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An upper bound on the coarsening rate for mushy zones
in a phase-field model
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We prove an upper bound on the coarsening rate for solutions of a phase field model with arbitrarily
complicated patterns of phases. The analysis is performed in a regime corresponding to the late stages
of phase separation, in which the ratio between the transition layer thickness and the length scale of
the pattern is small, and is also small compared to the square of the ratio between the pattern scale
and the system size. The analysis extends the method of Kohn and Otto (Comm. Math. Phys. 229
(2002), 375–395) to deal with both temperature and phase fields.

1. Introduction

Phase field models are used to describe the solid-liquid phase transition of a pure material by means
of two continuous field variables: the temperatureu and an order parameterφ [2–6, 10, 12, 13].
The order parameterφ is an indicator of the local microscopic order of the material, and varies
continuously fromφ = −1 (solid phase) toφ = +1 (liquid phase). The phase field model that we
consider consists of two equations written in non-dimensional form as

εut +
l

2
φt = K∆u, (1.1)

αεφt = ε∆φ −
1

ε
g(φ)+ 2u. (1.2)

Here l, K andα are non-dimensional parameters that respectively represent latent heat, thermal
diffusivity, and a relaxation time. The functiong(φ) is the derivative of the double well potential
G(φ) =

1
4(φ

2
− 1)2 which is minimized atφ = ±1. The small parameterε measures the thickness

of the transition layers between the two phases{φ ≈ +1} and {φ ≈ −1} and is also related to
relaxation and diffusion times and the energetic contributions of temperature fluctuations compared
to phase changes. We supply more details concerning the non-dimensionalization procedure and the
interpretation of parameters in an appendix.

Caginalp [3] used formal asymptotic arguments to identify sharp-interface limits of the phase
field model in many limiting regimes. For the system as written above, his arguments show that as
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ε → 0, the sharp-interface limit is the Mullins–Sekerka system

∆u = 0 outsideΓ (t), (1.3)

[n · ∇u]+− = −
l

K
v onΓ (t), (1.4)

∆s u = −σκ − ασv onΓ (t), (1.5)

whereΓ (t) ≈ {x | φ(x, t) = 0} is the interface between the two phases, [n · ∇u]+− is the jump of
the normal derivative ofu acrossΓ , v is the normal velocity ofΓ , κ is the mean curvature ofΓ (t),
∆s is the difference of the entropy between the two phases, andσ is the surface tension.

This sharp-interface model keeps the same form under the scaling

x = λx̂, t = λ3t̂ , û(x̂) = λu(x), α̂ = α/λ. (1.6)

In the late stages of phase change processes initiated by spinodal decomposition, or certain
heterogeneously nucleated phase changes, the pattern of phases is very complicated, producing on
the macroscopic level what are sometimes called “mushy zones.” The structure of mushy zones
is observed to coarsen in time, with average quantities such as the typical microscopic length
scale of the pattern or the power spectrum exhibiting a power-law scaling behavior that is not
very well understood [1]. One type of heuristic argument suggests that coarsening is somehow
an asymptotically statistically self-similar process not depending on the fine details of the pattern.
Then the scaling (1.6) suggests that as the length scale becomes large, the influence ofα can be
neglected, and the coarsening rate of the sharp-interface model should be

L̂(t) ∼ t1/3,

whereL̂(t) is a characteristic length scale of the pattern or distribution of phases. Consequently, we
expect the solution of the phase field system to have the same coarsening rate, at least whenε is
sufficiently small.

One cannot expect all solutions to coarsen, due to the likely presence of fine-scale unstable
equilibria for example, and anyway, in the infinite-time limit the system should typically reach a
stable equilibrium and stop coarsening. But Kohn and Otto [7] have recently introduced a powerful
method to obtain rigorous, universally validupper boundson intermediate-time coarsening rates
that have the right power-law nature (see also [8, 9]). One of the cases treated in [7] is the Cahn–
Hilliard equation, whose sharp-interface limit is the same Mullins–Sekerka system in (1.3)–(1.5)
with α = 0 (see [11] for details). It is our aim in this paper to extend the method of [7] to treat the
phase-field system (1.1)–(1.2), and obtain time-averaged upper bounds on the coarsening rate under
physically reasonable assumptions.

