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An algorithm for the elastic flow of surfaces
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A semi-implicit fully discrete finite element scheme for the computation of the parametric elastic flow
of two-dimensional surfaces iR3 based on a variational form is presented. Linear finite elements
are used for the space discretization of a mixed formulation. Time discretization is carried out by a
semi-implicit method to linearize the problem.

1. Introduction

The elastic flow is the evolution of a surface which is determined by the steepest descent of the
L?-gradient of the classical bending energy

E(I') = %/Fszo

where H denotes the sum of the principal curvatures of the surfacghis formula comes from
elasticity theory. In the physical sense the problem can be interpreted as the motion of an elastic
body, idealised to a surface, which possesses bending energy and moves to minimize its energy. The
model does not take into account the fact that the moving surface also has kinetic energy. The energy
E is also known as the Willmore functional after the name of the mathematician T. J. Willmore who
was among the first to study it from the mathematical point of view (s€é [14, 15, 16]).

Starting with the energy function&@ an abstract initial value problem can be formulated: for
a given smooth, regular, closed initial surfaggefind a family (I"(¢)); >0 of surfaces"(¢), ¢t > 0,
which describes the evolution &6 under theL?-gradientE’ of the energy functional and satisfies
I'(0) = Ip. This means that each point of the surfdtg), ¢+ > 0, moves with the time and space
dependent velocity which is determined by’ in the following way: if we choose a parametrization
X(,1): 8§ — I'(t)of the surfacd”(¢r) wheresS is a suitable reference surface, then

= —(E"(I'(1)), ¢) 1)
=0

d
W, ) 2(ray = —EE((X(', 1) +€9)(S))
for suitable test functions : § — R3 where(., Vr2rqy 1s the L?(I"(t))-scalar product. The
first variation of E is denoted by(E’(I" (1)), ¢) and delivered by the directional gradient of the

functional. A time dependent, nonlinear problem of fourth order in space arises.
The velocity condition[({1) leads in the case of a two-dimensional moving surface to

1
v~v+A1~H+H<§H2—2K>=O 2)
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230 R. E. RUSU

on I' (see [16]), which is the law of motion for the normal velocity v wherev is the inner
unit normal, A is the Laplace—Beltrami or the surface Laplacian operatoriislthe Gaussian
curvature ofl".

For the elastic flow of curves iR"”, n > 2, global existence in time of a solution was proved
(seel[11] fom = 2 and [7] forn > 3). Existence of a solution for the evolution of two-dimensional
surfaces iR”, n > 3, was shown in [10] up to atimg < oo, whereT depends on the curvatures of
the initial surfacep. Singularities arising in the evolution of two-dimensional surfaces were treated
in [13]. There it is verified numerically that singularities can appear in finite time.

According to [1) the problem has variational form. Assuming enough differentiability it is easy
to see that the energy equality

1d
lv2do + = — H?(t)do =0 (3)
/F(z) 2dr Jrq

holds since the velocity is X, (7). Thus, [(1) is suitable for the use of finite element methods. Finite
element solutions for the elastic flow of curves in plane and space have been implemented in [7].
A mixed formulation is used there for the position vector and the curvature vector. This is important
for the use of piecewise linear finite elements.

We shall focus in this article on the motion of two-dimensional, oriented, not necessarily
embedded, surfaces IR® which can be of different topological types. We shall assume that the
surfaces can be parametrized over a suitable susfaBenumerical method for the computation of
the elastic flow of surfaces is described and obtained as follows. We first introduce the necessary
differential geometry. In Section 2 the velocity condition (1) is determined for the parametric elastic
flow. To do that, expressions which contain merely geometrical quantities are calculated for the first
variation of the energy functional. In doing so, we seek a way to handle the Gaussian cukvature
We look for a mixed formulation which is suitable for discretization with piecewise linear finite
elements as in_[7]. Consequently, we succeed in eliminakingnd obtain instead the tangential
gradient of the normal (see Lemma 2]1). Since the tangential gradient & still not sufficient
for discretization with piecewise linear finite elements, we shift this derivative to the other terms by
partial integration. The reflection in the surface will thus appear in the formula for the first variation
of E (see Lemmp 2]2) and therefore in the velocity condition. We formulate a mixed problem where
the free variables are the position vector of the surface and the mean curvature vector (see Problem
[2.3). This is suitable for discretization with piecewise linear finite elements. The resulting velocity
is normal onI"(¢) and fulfils [2). The mixed problem is valid for the elastic flow of curves as well.

