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Global existence of solutions for a free boundary problem modeling the
growth of necrotic tumors
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In this paper we study a free boundary problem for a reaction-diffusion equation modeling the growth
of necrotic tumors. We first reduce this problem into an equivalent initial boundary value problem

for a nonlinear parabolic equation on a fixed domain. This parabolic equation is strongly singular in
the sense that not only it contains a discontinuous nonlinear function of the unknown function, but
also all its coefficients are discontinuous nonlinear functionals of the unknown function. We use the
approximation method and the Schauder fixed point theorem combined.®idstimates to prove

the existence of a global solution.
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1. Introduction

Recent development on mathematical modeling of tumor growth has introduced many new
interesting free boundary problems for partial differential equatiobhs![1, (446, 15-21]. These free
boundary problems are very diversified: Some of them involve only reaction-diffusion equations but
possibly with more than one free boundaried [1./4—6| 15, 16, 19], others involve not only reaction-
diffusion equations but also first order hyperbolic equations [17, 18, 20, 21]. Rigorous mathematical
analysis of such free boundary problems has drawn great interest, and many interesting results have
been established[2] 3,[7214].

In this paper we study the following free boundary problem modeling the growth of spherically
symmetric necrotic tumors:

or(lxl, 1) = DAo (x|, 1) = ANLo(Ix[, ) H(o (x|, 1) —op),  |x| < R@®), 1t >0, (1.1)

a(R(t),t) =05, t=0, (1.2)
d/4 4
E(é”R (t)) = uNL /ﬂxl’tb@(a(lxl, t) —op) dx
— vND/ dx — vN dx, (1.3)
o (xl,n>0p o (x.n<op
o (x|, 0 = oo(|x]), [x| < Ro, (1.4)
R(0) = Ro. (1.5)
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Hereo (]x|, t) is the concentration of nutrient which is regarded as a one-species chemical material,
R(¢) is the radius of the tumor at tinre D is the diffusion coefficientA is the Laplacian). is the
consumption rate coefficient of nutrient for live tumor cellg, is the density of live tumor cells,
H is the Heaviside function (s) = 1 fors > 0 andH (s) = 0 fors < 0, o is a positive constant
representing the constant supply of nutrient that the tumor receives from its surfiadbe mitosis
rate coefficient of live tumor cells when the nutrient concentration is at the devebp, op is a
positive constant representing the threshold value such that in the region avkekey all tumor
cells are dead and only in the region where> op tumor cells can be alivay, is the density
of dead cellsy is the dissolution rate of dead celly, is the density of all (live and dead) tumor
cells, andop(]x|) and Rg are the initial data o and R, respectively. We assume that the tumor is
well-packed with cells such that the density of cells (regardless of whether they are alive or dead) is
everywhere equal, so that

Np+ Np =N, (1.6)

and the chemicals dissolved from the dead cells diffuse into the solution in which the tumor is
cultivated. The constanV, reflects the constant cell death rate due to apoptosis. It is natural to
assume that

0 < oo(lx]) <os for|x| < Rg, and og(Rg) = os. 2.7)

The above model is in essence a combination of the two tumor growth models proposed by
Byrne and Chaplain: in [4] for non-necrotic tumors and in [5] for necrotic tumors, but here the effects
of inhibitors and vascular networks have been neglected. Indeed, in the casé that) > op for
all |x] < R(t) and allz > 0, we haveH (op(|x|, t) — op) = 1, so that[(T]1){(1]5) reduces to the
model of Byrne and Chaplainl[4] in the inhibitor-free and avascular situation, and in the opposite
case it is a reformulation of the model of Byrne and Chaplain [6], also in the inhibitor-free and
avascular situation.

In the general case the problgm {1.[)|1.5) contiinsree boundarieghe outer tumor surface
|x] = R(¢) and the inner interface between the necrotic ¢are o (|x|, t) < op} and the live shell
{x : o(x|,t) > op}, and the two free boundaries aretafo different typesthe tumor surface
x| = R(¢) is of Stefan (evolutionary) type while the inner interface is of obstacle (stationary or
non-evolutionary) type. It turns out that rigorous mathematical treatment of this problem is hard.