We will consider the coarsening dynamics in a large cubic cellQ := [0, a]n ⊂ Rn and with
periodic boundary conditions to avoid boundary effects. As in [7], we will always consider volume-
averaged integrals denoted by

−

∫
f :=

1

vol(Q)

∫
Q

f,

as our goal is to obtain universal bounds independent of the size ofQ. Our bounds will be valid
when the transition layer thicknessε is small compared to a characteristic length scaleL̂ and the
ratio ε/L̂ � (L̂/a)2, and therefore we are able to consider very complicated patterns of phases
whenL̂(t) � a.
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As long as the initial values are continuous andε < αK, the initial-value problem for the phase
field system (1.1)–(1.2) is globally well posed and the solution is classical (see [2]). By (1.1) and
the periodic boundary condition,

d

dt
−

∫ (
εu+

l

2
φ

)
= −

∫ (
εut +

l

2
φt

)
= −

∫
K∆u = 0.

So−

∫
(εu+

l
2φ) is conserved, and we will focus on the case−

∫
(εu+

l
2φ) = 0, i.e.,

εū+
l

2
φ̄ = 0, (1.7)

where ū = −

∫
u and φ̄ = −

∫
φ. Hence we only consider those initial data that satisfy (1.7). The

phase field system (1.1)–(1.2) dissipates a volume-averaged negative entropyS(t) (cf. [13]), which
is defined by

S(t) := −

∫ (
ε

2
|∇φ|

2
+

1

ε
G(φ)+

2ε

l
u2
)
. (1.8)

The time derivative ofS is

Ṡ = −

∫ ((
−ε∆φ +

1

ε
g(φ)

)
φt +

4ε

l
uut

)
= −

∫ (
(2u− αεφt )φt +

4

l

(
K∆u−

l

2
φt

)
u

)
= −

∫ (
−

4K

l
|∇u|2 − αεφ2

t

)
.

So Ṡ 6 0 andS(t) is a decreasing function oft . Note that in the sharp-interface limit,S(t)
corresponds to the volume-averagedarea of the interface between the phases, and so scales as
inverse to length (cf. [3, 6]).

The method of Kohn and Otto involves three key steps. The first is to find adissipation relation
that bounds the growth rate of a suitable measure of length scale in terms of the dissipation of a dual
quantity, which is negative entropy in this case. Here, as a measure of length scale we will employ
theH−1 Sobolev norm of the scaled energy densityεu+

l
2φ. We define

L(t) :=

(
−

∫
|∇v|2

)1/2

, (1.9)

wherev is a periodic function that satisfies

∆v = εu+
l

2
φ. (1.10)

By (1.7),v exists and is uniquely determined up to a spatial constant, soL is well defined. Taking
the time derivative ofL2(t) = −

∫
|∇v|2, we get

LL̇ = −

∫
∇v∇vt = −

∫
(−∆vt )v = −

∫ (
−εut −

l

2
φt

)
v

= −

∫
−K∆u v = −

∫
K∇u∇v 6 K

(
−

∫
|∇v|2

)1/2(
−

∫
|∇u|2

)1/2

.
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So

|L̇| 6 K

(
−

∫
|∇u|2

)1/2

6 K

(
l

4K
(−Ṡ)

)1/2

,

that is,

|L̇|
2 6

Kl

4
(−Ṡ). (1.11)

This will prove to be the required dissipation relation.
The second key step involves proving aninterpolation inequality, of the form

L(t)S(t) > C1, (1.12)

valid under certain conditions for allt > 0. The constantC1 > 0 depends only onK, l, the
dimension of spacen, and the form of the double-well potential, and does not depend on the domain
Q, the parameterε or the size ofS andL. We shall find that (1.12) is valid under the conditions

ε

L̂
� 1,

ε

L̂
�

(
L̂

a

)2

, (1.13)

whereL̂−1 is an upper bound forS(0) and may be regarded as a length scale.
The third step in the Kohn–Otto method is an elementary ODE argument (Lemma 3 in [7]). The

dissipation relation (1.11) and the interpolation inequality (1.12) together with the ODE lemma in
[7] lead directly to our main result.

THEOREM 1.1 Provided that the conditions (1.13) hold, there exist positive constantsC2 andC3
such that for any solutionsu(t, x) andφ(t, x) of the equations (1.1) and (1.2), if the initial data
satisfy (1.7) and̂LS(0) 6 1, then

−

∫ T

0
S(t)2 dt > C2−

∫ T

0
(t−1/3)2 dt for T > C3L(0)

3. (1.14)

The constantsC2 andC3 depend only onK, l, n and the form of the double-well potentialG, and
not onε, α, L(0), or S(0).

