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Level set methods to compute minimal surfaces
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In [59], periodic minimal surfaces in a medium with exclusions (voids) are constructed and in this
paper we present two algorithms for computing these minimal surfaces. The two algorithms use
evolution of level sets by mean curvature. The first algorithm solves the governing nonlinear PDE
directly and enforces numerically an orthogonality condition that the surfaces satisfy when they
meet the boundaries of the exclusions. The second algorithm involvesh-adaptive finite element
approximations of a linear convection-diffusion equation, which has been shown to linearize the
governing nonlinear PDE for weighted mean curvature flow.

1. Introduction

Minimal surfaces occur in many areas of science and engineering. They have been extensively
studied and have been a motivation for developing new theories and techniques to analyze them
mathematically and to compute them numerically. Soap films, cell membranes and elastic surfaces
provide mechanical examples of minimal surfaces [11], [53], [55], [32], [40]. Minimal surfaces
have been shown to be important in various chemical microstructures and their corresponding phase
transitions [18]. Numerical methods have been developed for these types of problems using level
set methods [48], [11], [14], [1], [54]. Computer graphics and image analysis use minimal surfaces
frequently for boundary detection, and to construct surfaces that are visually appealing [38], [37],
[15], [56]. A recent tool to model minimal surfaces isThe Surface Evolver[6], [7]. The Evolver
has been applied in several domains such as capillary surfaces [41], material science [45], [34] and
many others [44], [28], [8], [9], [58].

This work is motivated by [59], where periodic minimal surfaces of least areain media with
exclusions (voids)are constructed. In each period, these surfaces provide an absolute minimum in
terms of area among all surfaces with periodic boundary conditions. Even though it is possible to
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prove mathematically that such surfaces exist, to the knowledge of the authors, it is not known in
general how to compute numerically (guaranteed) minimal surfaces that provide an absolute (or even
local) minimum in terms of area. However, we know that the surfaces in [59] satisfy the following
properties: (a) they have zero mean curvature outside the exclusions and, as will be explained in
the next section, (b) they must enter the exclusionsorthogonally(see [59], [36]). Therefore, we
present in this paper two numerical algorithms that reproduce these two features. In general, it has
become customary to use the termminimal surface to denote surfaces of vanishing mean curvature
(see [42]), even though such surfaces often do not provide a minimum (absolute or even local)
for the surface area. We note that, although theoretically it may be possible for our algorithms to
evolve to an unstable minimal surface, numerically the probability of this happening is almost zero.
For an example of the difficulties in finding, numerically, unstable equilibrium surfaces see [12].
Therefore, in this paper we will not attempt to prove the stability or unstability of the computed
surfaces. Instead, we will focus on the development of algorithms that satisfy the two properties
discussed above.

In particular, we seek answers to several interesting questions related to the minimal surfaces in
media with exclusions:

1. How does one adapt standard level set methods to handle the presence of exclusions?
2. Do the exclusions act asattractorsfor the minimal surfaces?
3. Do the numerical results produce minimal surfaces that enter the exclusions orthogonally?

The first issue encompasses the novelty of this paper. The second issue is simply a conjecture. For
the third issue the intent is to develop algorithms that reproduce this feature, since the orthogonality
property has already been proven mathematically ([31], [36]). We present in this paper two different
algorithms, which can compute the desired surfaces, that useevolution by mean curvature.

2. Minimal surfaces in media with exclusions and evolution according to mean curvature

The recent results in [10] concern a generalization of the problem of minimal surfaces in periodic
media and show that, given a metric with periodic coefficients, there exists a numberM so that one
can find a minimizer in any strip of widthM. The widthM is independent of the orientation of
the strip. Moreover, the minimizers constructed in [10] have the property that, when folded to the
fundamental domain, they are laminations.