In Section 3 a semi-discrete and a fully discrete method are built based on the variational form
of the mixed problem (see Probleins]3.1 3.2). These are derived analogoulsly to [7] by using
piecewise linear finite elements for the space discretization and a semi-implicit method for the time
discretization. Thus, a system of linear equations has to be solved at each time step.

Suitable finite element methods for evolutionary parametric surfaces are describéd in [6] and
[12]. The evolution by mean curvature has been treated there. A discretization via finite elements for
the Laplace—Beltrami operator on arbitrary surfaces can be fouhd in [5]. A boundary value problem
with smooth boundary conditions is defined[in [3] as an extension of the result of this article. It is
applied to surface restoration. Numerical simulations are also presentéd. In [4] the authors prove
error estimates for a time continuous finite element method for the Willmore flow in the graph
representation. A mixed formulation is used there for the evolution of two-dimensional graphs
having as variables the height and a weighted mean curvature. Test calculations are presented.
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Here is a list of some important technical remarks. Consider a two-dimensional, cofffpact
surfacel’ c R3fork e N, 0 < x < 1l andy = 1if k = 0. We find a finiteC*x atlas of open
subsetd/;  I" such that™ = Uﬁ.ozl U; (seel[17, p. 64]). For eadlj; there exists a homeomorphic
CkX mapX; : £2; — U; of an open subse®, ¢ R?ontoU;, i = 1,...,ig. SinceX; is a
homeomorphism and* X, a unit normal vectop exists at each point of the surfagefor k > 1
and almost everywhere if' is Lipschitz. We say in this case that the surfaceegular. In the case
of a compact surface with a continuous unit normal field (5ee [2, p. 86]), we assumeishitie
inner unit normal vector. The may; : £2; — I' is called aocal parametrizatiorof I". We define
a two-dimensional regular compa€t, k > 1, surfacel” ¢ R® analogously. Ifp : I' — Ris a
smooth function, then by definitiano X; : £2; — R is smooth forali =1, ..., ip.

We define théangential gradienof ¢ with respect ta” at a point ofl” with normalv as

Vrg:=Dgp — Dg-vv

where Dy is the usual gradient op (see [9, p. 389]). For this definitiop is assumed to be
differentiable in an open neighbourhood Bfc R3. Nevertheless the tangential gradient depends
only on the values of on I". Furthermore the Laplace—Beltrami operatopaén aC? surfacel”

is the tangential divergence of the tangential gradient, dfe.

Are :=Vr-Vroe.

Here we have used the differentiability of an extension of the nonmaf I over an open
neighbourhood of” ¢ R2 (see[[9, p. 355]). One can define these geometrical quantities by means
of alocal parametrization df as well (se€ [, p. 4]). Thus, ¥ : 2 — I' is alocal parametrization

of a smooth surfacé&’, then

2

Vrg =Y (g7 (g o X)u X)) o X 4)
i,j=1

and

1 2 y
Arg = detg g (¢ 0 X)u)u: ) o X1 5
re ( = i;l(v 88" (o )u,)u,> o (5)
pqi_ntwise onX(£2) for a smooth functionp : I — R. Hereg = (g;;)i,j=1,2, +/detg and
&) j=12 = ¢~ 1 are the first fundamental form, the surface element and the inverse of the first
fundamental form of” in the parametric representation respectively (ske [2, p. 76]).
We denote byH the mean curvature and by the Gaussian curvature of a reguia surface
I'. We defineH, respectivelyK , to be the sum, respectively the product, of the principal curvatures
of I (seel2, p. 115]). Thus, it follows that
X X
H=ArX -ve=—VprX Vpp=—p. 22X 20 F XXV (6)
| Xy x Xy
for a local parametrizatioX : 2 — I of I mapping(u, v) € £2 to X (u, v) € I'. We remark that
a x b € R3is the vector product of, b € R3. Furthermore