The estimate (1.14) is a time-averaged version of the (unproven) pointwise estimateS(t) >
Ct−1/3, which corresponds to an upper bound on the length scale 1/S(t) with the expected power-
law behavior. Theorem 3.1, adapted from [7], provides time-averaged estimates on some other
integral combinations ofS(t) andL(t). By tracking the constants in the arguments of [7], we find
C2 =

1
6(3m)

1/3 andC3 = 8/(3m) wherem = min{
1
4C

2
1, C

4
1/(Kl)

2
}.

At this point, it only remains to prove the interpolation inequality (1.12).

2. The interpolation inequality

In this section, we will prove the interpolation inequality (1.12) under the assumptions indicated
above. Define periodic functionsw andψ such that

∆w = u− ū and ∆ψ = φ − φ̄. (2.1)
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w andψ are determined up to a spatial constant, which we fix by requiringw̄ = 0, ψ̄ = 0. By (1.8)
we have

−

∫
2ε

l
u2 6 S, (2.2)

so we get (
−

∫
|u− ū|2

)1/2

6

(
−

∫
u2
)1/2

6

√
l

2ε

√
S. (2.3)

The periodicity ofw guarantees that
∫

∇w = 0. By Poincaŕe’s inequality, together with an
integration by parts justified by the periodicity ofw,(

−

∫
|∇w|

2
)1/2

6 Ca

(
−

∫ ∑
i,j

∣∣∣∣∣ ∂2w

∂xi∂xj

∣∣∣∣∣
2)1/2

= Ca

(
−

∫
|∆w|

2
)1/2

= Ca

(
−

∫
|u− ū|2

)1/2

6 Ca

√
l

2ε

√
S, (2.4)

whereC is a positive constant which depends only on the dimension of space.
By (2.1) and (1.7),

∆

(
εw +

l

2
ψ

)
= ε(u− ū)+

l

2
(φ − φ̄) = εu+

l

2
φ. (2.5)

Comparing (2.5) with (1.10), we get

L(t) =

(
−

∫ ∣∣∣∣ε∇w +
l

2
∇ψ

∣∣∣∣2)1/2

>
l

2

(
−

∫
|∇ψ |

2
)1/2

− ε

(
−

∫
|∇w|

2
)1/2

>
l

2

(
−

∫
|∇ψ |

2
)1/2

− Ca

√
lε

2
S1/2,

so

L(t)S(t) >
l

2

(
−

∫
|∇ψ |

2
)1/2

−

∫ (
ε

2
|∇φ|

2
+

1

ε
G(φ)

)
− Ca

√
lε

2
S3/2.

Let us now define

L1(t) =

(
−

∫
|∇ψ |

2
)1/2

, (2.6)

S1(t) = −

∫ (
ε

2
|∇φ|

2
+

1

ε
G(φ)

)
. (2.7)

Then

L(t)S(t) >
l

2
L1S1 − Ca

√
lε

2
S3/2. (2.8)

Now it is time to prove the interpolation inequality relatingL(t) andS(t).
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LEMMA 2.1 Given any constantM > 0, providedε0M andε0a
2M3 are sufficiently small, there

exists a positive constantC1 such that whenever 0< ε < ε0 andS(0) < M, we have

L(t)S(t) > C1 for all t > 0. (2.9)

Proof. The proof is similar to that of Lemma 1 in [7]. But our length scalesL1 andL are different
from that in [7] and need a somewhat different treatment. For the sake of completeness and since
we want to track every constant, especially the parameterε, we reproduce every detail here.

Since 1= (1 − φ2)+ φ2, and

−

∫
(1 − φ2) 6

(
−

∫
(1 − φ2)2

)1/2

6 (4εS1)
1/2, (2.10)

the remaining work is to estimate−
∫
φ2 in terms ofL1, S1 andS.