In [59], the results of [10] are extended to a situation where the medium hasexclusions, i.e.,
regions for which the metric vanishes. In both papers, the surfaces are considered as boundaries of
sets and the perimeter is defined in a weak sense (see [27]). This approach is advantageous because
the fundamental domain in [59] is a manifold with boundary and the theory of homologically
minimizing currents in manifolds with boundary is not readily available to our knowledge. In [59],
the existence of plane-like periodic minimal surfaces in a medium with exclusions (voids) is proven.
Similar situations of media with exclusions are standard in the theory of homogenization.

More precisely, we consider the following problem. We work inRn (n = 2, 3) with exclusions,
which can be thought of as holes or voids, and are compact sets with Lipschitz boundary.
Considering a parallelepiped embedded inRn, we look at all the surfaces with periodic boundary
lying on the lateral faces of the parallelepiped. The area of a surface is measured by neglecting the
parts that are inside the exclusions. We search for the surface with least area measured in this way.
Figure 1 gives an illustration of the physical situation, in two dimensions. In this case, two candidate
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Domain with voids (exclusions)

Void

Initial condition

Possible minimal surfaces

FIG. 1. Diagram showing the physical setup of the problem. Two surfaces with zero mean curvature (outside the exclusions)
are drawn, going from the left side to the right side of the domain, along with an arbitrary initial condition.

minimal surfaces are drawn in a medium with exclusions, along with an arbitrary initial condition.
More will be given later on the issue of initial conditions.

The existence of this minimal surface is proven in [59]. The degeneracy of the metric inside
the exclusions increases the difficulty of the minimal surface problem, both analytically and
numerically, and in this degeneracy resides the novelty of the results presented in [59]. The surface
of least area constructed in [59] is not unique but it is a global minimum (in terms of surface area)
among all candidate surfaces. As explained in the introduction, we compute in this paper surfaces
with zero mean curvature outside the exclusions that enter the exclusionsorthogonally. We note,
however, that the algorithms cannot guarantee a global minimum or even local minimum in terms
of area.

The two algorithms presented in this paper use evolution of level sets according to mean
curvature. The basic principle behind these algorithms can be explained as follows. If we consider
R2 with no exclusions, then the smallest distance between two points is a line. This line could be
approximated by evolving any curve joining the two points in such a way that any location on the
curve moves in the normal direction with velocity proportional to the curvature at that location.
Then a point with more curvature will move faster than a point with less curvature. If we continue
this evolution over time, the result is a curve having zero mean curvature, i.e., a line.

When the exclusions are present, the shortest distance between two points is no longer a straight
line, and one can check easily that the optimal path meets the exclusions orthogonally. These two
facts greatly complicate the development of numerical algorithms for computing the surfaces. The
same orthogonality phenomena occur in higher dimensions; i.e., the intersection of the minimal
surface and the exclusions locally looks like two perpendicular hyperplanes. A proof of this fact,
using the theory of currents, can be found in [31]. We can also obtain the orthogonality property
by studying the first variation of the area. This analysis is done in [36], where a generalized Snell’s
law is derived, for the case of two different media with nonzero weight. In [36], the surfaces are
treated as graphs of functions while in this paper we use a level set approach, since the surfaces we
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want to compute are boundaries of sets, and not necessarily graphs of functions. Moreover, the first
algorithm we present enforces numerically the orthogonality condition.

One important issue with regard to exclusions is the smoothness of their boundaries. The
theoretical basis of the algorithms presented in this paper only covers the case of exclusions with
C2 boundaries. This, or course, does not allow for exclusions with corners or edges, which are
quite common. In some of the numerical experiments, however, we study the case of exclusions
with corners, although we recognize that the algorithms are not guaranteed to behave as expected
in these cases. Interestingly, in the numerical results we consistently observe the computed minimal
surfaces entering at 45◦ at corners that involve right angles.

The evolution of hypersurfaces inRn according to their mean curvature has been investigated
thoroughly in the literature. There are many results in this area using parametric methods of
differential geometry (see e.g. [30], [29], [33], and the references therein), in the setting of varifold
theory from geometric measure theory (see e.g. [6], and the references therein), and through the
level set representation (see e.g. [43], [48], [24], [39], and the references therein).

