the intrinsic coordinates, of, as in [FGS03], may
be built as a geometrically invariant extrapolation consistent with the relation provided by the linear
stability analysis of the planar flame.

However, one can observe, for instance via numerical simulation, that not far from the instability
threshold the time derivative in the second equation oktlemodel [1.5[ 1.6) has a relatively small
effect on the solution. Based on this observation one can defjnas-steady -6 model as follows:

Oy —ak — 6 =0. (1.9)
Indeed, as we rigorously demonstrate below for the weakly nonlinear case, the solutions of the
quasi-steady model are asymptotically close to the solutions of the K-S equation.

For a mildly distorted planar flame, propagating along ghexis, the flame interface may be
described by an explicit function of the transversal coordirate

y=—t+d(x,1). (1.10)
In this case,
1.2
Vixl— @, — §¢x (2.11)
Kk>~®,, ds~dx, and D, ~06;+ ,6,. (1.12)
As a result one obtains weakly nonlinear versions ofidffernodels,
1.2
P, + §¢x =@ — 0O, (1.13)
O+ D0, = O +adyy — O, (1.14)
and, respectively,
1.2
D, + Ed)" =@ — 0O, (1.15)
Oxx +ady — O =0. (1.16)

The reduced models (as well as their geometrically invariant counterparts) constitute new dynamical
systems not explored yet either analytically or numerically.
It is quite obvious that the inversion

O=al-03)"to,, (1.17)

is well defined on any reasonable function space to be considered for this problem, therefore one
can think of [1.1}4) as a relaxation equation around the equilibfium]|(1.17).

The current paper is devoted to the analysis of the sygtem [1.I5, 1.16) that we rewrite as a single
nonlocal equation

1 -
@, + E@f =&, —a(l - ) lo,,. (1.18)

One can consider two natural boundary value problems on a finite intervl fot (1.18). One is

the adiabatic problem corresponding to the flame propagation in an insulated combustible strip.
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Another one is the periodic problem corresponding to the combustion of a thin cylindrical shell.
Both settings reflect the main dynamical features of the system for a sufficiently wide interval.
However, the periodic problem is somewhat more convenient for the rigorous study, as one deals
with the exponentials as a basis in the Fourier representation which is invariant under differentiation.
This is why in the current article we choose to study the latter. We note also that the bulk of analytical
work regarding the K-S equation has been performed with the periodic conditions.
Thus, for the periodic problem on the intervall /2, L /2] that we study below(/ — 33)—1 can
be explicitly expressed (cf. S€q. 4) as

1 (472 costn) f(x —n —L/2)
-3t =z / . d 1.19
[( D10 2) 10 sinh(L/2) n (1.19)
The basic feature of (1.18) is that, in a more abstract form:
1
@, + =P’ + AP —aBP =0, (1.20)

2 X

there is a competition between the positive operators —af andaB, B = (I + A)~tA. This
situation is reminiscent of the K-S equation, where the competition is betw@and A. Equation
(1.18) turns out to be rather benign: as we show below the periodic boundary value problem for it
is globally well posed.

The main objective of the paper, however, is to establish a rigorous link betweéputim-
Steady Mode{Q-S), namely[(1.7]8), and the K-S equation. Indeed, about the equililwbium0 of
(1.18) the dispersion relation yields

ak?

1+ k?

Setting 0< o — 1 := ¢ < 1, we observe that in the long-wave rarige: 0( /¢), (1.21) is identical

to the dispersion relation of the K-S equation [580]. At the same time the behavior of the spectrum
(1.23) for the Q-S equatioh (1118) for large w; ~ —k? is identical to that of the original free-
interface problem [MS79], in contrast to K-S where itis—k*. However, it seems plausible that

the asymptotic dynamics of the front foe= 0 (¢=2) andx = 0(¢~Y/?) is the same as that of the

K-S equation. More precisely, in the coordinates re2, & = x./z, we anticipated ~ ¢U, where

U solves the K-S equation

wx = —k% + = (- DK% —ak?+ - . (1.21)

1
U: + E(Uf)z + Uggee + Uge = 0. (1.22)

Using more rigorous terms, |éf be the periodic solution of (1.22) on a fixed time interval
[0, To] with initial condition Ug of period Lo > 0. We prove that, for O< ¢ < gg, the unique
solution® of (1.18) with periodLo/+/¢ is such that

max|® (x, 1) — eU(x/z, te?)| < Ce? (1.23)

for 0 < t < To/e?. A basic assumption is that the initial dakg for @ are “well-prepared’(see e.g.
[GM97,[DEMO02]): @9 = eUg + c2ug, whereug, for simplicity, does not depend enis sufficiently
smooth and has also peridg/./c. The valuesg depends only oihg, Tp and initial data.