Next, we will use the Modica–Mortola inequality. Define

W(φ) =

∫ φ

0
|1 − t2| dt. (2.11)

We have
∂W

∂φ
= |1 − φ2

| = 2
√
G(φ),

so

−

∫
|∇(W(φ))| = −

∫
|∇φ|

∂W

∂φ
6 −

∫ (
ε

2
|∇φ|

2
+

1

2ε

∣∣∣∣∂W∂φ
∣∣∣∣2) 6 2S1. (2.12)

We will use a smooth mollifierρ which is radially symmetric, non-negative and supported in
the unit ball with

∫
Rn ρ = 1. Let the subscriptδ denote the convolution with the kernel

1

δn
ρ
(

·

δ

)
.

The parameterδ will be optimized later. We split−
∫
φ2 into two parts:

−

∫
φ2 6 2−

∫
(φ − φδ)

2
+ 2−

∫
φ2
δ . (2.13)

Noting that
|φ1 − φ2|

2 6 8|W(φ1)−W(φ2)|

for all φ1 andφ2, we get the following estimate for the first term of (2.13):

2−

∫
(φ − φδ)

2 6 2 sup
|h|6δ

−

∫
(φ(x)− φ(x + h))2 dx

6 16 sup
|h|6δ

−

∫
|W(φ(x))−W(φ(x + h))| dx

6 16δ−
∫

|∇(W(φ))| 6 32δS1. (2.14)
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For the second term of (2.13), we need to deal with large and small values of|φδ|:

−

∫
φ2
δ = −

∫
(φ2
δ − min{φ2

δ ,4})+ −

∫
min{φ2

δ ,4}. (2.15)

SinceF(φ) := φ2
− min{φ2,4} is convex inφ, by Jensen’s inequality and the fact that

∫
ρ(y)dy

= 1,

F(φδ(x)) = F

(∫
ρ(y)φ(x − δy)dy

)
6
∫
ρ(y)F (φ(x − δy))dy.

So the first term of (2.15) is

−

∫
(φ2
δ − min{φ2

δ ,4}) 6 −

∫ ∫
ρ(y)F (φ(x − δy))dy dx

=

∫
ρ(y)−

∫
[φ2(x − δy)− min{φ2(x − δy),4}] dx dy

= −

∫
(φ2(x)− min{φ2(x),4})dx

6 −

∫
1

2
(1 − φ2)2 6 2εS1. (2.16)

For the second term of (2.15), we have

−

∫
min{φ2

δ ,4} 6 2−

∫
|φδ|. (2.17)

We know that

−

∫
|φδ| = sup

{
−

∫
φδ(x)ζ(x)dx : ζ isQ-periodic and|ζ(x)| 6 1 a.e.

}
.

For anyζ that isQ-periodic and|ζ(x)| 6 1 a.e.,

ζδ(x) =

∫
1

δn
ρ

(
x − y

δ

)
ζ(y)dy.

So

∇ζδ(x) =
1

δ

∫
1

δn
∇ρ

(
x − y

δ

)
ζ(y)dy =

1

δ

∫
∇ρ(y)ζ(x − δy)dy,

and hence

sup|∇ζδ| 6 β
1

δ
sup|ζ | 6 β

1

δ
,
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whereβ =
∫

|∇ρ|. Therefore

−

∫
φδ(x)ζ(x)dx = −

∫
φ(x)ζδ(x)

= −

∫ (
∆ψ −

2ε

l
ū

)
ζδ(x) (by (2.1) and (1.7))

= −−

∫
∇ψ∇ζδ(x)dx −

2ε

l
ū−

∫
ζδ

6

(
−

∫
|∇ψ |

2
)1/2(

−

∫
|∇ζδ|

2
)1/2

+
2ε

l
|ū|−

∫
|ζδ|

6
β

δ
L1 +

√
2εS

l
. (2.18)

Taking supremum over all suchζ , we get

−

∫
|φδ| 6

β

δ
L1 +

√
2εS

l
. (2.19)

Combining these estimates, we get

−

∫
φ2 6 32δS1 + 4εS1 + 4

β

δ
L1 + 4

√
2εS

l
. (2.20)

Sinceδ is arbitrary, we minimize the right hand side over allδ > 0 and get

−

∫
φ2 6 16

√
2β
√
L1S1 + 4εS1 + 4

√
2εS

l
. (2.21)

Combining this estimate with (2.10), we obtain

1 6 16
√

2β
√
L1S1 + 4εS1 + 4

√
2εS

l
+

√
4εS1. (2.22)

Now, sinceS is a decreasing function oft andS1(t) 6 S(t) for all t > 0, we have

S1(t) 6 S(t) 6 M (t > 0).

