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An algorithm for the elastic flow of surfaces
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A semi-implicit fully discrete finite element scheme for the computation of the parametric elastic flow
of two-dimensional surfaces inR3 based on a variational form is presented. Linear finite elements
are used for the space discretization of a mixed formulation. Time discretization is carried out by a
semi-implicit method to linearize the problem.

1. Introduction

The elastic flow is the evolution of a surface which is determined by the steepest descent of the
L2-gradient of the classical bending energy

E(Γ ) =
1

2

∫
Γ

H 2 do

whereH denotes the sum of the principal curvatures of the surfaceΓ . This formula comes from
elasticity theory. In the physical sense the problem can be interpreted as the motion of an elastic
body, idealised to a surface, which possesses bending energy and moves to minimize its energy. The
model does not take into account the fact that the moving surface also has kinetic energy. The energy
E is also known as the Willmore functional after the name of the mathematician T. J. Willmore who
was among the first to study it from the mathematical point of view (see [14, 15, 16]).

Starting with the energy functionalE an abstract initial value problem can be formulated: for
a given smooth, regular, closed initial surfaceΓ0 find a family (Γ (t))t>0 of surfacesΓ (t), t > 0,
which describes the evolution ofΓ0 under theL2-gradientE′ of the energy functional and satisfies
Γ (0) = Γ0. This means that each point of the surfaceΓ (t), t > 0, moves with the time and space
dependent velocityv which is determined byE′ in the following way: if we choose a parametrization
X(·, t) : S → Γ (t) of the surfaceΓ (t) whereS is a suitable reference surface, then

(v, ϕ)L2(Γ (t)) = −
d

dε
E((X(·, t)+ εϕ)(S))

∣∣∣∣
ε=0

= −〈E′(Γ (t)), ϕ〉 (1)

for suitable test functionsϕ : S → R3 where(·, ·)L2(Γ (t)) is theL2(Γ (t))-scalar product. The
first variation ofE is denoted by〈E′(Γ (t)), ϕ〉 and delivered by the directional gradient of the
functional. A time dependent, nonlinear problem of fourth order in space arises.

The velocity condition (1) leads in the case of a two-dimensional moving surface to

v · ν +∆ΓH +H

(
1

2
H 2

− 2K

)
= 0 (2)
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on Γ (see [16]), which is the law of motion for the normal velocityv · ν whereν is the inner
unit normal,∆Γ is the Laplace–Beltrami or the surface Laplacian operator andK is the Gaussian
curvature ofΓ .

For the elastic flow of curves inRn, n > 2, global existence in time of a solution was proved
(see [11] forn = 2 and [7] forn > 3). Existence of a solution for the evolution of two-dimensional
surfaces inRn, n > 3, was shown in [10] up to a timeT < ∞, whereT depends on the curvatures of
the initial surfaceΓ0. Singularities arising in the evolution of two-dimensional surfaces were treated
in [13]. There it is verified numerically that singularities can appear in finite time.

According to (1) the problem has variational form. Assuming enough differentiability it is easy
to see that the energy equality∫

Γ (t)

|v|2 do+
1

2

d

dt

∫
Γ (t)

H 2(t)do = 0 (3)

holds since the velocityv isXt (t). Thus, (1) is suitable for the use of finite element methods. Finite
element solutions for the elastic flow of curves in plane and space have been implemented in [7].
A mixed formulation is used there for the position vector and the curvature vector. This is important
for the use of piecewise linear finite elements.

We shall focus in this article on the motion of two-dimensional, oriented, not necessarily
embedded, surfaces inR3 which can be of different topological types. We shall assume that the
surfaces can be parametrized over a suitable surfaceS. A numerical method for the computation of
the elastic flow of surfaces is described and obtained as follows. We first introduce the necessary
differential geometry. In Section 2 the velocity condition (1) is determined for the parametric elastic
flow. To do that, expressions which contain merely geometrical quantities are calculated for the first
variation of the energy functional. In doing so, we seek a way to handle the Gaussian curvatureK.
We look for a mixed formulation which is suitable for discretization with piecewise linear finite
elements as in [7]. Consequently, we succeed in eliminatingK and obtain instead the tangential
gradient of the normalν (see Lemma 2.1). Since the tangential gradient ofν is still not sufficient
for discretization with piecewise linear finite elements, we shift this derivative to the other terms by
partial integration. The reflection in the surface will thus appear in the formula for the first variation
of E (see Lemma 2.2) and therefore in the velocity condition. We formulate a mixed problem where
the free variables are the position vector of the surface and the mean curvature vector (see Problem
2.3). This is suitable for discretization with piecewise linear finite elements. The resulting velocity
is normal onΓ (t) and fulfils (2). The mixed problem is valid for the elastic flow of curves as well.