Vy X Vy

K=yp. 470
[ Xy x Xy

(7)
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and
x X X, X
HVZA['X:—UM v+ Xy Xy 8)
[ Xy X Xyl

pointwise inX (§2) whereHv is the mean curvature vector bf.
We note that, ifp : I" — R3 is a smooth vector-valued function, th®i¢ is the matrix

Vig = (Vo) j=1.23 € R®3

with the rowsVrg;, i = 1, 2, 3, whereV;y; is the jth component of the tangential gradientypf
i,j =1,23, andArg is the column vectotA r¢1, Args, Args)' € R3. We also point out that
we distinguish between the left and right product of a matrix with a vector. ThusgifR? is a
vector andA € R3*3 a matrix, then(wA); = v;a;j, j = 1, 2, 3. Moreover

Vre-Vry = VipiViy;
and
Arg-Ary = Argi Ar;

where the summation convention is used ang : I — RS are smooth.
We mention furthermore the geometric relations

Arv =—|Vrv|?v — Vr H 9)
and
|Vrv|? = H? — 2K, (10)

which are valid pointwise if".
If ¢ : ' — R is a function such thap o X is integrable in$2 for a local parametrization
X : 2 — I of aregular Lipschitz surfacE, then we define the surface integral oves2) as

/ ¢ do ::/ o X|X, x Xy|dudv (12)
rnx() Q

where the integral on the right is the usual Lebesgue integral. The formula for partial integration on
ris

/ Vmpdo:—/ @Hv do, (12)
r r

which can be proved by using|(4), {11), providing the closed surfaieC?. By using the product
rule and[(IR) we obtain

AFWPdO:—/ Vre - Vrydo
r r

wherey : I' — R is another smooth and integrable function. We will identify in the following a
functiong on X (£2) C I" with ¢ o X on £2.

We apply the usual notatiab?(1")2 and H' (I")2 for a regularC®x surfacel’,l € N,I < k+y,
which are defined as in [17, p. 92]. This means that we still have the gp&de)? in the case of a
Lipschitz surfacd™.

There are different topological types of surfaces. It is convenient to parametrize globally the
surface depending on its topological type. For example, if the type is 0Xhes? — I will be a
global parametrization whet$? is the unit sphere iiR®.
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2. Continuous formulation

We are interested in the evolution of surfaces under the gradient flow of the bending energy
functional. Thus, to explain the velocity condition defined in (1), the first variation of the functional
has to be calculated.

Let I" be a regulacC? surface with normab. For simplicity we assume that

X:Q2—>TcCR3

is a global parametrization over an open dom@irc R2. Because 01]8) we write
1 2
EX)== [ |ArX|?do (13)
2)r

for the energy functionak of I' = X (£2). We obtain the following expression for the first variation
of E.

LEMMA 2.1 LetX : 2 — I' c RS be a parametrization of the regul@? surfacel” such that
I' = X(£2) and letE be the energy functional defined [n13). Then

d
(E'(X),9) = £E(X +€p)

e=0

1
:f AFX~(AF¢+2UVFU~VF¢)dO+§/ |ArX|°VrX - Vigpdo (14)
r r

forall g € C3(2)3.