Although the quasi-steady model was introduaddhocto serve as it were as a “bridge” between
the full k-6 model and the GI equatiop (1.4), it represents in our opinion an interesting dynamical
system in its own right. The primary objective of a limited set of numerical solutions that we present
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in Sectior] # was to verify at least a qualitative closeness of the solutions of the quasi-steady model
to the solutions of the K-S equation even for moderately small valuesafid, secondly, to show
that the quasi-steady model generates cellular structure and turbulence.

We need to clarify that the asymptotic convergence to the K-S equation is in terms of the
instability parametee for a fixed albeit arbitrarily large time, and not in termsrof> co. Since
the spatial interval. = Lo/./¢ and the instability parameter in (1]23) dependeorc 1, and the
time that it takes for a given solution to approach the attractor may be extremely large, we cannot
at this point make any rigorous claims concerning the final pattern that is developed, and, therefore,
we need the numerical solution to demonstrate the similarity of fully developed dynamics between
the Q-S equation and the K-S equation. Moreover, it is interesting to observe the behavior exhibited
by the system in the deeply nonlinear range wheignot small and the result of Section 3 is not
valid.

This study was also motivated by the desire to explore farther the role played by the K-S
equation as a “modulation equation” in combustion, chemistry, fluid mechanics, etc. We hope that
our approach can be extended to more complex models, especially to free boundary problems in
combustion and dynamics of free boundaries (§ee [BLOO, BHLO1]). Yet another component of
our interest in the quasi-steady equation is an attempt to understand what particular features of a
nonlinear equation are important for generation of specific dynamical patterns. We hope that this
and the future comparative studies of the ftdb model, the quasi-steady model, and the K-S
equation may shed some light on this matter.

The paper is organized as follows: in Secfign 2 we check that the problem is well-posed in the
framework of Sobolev spaces fafperiodic functions for fixede. We work with the differentiated
equation for = @,. This is a standard trick (see the treatment of the K-S equatidon_in [Temam]).
The nonlinearity ¥, is easier to handle thamf.

In Sectiorﬂ%, we seb = g¢, hencel = £%2y;, and consider the problem fgr in the stretched
coordinates and r, with fixed space period.g and time interval [0Tp]. We expressp as¢ =
U +¢eu, ¥y =V + ev, whereU solves the K-S equation or-[Lo/2, Lo/2] x [0, To], andV = Ug
solves the differentiated K-S equation. We study the problemyfaie point out that the error
estimate[(1.23) is based only on the control of ifenorm of v (r).

Finally, Sectior # is devoted to the numerical simulation. Numerical results are presented which
are fully in accordance with the theoretical part. We also demonstrate numerically that the Q-S
equation generates chaotic solutions on a sufficiently wide interval.

We should emphasize right away that neither the global existence results obtained in Section
nor the asymptotic closeness to K-S on a given time interval (Sddtion 3) guarantee the behavior
characteristic of the dissipative systems as one would naturally expect. Indeed, existence of an
absorbing ball, and, consequently, of a global compact attractor of finite Hausdorff dimension, as
well as a more detailed numerical study of the dynamics of the quasi-steady model will be the
subjects of forthcoming papers.

