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Weakly nonlinear asymptotics of theκ-θ model of cellular flames:
the Q-S equation
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We consider a quasi-steady version of theκ-θ model of flame front dynamics introduced in [FGS03].
In this case the mathematical model reduces to a single integro-differential equation. We show that
a periodic problem for the latter equation is globally well-posed in Sobolev spaces of periodic
functions. We prove that near the instability threshold the solutions of the equation are arbitrarily
close to these of the Kuramoto–Sivashinsky equation on a fixed time interval if the evolution starts
from close configurations. We present numerical simulations that illustrate the theoretical results,
and also demonstrate the ability of the quasi-steady equation to generate chaotic cellular dynamics.
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1. Introduction

The laminar flames of low-Lewis-number premixtures are known to display the so-called diffusive-
thermal instability responsible for the formation of a non-steady cellular structure [S83]. The
real-life flames constitute rather an intricate physical system involving the fluid dynamics of the
multicomponent gaseous mixture, the multistep chemical kinetics, as well as the molecular and
radiative transfer. It transpires, however, that the cellular instability is quite robust against these
aero-thermo-chemical complexities and may be successfully captured by a simple reaction-diffusion
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model comprised of only two equations: the heat equation for the system’s temperature and the
diffusion equation for the deficient reactant’s concentration. In suitably chosen units the model
reads

Θt = Θxx +Θyy +Ω(Y,Θ), (1.1)

Yt = Le−1(Yxx + Yyy)−Ω(Y,Θ), (1.2)

Ω =
1

2
Le−1 β2Y exp[β(Θ − 1)/(σ + (1 − σ)Θ)]. (1.3)

HereΘ = (T − Tu)/(Tad − Tu) is the scaled temperature, whereTu andTad correspond to the
temperature of the unburned gas and the adiabatic temperature of combustion products respectively;
Y = C/Cu is the scaled concentration of the deficient reactant withCu being its value in the
unburned gas;x, y, t are the scaled spatiotemporal coordinates referred toDth/U andDth/U2,
respectively;Dth is the thermal diffusivity of the mixture;U is the velocity of the undisturbed planar
flame; Le is the Lewis number (the ratio of thermal and molecular diffusivities);σ := Tu/Tad ;
β := Ta(1−σ)/Tad is the Zeldovich number, assumed to be large;Ta is the activation temperature;
Ω is the scaled reaction rate, where the normalizing factor1

2 Le−1 β2 ensures that atβ � 1 the
planar flame propagates at the velocity close to unity.

The instability occurs when the Lewis number Le falls below a certain critical value
Lec(β, σ ) < 1. Close to the instability threshold(Le . Lec) the flame structure becomes almost
steady and near-planar. This allows for the asymptotic separation of the spatiotemporal coordinates
and, as a consequence, reduction of the effective dimensionality of the system. As a result the flame
dynamics may be described by a single geometrically invariant (GI)fourth-order PDEfor the flame
interface. In suitably chosen units it reads (see [FS87])

Vn = 1 + (α − 1)κ + κss . (1.4)

HereVn is the normal velocity of the flame-interface,κ is its curvature,s is the arc-length along the
curved interface, andα =

1
2β(1 − Le).

The coordinate-free (1.4) and especially its weakly nonlinear twin, the Kuramoto–Sivashinsky
(K-S) equation (1.22) appear in a variety of physical problems typically including free interface, as,
for instance, in the dynamics of the solid-liquid interface of an overcooled pure substance [F88].

However, (1.4) is not the only low-dimensional model generating cellular instability. As has
been realized recently, the effect may also be covered by models based on coupled second order
coordinate-free systems for the flame interface and its temperature. For example, in the adiabatic
case the linear stability analysis suggests the following GI system (see [FGS03]):

Vn = 1 + κ +Θ, (1.5)

Dt Θ = Θss − ακ −Θ. (1.6)

HereDtΘ is the Lagrangian time derivative of the interface temperature field along the “flow”
generated by the normal velocity. In the intrinsic coordinatesDtΘ may be written as

Dt Θ = Θt +Θs

∫ s

κ(s′, t)ds′. (1.7)

Thus, on the one hand, as one can easily verify, theκ-θ model (1.5, 1.6) reduces formally to (1.4)
whenα approaches unity, while, on the other hand, including the interface temperature is likely to
provide a deeper connection with the original reaction-diffusion system (1.1), (1.3). Moreover, the
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κ-θ model may serve as a basis for the description of the flame interaction with the background flow-
field, which so far has been developed only for cellularly stable flames. Theκ-θ model may be either
derived using the appropriate gradient expansion in the intrinsic coordinates, or, as in [FGS03], may
be built as a geometrically invariant extrapolation consistent with the relation provided by the linear
stability analysis of the planar flame.