In [9] the author and A. Friedman made a partial analysis of the profjlefh (1.1)—(1.5). It was
proved that under certain sufficient conditions this problem has a unique stationary solution and,
when the initial data belong to a small neighborhood of the stationary solution and satisfy some
other very rigid conditions, it has a unique global classical solution which tends to the stationary
solution ag — oo.

In this work we shall prove that the problem (1.f)—[1.5) has a solution for all0 under the
conditions[(Z.}) and

00 € W2®(0,Rp) and o4(0) = 0. (1.8)

HereW2>(0, Rg) = {¢ € L>®(0, Ro) : ¢, ¢" € L¥(0, Ro)}. Clearly, this result greatly improves

the existence result af[9]. The idea we use to obtain this result is different from that of [9]. Indeed,
the argument of [9] is as follows: For a givdh > 0, we first assum® = R(r) (0 <t < T)to

be given, and solve the problem ([L.1), {1.2) gnd|(1.4) todird o (|x|, r). Then we substitute this

o (|x], 1) into (1.3), and solv¢ (1] 3) and (1.5) to get a nRw= R(r). By using the Banach fixed point
theorem we then get a solutigs, R) for smallT. For that argument we need a delicate analysis of
regularity of the solution of the problern (1.1)), (1.2) ahd(1.4) (for giRee= R(z)), which is hard
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and quite restricted (i.e., the initial data have to satisfy some very rigid conditions). The method we
use in the present work is much simpler, and can be explained as follows=L&t| and introduce

a new variable = r/R(t). Then the time-dependent unknown interval §3r)] is transformed into

the fixed interval [01], and the free boundary problein ([L.[)—{1.5) is transformed into an initial
boundary value problem on the fixed domainIpfor the new unknowns(z,t) = o (zR(?),t)

and R(¢). In the transformed problemR(¢) can be found in terms aof (as one can observe from

the equation[(1]3)), so that the equation #¢z, r) can be decoupled. The decoupled equation for
v(z, t) is a nonlinear parabolic equation which is strongly singular in the sense that, apart from
the discontinuous nonlinear teroH (v — op) inherited from the equation (J.1), its coefficients
are discontinuous nonlinear functionals(in ¢). We shall use the approximation method and the
Schauder fixed point theorem combined wiith estimates to solve this equation.

As we pointed out earlier, the effect of inhibitors in the present model is neglected. This is
merely for the purpose of simplicity of the statement. The argument presented in this paper can
be easily modified to get similar results for tumor models with the effect of inhibitors taken into
account.

In the following section we shall show how to reduce the problpm| (I.T}-(1.5) to a scalar
parabolic equation involving discontinuous terms. In 83 we shall approximate this equation with
a smooth equation, and use the Schauder fixed point theoreni Arebtimates to prove that
the approximation problem has a unique global solution. In 84 welifsestimates and weak
convergence to prove that the probl§m[1/I)4(1.5) has a solution under conditigns (1[7)Jand (1.8).

2. Reduction of the problem

For simplicity of notation, we rescale the space variable so that

AN
D

Then the probleni (TI}1)=(1.5) can be reformulated as follows:

=1 (2.1)

cop =No(r,t) —o(r,t)H(o(r,t) —op), O<r <R@), t=>0, (2.2)
0,(0,t) =0, o(R@®),1) =05, =0, (2.3)
5 /1 ~\..2 = 2
R(t):—{/ (o(r,t) —o)r dr—v/ r dr}, t >0, 2.4
Rz(t) o(r,t)>op o(r,t)<op ( )
o(r,t) =o0(r), 0<r <Ry, (2.5)
R(0) = Ry, (2.6)
where
Aro = 5 —\r"— |,
re or or
and N N
_ - vNp _ v
= —, — N s — S = . 2.7
c D = uNp o UD+N«NL v NL (2.7)