2. Mathematical setting
Let L > 0 andT > O be fixed. We considefr (1.]18),
1 _
P+ 5P = Do —a(l = 0) Dy,
on the time interval [0T'] in the class of periodic functions with periddin x. Differentiation with
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respect toc leads to
U e = —a(l -0, (2.24)

for ¥ = @, which has zero average. We easily reco®dirom ¥, in view of
d rL/r2 1 L2 5
—/ D(x,t)dx = ——/ ¥ (x, 1) dx. (2.25)
dr J 12 2) 12

For integer or arbitrary realwe denote byH* the usual Sobolev spacesibfperiodic (generalized)
functions with zero average, which we will conveniently represent as

{w = Zakwk Zkkak < oo]

with norm
L/2
llwl|? Zxkaf (= |wW)? = / w®)?dr if s=0,1,2,...).
/2

Here thew; are a complete set of eigenfunctions of the operator

d2 2. 2 0
A=—g5=-00:DA)=H? > H

corresponding to the positive eigenvalugs< 12 < A3 < --- 1 oo. Note that the eigenvalue zero
does not occur in this setting because nonzero constant functions are excluded from our Sobolev
spaces.

These eigenfunctions are also eigenfunctions of the operator

=U+A)7A:H° > HO,

with eigenvalues.,, /(1 + A,), so that, with Parseval’s identity,

L/2 00 L/2
[L w(x) Bw(x) dx = Z a,§<||w||%=|w|2=/L/2w<x)2dx

l—i—k

2

Lrz 2 2 2 Lr2 2
—w’(x)Bw(x)dx = a; < |wllf = |w'| =/ w’(x)“ dx.
./_L/z Z 1+/\ k ! —L)2

Moreover,

Ay =A—aB:D(Ay) = H? - H° has Agw, =i, [1— —— \w,,
1+,

and therefore

L/2 1-a\? 1-a\? a,g
[L w(x)Aqw(x) dx = Z((xw 5 )—( 5 ))HM (2.26)
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If we denote the ma@ — ¥, by F, then the abstract form df (24) reads
U+ AW + F(W) = 0. (2.27)

Clearly A, defines a sectorial operator. Since any intermediate spdcwith 0 < s < 2 is
an interpolation space, local well-posedness for initial dat& fnfollows by analytic semigroup
methods, provided we can choosesuch thatF : H® — HO is locally Lipschitz. With A1
embedding inL°°, we may choose = 1.

To establish global existence we observe first that if we repraserst a Fourier series

o0
W= a(t)wg
k=1
and multiply by¥, then integration yields, in view of (2.P6),

1d L2, o0 1—a\ar()? S [(1—a\’a(n)? B (L2
- w2dx A < <= w2 dx,
2dt/L/2 +;(k+ 2 >1+xk k;( > >1+xk 2f >

whereg = (1 — )2 appears as a characteristic time, whence

dr < |¥(0)|13exp(BT).

re 1—a\?a(r)?
max ||¥ ()| + 2 A
max ¥ (0l + /0 ;1(” . >1+xk

We conclude that
2 ! 2 2
max ||‘1’(f)||o+C/ ¥ @®lTde < ¥ (O gexp(BT) (2.28)
o<r<T 0
for some positive constaxt, which takes into account that
by Lo 2 1 N
T ) e

only ask — oo. Moreover, thanks téf —1 > L1 (with zero average),

T T
/ W2 dr < CCmax w5 | ¥ @I2dr < CIWw(0)Igexp28T). (2.29)
0 0t<T 0

Estimates 8, 2.29) allow the construction of a weak solution satisfying| (2.28, 2.29) for initial
dataw (0) in H°, and a variant of (2.29) gives uniqueness.

Next we observe that far > 0 the solutions are in fact smooth, as long as they exist. This
follows from standard estimates for solutions@™ A,u = f(¢), which are easily derived using
the differential equations for the Fourier coefficients. Representiugd / as

u= Zak(t)wk, f= Zbk(f)wb
k=1 k=1
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we have

o
a ay = by, =rm|1- ~ Ak,
k T Kkak k Mk k< )»k—l-l) k

whence, foru; > 0,

dr,

T T b (t 2
ar(T)? + / jrar ()2 dt < ax(0)% + f -
0 0 Mk

and also,
T = 2 T 2
ak(T)Z—i—/ Mdtéak(O)z—i—/ b
0 Mk 0 Mk

Note that fore > 0 there will be a finite number of negative eigenvalugswhich will make the
corresponding Fourier coefficients grow, but those are easily controlled’bgependent constant.
It thus follows by standard procedures that