However, one can observe, for instance via numerical simulation, that not far from the instability
threshold the time derivative in the second equation of theκ-θ model (1.5, 1.6) has a relatively small
effect on the solution. Based on this observation one can define aquasi-steadyκ-θ model as follows:

Vn = 1 + κ +Θ, (1.8)

Θss − ακ −Θ = 0. (1.9)

Indeed, as we rigorously demonstrate below for the weakly nonlinear case, the solutions of the
quasi-steady model are asymptotically close to the solutions of the K-S equation.

For a mildly distorted planar flame, propagating along they-axis, the flame interface may be
described by an explicit function of the transversal coordinatex,

y = −t +Φ(x, t). (1.10)

In this case,

Vn ' 1 −Φt −
1

2
Φ2
x (1.11)

κ ' Φxx, ds ' dx, and Dt ' Θt +ΦxΘx . (1.12)

As a result one obtains weakly nonlinear versions of theκ-θ models,

Φt +
1

2
Φ2
x = Φxx −Θ, (1.13)

Θt +ΦxΘx = Θxx + αΦxx −Θ, (1.14)

and, respectively,

Φt +
1

2
Φ2
x = Φxx −Θ, (1.15)

Θxx + αΦxx −Θ = 0. (1.16)

The reduced models (as well as their geometrically invariant counterparts) constitute new dynamical
systems not explored yet either analytically or numerically.

It is quite obvious that the inversion

Θ = α(I − ∂2
x )

−1Φxx (1.17)

is well defined on any reasonable function space to be considered for this problem, therefore one
can think of (1.14) as a relaxation equation around the equilibrium (1.17).

The current paper is devoted to the analysis of the system (1.15, 1.16) that we rewrite as a single
nonlocal equation

Φt +
1

2
Φ2
x = Φxx − α(I − ∂2

x )
−1Φxx . (1.18)

One can consider two natural boundary value problems on a finite interval for (1.18). One is
the adiabatic problem corresponding to the flame propagation in an insulated combustible strip.
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Another one is the periodic problem corresponding to the combustion of a thin cylindrical shell.
Both settings reflect the main dynamical features of the system for a sufficiently wide interval.

However, the periodic problem is somewhat more convenient for the rigorous study, as one deals
with the exponentials as a basis in the Fourier representation which is invariant under differentiation.
This is why in the current article we choose to study the latter. We note also that the bulk of analytical
work regarding the K-S equation has been performed with the periodic conditions.

Thus, for the periodic problem on the interval [−L/2, L/2] that we study below,(I − ∂2
x )

−1 can
be explicitly expressed (cf. Sec. 4) as

[(I − ∂2
x )

−1f ](x) =
1

2

∫ L/2

−L/2

cosh(η)f (x − η − L/2)

sinh(L/2)
dη. (1.19)

The basic feature of (1.18) is that, in a more abstract form:

Φt +
1

2
Φ2
x + AΦ − αBΦ = 0, (1.20)

there is a competition between the positive operatorsA = −∂2
x andαB, B = (I + A)−1A. This

situation is reminiscent of the K-S equation, where the competition is betweenA2 andA. Equation
(1.18) turns out to be rather benign: as we show below the periodic boundary value problem for it
is globally well posed.

The main objective of the paper, however, is to establish a rigorous link between theQuasi-
Steady Model(Q-S), namely (1.18), and the K-S equation. Indeed, about the equilibriumΦ = 0 of
(1.18) the dispersion relation yields

ωk = −k2
+

αk2

1 + k2
= (α − 1)k2

− αk4
+ · · · . (1.21)

Setting 0< α−1 := ε � 1, we observe that in the long-wave rangek = O(
√
ε), (1.21) is identical

to the dispersion relation of the K-S equation [S80]. At the same time the behavior of the spectrum
(1.21) for the Q-S equation (1.18) for largek : ωk ∼ −k2 is identical to that of the original free-
interface problem [MS79], in contrast to K-S where it is∼ −k4. However, it seems plausible that
the asymptotic dynamics of the front fort = O(ε−2) andx = O(ε−1/2) is the same as that of the
K-S equation. More precisely, in the coordinatesτ = tε2, ξ = x

√
ε, we anticipateΦ ∼ εU , where

U solves the K-S equation

Uτ +
1

2
(Uξ )

2
+ Uξξξξ + Uξξ = 0. (1.22)

Using more rigorous terms, letU be the periodic solution of (1.22) on a fixed time interval
[0, T0] with initial condition U0 of periodL0 > 0. We prove that, for 0< ε 6 ε0, the unique
solutionΦ of (1.18) with periodL0/

√
ε is such that

max|Φ(x, t)− εU(x
√
ε, tε2)| 6 Cε2 (1.23)

for 0 6 t 6 T0/ε
2. A basic assumption is that the initial dataΦ0 for Φ are “well-prepared”(see e.g.