We shall always assume that the conditigns|(1.7) ndl (1.8) are satisfied.
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It is clear that ifos < op theno(|x],7) < op forall0 < r < R() andr > 0, so thatR(r) =
Roe"N'/3 ando (r, 1) = o5. Biologically, this means that no place of the tumor has enough nutrient
to sustain cells alive, so that the tumor contains only dead cells which are decreasing in amount due
to dissolution, and finally the tumor will disappear. This trivial situation is not interesting. Later on
we always assume that
o5 > 0p, (2.8)

and will not repeat this assumption. Biologically, (2.8) implies that at least in the near-surface region
there is sufficient nutrient to sustain tumor cells alive. Thus we can expect that the tumor will always
exist.

We introduce a transformation of variablest, o, R) — (z, ¢, v, R) as follows:

r

= m t=t, v(z,t) =0(zR(@),t), R(@)=R(®). (2.9)

One can easily verify that, under this transformation of variables, the proljlein [2.1)—(2.6) is
transformed into the following problem:

R(7)

cv,=R2—O)sz+cm~zvz—vH(v—aD), O<z<1 t>0, (2.10)
v;(0,1) =0, wv(@,t)=05, 120, (2.12)
R(t) = [LR(Z){ / (v(z, 1) — 6)z%dz — 17/ 72 dz}, t>0, (2.12)
v(z,1)>0p v(z,H)<op
v(z,0) = vo(z) = 00(zRp), 0<z<1, (2.13)
R(0) = Ro. (2.14)
For a givenT > 0, we denote by the function spac€ ([0, 1] x [0, T]) endowed with the
maximum normjjv|| = maxo, 1jx[0,7] [v(z, 1)], and denote by the functional onX7 x [0, T]
defined by
F(v,t) :ﬂ{/ (v(z,t)—&)zzdz—ﬁ/ zzdz}. (2.15)
v(z,1)>0p v(z,1)<op

Then the equation (2.12) can be rewritten as
R(t) = R®)F(v,1), t>0. (2.16)
It follows that R(¢) can be expressed in termswby
t
R(t) = Ro exp(/ F(v, ‘C)d‘l,'), t>0. (2.17)
0
Substituting this expression arjd (2.16) into the equafion(2.10), we get a scalar equation for
t
cv = Raz exp<—2/ F(v, 1) dr)sz
0
+cF(v,t)zv, —vH(w —op), O0<z<1, r>0. (2.18)
Hence, the probleni (3.1]—(2.6) reduces to the problem|(2[11)](Z.13)] (2.1%) arjd (2.18).
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The functionalF (v, ¢) is not continuous in. Indeed, if we denote by the function inX7:

op for0<z <

w(z, t) = 6D+z—a
1—a

t

)

, 0 T
0 T,

NN

<
<

<a
(s —op) fora <z <1, t

where O< a < 1, and seb, = w + £(o; — w) (¢ > 0), then clearly

. _ 1
lim v, = w, but ||n?) F(ve,t) = F(w, 1) + §/la3(aD — &5 47) # F(w,1).
£—

e—0

Recallingvo(z) = oo(zRo) (see[(2.1B)), we see, by the conditions1.7) (1.8), that
vo € W?®(0,1), O0<wp(z) <os for0<z<1, vy(0 =0, wo(l)=o0s5. (2.19)

3. The approximation problem

Since the equatior] (2.]18) contains discontinuous terms, it is singular. In this section we shall
approximate it with smooth equations.
First, we note that the functional can be rewritten as follows:

1 1
F(v, 1) = /1{ / (v(z, 1) —&)H(v(z, 1) — op)z®dz — D/ (1— H(v(z, 1) — 0p))z? dZ}~ (3.1)
0 0

For each sufficiently sma#l > 0, we denote by, the function orR defined by

1 fors > ¢,

H,(s)=1{s/e forO<s <e¢,

0 fors < 0.

Clearly, H, is a Lipschitz continuous function:
|He(s) — He(1)| <& s —1], Vs, reR.