A level set approach for motion by mean curvature was given by Osher and Sethian in [43].
Given the initial hypersurfaceΓ0, they select some continuous functiong so that

Γ0 = {x ∈ Rn : g(x) = 0}.

They show that the PDE

ut = |∇u| div

(
∇u

|∇u|

)
in Rn

× [0, ∞),

u = g on Rn
× {t = 0}

(1)

evolves the level sets ofu according to their mean curvature.
This equation can be extended to the case with exclusions as follows:

ut = |∇u| div

(
w

∇u

|∇u|

)
in Rn

× [0, ∞),

u = g on Rn
× {t = 0},

(2)

wherew is a smooth weight that takes valueε � 1 inside the exclusions and 1 outside. In this
paper, we present two algorithms, which approximate the PDE’s (1) and (2) respectively.

In the first algorithm, we solve the nonlinear equation (1) outside the exclusions, while imposing
the condition that the surface must be orthogonal to the exclusions. This algorithm uses a finite
difference scheme similar to that used in [11].

In the second approach, we solve equation (2) by adapting the BMO (Bence, Merriman and
Osher) algorithm to the case with exclusions since the original BMO algorithm, as introduced in
[39], doesnotdirectly carry over to the case with exclusions. The original BMO uses a linearization
of equation (1), which leads to the heat equation. However, in the case with exclusions we must
instead linearize equation (2), and this leads to a convection term in addition to the standard diffusion
term. This complicates the numerical implementation, but still leads to an algorithm that is similar
to BMO. Our implemented algorithm usesh-adaptive finite element approximations to solve the
linear convection-diffusion equation that linearizes the governing nonlinear PDE (2).

There are three primary differences between the two algorithms. First, in the first algorithm,
mean curvature is computed explicitly for purposes of evolving the surface, while the second
algorithm uses a linearized approximation of the mean curvature. Second, the first algorithm
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enforces an orthogonality condition at the exclusion surfaces, while the second algorithm uses
an additional weight function which produces the same orthogonality condition at equilibrium.
Third, the first algorithm evolves the surface only outside the exclusions, while the second algorithm
evolves the surface both inside and outside the exclusions.

3. The first algorithm

Following the original work on the level set method by Osher and Sethian [43], a numerical study of
mean curvature flow using the level set method was conducted in [14]. Minimal surfaces attached to
fixed one-dimensional curves were also computed using the level set method in [11]. The algorithm
used in this paper is a variation of those earlier works.

For simple curvature flow using the level set method, the PDE (1) is rewritten for two dimen-
sions as

ut =
uxxu

2
y + uyyu

2
x − 2uxyuxuy

u2
x + u2

y

, (3)

for three dimensions as

ut =
uxx(u

2
y + u2

z) + uyy(u
2
x + u2

z) + uzz(u
2
x + u2

y) − 2uxyuxuy − 2uxzuxuz − 2uyzuyuz

u2
x + u2

y + u2
z

, (4)

and solved using standard central differences. The details of the discretization can be found in [14].

3.1 Implementation of the orthogonality condition

The introduction of exclusions, where additional boundary conditions are imposed on the evolving
surface, requires a modification to the simple flow. To implement the boundary conditions, the
exclusions are also represented using a level set functionω(x), whereω(x) is the signed distance
to the boundary of the exclusions withω(x) > 0 inside, andω(x) < 0 outside.