[GM97, DFM02]):Φ0 = εU0 + ε2u0, whereu0, for simplicity, does not depend onε, is sufficiently
smooth and has also periodL0/

√
ε. The valueε0 depends only onL0, T0 and initial data.

Although the quasi-steady model was introducedad hocto serve as it were as a “bridge” between
the full κ-θ model and the GI equation (1.4), it represents in our opinion an interesting dynamical
system in its own right. The primary objective of a limited set of numerical solutions that we present
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in Section 4 was to verify at least a qualitative closeness of the solutions of the quasi-steady model
to the solutions of the K-S equation even for moderately small values ofε, and, secondly, to show
that the quasi-steady model generates cellular structure and turbulence.

We need to clarify that the asymptotic convergence to the K-S equation is in terms of the
instability parameterε for a fixed albeit arbitrarily large time, and not in terms oft → ∞. Since
the spatial intervalL = L0/

√
ε and the instability parameter in (1.23) depend onε � 1, and the

time that it takes for a given solution to approach the attractor may be extremely large, we cannot
at this point make any rigorous claims concerning the final pattern that is developed, and, therefore,
we need the numerical solution to demonstrate the similarity of fully developed dynamics between
the Q-S equation and the K-S equation. Moreover, it is interesting to observe the behavior exhibited
by the system in the deeply nonlinear range whereε is not small and the result of Section 3 is not
valid.

This study was also motivated by the desire to explore farther the role played by the K-S
equation as a “modulation equation” in combustion, chemistry, fluid mechanics, etc. We hope that
our approach can be extended to more complex models, especially to free boundary problems in
combustion and dynamics of free boundaries (see [BL00, BHL01]). Yet another component of
our interest in the quasi-steady equation is an attempt to understand what particular features of a
nonlinear equation are important for generation of specific dynamical patterns. We hope that this
and the future comparative studies of the fullκ-θ model, the quasi-steady model, and the K-S
equation may shed some light on this matter.

The paper is organized as follows: in Section 2 we check that the problem is well-posed in the
framework of Sobolev spaces ofL-periodic functions for fixedα. We work with the differentiated
equation forΨ = Φx . This is a standard trick (see the treatment of the K-S equation in [Temam]).
The nonlinearityΨΨx is easier to handle thanΦ2

x .
In Section 3, we setΦ = εϕ, henceΨ = ε3/2ψ , and consider the problem forψ in the stretched

coordinatesξ andτ , with fixed space periodL0 and time interval [0, T0]. We expressϕ asϕ =

U + εu, ψ = V + εv, whereU solves the K-S equation on [−L0/2, L0/2] × [0, T0], andV = Uξ
solves the differentiated K-S equation. We study the problem forv. We point out that the error
estimate (1.23) is based only on the control of theL2 norm ofv(t).

Finally, Section 4 is devoted to the numerical simulation. Numerical results are presented which
are fully in accordance with the theoretical part. We also demonstrate numerically that the Q-S
equation generates chaotic solutions on a sufficiently wide interval.

We should emphasize right away that neither the global existence results obtained in Section
2 nor the asymptotic closeness to K-S on a given time interval (Section 3) guarantee the behavior
characteristic of the dissipative systems as one would naturally expect. Indeed, existence of an
absorbing ball, and, consequently, of a global compact attractor of finite Hausdorff dimension, as
well as a more detailed numerical study of the dynamics of the quasi-steady model will be the
subjects of forthcoming papers.

2. Mathematical setting

LetL > 0 andT > 0 be fixed. We consider (1.18),

Φt +
1

2
Φ2
x = Φxx − α(I − ∂2

x )
−1Φxx,

on the time interval [0, T ] in the class of periodic functions with periodL in x. Differentiation with
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respect tox leads to
Ψt + ΨΨx = Ψxx − α(I − ∂2

x )
−1Ψxx (2.24)

for Ψ = Φx which has zero average. We easily recoverΦ fromΨ , in view of

d

dt

∫ L/2

−L/2
Φ(x, t)dx = −

1

2

∫ L/2

−L/2
Ψ (x, t)2 dx. (2.25)

For integer or arbitrary reals we denote byH s the usual Sobolev spaces ofL-periodic (generalized)
functions with zero average, which we will conveniently represent as

H s
=

{
w =

∞∑
k=1

akwk :
∞∑
k=1

λska
2
k < ∞

}
,

with norm

‖w‖
2
s =

∞∑
k=1

λska
2
k (= |w(s)|2 =

∫ L/2

−L/2
w(s)(x)2 dx if s = 0,1,2, . . . ).

Here thewk are a complete set of eigenfunctions of the operator

A = −
d2

dx2
= −∂2

x : D(A) = H 2
→ H 0,

corresponding to the positive eigenvaluesλ1 6 λ2 6 λ3 6 · · · ↑ ∞. Note that the eigenvalue zero
does not occur in this setting because nonzero constant functions are excluded from our Sobolev
spaces.