In Section 3 a semi-discrete and a fully discrete method are built based on the variational form
of the mixed problem (see Problems 3.1 and 3.2). These are derived analogously to [7] by using
piecewise linear finite elements for the space discretization and a semi-implicit method for the time
discretization. Thus, a system of linear equations has to be solved at each time step.

Suitable finite element methods for evolutionary parametric surfaces are described in [6] and
[12]. The evolution by mean curvature has been treated there. A discretization via finite elements for
the Laplace–Beltrami operator on arbitrary surfaces can be found in [5]. A boundary value problem
with smooth boundary conditions is defined in [3] as an extension of the result of this article. It is
applied to surface restoration. Numerical simulations are also presented. In [4] the authors prove
error estimates for a time continuous finite element method for the Willmore flow in the graph
representation. A mixed formulation is used there for the evolution of two-dimensional graphs
having as variables the height and a weighted mean curvature. Test calculations are presented.
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Here is a list of some important technical remarks. Consider a two-dimensional, compactCk,χ

surfaceΓ ⊂ R3 for k ∈ N, 0 < χ < 1 andχ = 1 if k = 0. We find a finiteCk,χ atlas of open
subsetsUi ⊂ Γ such thatΓ =

⋃i0
i=1Ui (see [17, p. 64]). For eachUi there exists a homeomorphic

Ck,χ mapXi : Ωi → Ui of an open subsetΩi ⊂ R2 ontoUi , i = 1, . . . , i0. SinceXi is a
homeomorphism andCk,χ , a unit normal vectorν exists at each point of the surfaceΓ for k > 1
and almost everywhere ifΓ is Lipschitz. We say in this case that the surface isregular. In the case
of a compact surface with a continuous unit normal field (see [2, p. 86]), we assume thatν is the
inner unit normal vector. The mapXi : Ωi → Γ is called alocal parametrizationof Γ . We define
a two-dimensional regular compactCk, k > 1, surfaceΓ ⊂ R3 analogously. Ifϕ : Γ → R is a
smooth function, then by definitionϕ ◦Xi : Ωi → R is smooth for alli = 1, . . . , i0.

We define thetangential gradientof ϕ with respect toΓ at a point ofΓ with normalν as

∇Γ ϕ := Dϕ −Dϕ · νν

whereDϕ is the usual gradient ofϕ (see [9, p. 389]). For this definitionϕ is assumed to be
differentiable in an open neighbourhood ofΓ ⊂ R3. Nevertheless the tangential gradient depends
only on the values ofϕ onΓ . Furthermore the Laplace–Beltrami operator ofϕ on aC2 surfaceΓ
is the tangential divergence of the tangential gradient ofϕ, i.e.

∆Γ ϕ := ∇Γ · ∇Γ ϕ.

Here we have used the differentiability of an extension of the normalν of Γ over an open
neighbourhood ofΓ ⊂ R3 (see [9, p. 355]). One can define these geometrical quantities by means
of a local parametrization ofΓ as well (see [1, p. 4]). Thus, ifX : Ω → Γ is a local parametrization
of a smooth surfaceΓ , then

∇Γ ϕ =

2∑
i,j=1

(gij (ϕ ◦X)uiXuj ) ◦X−1 (4)

and

∆Γ ϕ =

(
1

√
detg

2∑
i,j=1

(
√

detg gij (ϕ ◦X)ui )uj

)
◦X−1 (5)

pointwise onX(Ω) for a smooth functionϕ : Γ → R. Here g = (gij )i,j=1,2,
√

detg and
(gij )i,j=1,2 = g−1 are the first fundamental form, the surface element and the inverse of the first
fundamental form ofΓ in the parametric representation respectively (see [2, p. 76]).