Proof Letg € CO(SZ)3 be an arbitrary function and consider the surfafesi= X (2) =
(X + €¢)(£2) for arbitrarily smalle € R. We need to calculate

d
d_E(Xe)

1d )
= -— An Xc|d
2d6/p6|re el“do

e=0 e=0

Using [17) and the product rule gives

OIE(X) /AXllX Xep|dud
— =_— X v
de € o 2d Ie €u ev| QU o
1 d
:5/ % —|Ar |XuxXU|dudv
/ |Ar X| |X€u X Xey| du dv. (15)
£2 e=0
By (8) we have
}£|A1~X | :}E Veu X Xey + Xeu X Vey 2
2de ¢ =0 2d |X€M X X€U| =0
where
Xeu X Xey

Ve = 5
[Xeu X Xeol
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pointwise ins2, is the unit normal vector aof. Due to the quotient rule and

d x Xy + X, x
Bl =(pu vt Xy (pv—vaX-Vmp
de "|._o | Xy X Xyl
we get
e IcAe
2d€ e=0
1 x X X, x x X X, x
— —ArX. <<§0u v+ Xy %) XXU—}—XMX((pu v+ Xy ‘Pv))
[ Xy x Xy [ Xy x Xyl u [ Xy x Xyl v
v, X X v
_Apx X E OV o X 2YLX Ve
[Xu x Xyl
pointwise ins2. Inserting the above intp (1.5) leads to
d
d_E(Xe)
€ e=0
x X Xu X x X Xy X
—_ ApX~<<¢” v+ Xy ‘Pv) va—i—Xux((p" v+ Xy (Pv> )dudv
2 [ Xy x Xyl u | Xy x Xy v

3 2
— ApX~(vux<pv+gouxvv)dudv—§ |[ArpX|“VrX - Vi do.
Q Q

We expect from[(R) that a derivative of fourth order of a parametrization appears in the first variation
of E. Due to [$) we obtain

AF(,D—{ 1 (_<(¢MXXU+XMX§OU)XXU) _(Xltx((PLtXXv+XuX(Pv)>
| Xy x Xy [ X, x Xyl u [ X, x Xyl v
@u'Xv_(pv'Xu _QM'XU+¢U'XM
X X
+(Vx¢v)u+(§0uxv)v+( X, % X, )u v+< X, x X,| , u

pointwise in§2. By inserting the Laplace—Beltrami ¢ of ¢ into the first variation ofE and by
using theC? differentiability of I" we make the term containirg, v appear in). It follows that

d 1
—E(Xo) = / ArX - (Aro+2vVpv - Vi) do + —f |A1"X|2V[‘X -Vredo,
d6 6:0 I 2 I
which is the claim of the lemma. O

For practical purposes (see next section), it is important to remark that in LEmma 2.1 the test function
@ is arbitrary, i.eg is allowed to have tangential components.

For the sake of completeness we note that, if we assumtoebe normal on” throughout the
proof of Lemmg 2.]1, us¢ |(7) and shift the derivativegdb the other terms, in case is C*, we
obtain [2) for the normal velocity.

Let us return to the elastic flow. The goal is to develop an algorithm. In the smooth case a
nonlinear evolution equation of fourth order arises because of the condition (1). Thus after partial
integration in[(I#) we obtain

1
X +(Ar)?X —2Vr - (ArX -vVrv) — SVr (1ArX|?VrX) = 0. (16)
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This is equivalent to

1
Xt 4 (Ap)?Xg — 2Vi(Ar X v Vivg) — Evi(|AFX|2ViXk) =0

fork=1,2,3.

An adequate solution space for the weak formulation would be the Sobolev Hga§¥® and a
finite element method would consistGf elements. We wish to avoid this and to use a splitting into
second order problems as developed In [8] for the fourth order Cahn—Hilliard equation and used in
[7] for the elastic flow of curves. This will enable us to use piecewise linear finite elements.

But, to construct a discrete mixed method with Lagrange elements we obsens thand
therefore second order derivativesXfre contained in the expressipn|(14). These are not available
for piecewise linear finite elements. Nevertheless the derivativescah be eliminated by partial
integration.