These eigenfunctions are also eigenfunctions of the operator

B = (I + A)−1A : H 0
→ H 0,

with eigenvaluesλn/(1 + λn), so that, with Parseval’s identity,∫ L/2

−L/2
w(x)Bw(x)dx =

∞∑
k=1

λk

1 + λk
a2
k 6 ‖w‖

2
0 = |w|

2
=

∫ L/2

−L/2
w(x)2 dx,

∫ L/2

−L/2
−w′′(x)Bw(x)dx =

∞∑
k=1

λ2
k

1 + λk
a2
k 6 ‖w‖

2
1 = |w′

|
2

=

∫ L/2

−L/2
w′(x)2 dx.

Moreover,

Aα = A− αB : D(Aα) = H 2
→ H 0 has Aαwn = λn

(
1 −

α

1 + λn

)
wn,

and therefore∫ L/2

−L/2
w(x)Aαw(x)dx =

∞∑
k=1

((
λk +

1 − α

2

)2

−

(
1 − α

2

)2) a2
k

1 + λk
. (2.26)
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If we denote the mapΨ 7→ ΨΨx by F , then the abstract form of (2.24) reads

Ψt + AαΨ + F(Ψ ) = 0. (2.27)

Clearly Aα defines a sectorial operator. Since any intermediate spaceH s with 0 < s < 2 is
an interpolation space, local well-posedness for initial data inH 2 follows by analytic semigroup
methods, provided we can chooses such thatF : H s

→ H 0 is locally Lipschitz. WithH 1

embedding inL∞, we may chooses = 1.
To establish global existence we observe first that if we representΨ as a Fourier series

Ψ =

∞∑
k=1

ak(t)wk

and multiply byΨ , then integration yields, in view of (2.26),

1

2

d

dt

∫ L/2

−L/2
Ψ 2 dx +

∞∑
k=1

(
λk +

1 − α

2

)2
ak(t)

2

1 + λk
6

∞∑
k=1

(
1 − α

2

)2
ak(t)

2

1 + λk
6
β

2

∫ L/2

−L/2
Ψ 2 dx,

whereβ = (1 − α)2 appears as a characteristic time, whence

max
06t6T

‖Ψ (t)‖2
0 + 2

∫ T

0

∞∑
k=1

(
λk +

1 − α

2

)2
ak(t)

2

1 + λk
dt 6 ‖Ψ (0)‖2

0 exp(βT ).

We conclude that

max
06t6T

‖Ψ (t)‖2
0 + C

∫ T

0
‖Ψ (t)‖2

1 dt 6 ‖Ψ (0)‖2
0 exp(βT ) (2.28)

for some positive constantC, which takes into account that(
λk +

1 − α

2

)2 1

1 + λk
∼ λk

only ask → ∞. Moreover, thanks toH−1
⊃ L1 (with zero average),∫ T

0
‖ΨΨx‖

2
−1 dt 6 C( max

06t6T
‖Ψ (t)‖2

0)

∫ T

0
‖Ψ (t)‖2

1 dt 6 C‖Ψ (0)‖4
0 exp(2βT ). (2.29)

Estimates (2.28, 2.29) allow the construction of a weak solution satisfying (2.28, 2.29) for initial
dataΨ (0) in H 0, and a variant of (2.29) gives uniqueness.

Next we observe that fort > 0 the solutions are in fact smooth, as long as they exist. This
follows from standard estimates for solutions ofut + Aαu = f (t), which are easily derived using
the differential equations for the Fourier coefficients. Representingu andf as

u =

∞∑
k=1

ak(t)wk, f =

∞∑
k=1

bk(t)wk,
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we have

ȧk + µkak = bk, µk = λk

(
1 −

α

λk + 1

)
∼ λk,

whence, forµk > 0,

ak(T )
2
+

∫ T

0
µkak(t)

2 dt 6 ak(0)
2
+

∫ T

0

bk(t)
2

µk
dt,

and also,

ak(T )
2
+

∫ T

0

ȧk(t)
2

µk
dt 6 ak(0)

2
+

∫ T

0

bk(t)
2

µk
dt.

Note that forα > 0 there will be a finite number of negative eigenvaluesµk, which will make the
corresponding Fourier coefficients grow, but those are easily controlled by aT -dependent constant.
It thus follows by standard procedures that

max
06t6T

‖u(t)‖2
s +

∫ T

0
‖u(t)‖2

s+1 dt +
∫ T

0
‖u̇(t)‖2

s−1 dt

6 C

(
‖u(0)‖2

s +

∫ T

0
‖f (t)‖2

s−1 dt

)
, (2.30)

where the constantC depends onα, s, L andT . Employing this estimate withs = 0 is consistent
with (2.28, 2.29) but does not improve the regularity ofΨ .