T T
2 2 . 2
max 1O+ [ ol o+ [ ol o

XX

T
<c(||u<0>||§+ fo ||f(r>||§_1dt), (2.30)

where the constan® depends o, s, L andT. Employing this estimate with = 0 is consistent
with (2.28[2.29) but does not improve the regularityfaf
Since
luvlls < Cllullslivlls (s > 1/2),

we have, with changing constants,
! 2 2 7 2
uuy||$dt < C max |u(t uy |5 dt
/0 lluuc||§ dr < Oggll (OIS A llaxl§

T
< 2 2 dr. :
< comax i) [ iz, (231)

XX

For the local solution above with initial data inD(A,) = H2, the estimates (2.8, 2/31) allow a
successful bootstrap argument local in time, to show that the solution is smooth, as long as it exists.
To get a global bound however, such as

T
max |¥ (1| ()%, dr < C, 2.32
oI 1 ()l +./o 1P ()51 (2.32)

whereC is allowed to depend oa, s, L andT of course, but otherwise only on the initial data
through||¥ (0)||s, we have to start from a global estimate. Wjth (2.31) invalidsfes 0, we need a
second uniform estimate. If we multiply the equation-b¥, ., then integration yields

1d (L2 L/2 L/2 L/2
——/ lI/dex—i-/ w}xdxga/ llfxzdx—i-/ Y, W, dr.
2dt J_p )0 —L/2 —L/2 —L/2



Q-S EQUATION 139

The last term on the right hand side is estimated by

L/2 1 [L/2 1 L/2
f VYW, dx < -/ w2 dx + = max|ll/(x)|2/ w2 dx
—L)2 2 ) 12 2 x ~L/2

1 rL/2 L L/2 2
A ([ )
2 —L/2 2 —L/2

which combined with the previous estimate gives

d [L/? L/2 L/2 L/2
—f w2 dx +f w2 dx < (Za +L/ wfdx> f w2dx.
dr J_p)2 —L/2 —L)2 —L)2
By (2.28) the last factor on the right hand side is integrable o' [0Consequently[(2.32) holds
with s = 1 for the semigroup solutiot# with initial data¥ (0) in H?2, but the constant depends
only on ||¥ (0)|1. Taking limits one then easily constructs global weak solutions for initial data
¥ (0) in H1, satisfying the same bound, i.@SZ) with- 1.
As for the global bootstrap argument, we note that (2.32) with1 and [2.3[L) imply that with
¥ (0) in H2, (2.32) holds withs = 2. If alsow (0) is in H3, then (2.3p) withs = 2 and [(2.3[L) imply
that [2.32) holds with: = 3, and so on. Thus the bootstrap gives (R.32) with agy 1, provided
Y (0)isin H®.
The consequences are stated in the following theorem.

THEOREM2.1 Let¥g be given inH*® wheres =0, 1, 2,3, .... Then[2.24) has a unique solution
on any time interval [0T] with ¥ = ¥g atr = 0. The solution belongs ta2(0, 7; H**t1) N
([0, T]; H*), and has¥, € L?(0, T; H*~1), and the corresponding norms are bounded by a
constant which depends only ey s, L, T and||¥ (0)||;. Thus the solution is smooth (and in fact
analytic in time) forr > 0. Therefore

(I = 0%) (W + W) + Yrnx + (@ — D¥,, =0 (2.33)

for + > 0. The latter equation holds ib?(0, T; H) as soon as = 3. For [1.18) the statement is
similar, with initial data®g in H*, wheres = 1, 2, 3, ..., and [1.1B) rewritten as

1
(I — 0% <q>t + Eqﬁf) + Pryx + (@ — 1)@, =0. (2.34)
Next we consider the same issues for the K-S equation
1
¢t + Egpf + (pxx + (pxxxx =0 (235)

on the time interval [0T] in the class of periodic functions with periddin x. Differentiation with
respect toc then leads to
U + VW + Wiax + W =0 (236)

for ¥ = @, which has zero average [Temém, NS84].
The eigenfunctionsy, are also eigenfunctions of the operatsr— A : D(A%?) = H* — HO,
with eigenvaluegi, = A (Ax — 1), and the abstract form df (Z]36) reads