We define
1
Fe(v, 1) = /1{ f (v(z, 1) — 6)He (v(z, 1) — op)z2 dz
0
1
=5 [ A= Hwn - o) dz}, (32)
0
and consider the problem

cvy = Raz exp(—Z/Ot Fe(v, r)dr)AZv
+cF.(v,t)zv, —vH,(v—0p) for0O<z <1, t>0, (3.3)
v,(0,7) =0, v(@,r)=05 fort>0, (3.4)
v(z,0) =vo(z) forO<z <L (3.5)
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In what follows we use the notation:

Bi0O)={yeR3:|y| <1}, Qr =B1(0) x (0, 7),
W2l(Qr) = {v € LP(Qr) : Vv, V20, v € LP(Q1)} (1< p < 00).
Here and hereaftérv andvZ2v respectively represent the divergence vector and the Hessian matrix
of v in space variables.

LEMMA 3.1 Under the conditior] (2.19), for ary > 0 the problem[(3]3)(3]5) has a unique
solutionv = v, on [0, 1] x [0, T], with the following properties:

(i) The functionv.(]y|, r) belongs toWﬁ’l(QT) forany 1 < p < oo, andu(z, r) satisfies the
equation for a.e(z, 1) € [0, 1] x [0, T]. Moreover, for any > 0,

”vs(|y|’ t)”W[%l(QT) g C(Ta P, ”vO”WZOO(O,l))v (36)

whereC(T, p, [[vollwz=,1)) IS & constant independent af
(i) Foreverye > 0,
O0<ve(z, 1) <og for0<z<1 0<r«T. 3.7)

If in addition vg(z) > O then alsa,(z, 1) > 0.

Proof. Let X7 be as before, i.eXr = C([0, 1] x [0, T]) endowed with the maximum norm
lvll = maxo,1jx[0.7] [v(z, 1)|. We define a mappin§ : X7 — X7 as follows: Forany € X7, let
v =10(y,t) ((v,t) € Qr) be the solution of the problem

t
cv; = Raz exp(—Zf Fe(v, 1) dr)Af)
0

+cFe(v,)(y - VU) — He(v(|yl, 1) —op)y on Qr, (3.8)
v(y,t) =0 forly|=1, >0, (3.9
v(y,0) =vo(ly) for|y| <1 (3.10)

v is well defined. Indeed, it is clear that all coefficients in the equaftion (3.8) are bounded continuous
functions, and the coefficient afv has a positive lower bound. Hence, using il theory for

linear parabolic equations we see that the above problem has a unique sbldéfined onQ7,

such thatforany k p < 00,9 € W,f’l(QT), ie.,

3, Vi, V20,5, € LP(O7).

We take in particulap > 5/2. Then by the embedding/,?’l(QT) — C(Qr) (p > 5/2), we
see that € C(Qr). Moreover, since the boundary and initial data are spherically symmetric, by
uniqueness we infer that(y, ¢) is also spherically symmetric in, so thatv(y, ) = v(|y|, ). In
this way we get a function = ¥(z, #) defined for(z, #) € [0, 1] x [0, T], belonging toX7. We
defineS(v) = 7.

Next we prove that for every bounded subBet X7, S(E) is precompact irX 7. In fact, it is
clear that

|Fe(v, )| < C(Jlvl]) forallve X7, t €[0,T], (3.11)
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whereC (||v])) represents a constant depending only|ol = maxo, 1jx[o, 7] |v(z, t)| (independent
of ¢ andT). This further implies that

t
e 2TCliv « exp<—2/ F:(v, 1) d‘l,') <2TCvd  fory e Xr, t € [0, T, (3.12)
0
and
t t
exp<—2/ Fe(v, 1) dr) — exp(—Zf F:(v, 1) dt)
0 0
<C(|, Dt -1 forveXr, tel0,T]. (3.13)
Since also

0< H.(v(lyl,t) —op) <1 fory e B1(0), t € [0, T], (3.14)

by standard.? estimates for linear parabolic equations we conclude that for anypl< oo there
exists a constar@ (||v||, T, p) such that