Since
‖uv‖s 6 C‖u‖s‖v‖s (s > 1/2),

we have, with changing constants,∫ T

0
‖uux‖

2
s dt 6 C max

06t6T
‖u(t)‖2

s

∫ T

0
‖ux‖

2
s dt

6 C( max
06t6T

‖u(t)‖2
s )

∫ T

0
‖u(t)‖2

s+1 dt. (2.31)

For the local solutionΨ above with initial data inD(Aα) = H 2, the estimates (2.30, 2.31) allow a
successful bootstrap argument local in time, to show that the solution is smooth, as long as it exists.

To get a global bound however, such as

max
06t6T

‖Ψ (t)‖2
s +

∫ T

0
‖Ψ (t)‖2

s+1 dt 6 C, (2.32)

whereC is allowed to depend onα, s, L andT of course, but otherwise only on the initial data
through‖Ψ (0)‖s , we have to start from a global estimate. With (2.31) invalid fors = 0, we need a
second uniform estimate. If we multiply the equation by−Ψxx , then integration yields

1

2

d

dt

∫ L/2

−L/2
Ψ 2
x dx +

∫ L/2

−L/2
Ψ 2
xx dx 6 α

∫ L/2

−L/2
Ψ 2
x dx +

∫ L/2

−L/2
ΨΨxΨxx dx.
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The last term on the right hand side is estimated by∫ L/2

−L/2
ΨΨxΨxx dx 6

1

2

∫ L/2

−L/2
Ψ 2
xx dx +

1

2
max
x

|Ψ (x)|2
∫ L/2

−L/2
Ψ 2
x dx

6
1

2

∫ L/2

−L/2
Ψ 2
xx dx +

L

2

( ∫ L/2

−L/2
Ψ 2
x dx

)2

,

which combined with the previous estimate gives

d

dt

∫ L/2

−L/2
Ψ 2
x dx +

∫ L/2

−L/2
Ψ 2
xx dx 6

(
2α + L

∫ L/2

−L/2
Ψ 2
x dx

) ∫ L/2

−L/2
Ψ 2
x dx.

By (2.28) the last factor on the right hand side is integrable on [0, T ]. Consequently, (2.32) holds
with s = 1 for the semigroup solutionΨ with initial dataΨ (0) in H 2, but the constant depends
only on ‖Ψ (0)‖1. Taking limits one then easily constructs global weak solutions for initial data
Ψ (0) in H 1, satisfying the same bound, i.e. (2.32) withs = 1.

As for the global bootstrap argument, we note that (2.32) withs = 1 and (2.31) imply that with
Ψ (0) inH 2, (2.32) holds withs = 2. If alsoΨ (0) is inH 3, then (2.32) withs = 2 and (2.31) imply
that (2.32) holds withs = 3, and so on. Thus the bootstrap gives (2.32) with anys > 1, provided
Ψ (0) is inH s .

The consequences are stated in the following theorem.

THEOREM 2.1 LetΨ0 be given inH s wheres = 0,1,2,3, . . . . Then (2.24) has a unique solution
on any time interval [0, T ] with Ψ = Ψ0 at t = 0. The solution belongs toL2(0, T ;H s+1) ∩

C0([0, T ];H s), and hasΨt ∈ L2(0, T ;H s−1), and the corresponding norms are bounded by a
constant which depends only onα, s, L, T and‖Ψ (0)‖s . Thus the solution is smooth (and in fact
analytic in time) fort > 0. Therefore

(I − ∂2
x )(Ψt + ΨΨx)+ Ψxxxx + (α − 1)Ψxx = 0 (2.33)

for t > 0. The latter equation holds inL2(0, T ;H 0) as soon ass = 3. For (1.18) the statement is
similar, with initial dataΦ0 in H s , wheres = 1,2,3, . . . , and (1.18) rewritten as

(I − ∂2
x )

(
Φt +

1

2
Φ2
x

)
+Φxxxx + (α − 1)Φxx = 0. (2.34)

Next we consider the same issues for the K-S equation

Φt +
1

2
Φ2
x +Φxx +Φxxxx = 0 (2.35)

on the time interval [0, T ] in the class of periodic functions with periodL in x. Differentiation with
respect tox then leads to

Ψt + ΨΨx + Ψxxxx + Ψxx = 0 (2.36)

for Ψ = Φx which has zero average [Temam, NS84].
The eigenfunctionswn are also eigenfunctions of the operatorA2

− A : D(A2) = H 4
→ H 0,

with eigenvaluesµk = λk(λk − 1), and the abstract form of (2.36) reads

Ψt + (A2
+ A)Ψ + F(Ψ ) = 0. (2.37)
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Local well-posedness for initial data inH 4 follows as before by analytic semigroup methods. Note
that ∫ L/2