W, + (A2 + AW + FW) =0, (2.37)
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Local well-posedness for initial data ##* follows as before by analytic semigroup methods. Note

that
/L/Z ) f: 1 2 1 5 ( )
w(x)(A“+ Aw(x)dx = ((Ak — —) — —)a . 2.38
L2 = 2 4)k
If we multiply the equation by, then integration yields, in view df (2.38),
1d (L2, > 1\? 1& 1 (L2
—— w2 dx + ()\—->a(r)2<- a(t)2=—/ w2 dx,
2dr /L/Z ]; k 2 k 4; k 4 —L/2
whence ,
T
2 24 < 2 4 _
omax IIAIf(t)IIO+C/0 [P @l5d < ||W(O)||oexp(2> (2.39)

for some positive constaidt.
Estimates for solutions of, + (A2 — A)u = f (1) now come from

ar + g = by, pr = Gy — 1) ~ 22,

and provide us with

T T
o ||u(r)||§+fo lu() 1,5 de < C(||u(0>||§+f0 ||f(r>||§_2dz>,

where the constant dependswyy, L andT.

With initial data in A1, estimate9) is enough to start the global bootstrap, which may then
be continued with[(2.31) as before. Omitting further details we state the result in the following
theorem.

THEOREM2.2 Let¥g be giveninH*® wheres =0, 1, 2,3, .... Then[2.3F) has a unique solution
on any time interval [0T] with ¥ = g atr = 0. The solution belongs ta2(0, T; H**2) N
Co%([0, T]; H*), and has¥, € L2(0, T; H*~2). The solution is smooth far > 0. For [2.35) the
statement is similar, with initial dat@g in H, wheres = 1,2, 3, ....

3. Asymptotics

In this section, we are interested an= 1 + ¢, wheree is a (small) fixed positive number. In
fact £ is nothing other tharg in ). Moreover (a key point), we take the period to depend
ong, introducing a reference peridch > 0 and time interval [0Tp]. The reference space and time
variables will be denoted by andz. We consider (1.18), equivalently written &s (2.34), in the class
of periodic functions with period.o/+/z in x, on the time interval [0Ty/¢?] in .

We rescale

@ =cp, t=r1/e%, x=£&/e, (3.40)
whence[(2.34) becomes

1
(I —£?) (‘Pr + §¢§> + ¢ezee +9ze = 0. (3.41)
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We then look forp as
¢ =U +¢u, (3.42)

so that withe = 0 in (3.4]), we recover the 4th order K-S equation
1.2
U: + EUg + Uggee + Ugg = 0. (3.43)

Our aim now is to establish a uniform bound@owhich is valid for small positive, uniformly ine.
For u the equation reads

1 1
(I — 8852) <Mr + E(ZUgug + 8u§)> +ugsee +uge = 8§2<Ut + —ng).

2
As in Sectiorf 2 we work with the differentiated equationsyot= ¢z, V = U, v = ug, which are
(I = e0)) (e + Y¥e) + Yesee + vee =0, (3.44)
Ve + V Ve + Vegee + Ve =0, (3.45)
(I — e92)(ve + (VV)g + e0vz) + vegge + vee = 07(Ve + V Vo). (3.46)
Note that

v = 83/21p, Y=V +ev,
and thatu is recovered fromv since its mean valug satisfies

1 Lo/2 ) Lo/2 )
Ur + — vWdE+e / vodé =0. (3.47)
2L0 J_14/2 —Lo/2

For ¢ we now consider so-called “well-preparetj-periodic initial data of the form

@(€,0) = go(§) = Uo(§) + euo(%), (3.48)
whence, withyo = ¢, Vo = U, vo = ug, for ¢,
V(&,0) = yo(§) = Vo) + evo(§). (3.49)

ThusUy, Vo, ug, vo are the initial data fot/, V, u, v.
The basic estimate in this section comes from tesfing [3.46) shich with the usual notation
[v]2:= ["% y(&)2dE yields