15051 Dlly210,) < CAVIL T, P + [00llyzso,)- (3.15)

By this estimate and the compact embeddingfﬁfl(QT) into C(Q7) whenp > 5/2, we conclude
that if E C Xr is bounded inXy then S(E) is precompact inX7. Further, by the maximum
principle it is clear that

0<v(z,t)<og for0O<z<1, 0<r«T. (3.16)
We now prove thafS is continuous. Let, v2 € X7 and definevy = S(v1), v2 = S(v2),

w = 01 — v2. Thenw = w(]y|, t) satisfies

t
cw; = Raz exp(—Z/ Fe(v1, 7) dr)Aw + cFe(v1,1)(y - Vw)
0

— He(i(lyl, 1) —op)w + f(y,1) forfy| <1, 0<t<T, (3.17)
w(y,t) =0 for|y|]=1 0<r<T, (3.18)
w(y,00 =0 for|y| <1, (3.19)
where
t t
fy, 1) = Roz{exp(—Z/ Fe(vy, r)dr) - exp(—Z/ Fe(va, r)dr)}Aﬁz
0 0
+c(Fe(v1, 1) — Fe(v2,1))(y - VU2)
— (Hg(va(lyl, 1) — op) — He(v2(]y|, t) — op)) V2. (3.20)
By the L” estimate and (3.11)—(3.]14) we have, for any b < oo,
lw(y, t)IIsz,l(QT) < Cill, T, pILf e cor)- (3.21)

Using Lipschitz continuity off; and [3.15) one can easily verify that

IfllLrcory < Cle, llv2ll, T, p)llvy — v2|.
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Substituting this estimate int21) and using the embedding inequalin‘&(QT) — C(Qr)
whenp > 5/2 we get

vz — v1ll < C(T, Plwly21y,y < Ce llvall. vzl T, p)lve — v2ll.

Hence,S is continuous.
Now letE ={v e X7 :0< v(z, 1) <osfor0<z <1 0<r < T} Thenby[3.I6)S maps
E into itself. It follows by the Schauder fixed point theorem thdtas a fixed point irt. Since it
is clear that a fixed point of is a solution of the probleni (3.3)—(3.5), we have thus proved that this
problem has a solution. Moreover, since any solution of| (3.3)}-(3.5) is a fixed pahtiyf (3.15)

and [3.16), any solution = v, of (3.3)—3.5) satisfies
”Ué‘('ylv t)”W]gl(QT) < C(Tv p)(US + ”UO”WZOO(O)]_))v (322)
forany 1< p < oo. We note that the consta@t(7, p) is independent of. Hence[(3.5) holds.

Next we prove the uniqueness. Lgtandv, be two solutions of the problerp (3.3)—(B.5) and
definew = v1 — vo. Thenw = w(]y|, t) satisfies

t
cw; = Raz eXp(—Z/ F.(v1, 1) dr)Aw 4+ cFe(v1,t)(y - Vw)
0

_{He(vl(|y|vt)_GD)vl_HS(UZ(D}"I)_OD)U2}+g(y’t)v |y| < 11 > Ov (323)
w(y,n) =0, [yl=1120, (3.24)
w0 =0, |yl<L (3.25)

where

t t
gy, 1) = {exp(—zf Fe(vy, 7) dr> - exp<—2/ Fe(v2, 7) dr) }sz(lyl, 1)
0 0

+ c(Fe(v1, 1) — Fe(v2, ) (y - Voz(lyl, 1)). (3.26)

Multiplying (B.23) with w and integrating iry over B1(0) we get

cd B t
——/ |w(|y|,t)|2dy<—Rozexp<—2/ Fe(v1, r)dr)/ IVw(]yl, 1)|* dy
2dr Jpy0 0 B1(0)
+ cFe(v1, 1) (v - Vw(lyl, D)w(yl, 1) dy
B1(0)
+/ gy, Hw(|yl, 1) dy. (3.27)
B1(0)