−L/2
w(x)(A2

+ A)w(x)dx =

∞∑
k=1

((
λk −

1

2

)2

−
1

4

)
a2
k . (2.38)

If we multiply the equation byΨ , then integration yields, in view of (2.38),

1

2

d

dt

∫ L/2

−L/2
Ψ 2 dx +

∞∑
k=1

(
λk −

1

2

)2

ak(t)
2 6

1

4

∞∑
k=1

ak(t)
2

=
1

4

∫ L/2

−L/2
Ψ 2 dx,

whence

max
06t6T

‖Ψ (t)‖2
0 + C

∫ T

0
‖Ψ (t)‖2

2 dt 6 ‖Ψ (0)‖2
0 exp

(
T

2

)
(2.39)

for some positive constantC.
Estimates for solutions ofut + (A2

− A)u = f (t) now come from

ȧk + µkuk = bk, µk = λk(λk − 1) ∼ λ2
k,

and provide us with

max
06t6T

‖u(t)‖2
s +

∫ T

0
‖u(t)‖2

s+2 dt 6 C

(
‖u(0)‖2

s +

∫ T

0
‖f (t)‖2

s−2 dt

)
,

where the constant depends onα, s, L andT .
With initial data inH 1, estimate (2.29) is enough to start the global bootstrap, which may then

be continued with (2.31) as before. Omitting further details we state the result in the following
theorem.

THEOREM 2.2 LetΨ0 be given inH s wheres = 0,1,2,3, . . . . Then (2.37) has a unique solution
on any time interval [0, T ] with Ψ = Ψ0 at t = 0. The solution belongs toL2(0, T ;H s+2) ∩

C0([0, T ];H s), and hasΨt ∈ L2(0, T ;H s−2). The solution is smooth fort > 0. For (2.35) the
statement is similar, with initial dataΦ0 in H s , wheres = 1,2,3, . . . .

3. Asymptotics

In this section, we are interested inα = 1 + ε, whereε is a (small) fixed positive number. In
fact ε2 is nothing other thanβ in (2.28). Moreover (a key point), we take the period to depend
on ε, introducing a reference periodL0 > 0 and time interval [0, T0]. The reference space and time
variables will be denoted byξ andτ . We consider (1.18), equivalently written as (2.34), in the class
of periodic functions with periodL0/

√
ε in x, on the time interval [0, T0/ε

2] in t .
We rescale

Φ = εϕ, t = τ/ε2, x = ξ/
√
ε, (3.40)

whence (2.34) becomes

(I − ε∂2
ξ )

(
ϕτ +

1

2
ϕ2
ξ

)
+ ϕξξξξ + ϕξξ = 0. (3.41)
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We then look forϕ as
ϕ = U + εu, (3.42)

so that withε = 0 in (3.41), we recover the 4th order K-S equation

Uτ +
1

2
U2
ξ + Uξξξξ + Uξξ = 0. (3.43)

Our aim now is to establish a uniform bound onu which is valid for small positiveε, uniformly inε.
Foru the equation reads

(I − ε∂2
ξ )

(
uτ +

1

2
(2Uξuξ + εu2

ξ )

)
+ uξξξξ + uξξ = ∂2

ξ

(
Uτ +

1

2
U2
ξ

)
.

As in Section 2 we work with the differentiated equations forψ = φξ , V = Uξ , v = uξ , which are

(I − ε∂2
ξ )(ψτ + ψψξ )+ ψξξξξ + ψξξ = 0, (3.44)

Vτ + VVξ + Vξξξξ + Vξξ = 0, (3.45)

(I − ε∂2
ξ )(vτ + (V v)ξ + εvvξ )+ vξξξξ + vξξ = ∂2

ξ (Vτ + VVξ ). (3.46)

Note that
Ψ = ε3/2ψ, ψ = V + εv,

and thatu is recovered fromv since its mean valueu satisfies

uτ +
1

2L0

∫ L0/2

−L0/2
vV dξ + ε2

∫ L0/2

−L0/2
v2 dξ = 0. (3.47)

Forϕ we now consider so-called “well-prepared”L0-periodic initial data of the form

ϕ(ξ,0) = ϕ0(ξ) = U0(ξ)+ εu0(ξ), (3.48)

whence, withψ0 = φ′

0, V0 = U ′

0, v0 = u′

0, for ψ ,

ψ(ξ,0) = ψ0(ξ) = V0(ξ)+ εv0(ξ). (3.49)

ThusU0, V0, u0, v0 are the initial data forU,V, u, v.
The basic estimate in this section comes from testing (3.46) byv, which with the usual notation

|v|2 :=
∫
L0/2

−L0/2
v(ξ)2 dξ yields

1

2

d

dτ
(|v|2 + ε|vξ |

2)+

∫ L0/2

−L0/2
(V v)ξv dξ − ε

∫ L0/2

−L0/2
((V v)ξ + εvvξ )vξξ dξ

+ |vξξ |
2
− |vξ |

2
=

∫ L0/2

−L0/2
(Vτ + VVξ )vξξ dξ. (3.50)