We denote byH the mean curvature and byK the Gaussian curvature of a regularC2 surface
Γ . We defineH , respectivelyK, to be the sum, respectively the product, of the principal curvatures
of Γ (see [2, p. 115]). Thus, it follows that

H = ∆ΓX · ν = −∇ΓX · ∇Γ ν = −ν ·
νu ×Xv +Xu × νv

|Xu ×Xv|
(6)

for a local parametrizationX : Ω → Γ of Γ mapping(u, v) ∈ Ω toX(u, v) ∈ Γ . We remark that
a × b ∈ R3 is the vector product ofa, b ∈ R3. Furthermore

K = ν ·
νu × νv

|Xu ×Xv|
(7)
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and

Hν = ∆ΓX = −
νu ×Xv +Xu × νv

|Xu ×Xv|
(8)

pointwise inX(Ω) whereHν is the mean curvature vector ofΓ .
We note that, ifϕ : Γ → R3 is a smooth vector-valued function, then∇Γ ϕ is the matrix

∇Γ ϕ = (∇jϕi)i,j=1,2,3 ∈ R3×3

with the rows∇Γ ϕi , i = 1,2,3, where∇jϕi is thej th component of the tangential gradient ofϕi ,
i, j = 1,2,3, and∆Γ ϕ is the column vector(∆Γ ϕ1,∆Γ ϕ2,∆Γ ϕ3)

t
∈ R3. We also point out that

we distinguish between the left and right product of a matrix with a vector. Thus, ifv ∈ R3 is a
vector andA ∈ R3×3 a matrix, then(vA)j = viaij , j = 1,2,3. Moreover

∇Γ ϕ · ∇Γψ = ∇iϕj∇iψj

and

∆Γ ϕ ·∆Γψ = ∆Γ ϕi∆Γψi

where the summation convention is used andϕ,ψ : Γ → R3 are smooth.
We mention furthermore the geometric relations

∆Γ ν = −|∇Γ ν|
2ν − ∇ΓH (9)

and

|∇Γ ν|
2

= H 2
− 2K, (10)

which are valid pointwise inΓ .
If ϕ : Γ → R is a function such thatϕ ◦ X is integrable inΩ for a local parametrization

X : Ω → Γ of a regular Lipschitz surfaceΓ , then we define the surface integral overX(Ω) as∫
Γ∩X(Ω)

ϕ do :=
∫
Ω

ϕ ◦X|Xu ×Xv| dudv (11)

where the integral on the right is the usual Lebesgue integral. The formula for partial integration on
Γ is ∫

Γ

∇Γ ϕ do = −

∫
Γ

ϕHν do, (12)

which can be proved by using (4), (11), providing the closed surfaceΓ isC2. By using the product
rule and (12) we obtain ∫

Γ

∆Γ ϕ ψ do = −

∫
Γ

∇Γ ϕ · ∇Γψ do

whereψ : Γ → R is another smooth and integrable function. We will identify in the following a
functionϕ onX(Ω) ⊂ Γ with ϕ ◦X onΩ.

We apply the usual notationL2(Γ )3 andH l(Γ )3 for a regularCk,χ surfaceΓ , l ∈ N, l 6 k+χ ,
which are defined as in [17, p. 92]. This means that we still have the spaceH 1(Γ )3 in the case of a
Lipschitz surfaceΓ .

There are different topological types of surfaces. It is convenient to parametrize globally the
surface depending on its topological type. For example, if the type is 0, thenX : S2

→ Γ will be a
global parametrization whereS2 is the unit sphere inR3.
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2. Continuous formulation

We are interested in the evolution of surfaces under the gradient flow of the bending energy
functional. Thus, to explain the velocity condition defined in (1), the first variation of the functional
has to be calculated.

Let Γ be a regularC3 surface with normalν. For simplicity we assume that

X : Ω → Γ ⊂ R3

is a global parametrization over an open domainΩ ⊂ R2. Because of (8) we write

E(X) =
1

2

∫
Γ

|∆ΓX|
2 do (13)

for the energy functionalE of Γ = X(Ω). We obtain the following expression for the first variation
of E.