Since

3
/ (y-Vw(|y|,t))w(|y|,t)dy=—5/ lw(lyl, )[*dy,
B1(0)

B1(0)
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integrating[(3.2]) in over [0, ¢] for any¢ € (0, T') and using[(3.111) andl (3.].2) we get
t
/ w(lyl, DZdy < —cl<T)/ / Vulyl, )2 dy dr
B1(0) 0 JB1(0)
t
+ Cz(T)/ / w(lyl. 7)[2dy dr
0 JB1(0)
t
+ / / gy, Hw(|yl, T)dydr. (3.28)
0 JB1(0)
By Lipschitz continuity ofH, and boundedness of anduvy, it is clear that
[Fe(v1, 1) — Fe(v2, )] < C(e) |v1(|y|,t)—v2(|y|,t)|dy=C(8)/ lw(|yl, £)|dy.
0) B1(0)

Bi(

Hence

t
// g(y, Hw(ly|, r)dydr
0 JB1(0)

t
< Ce, T)/ {IFS(vL T) — Fe(va, T)I/ IVuz(lyl, ©) - Vw(lyl, T)Idy} dr
0 B1(0)

t
+C/ {IFg(vl, 7) — Fe(va, f)l/ IVoa(lyl, Dllw(]yl, T)Idy} dr
0 B1(0)

t
< Ce, T>f {(f |w(|y|,r)|dy)(/ Voalyl, OI(Vw(lyl, )] + |w(|y|,r>|>dy>}dr
0 B1(0) B1(0)

t
< C(e, T) max Isz(Iyl,t/)l{fo/ IVw(lyl, 7)[* dy dr
(y.1eQr 0 JB1(0)

t
+c<a)/f |w<|y|,r>|2dydr}, (3.29)
0 JB1(0)

wheres is a sufficiently small positive number af®(§) is a constant depending @n Since for
p > 5 we have

max|Vua(lyl, 0| < C(T. p)lvallyz1g,

using [3.22) we get
erIaXIsz(IyI, DI < C(T).
T

Hence, by taking sufficiently small we have

t 1 t
f / gy, Dw(lyl, 7)dydr < 5C1(T)/ / IVw(lyl, 7)[*dy dr
0 JB1(0) 0 JB1(0)

t
+c<s,T>ff w(lyl, )P dy dr.
0 JB1(0)
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Substituting this estimate intp (3]28) we obtain

1 t
/ |w(|y|,r)|2dy<—icl<T>/f IVw(lyl, 7)>dy dz
B1(0) 0 JB1(0)

t
+C(£,T)// lw(lyl, )*dy de.
0 JB1(0)

By the Gronwall Lemma, this implies that
f lw(ly|,1)?dy =0 forall0<r<T.
B1(0)

Hencew = 0, orvy = vo. This proves the uniqueness.
Finally, the assertion thaty(z) > 0 impliesv.(z, ) > O follows from a similar argument to
that in [9]. O

4. The main result and its proof
In this section we establish the main result. We first prove the following lemma:

LEMMA 4.1 Under the conditior{ (2.19), for ary > 0 the problem[(2.71)[ (2.13), (2]15) and
) has a solutionon [0, 1] x [0, T], satisfying:v(]y|, t) € Wf’l(QT) forany 1< p < o0, and

O<v(z,t)<og for0<z<1 0<r<T. (4.2)
If in addition vy (z) > 0 then alsa, (z,¢) > 0.
Proof. By Lemmd 3.1, for every > 0 the problem[(3]3)£(3]5) has a unique solutipn= v, (z, 1)
on [0, 1] x [0, 7], and it satisfies(3]6) anfl (3.7). Take a fixed> 5. By (3.6) and the compact

embedding .
WZHQr) < C***(Qr) (O <a <2-5/p),

it follows that we can find a sequence of positive numbgrs> 0 (ask — oo) and a function
v E W,?’l(QT) such that if we sety = v,, (k=1,2,...) then

ve(lyl,t) = v(y, 1),  Vu(yl,t) = Vu(y,t) uniformly for (y, 1) € Or,

V2u(lyl 1) - V2000 0), vyl D) — vy, 1)  weaklyinL?(@p). (2

Since everyy (|y|, t) is spherically symmetric iy, the limit v(y, ¢) is also spherically symmetric
in y, so thatv(y, t) = v(|y|, t). Furthermore, since for evety> 0,