Writing also|v|∞ := supξ |v(ξ)| we have

1

2

d

dτ
(|v|2 + ε|vξ |

2)+ |vξξ |
2 6 |V |∞|vξ | |v| + |Vξ |∞|v|2 + ε|V |∞|vξ | |vξξ |

+ ε|Vξ |∞|v| |vξξ | + ε2
|v|∞|vξ | |vξξ | + |vξ |

2
+ |Vτ + VVξ | |vξξ |. (3.51)
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Then, in view of|v|∞ 6 c0|vξ |, with c0 =
√
L0 > 0, and Young’s inequality,

ε2
|v|∞|vξ | |vξξ | 6 εc0|vξ |

2
|vξξ | 6

ν

2
|vξξ |

2
+

1

2ν
ε4c2

0|vξ |
4 (3.52)

whereν > 0 can be chosen freely. Using again the Young inequality and the interpolation relation
[Temam, Chap. III]

|vξ |
2 6

ν

2
|vξξ |

2
+

1

2ν
|v|2, (3.53)

it is easy to see that there are constantsc1, c2 > 0, depending only on the norm ofV0 in H 2 (which
controlsV (τ) in H 2 and thereby|Vξ |∞), but independent ofε such that

d

dτ
(|v|2 + ε|vξ |

2)+ c2|vξξ |
2 6 |Vτ + VVξ |

2
+ c1|v|

2
+ ε4

|vξ |
4. (3.54)

If Vτ + VVξ is square integrable in space and time, this differential inequality gives a bound on
A(τ) = |v|2 + ε|vξ |

2, which depends only onL0, T0 andA(0), providedε is sufficiently small. To
be precise, we have, in view of Section 2, the following lemma.

LEMMA 3.1 LetV0 ∈ H 2 andv0 ∈ H 1. There existsε0 > 0 such that, whenever 0< ε < ε0,
|v(τ)| is uniformly bounded on the time interval [0, T0], independently ofε. The numberε0 and the
bound depend only onV0 ∈ H 2, v0 ∈ H 0 andT0.

Combining with (3.47), which gives the control of the mean value ofu, we obtain thanks to the
Poincaŕe–Wirtinger inequality [Brezis]

THEOREM 3.2 LetU0 ∈ H 3 andu0 ∈ H 2. There existsε0 > 0 such that, whenever 0< ε < ε0,
|u(ξ, τ )| 6 C for all (ξ, τ ) in [−L0/2, L0/2] × [0, T0]. The numberε0 and the boundC depend
only onU0 ∈ H 3, u0 ∈ H 1 andT0.

Returning to the original problem,Φ = εϕ, ϕ = U + εu, we state the main result of the paper:

COROLLARY 3.3 With the assumptions of Theorem 3.2 on the “well-prepared” initial data (3.48),
we have

max|Φ(x, t)− εU(x
√
ε, tε2)| 6 Cε2 (3.55)

for

|x| 6
L0

2
√
ε
, 0 6 t 6

T0

ε2
. (3.56)

REMARK 3.4 The above result for the “well-prepared” initial data (3.48) combines in fact two
results: one is the closeness to K-S proper, another one demonstrates continuity with respect to the
initial conditions. In fact it would suffice to setu0(ξ) = 0 in (3.48), i.e. evolutions by two different
equations are close if they start from the same initial configuration.

4. Numerical simulation

As was mentioned in the introduction, the objective of the numerical simulation was two-fold: firstly
to verify closeness of the solutions of the quasi-steady model to the solutions of the K-S equations
even for moderately small values ofε, and, secondly, to show that the quasi-steady model generates
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sufficiently rich dynamics including the occurrence of cellular structure and turbulence. We reiterate
that the asymptotic result that was proved above does not by itself guarantee the asymptotic behavior
of the solutions of the quasi-steady model until one shows existence of a global attractor and obtains
appropriate estimates for the convergence to it.

Even then, it is not quite clear what kind of statements can be made regarding the structure of
the attractor in comparison to those for the K-S equation. It is therefore desirable to carry out a more
detailed numerical study of the dynamics generated by the quasi-steady model which we hope to
discuss elsewhere in the near future.