We introduce the new variable

Y = ArX,

which is the mean curvature vector, and rewrite the first variation. It is
/ Y vwWprv-Vppdo = / VrY Vg — (WVpY) - WVre) do. a7
r r

To prove [IF), we need basically to write the integrand on the left with the summation convention
and apply the product rule. We use only geometrical quantities during this proof. A calculation gives
Y - vWrv.-Vre = Y ViviVig
= Vi(Yvk viVigr) — ViYeve viVier — YieVivie viVigr — Yo viVi Vi
=Vr-(YVre) —VrY) - Wre)—Y - -Arg

pointwise inI". SinceY is normal on/”, we obtain[(I]7) by using (12). We remark that the projection
(8ij — vivj)i j=1,2,3is included in @) on the right. We insert this in@m) and get

LEMMA 2.2 LetX : 2 — I' c RS be a parametrization of the regul@? surfacel” such that
I' = X(£2) and letE be the energy functional defined [n {13). Then

d
(E'(X), ¢) = &E(X +€p)

e=0

1 2
= — |ArX]| V]"X~VF(pd0
2)r

+ /P VI(ArX) - Vig — 20V (ArX)) - (0Vrg) do (18)

forall ¢ € C3(2)3.

Proof. Apply Lemmd 2.1l and (17). d
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Let us notice that now the reflecti@é;; — 2v;v;);, j—1,2,3 is contained in the first variation df.

We formulate the continuous mixed problem by using Lemimp 2.2. The calculations above can
be applied to closed surfaces with arbitrary topological type by means of a partition of unity (see
[17, p. 65]). Thus the mixed problem is posed for the position vekt@nd the mean curvature
vectorY which are defined on a suitable surfate

PROBLEM 2.3 (Continuous mixed elastic flow) Léfy : S — Iy c R3 be aC? parametrization
of the closed, regular, not necessarily embedd&dsurfacely = Xo(S) and letYy := Ar,Xo :
S — R3. FindT > 0 and functionsX, Y : S x [0, T] — RS2 such that, at every timee (0, T,
I =TI'(t) = X(S,1)is Lipschitz,X (-, 1), Y (-, 1) € HX(S)3, X, (-, 1) € L%(S)3 with

1
/Xt -(pd0+§/ |Y|2V[‘X-V[‘(pd0+/(VFY~V[‘(,D—2(1)V[‘Y)-(va(p))d():O (29)
r r r

forallp € HY(I")® and
/Y~¢d0+/VpX-Vp¢do=0 (20)
r r

forall v € HY(I")® andX (-, 0) = Xo, Y (-, 0) = Yo.

By comparing Problern 2.3 with the abstract initial value problem one see$ that (19) is implied
by the condition[(]L) for the velocity = X, and [20) is the weak formulation of the definitioniof

We next prove, under regularity assumptions, that the veldgitiyn equation|[(IP) is normal on
I’ at every timer € (0, T], i.e. X; has no tangential components. For that, we leave aside again
the parametric representation Bfand make use only of geometrical quantities and of the relations
between them.

We shift in [19) the derivatives af to the other terms by (12) first and obtain an equality
pointwise onI" which is equivalent to[ (16). The definition &f, the symmetry of the matrices
VrX = (8;j — vivj)i j=123andVrv, pointwise on/", and @) yield

(1,3 B 2
X, = (ZH = ArH — HIVrv v

on . It follows that 1
X, = —(ApH + éH3 - 2HK>v

on I" by (10). Consequently, we deduce, along the way, that the evolutiorf Jaw (2) for the normal
velocity of the elastic flow for surfaces is fulfilled.

LemmdZ.2 remains valid if one looks at the elastic flow of curves. In this case the first variation
(18) and with it the velocity conditior (19) are equivalent to those presentéd in [7].

3. Discrete formulation

Through the calculation ofE’(X), ¢) a variational form for the continuous problem has been
achieved. Thus finite element techniques can be applied. It is possible to use piecewise linear
Lagrange elements since the mixed problem is formulatedi(s)2.