0< He(ve(lyl, 1) —op) <1 for(y,t) € Or,
by replacing{e;} with a suitable subsequence if necessary, we can further assume that
He, (vk(|yl, 1) —op) — h(y,t) *-weakly inL>(Qr), (4.3)

for someh € L*°(Q7). Clearly,h(y, t) is also spherically symmetric in, so that later on we write
h = h(|y|, t). We assert that

1 forae (y,t) € Qr suchthaw(|y|,?) > op,

hlyl. 0 = {0 forae. (y,t) € Qr suchthaw(ly|, t) < op. (4.4)
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Indeed, by[(4]2) and (4.3) it is easy to verify that for @ny 0, 2(|y|,7) = 1 for a.e.(y, ¢) in the
set{(y,1) € Or : v(|y|,t) = op + 8}. By the arbitrariness af, we infer thatz(|y|, r) = 1 for a.e.
(y,t) € Q7 suchthaw(|y|, t) > op. Similarly we can prove that(|y|,#) = O fora.e(y,t) € Or
such thaw(|y|, 1) < o. This proves the assertion. By (#.3) ahd [4.2) we also have

Fe (v, 1) — m(t) *-weakly in L*°[0, T, (4.5)
where
1 1
m(t) = l_/«{ / ((z, 1) — &)h(z, 1)z? dz — \7/ (1—h(z, t))zzdz}. (4.6)
0 0
This further implies that
t t
lim / Fe (v, 7)dr = f m(t)dr foranyr € [0, T]. 4.7)
k—o0 Jo 0

Takingz = |y| ande = g, (correspondingly, replacing with v;) in (3.3) and lettinge — oo, we
see that

t
cvy = Raz exp(—Z/ m(T) dr)Av +cm(t)(y - Vv) —vh onQr (4.8)
0

in distribution sense, hence also a.e.®@n, because all terms in this equation are locally integrable
functions. Since

=0, Vv=0, Av=0 aeonthese{(y,t)e Qr: v(lyl,t) =op},
by (4.8) it follows that
h=0 aeonthese{(y,t) € O7r: v(yl,t) =op}.

Hence
h(lyl.1) = H(u(lyl.t) —op) forae (y,t) € Or. (4.9)
By (4.6) we further infer that

1 1
m(t) = ;1{ / (v(z,1) —6)H(v(z, 1) — op)z2dz — a/ (1— H((z, 1) — 0p))z> dz} (4.10)
0 0

for a.e.r € [0, T]. Substituting[(4.1)0) intd (4]8) we conclude that= v(z, 1) is a solution of the
equation[(2.18). Since by the uniform convergence,aindV v respectively ta andVv itis clear

thatv satisfies[(Z.1]1) andl (2.]L3), we see thablves the problen (2.1.8), (Z]11) apd (2.13). Finally,
by taking the weak limit in[(3]6) andl (3.7) we immediately get the other assertions of the lédhma.

By Lemmd 4.1, we have the following main result of this paper:

THEOREM4.2 Under the condition§ (1.7) ar{d ([1.8), for @hy> O the problem[(2]2)F(2]6) has a
solution (o (r, 1), R(r)) for all 0 < ¢ < T, satisfying: ()R(r) € C19[0, T'], and R(r) > O for all

t € [0, TY; (ii) o (x|, 1) € Wot(Qr) forany 1< p < oo, whereQr = {(x,1) e R x R : [x| <
R(@),0<t < T}, and

O0<o(rt)<os forO<r<R@®), 0<r<T.

If in additiono(r) > 0 then alsa, (r, 1) > 0.
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