For the numerical simulations it is more convenient to deal with the interval [0, L] than
[−L/2, L/2]. Thus, the periodic conditions are

Θ(0) = Θ(L), Θ ′(0) = Θ ′(L), Φ(0) = Φ(L), Φ ′(0) = Φ ′(L). (4.57)

Next we need an explicit expression for the temperatureΘ in spaces of periodic functions. Via
variation of parameters and employing the boundary conditions it is uniquely defined as

Θ(x) = α(I − ∂2
x )

−1Φxx

= C1e
x

+ C2e
−x

+
α

2

(
e−x

∫ x

0
eηΦηη dη − ex

∫ x

0
e−ηΦηη dη

)
where

C1 =
α

2

∫ L

0

e−ηΦηη

1 − e−L
dη, C2 =

α

2

∫ L

0

e−(L−η)Φηη

1 − e−L
dη.

For convergence of the numerical code it is important to represent the expression forΘ

with negative exponents under the integral. After some elementary manipulation it reduces to the
following compact form:

Θ = α

∫ L

0

e−η + e−(L−η)

2(1 − e−L)
Φxx(x − η)dη. (4.58)

As a result we obtain an integro-differential equation in terms ofΦ,

Φτ +
1

2
Φ2
x = Φxx − α

∫ L

0

e−η + e−(L−η)

2(1 − e−L)
Φxx(x − η)dη, (4.59)

which was integrated numerically.
Numerical solutions were carried out on the intervalL0 = 14 for the K-S equation, and for the

appropriately rescaled (as dictated by the asymptotic result in the previous section) intervalsL =

L0/
√
ε in the physical coordinate for the quasi-steady model. The time interval for the K-S equation

wasT0 = 20, while the time intervals for the quasi-steady model were also adjusted in accordance
with the theorem in Section 3. We set identical (appropriately rescaled) initial configurations.

The figures presented below do not exactly correspond to the actual evolution: an artificial drift
F(x, t) := Φ(x, t)+ .03× t was added for visualization purposes, in order to avoid overlapping of
the fronts. One should keep in mind that the equations under discussion refer to a small perturbation
of the basic front moving with constant velocity.

Figs. 1–3 show consecutive front positions generated by (4.59) forε = .25 andε = .04 (Figs.
1 and 2 respectively), and by the K-S equation (Fig. 3). For convenience the solution of the K-S is
presented in thex, t coordinates.
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FIG. 1. Front evolution generated by (4.59) forε = .25.
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FIG. 2. Front evolution generated by (4.59) forε = .04.

4 25 54
0

7

14

F(x,t)

x

FIG. 3. Front evolution generated by the K-S equation.
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FIG. 4. A “two-cell” steady front configuration forε = .25.
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FIG. 5. Turbulent dynamics generated by the Q-S equation.
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Fig. 4 represents a single front generated by (4.59) forε = .25 at the end of the time interval
chosen for the simulation:T = 320, which corresponds to this value ofε. We bring it here in order
to give the reader a better idea of the true amplitude of the solutions.

Finally, Fig. 5 represents a fully developed turbulent regime generated by the quasi-steady model
for α = 1.25, and a larger basic periodL = 50 (cf. Fig. 1). The evolution pattern shown occurs on
a time interval 60006 t 6 8000.

5. Conclusions

As was mentioned in the introduction, the advantage of the fullκ-θ model or its quasi-steady
truncation (1.5, 1.6) is that including the interface temperature may better reflect the properties
of the original reaction-diffusion system (1.1), (1.3) while, at the same time, as we hope, they may
serve as a basis for the description of the flame interaction with the background flow.

We have rigorously shown above that for the weakly nonlinear case, the periodic problem for
the quasi-steady model is well-posed, and its solutions are asymptotically close to the solutions of
the K-S equation in the sense of the instability parameterε for any fixed time interval.

On the other hand, we have demonstrated numerically a qualitative similarity of fully developed
dynamical patterns between the Q-S equation and K-S equation, including the deeply nonlinear
range whereε is not small. Indeed, as we saw, the quasi-steady model is capable of generating
cellular structures and turbulence. A more detailed numerical study that we intend to present in the
near future shows a remarkable variety of dynamical patterns.

Since the fullκ-θ model should be considered to be perhaps somewhat more physically sound,
one faces the necessity to subject it to a similar study as the one presented above. We are hopeful
if not convinced that, modulo overcoming some moderate technical difficulties, we shall be able to
present results of such a study in the near future.

At the same time, we would like to reiterate that, although the Q-S equation was introduced as
anad hoctruncation of the fullκ-θ model and the GI equation (1.4), it represents, in our opinion,
an interesting dynamical system in its own right. It seems, so far, that the Q-S equation model is
relatively “friendly” regarding the rigorous analysis, and we intend to demonstrate in the near future
that its dynamics is essentially finite-dimensional in the sense of the attractor, inertial manifold, etc.,
once again similarly to the K-S equation.

Finally, we should remark that it would be interesting to understand what particular features of a
nonlinear equation of a certain type are important for generation of specific dynamical patterns. At
the same time, we would like to find out if and when such equations as for instance the Q-S equation
and the K-S equation differ substantially in their qualitative behavior.
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