By representing the exclusions using a signed distance function, imposing the orthogonality
condition on the boundary of the exclusion becomes simpler. The normal to the exclusion is now
given by∇ω, while the normal to the evolving surface is∇u. Thus, the orthogonality condition is
enforced by requiring

∇ω · ∇u = 0 on{x ∈ Rn : ω(x) = 0} (5)

at the exclusion surface.
Interestingly, (5) is the same equation used to construct velocity extensions in modern level set

methods as described in [3]. In that context, a speed functionF , defined on the surfacev = 0, is to
be extended off the surface orthogonally. This results in solving forF the equation

∇F · ∇v = 0 in Rn,

F = F0 on {x ∈ Rn : v(x, t) = 0},
(6)

whereF0 is given.
In [3], an efficient algorithm for solving (6) is presented, which is based on the fast marching

method [47], [46], [49], [50], [51], [52]. The fast marching method is an optimally fast algorithm
for solving equations of the form

G|∇v| = 1 in Rn,

v = 0 onΓ,
(7)
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whereG is a prescribed scalar speed function defined inRn andΓ is a manifold inRn with co-
dimension one. Within the context of level set methods, this algorithm was modified to allow higher
accuracy in [13]. The fast marching method uses a principle of causality to compute the solution
to (7), using upwind finite difference approximations, in order from nearest to the surfaceΓ to the
farthest. The precise details of the implementation of the fast marching method are beyond the scope
of this paper; the interested reader is referred to [46], [13].

Velocity extensions are computed by first solving (7) withG ≡ 1, Γ = {x : u(x) = 0} and
then solving (6) in the same order as used in solving (7). Note that in practice, (6) and (7) are solved
simultaneously.

Returning to the algorithm for this paper, the functionω representing the exclusions is
constructed initially so that it solves (7), withΓ = {x : ω(x) = 0}. Thus, all that remains is
to solve (6) withv = ω, F = u, andF0 = u|{x : ω(x)=0}, only inside the exclusions, i.e. where
ω(x) > 0. The resulting functionu is unchanged outside the exclusions and satisfies (5) inside the
exclusions.

3.2 Reinitialization

As observed in [11], the introduction of constraints to curvature flow can lead to instability in the
numerical method. Without taking additional measures, the same would be true here. The remedy
employed in [11] was to use reinitialization.

In the presence of constraints, the unmodified method will not maintain even spacing of the level
sets. This leads to both steep gradients in some regions and near zero gradients over other larger
regions, and both can cause a severe breakdown in the numerical approximation. Reinitialization is
a process where the level set spacing is restored by solving

|∇u∗
| = 1 in Rn,

u∗
= 0 on {x ∈ Rn : u(x) = 0}.

(8)

The solutionu∗ of (8) is a signed distance function to the set{x : u(x) = 0}, and so has even
spacing of level sets restored while keeping the surface of interest,{x : u(x) = 0}, unchanged.

Obviously, (8) is solved in the same manner as (7), withG = 1 andΓ = {x : u(x) = 0}.
However, unlike the implementation of the boundary conditions, this time we solve (8) over allRn,
not just inside the exclusions. Since{x : u∗(x) = 0} = {x : u(x) = 0}, using reinitialization after
applying the boundary conditions means that the surface{x : u∗(x) = 0} is still orthogonal to the
exclusions, but other level curves ofu∗ may not be.

3.3 Summary of the first algorithm

The pieces described above are now assembled into the following algorithm:

1. Initialization: Construct initial signed distance function to the exclusions,ω(x), and initial
surface to be minimized,u. Here,ω(x) > 0 inside the exclusions andω(x) < 0 outside. The
functionu is the signed distance to the initial curve/surface.

2. Move: Advance the functionu one time step using (3) or (4). Here,u is advanced independent
of the exclusions since the value ofu in the exclusions will be recomputed in the following
step.
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3. Enforce Boundary Conditions: Solve (5) in the set{x ∈ Rn : ω(x) > 0} as described in
Section 3.1. This step will reset the value ofu inside the exclusions, while leaving everything
outside the exclusions unchanged. The functionu is no longer a signed distance function after
this step.

4. Reinitialize: Solve (8) on allRn and then replaceu = u∗. This step changesu back into a
signed distance function everywhere so that it can stably evolve by mean curvature.