LEMMA 2.1 LetX : Ω → Γ ⊂ R3 be a parametrization of the regularC3 surfaceΓ such that
Γ = X(Ω) and letE be the energy functional defined in (13). Then

〈E′(X), ϕ〉 =
d

dε
E(X + εϕ)

∣∣∣∣
ε=0

=

∫
Γ

∆ΓX · (∆Γ ϕ + 2ν∇Γ ν · ∇Γ ϕ)do+
1

2

∫
Γ

|∆ΓX|
2
∇ΓX · ∇Γ ϕ do (14)

for all ϕ ∈ C2
0(Ω)

3.

Proof. Let ϕ ∈ C2
0(Ω)

3 be an arbitrary function and consider the surfacesΓε := Xε(Ω) :=
(X + εϕ)(Ω) for arbitrarily smallε ∈ R. We need to calculate

d

dε
E(Xε)

∣∣∣∣
ε=0

=
1

2

d

dε

∫
Γε

|∆ΓεXε |
2 do

∣∣∣∣
ε=0
.

Using (11) and the product rule gives

d

dε
E(Xε)

∣∣∣∣
ε=0

=
1

2

d

dε

∫
Ω

|∆ΓεXε |
2
|Xεu ×Xεv| dudv

∣∣∣∣
ε=0

=
1

2

∫
Ω

d

dε
|∆ΓεXε |

2
∣∣∣∣
ε=0

|Xu ×Xv| dudv

+
1

2

∫
Ω

|∆ΓX|
2 d

dε
|Xεu ×Xεv|

∣∣∣∣
ε=0

dudv. (15)

By (8) we have

1

2

d

dε
|∆ΓεXε |

2
∣∣∣∣
ε=0

=
1

2

d

dε

∣∣∣∣νεu ×Xεv +Xεu × νεv

|Xεu ×Xεv|

∣∣∣∣2∣∣∣∣
ε=0

where

νε =
Xεu ×Xεv

|Xεu ×Xεv|
,
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pointwise inΩ, is the unit normal vector ofΓε . Due to the quotient rule and

d

dε
νε

∣∣∣∣
ε=0

=
ϕu ×Xv +Xu × ϕv

|Xu ×Xv|
− ν∇ΓX · ∇Γ ϕ

we get

1

2

d

dε
|∆ΓεXε |

2
∣∣∣∣
ε=0

= −∆ΓX ·
1

|Xu ×Xv|

((
ϕu ×Xv +Xu × ϕv

|Xu ×Xv|

)
u

×Xv +Xu ×

(
ϕu ×Xv +Xu × ϕv

|Xu ×Xv|

)
v

)
−∆ΓX ·

νu × ϕv + ϕu × νv

|Xu ×Xv|
− 2|∆ΓX|

2
∇ΓX · ∇Γ ϕ

pointwise inΩ. Inserting the above into (15) leads to

d

dε
E(Xε)

∣∣∣∣
ε=0

= −

∫
Ω

∆ΓX ·

((
ϕu ×Xv +Xu × ϕv

|Xu ×Xv|

)
u

×Xv +Xu ×

(
ϕu ×Xv +Xu × ϕv

|Xu ×Xv|

)
v

)
dudv

−

∫
Ω

∆ΓX · (νu × ϕv + ϕu × νv)dudv −
3

2

∫
Ω

|∆ΓX|
2
∇ΓX · ∇Γ ϕ do.

We expect from (2) that a derivative of fourth order of a parametrization appears in the first variation
of E. Due to (5) we obtain

∆Γ ϕ =

{
1

|Xu ×Xv|

(
−

(
(ϕu ×Xv +Xu × ϕv)×Xv

|Xu ×Xv|

)
u

−

(
Xu × (ϕu ×Xv +Xu × ϕv)

|Xu ×Xv|

)
v

+ (ν × ϕv)u + (ϕu × ν)v +

(
ϕu ·Xv − ϕv ·Xu

|Xu ×Xv|

)
u

Xv +

(
−ϕu ·Xv + ϕv ·Xu

|Xu ×Xv|

)
v

Xu

)}
pointwise inΩ. By inserting the Laplace–Beltrami∆Γ ϕ of ϕ into the first variation ofE and by
using theC3 differentiability ofΓ we make the term containing∇Γ ν appear in (14). It follows that

d

dε
E(Xε)

∣∣∣∣
ε=0

=

∫
Γ

∆ΓX · (∆Γ ϕ + 2ν∇Γ ν · ∇Γ ϕ)do+
1

2

∫
Γ

|∆ΓX|
2
∇ΓX · ∇Γ ϕ do,

which is the claim of the lemma. 2

For practical purposes (see next section), it is important to remark that in Lemma 2.1 the test function
ϕ is arbitrary, i.e.ϕ is allowed to have tangential components.