—Lg/2

1d ) ) Lo/2 Lo/2
EE(M + elvel )+/ (Vv)gvdé—E/ ((Vv)g + gvvg)vge dE
—Lo/2 —Lo/2

Hlugel? = uel? = [

Lo/2
(Ve + VVe)vee dE. (3.50)
/2

Writing also|v|« := sup: [v(§)| we have

1d. 2 2 2 2
EE(M + elvel?) + [vee |7 < Voo lvel [v] + [ Veloolv|” + €] Voolve | [vee |

+ &| Ve loo|v] [vee | 4 £2|v]oolve | [vge] + Vel + Ve + V Vel |vge].  (3.51)



142 C.-M. BRAUNER ET AL.

Then, in view of|v|s < colvel, With cg = 4/Lo > 0, and Young'’s inequality,

v 1
&2|v] ol v | [0ze | < colve [Plvgs | < §|vsg|2 + Ee%gwsr‘ (3.52)

wherev > 0 can be chosen freely. Using again the Young inequality and the interpolation relation
[Temam, Chap. Ill]

v 1
lve|? < §|v55|2+ Z'”'Z’ (3.53)

it is easy to see that there are constants» > 0, depending only on the norm &p in H? (which
controlsV (r) in H? and thereby Ve |), but independent of such that

d
a(|v|2 + &lve?) 4 calvee |2 < Ve + VVe|? + calv]® + e¥ug |2, (3.54)

If V; + V' V¢ is square integrable in space and time, this differential inequality gives a bound on
A(r) = |v2 + &lvg 12, which depends only ohg, Tp andA(0), provideds is sufficiently small. To
be precise, we have, in view of Sect[dn 2, the following lemma.

LEMMA 3.1 LetVy € H2 andvg € HL. There existgo > 0 such that, whenever @ ¢ < &,
lv(z)]| is uniformly bounded on the time interval,[0p], independently of. The numbekg and the
bound depend only ok € H?, vo € H® andTp.

Combining with [(3.4F), which gives the control of the mean valug,afie obtain thanks to the
Poincaé—Wirtinger inequalityl[Brezls]

THEOREM3.2 LetUp € H® andug € H?. There existgg > 0 such that, whenever @ ¢ < &,
lu(&, )] < Cforall (§,1)in[—Lo/2, Lo/2] x [0, Tg]. The numberg and the bound” depend
only onUp € H3, up € H! andTp.

Returning to the original problen® = e¢, ¢ = U + eu, we state the main result of the paper:

COROLLARY 3.3 With the assumptions of Theorém|3.2 on the “well-prepared” initial flata](3.48),
we have

max|® (x, 1) — eU(x/z, te?)| < Ce? (3.55)
for . T
0 0

<——, 0<r<=. 3.56

|x| NG 2 (3.56)

REMARK 3.4 The above result for the “well-prepared” initial dgta (8.48) combines in fact two
results: one is the closeness to K-S proper, another one demonstrates continuity with respect to the
initial conditions. In fact it would suffice to seb(¢) = 0 in (3.48), i.e. evolutions by two different
equations are close if they start from the same initial configuration.

4. Numerical simulation

As was mentioned in the introduction, the objective of the numerical simulation was two-fold: firstly
to verify closeness of the solutions of the quasi-steady model to the solutions of the K-S equations
even for moderately small values gfand, secondly, to show that the quasi-steady model generates
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sufficiently rich dynamics including the occurrence of cellular structure and turbulence. We reiterate
that the asymptotic result that was proved above does not by itself guarantee the asymptotic behavior
of the solutions of the quasi-steady model until one shows existence of a global attractor and obtains
appropriate estimates for the convergence to it.

Even then, it is not quite clear what kind of statements can be made regarding the structure of
the attractor in comparison to those for the K-S equation. It is therefore desirable to carry out a more
detailed numerical study of the dynamics generated by the quasi-steady model which we hope to
discuss elsewhere in the near future.