5. Loop: Go to step 2.

4. The second algorithm

Bence, Merriman and Osher proposed in [39] a numerical algorithm for computing the mean
curvature flow (1) using the heat equation and reinitializing after short time steps. This algorithm,
which is a quasi-linearization of (1), proceeds as follows. The nonlinear PDE (1) is replaced by the
heat equation:

ut − ∆u = 0 in Rn
× (0, ∞),

u = ϕC0 on Rn
× {t = 0},

(9)

whereC0 is an open bounded set with boundaryΓ0 andϕC0 is the characteristic function ofC0. The
linear PDE (9) is solved to some small timet . Then the new set is defined:

Ct = {x ∈ Rn : u(x, t) > 1/2} (10)

and (9) is solved again withC0 replaced byCt . In [39], heuristics are given to show that the
evolution ofC0 into Ct approximates, for small times, the mean curvature motion of the boundary
Γ0 of C0. By repeating this procedure, i.e. solving the heat equation and reinitializing after a
short time, approximate mean curvature flow is obtained. This is valid even for large times. The
algorithm only involves the heat equation, which is easy to implement numerically and very
inexpensive to compute. This allows for long-time simulations with many time steps, at minimal
computational cost. Proofs of the convergence of this algorithm can be found in Evans [19] and
Barles–Georgelin [4]. We could say that the original BMO algorithm [39] simulates mean curvature
flow in homogeneous domains, as can be seen by the constant coefficients in the PDE (9). In this
paper we extend this to domains with exclusions. This makes the computations much more difficult
in many ways, especially due to the sharp change of material properties near the boundary of the
exclusions. This makes local adaptivity an attractive tool for this problem.

We now describe an algorithm to compute the minimizers, in the case of a domain with
exclusions, and we recall that the area is measured by putting a weight of 0 inside the exclusions and
1 outside the exclusions. For the purposes of numerical computations, it is not possible to handle the
case when the coefficients of the PDE are 0 at some point in the domain, since the elliptic term in
the bilinear form would dissappear. To avoid this, we use a smooth weightε 6 w 6 1, with ε � 1,
wherew has valueε inside the exclusions and increases smoothly to 1 on the outside. Sincew is
smooth, the existence of minimizers is contained in [10], as well as a discussion on the regularity
of minimizers. Since mean curvature is a local property, we can restrict ourselves to an open set
Ω ⊂ Rn−1, where the minimal surface is the graph of the smooth functionf (x′), x′

∈ Rn−1. The
functionf minimizes ∫

Ω

w(x′, f (x′))
√

1 + |∇f (x′)|2 (11)
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over all smooth functions agreeing withf on ∂Ω. Thusf satisfies the Euler–Lagrange equation

div

(
w(x′, f (x′))

∇f (x′)√
1 + |∇f (x′)|2

)
− wyn(x

′, f (x′))
√

1 + |∇f (x′)|2 = 0. (12)

The first variation (12) of the functional (11) gives a formula for the weighted mean curvature at the
point (x′, f (x′)). We will see later that, in order to apply the level set approach, it is necessary to
find the analogous equation to (12) for the case of a surface defined implicitly. The main idea in the
level set approach is to embed the initial surface as the zero level set of a continuous function, and
find the PDE that evolves this surface according to a prescribed velocity. This adds one dimension
to the problem. Each point in the surface will move in the normal direction with a velocity−Hw,
whereHw(x) is the weighted mean curvature at each pointx of the surface.