For the sake of completeness we note that, if we assumeϕ to be normal onΓ throughout the
proof of Lemma 2.1, use (7) and shift the derivatives ofϕ to the other terms, in caseΓ is C4, we
obtain (2) for the normal velocity.

Let us return to the elastic flow. The goal is to develop an algorithm. In the smooth case a
nonlinear evolution equation of fourth order arises because of the condition (1). Thus after partial
integration in (14) we obtain

Xt + (∆Γ )
2X − 2∇Γ · (∆ΓX · ν∇Γ ν)−

1

2
∇Γ · (|∆ΓX|

2
∇ΓX) = 0. (16)
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This is equivalent to

Xkt + (∆Γ )
2Xk − 2∇i(∆ΓXlνl∇iνk)−

1

2
∇i(|∆ΓX|

2
∇iXk) = 0

for k = 1,2,3.
An adequate solution space for the weak formulation would be the Sobolev spaceH 2(S)3 and a

finite element method would consist ofC1 elements. We wish to avoid this and to use a splitting into
second order problems as developed in [8] for the fourth order Cahn–Hilliard equation and used in
[7] for the elastic flow of curves. This will enable us to use piecewise linear finite elements.

But, to construct a discrete mixed method with Lagrange elements we observe that∇Γ ν and
therefore second order derivatives ofX are contained in the expression (14). These are not available
for piecewise linear finite elements. Nevertheless the derivatives ofν can be eliminated by partial
integration.

We introduce the new variable

Y := ∆ΓX,

which is the mean curvature vector, and rewrite the first variation. It is∫
Γ

Y · ν∇Γ ν · ∇Γ ϕ do =

∫
Γ

∇Γ Y · ∇Γ ϕ − (ν∇Γ Y ) · (ν∇Γ ϕ)do. (17)

To prove (17), we need basically to write the integrand on the left with the summation convention
and apply the product rule. We use only geometrical quantities during this proof. A calculation gives

Y · ν∇Γ ν · ∇Γ ϕ = Ykνk ∇iνl∇iϕl

= ∇i(Ykνk νl∇iϕl)− ∇iYkνk νl∇iϕl − Yk∇iνk νl∇iϕl − Ykνk νl∇i∇iϕl

= ∇Γ · (Y∇Γ ϕ)− (ν∇Γ Y ) · (ν∇Γ ϕ)− Y ·∆Γ ϕ

pointwise inΓ . SinceY is normal onΓ , we obtain (17) by using (12). We remark that the projection
(δij − νiνj )i,j=1,2,3 is included in (17) on the right. We insert this into (14) and get

LEMMA 2.2 LetX : Ω → Γ ⊂ R3 be a parametrization of the regularC3 surfaceΓ such that
Γ = X(Ω) and letE be the energy functional defined in (13). Then

〈E′(X), ϕ〉 =
d

dε
E(X + εϕ)

∣∣∣∣
ε=0

=
1

2

∫
Γ

|∆ΓX|
2
∇ΓX · ∇Γ ϕ do

+

∫
Γ

∇Γ (∆ΓX) · ∇Γ ϕ − 2(ν∇Γ (∆ΓX)) · (ν∇Γ ϕ)do (18)

for all ϕ ∈ C2
0(Ω)

3.

Proof. Apply Lemma 2.1 and (17). 2
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Let us notice that now the reflection(δij − 2νiνj )i,j=1,2,3 is contained in the first variation ofE.
We formulate the continuous mixed problem by using Lemma 2.2. The calculations above can

be applied to closed surfaces with arbitrary topological type by means of a partition of unity (see
[17, p. 65]). Thus the mixed problem is posed for the position vectorX and the mean curvature
vectorY which are defined on a suitable surfaceS.