The smooth surfacg will be approximated by a polyhedrdh, = Uy, T C RR3 of triangles

T C I, suchthatl; N T; = 3T; N 3T; for two different7;, T; C I}, whereh = maxycr;, diam7 is
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the maximum mesh size. We requirgto be a closed, not necessarily embedded, Lipschitz surface.
The Sobolev spacB1(17,)3 will be discretized by the finite element space

Xp(Iy) = {9 € %)% : g7 is alinear polynomialT ¢ I;,}

and we havev,(I7,) ¢ HX(I},)%.

PROBLEM 3.1 (Semi-discrete mixed elastic flow) L&}o be a closed initialC®! polyhedron of
triangles, X0 € X, (I7},0) @ parametrization of 0, andY,o € A}, (I,0) with the property

/ Yio - Iﬁdo—l—/ VroXno- Ve do=0
Tho Tho

for all ¥ € X,(Iho). Find, for T > 0, closed C%! polyhedronsl}(r) and functions
Xn(, ), Xpns (1), Yp(, 1) € X(Ih(2), 0 < t < T, such that, for each € (0, T], X, is a
parametrization ofj, and

1
/Xm'§0d0+§/ |Yh|2V1‘hXh'VFh§0d0+/ VY- Vr,e —20rVE,Yh) - WnVE,e) do =0
I, Iy Iy

forall ¢ € X, (I}),
/ Yh'l//do—l-/ V5, Xn -V, do=0
I I
forall v € X, (I},), andX; (-, 0) = X0, Yi (-, 0) = Yo

Let us remark that the discretization @f,(¢) results from representind},(z) by local
parametrizations; (1) 2i — (@) where2; ¢ R?is a polygonal discrete parameter domain,
i=1 ..., 10, andUi.O=1 Xi(£2;,1t) = I,(t). One demands2; to be time independent; for details
seel[12, p. 296].

Consider the time step > 0 with T = mgt for amg € N. We writeg” = g(-,mt) for a
functiong at timemt, 0 < m < mg. The time discretization is now used to linearize the problem.
Consequently, at each time step the integrals and the tangential gradients are built up with respect to
the surface which is calculated a time step before, and a difference quotient is used instead the time
derivativeX ;.

PROBLEM 3.2 (Semi-implicit scheme for the elastic flow) LE;,O be a closed Lipschitz polyhe-
dron of triangles with parametrization) € X, (I70) and lety? e A, (I'0) with

/OYi?"/de‘l'/ovr,f’Xg'VI‘,‘”/’dOZO
I Iy '

h

for all y € X;,(I0). Find, for eachn = 0,1, ...,mg — 1, functionsx;’f“, Y}f’*l € X, (I7)") such
that

1 1
—/ (XZH'l—XZl)-q)do—i-E/ Y2V X Vg do
TJor ne

+ /F Vi Y Vpng — 200V Y - (0 Vi) do = 0
h
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forallp € X, (I7}"),

/ Y,;"+1.1pdo+/ Vi Xpt Vpmy do =0
r I

h

forall ¢ € &, (17;") and
Fhm+1 — XZL-HL(F}:n)

If we discretizel;" as described in the semi-discrete case above,fijiecan serve as reference
surface for parametrizingj”“. This means we can define a global parametrizatiol?,fﬁfl over
I;". Obviously, it suffices to parametrize locally orﬂ"j); for details se€ [6].

Accordingly, at each time step a linear equation system has to be solved. The system is coupled
mainly because of the reflection. The matrices are symmetric.

4. Conclusion

Our aim was to derive a mixed variational problem for the elastic flow of a closed two-dimensional
surfacel” in R which is suitable for discretization with linear finite elements. We wanted to obtain

a scheme analogous to the semi-implicit fully discrete finite element scheme for the elastic flow
of curves developed in [7]. We succeeded by calculating the gradient of the elastic éhésgg
Lemmag Z.]l and 2.2). A semi-discretization and a full discretization are formulated in Prblems 3.1
and3.2.
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