Suppose we haveΓ0 = {x ∈ Rn : g(x) = 0}, whereg is a smooth function, and we want to
evolveΓ0 according to its weighted mean curvature. Assume that at each timet > 0, the evolved
hypersurface is given implicitly by the equationu(x, t) = 0. Thenu(x, 0) = g(x). Let x ∈ Rn

and letα(s), α(t) = x, be the trajectory ofx under this evolution. We haveu(α(s), s) = 0 for
all s. Differentiating with respect tos givesut (α(s), s)+∇u(α(s), s) ·α′(s) = 0; that is,ut (x, t)+

∇u(x, t) · α′(t) = 0. However,

α′(t) = −Hw(x)
∇u

|∇u|
. (13)

Since∇u/|∇u| is the exterior unit normal vector atx, equation (13) states that the level sets ofu

are evolving in the normal direction with velocity−Hw(x). Since locally the level sets ofu are the
graph of a function, we can use (12) to prove (after a somewhat lengthy computation) that

Hw(x) = div

(
w(x)

∇u

|∇u|

)
. (14)

Therefore

ut (x, t) = ∇u · Hw(x)
∇u

|∇u|
= |∇u|Hw(x) = |∇u| div

(
w(x)

∇u

|∇u|

)
.

Then the PDE that evolvesΓ0 according to its weighted mean curvature is

ut (x, t) = |∇u| div

(
w(x)

∇u

|∇u|

)
,

u(x, 0) = g(x).

(15)

We consider a linearization of equation (15) analogous to the linearization of equation (1) by (9).
That is, we want to find a BMO version for equation (15). This is in fact possible and the equation

ut (x, t) = div(w(x)∇u) +
1
2∇w · ∇u,

u(x, 0) = g(x),
(16)

when reinitialized after small times, converges to equation (15). More specifically, if we letΩ0 be
an open set such that∂Ω0 = Γ0, then the following scheme:

• u∆t (x, 0) = ϕΩ0 − ϕΩc
0
.

• Solve:
vt = div(w(x)∇v) +

1
2∇w · ∇v in Rn

× (0, ∆t ],
v(x, 0) = u∆t (x, (n − 1)∆t);
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• u∆t (x, n∆t) = 1 if v(x, ∆t) > 0,
u∆t (x, n∆t) = −1 if v(x, ∆t) 6 0,

converges, as∆t → 0, to motion by weighted mean curvature. Note that this algorithm contains not
only the standarddiffusionterm div(w(x)∇u), but also theconvectiveterm 1

2∇w · ∇u.
A proof of the convergence of this linearization to the nonlinear equation (15) can be found

in [35].

4.1 Numerical implementation

We now describe the implementation of the BMO algorithm corresponding to motion by weighted
mean curvature. This amounts to solving equation (16) in a parallelepiped using Dirichlet boundary
conditionsu(x, t) = 1 andu(x, t) = 0 on the bottom and the top of the parallelepiped respectively,
and periodic boundary conditions on the sides. Our initial condition is the characteristic function of
a set bounded by a curve (see Figure 2). We solve equation (16) for a small time and then reinitialize,
in the same way as for equation (9). The algorithm can be summarized as follows:

1. Letu0 = ϕC .
2. Solve:

ut (x, t) = div(w(x)∇u(x, t)) +
1

2
∇w · ∇u,

u(x, 0) = u0.

3. Reinitialize att = Tchop:
if u(xi) > 0.5 then setu0(xi) = 1 else setu0(xi) = 0.

4. Repeat step 2.
The location of the front is given by the level set{u = 1/2}.

The algorithm has been implemented in two dimensions by modifying the Fortran 90 code 2Dhp90
(see [17], [16]]. This code solves the equationDj (aijui) = 0 in two dimensions, with built-in

Dirichlet condition =1

Initial condition (set C)

Periodic boundary condition

Dirichlet condition =0

FIG. 2. Diagram showing the domain with exclusions where we are solving equation (16).
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capability for local adaptivity. Local adaptivity is very important for resolving the sharp gradients
along the interfaces of the exclusions. The implementation involved modifying the 2Dhp90 code
with the convection term, the weighting function, and the periodic boundary conditions. Although
2Dhp90 has the capability for higher order polynomial basis functions, only bi-linear basis functions
were used in the computations. The time discretization was accomplished using a backward Euler
scheme, which is first-order accurate.