PROBLEM 2.3 (Continuous mixed elastic flow) LetX0 : S → Γ0 ⊂ R3 be aC2 parametrization
of the closed, regular, not necessarily embedded,C2 surfaceΓ0 = X0(S) and letY0 := ∆Γ0X0 :
S → R3. FindT > 0 and functionsX, Y : S × [0, T ] → R3 such that, at every timet ∈ (0, T ],
Γ = Γ (t) = X(S, t) is Lipschitz,X(·, t), Y (·, t) ∈ H 1(S)3,Xt (·, t) ∈ L2(S)3 with∫

Γ

Xt · ϕ do+
1

2

∫
Γ

|Y |
2
∇ΓX · ∇Γ ϕ do+

∫
Γ

(∇Γ Y · ∇Γ ϕ − 2(ν∇Γ Y ) · (ν∇Γ ϕ))do = 0 (19)

for all ϕ ∈ H 1(Γ )3 and ∫
Γ

Y · ψ do+

∫
Γ

∇ΓX · ∇Γψ do = 0 (20)

for all ψ ∈ H 1(Γ )3 andX(·,0) = X0, Y (·,0) = Y0.

By comparing Problem 2.3 with the abstract initial value problem one sees that (19) is implied
by the condition (1) for the velocityv = Xt and (20) is the weak formulation of the definition ofY .

We next prove, under regularity assumptions, that the velocityXt in equation (19) is normal on
Γ at every timet ∈ (0, T ], i.e. Xt has no tangential components. For that, we leave aside again
the parametric representation ofΓ and make use only of geometrical quantities and of the relations
between them.

We shift in (19) the derivatives ofϕ to the other terms by (12) first and obtain an equality
pointwise onΓ which is equivalent to (16). The definition ofY , the symmetry of the matrices
∇ΓX = (δij − νiνj )i,j=1,2,3 and∇Γ ν, pointwise onΓ , and (9) yield

Xt =

(
1

2
H 3

−∆ΓH −H |∇Γ ν|
2
)
ν

onΓ . It follows that

Xt = −

(
∆ΓH +

1

2
H 3

− 2HK

)
ν

on Γ by (10). Consequently, we deduce, along the way, that the evolution law (2) for the normal
velocity of the elastic flow for surfaces is fulfilled.

Lemma 2.2 remains valid if one looks at the elastic flow of curves. In this case the first variation
(18) and with it the velocity condition (19) are equivalent to those presented in [7].

3. Discrete formulation

Through the calculation of〈E′(X), ϕ〉 a variational form for the continuous problem has been
achieved. Thus finite element techniques can be applied. It is possible to use piecewise linear
Lagrange elements since the mixed problem is formulated inH 1(S)3.

The smooth surfaceΓ will be approximated by a polyhedronΓh =
⋃
T⊂Γh

T ⊂ R3 of triangles

T ⊂ Γh such thatT̄i ∩ T̄j = ∂Ti ∩ ∂Tj for two differentTi, Tj ⊂ Γh whereh = maxT⊂Γh diamT is
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the maximum mesh size. We requireΓh to be a closed, not necessarily embedded, Lipschitz surface.
The Sobolev spaceH 1(Γh)

3 will be discretized by the finite element space

X h(Γh) := {ϕ ∈ C0(Γh)
3 : ϕ|T is a linear polynomial, T ⊂ Γh}

and we haveXh(Γh) ⊂ H 1(Γh)
3.

PROBLEM 3.1 (Semi-discrete mixed elastic flow) LetΓh0 be a closed initialC0,1 polyhedron of
triangles,Xh0 ∈ Xh(Γh0) a parametrization ofΓh0, andYh0 ∈ Xh(Γh0) with the property∫

Γh0

Yh0 · ψ do+

∫
Γh0

∇Γh0Xh0 · ∇Γh0ψ do = 0

for all ψ ∈ Xh(Γh0). Find, for T > 0, closedC0,1 polyhedronsΓh(t) and functions
Xh(·, t), Xht (·, t), Yh(·, t) ∈ Xh(Γh(t)), 0 6 t 6 T , such that, for eacht ∈ (0, T ], Xh is a
parametrization ofΓh and∫
Γh