For the numerical simulations it is more convenient to deal with the interyal][@han
[—L/2, L/2]. Thus, the periodic conditions are

00 =6(), O'0) =0'(L), @0 =0L), @0 =0 L). (4.57)

Next we need an explicit expression for the temperatara spaces of periodic functions. Via
variation of parameters and employing the boundary conditions it is uniquely defined as

O =al -0 to,,

X X
= Cre* + Cre ™™ + % <ex/0 e, dn — ex/O e P, dn)

L N L —(L—'I)¢
o e o e
C = — Ui d s C = —/ —Wd
1 /o — dn 2=3 ) 1=t W

For convergence of the numerical code it is important to represent the expressiéh for

with negative exponents under the integral. After some elementary manipulation it reduces to the
following compact form:

where

L ,—n —(L—n)
e "+e
O = — —n)dn. 4.58
05'/(; 2(1— E_L) wx(x — 1) dn ( )
As a result we obtain an integro-differential equation in terme pf
1 Lemn 4 g=(L=m)
@-[ + E@f = @xx —_ Ol/o WQXX(X — T)) d?’], (459)

which was integrated numerically.

Numerical solutions were carried out on the interigl= 14 for the K-S equation, and for the
appropriately rescaled (as dictated by the asymptotic result in the previous section) inteevals
Lo/+/¢ in the physical coordinate for the quasi-steady model. The time interval for the K-S equation
wasTp = 20, while the time intervals for the quasi-steady model were also adjusted in accordance
with the theorem in Section 3. We set identical (appropriately rescaled) initial configurations.

The figures presented below do not exactly correspond to the actual evolution: an artificial drift
F(x,t) = @(x,t)+ .03 x ¢ was added for visualization purposes, in order to avoid overlapping of
the fronts. One should keep in mind that the equations under discussion refer to a small perturbation
of the basic front moving with constant velocity.

Figs. 1-3 show consecutive front positions generated by|(4.59) for.25 ands = .04 (Figs.

1 and 2 respectively), and by the K-S equation (Fig. 3). For convenience the solution of the K-S is
presented in the, r coordinates.
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Fig. 4 represents a single front generated[by (4.59} fer .25 at the end of the time interval
chosen for the simulatior, = 320, which corresponds to this valuesofWe bring it here in order
to give the reader a better idea of the true amplitude of the solutions.

Finally, Fig. 5 represents a fully developed turbulent regime generated by the quasi-steady model
for o« = 1.25, and a larger basic periad = 50 (cf. Fig. 1). The evolution pattern shown occurs on
a time interval 6006< ¢ < 8000.

5. Conclusions

As was mentioned in the introduction, the advantage of the«ffll model or its quasi-steady
truncation [(I.p[ 116) is that including the interface temperature may better reflect the properties
of the original reaction-diffusion systein (IL.1), (1.3) while, at the same time, as we hope, they may
serve as a basis for the description of the flame interaction with the background flow.

We have rigorously shown above that for the weakly nonlinear case, the periodic problem for
the quasi-steady model is well-posed, and its solutions are asymptotically close to the solutions of
the K-S equation in the sense of the instability paramefer any fixed time interval.

On the other hand, we have demonstrated numerically a qualitative similarity of fully developed
dynamical patterns between the Q-S equation and K-S equation, including the deeply nonlinear
range wheres is not small. Indeed, as we saw, the quasi-steady model is capable of generating
cellular structures and turbulence. A more detailed numerical study that we intend to present in the
near future shows a remarkable variety of dynamical patterns.

Since the fullc-6 model should be considered to be perhaps somewhat more physically sound,
one faces the necessity to subject it to a similar study as the one presented above. We are hopeful
if not convinced that, modulo overcoming some moderate technical difficulties, we shall be able to
present results of such a study in the near future.

At the same time, we would like to reiterate that, although the Q-S equation was introduced as
anad hoctruncation of the fulk-0 model and the Gl equatiof (1.4), it represents, in our opinion,
an interesting dynamical system in its own right. It seems, so far, that the Q-S equation model is
relatively “friendly” regarding the rigorous analysis, and we intend to demonstrate in the near future
that its dynamics is essentially finite-dimensional in the sense of the attractor, inertial manifold, etc.,
once again similarly to the K-S equation.

Finally, we should remark that it would be interesting to understand what particular features of a
nonlinear equation of a certain type are important for generation of specific dynamical patterns. At
the same time, we would like to find out if and when such equations as for instance the Q-S equation
and the K-S equation differ substantially in their qualitative behavior.
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