Providedε1M is sufficiently small (depending only onl), we have

4εS1 + 4

√
2εS

l
+

√
4εS1 <

1

2
(0< ε 6 ε1),

so

16
√

2β
√
L1S1 >

1

2
,

and hence
L1S1 > Ĉ1, (2.23)
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whereĈ1 = 1/(2048β). On the other hand, providedε2M · (aM)2 is sufficiently small (depending
only onl andn), we have

Ca

√
lε

2
S3/2 6

l

4
Ĉ1 (0< ε 6 ε2, t > 0). (2.24)

Let ε0 = min{ε1, ε2} andC1 =
l
4Ĉ1. By (2.8),

L(t)S(t) >
l

2
L1(t)S1(t)− Ca

√
lε

2
S3/2 > C1 (0< ε 6 ε0, t > 0). (2.25)

3. Upper bounds

Applying the ODE argument of [7] without change, we get the main result.

THEOREM 3.1 Under the assumptions of Lemma 2.1, for any 06 θ 6 1 and 0< r < 3 satisfying
θr > 1 and(1− θ)r < 2, there exist positive constantsC2 andC3, depending only onK, l, θ, r and
the dimension of space, such that for all 0< ε 6 ε0,

−

∫ T

0
SθrL−(1−θ)r dt > C2−

∫ T

0
(t−1/3)r dt if T > C3L(0)

3. (3.1)

Proof. The inequalities (1.11) and (2.9) give us

(L̇)2 6
Kl

4
(−Ṡ) and LS > C1 (0< ε 6 ε0, t > 0).

The theorem is then an immediate consequence of Lemma 3 in [7]. In particular, we obtain (1.14)
by choosingθ = 1, r = 2.

Appendix

To help clarify what physical conditions yield the system (1.1)–(1.2), we briefly discuss the non-
dimensionalization procedure here. We begin from a dimensional version of the standard phase field
system, derived following [12]. We start with a bulk free energy densityf at the phase transition
temperatureT0 given by

f (T0, φ) = β0G(φ) =
β0

4
(φ2

− 1)2, (A.1)

and bulk energy density given in terms of temperatureT and order parameterφ by

e(T , φ) = c0T + b0φ. (A.2)

Herec0 is heat capacity and 2b0 is latent heat. The thermodynamic relation∂(f/T )/∂(1/T ) = e

yields

f (T , φ) = c0T log
T0

T
+ b0φ

(
1 −

T

T0

)
+ β0

T

T0
G(φ). (A.3)
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The phase field system obtained from the kinetic derivation of [13], after linearizing the contribution
of temperature to the phase-field evolution equation, is

c0Tt + b0φt = K0∆T, (A.4)

α0φt = κ0∆φ −
β0

T0
G′(φ)+

b0

T 2
0

(T − T0). (A.5)

HereK0 is the heat conductivity, andα0 andκ0 can be determined from the quantities

x1 =

(
κ0T0

β0

)1/2

, tr =
α0T0

β0
, (A.6)

which respectively represent a domain wall thickness and a relaxation time for the phase field. For
the system in this form, a Lyapunov function is the quantity

S0 =

∫
Q

(
1

2
κ0|∇φ|

2
+
β0

T0
G(φ)+

c0

2T 2
0

(T − T0)
2
)
, (A.7)

which has dimensions of entropy, but is not identical to the (negative) entropy involved in the kinetic
derivation of [13] due to the linearization step mentioned.

We non-dimensionalize according to

T − T0 = u0û, x = x0x̂, t = t0t̂ , (A.8)

whereu0, x0, t0 represent typical temperature fluctuation, length and time scales, respectively. One
then obtains the system (1.1)–(1.2) under the conditions that

ε =
x1

x0
=

√
tr

αt0
=

b0u0

2β0T0
=
l

2

c0u0

b0
= K

c0x
2
0

K0t0
. (A.9)

These relations make clear the conditions under which the parameterε is small whilel, K, and
α remain order one quantities: the domain wall thickness and phase relaxation time should be
small compared to typical length and time scales; energetic contributions of temperature fluctuations
should be small compared to those of phase changes; and the time scalet0 should be long compared
to the heat diffusion timetD = x2

0c0/K0.
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