Xht ·ϕ do+
1

2

∫
Γh

|Yh|
2
∇ΓhXh · ∇Γhϕ do+

∫
Γh

∇ΓhYh · ∇Γhϕ− 2(νh∇ΓhYh) · (νh∇Γhϕ)do = 0

for all ϕ ∈ Xh(Γh), ∫
Γh

Yh · ψ do+

∫
Γh

∇ΓhXh · ∇Γhψ do = 0

for all ψ ∈ Xh(Γh), andXh(·,0) = Xh0, Yh(·,0) = Yh0.

Let us remark that the discretization ofΓh(t) results from representingΓh(t) by local
parametrizationsXi(t) : Ωi → Γh(t) whereΩi ⊂ R2 is a polygonal discrete parameter domain,
i = 1, . . . , i0, and

⋃i0
i=1Xi(Ωi, t) = Γh(t). One demandsΩi to be time independent; for details

see [12, p. 296].
Consider the time stepτ > 0 with T = m0τ for am0 ∈ N. We writegm := g(·, mτ) for a

functiong at timemτ , 0 6 m 6 m0. The time discretization is now used to linearize the problem.
Consequently, at each time step the integrals and the tangential gradients are built up with respect to
the surface which is calculated a time step before, and a difference quotient is used instead the time
derivativeXht .

PROBLEM 3.2 (Semi-implicit scheme for the elastic flow) LetΓ 0
h be a closed Lipschitz polyhe-

dron of triangles with parametrizationX0
h ∈ Xh(Γ 0

h ) and letY 0
h ∈ Xh(Γ 0

h ) with∫
Γ 0
h

Y 0
h · ψ do+

∫
Γ 0
h

∇Γ 0
h
X0
h · ∇Γ 0

h
ψ do = 0

for all ψ ∈ Xh(Γ 0
h ). Find, for eachm = 0,1, . . . , m0 − 1, functionsXm+1

h , Ym+1
h ∈ Xh(Γ mh ) such

that

1

τ

∫
Γ mh

(Xm+1
h −Xmh ) · ϕ do+

1

2

∫
Γ mh

|Ymh |
2
∇Γ mh

Xm+1
h · ∇Γ mh

ϕ do

+

∫
Γ mh

∇Γ mh
Ym+1
h · ∇Γ mh

ϕ − 2(νmh ∇Γ mh
Ym+1
h ) · (νmh ∇Γ mh

ϕ)do = 0



238 R. E. RUSU

for all ϕ ∈ Xh(Γ mh ), ∫
Γ mh

Ym+1
h · ψ do+

∫
Γ mh

∇Γ mh
Xm+1
h · ∇Γ mh

ψ do = 0

for all ψ ∈ Xh(Γ mh ) and
Γ m+1
h = Xm+1

h (Γ mh ).

If we discretizeΓ mh as described in the semi-discrete case above, thenΓ mh can serve as reference
surface for parametrizingΓ m+1

h . This means we can define a global parametrization ofΓ m+1
h over

Γ mh . Obviously, it suffices to parametrize locally onlyΓ 0
h ; for details see [6].

Accordingly, at each time step a linear equation system has to be solved. The system is coupled
mainly because of the reflection. The matrices are symmetric.

4. Conclusion

Our aim was to derive a mixed variational problem for the elastic flow of a closed two-dimensional
surfaceΓ in R3 which is suitable for discretization with linear finite elements. We wanted to obtain
a scheme analogous to the semi-implicit fully discrete finite element scheme for the elastic flow
of curves developed in [7]. We succeeded by calculating the gradient of the elastic energyE (see
Lemmas 2.1 and 2.2). A semi-discretization and a full discretization are formulated in Problems 3.1
and 3.2.
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10. KUWERT, E. & SCHÄTZLE , R. Gradient flow for the Willmore functional.Comm. Anal. Geom.10
(2002), 307–339. Zbl 1029.53082 MR 1900754

11. POLDEN, A. Curves and surfaces of least total curvature and fourth-order flows. Dissertation,
Mathematisches Institut, Universität Tübingen (1996).
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