5. Results

5.1 Results from the first algorithm

To demonstrate the first algorithm, which enforces an orthogonality condition at the surface/void
interface, we show, in Figures 3, 4, the evolution of a sample curve from an initial sine curve to
equilibrium. Note how the parts of the curve which have both ends intersect the same void form

a b

c d

FIG. 3. Sample evolution with two disk-shaped voids using the first algorithm.
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a b

c d

FIG. 4. Sample evolution with four disk-shaped voids using the first algorithm.

loops which eventually vanish, leaving only a straight line segment solution. In both cases, the
computation was done on a uniform 200× 200 mesh, periodic in thex-direction. In these particular
examples, it can be seen by inspection that the final curves are local minima. However, as noted in
the introduction, in general we cannot prove that our algorithms will always converge to a global or
local minima.

By specifying the voids as a signed distance function, it is straightforward to make voids
of different shapes, such as squares as shown in Figure 5, or a combination of a square and a
parallelogram as in Figure 6. We note that the final curve obtained in Figure 5 is actually a global
minimum. This is not guaranteed to always happen, but sometimes the algorithms will actually
converge to the global minimum, as in this case.

We also note that it is possible to construct examples which require significant time to converge
to equilibrium, such as in Figure 6. Here, the normal boundary condition creates a slight curvature
between the square and the parallelogram, but the curvature can be very small. This leads to very
slow convergence to the minimum, where the curve passes through the corners of the voids that
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a b

c d

FIG. 5. Sample evolution with three square voids using the first algorithm.

are nearest to each other. Nonetheless, given sufficient time, the algorithm does gradually attain the
proper minimal curve.

To show that the method is convergent, we take an example of four disks with an initial
sinusoidal curve passing through them. In Figure 7b, we plot the location of the evolving curve at a
common intermediate time, and at the final time for mesh sizes of 50× 50, 100× 100, 200× 200,
and 400× 400. The times to compute the final equilibrium solution for the different mesh sizes
are listed in Table 1. Of course, as noted above, the time required to reach equilibrium is highly
dependent on the configuration of the exclusions.

The algorithm extends to two-dimensional surfaces inR3 easily. For each of the three-
dimensional cases, a uniform mesh of size 80×80×80 was used, periodic in thex- andy-directions.
In Figure 8, we show a sample evolution of a surface which passes through three spherical voids. In
this case it is not obvious whether the final surface is a global minimum or a local minimum.

In general, a mathematical analysis in three dimensions to determine if the final surface is
a global minimum or a local minimum is difficult. In two dimensions, however, a mathematical
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a b

c d

FIG. 6. Sample evolution with a square and a parallelogram void using the first algorithm.

a b

FIG. 7. Convergence test for the first algorithm at (a) an intermediate time, and (b) terminal time.
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FIG. 8. Sample evolution with three spherical voids using the first algorithm. Color (see the pdf file of the article) indicates
positive (red) and negative (blue) curvature regions.

FIG. 9. Sample evolution with five spherical voids, four coplanar, and one center void higher. Two different views are shown
for the final minimal surface.

analysis of the optimal path is much more accessible. We refer to [59] for an analysis of the optimal
path in two dimensions (assuming that the exclusions are periodic closed balls) as well as its relation
with the theory of homogenization of Hamilton–Jacobi equations.

In Figures 9, 10, the same initial surface is used to find the minimal surface through five spherical
voids. Four voids are coplanar, while the fifth is in the center and above the others. Figure 9 shows
that if the middle void is low enough, a minimal surface can be formed which passes through the
middle void. On the other hand, if the middle void is raised too high, as in Figure 10, the same initial
surface pulls away from the center void to form a single flat plane solution. This is consistent with
the fact that if the middle void is too high, it is not optimal for the surface to travel the extra distance
to pass through the middle void.
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FIG. 10. Sample evolution with five spherical voids, four coplanar, and one center void higher. Two different views are shown
for the final minimal surface. Compared with Figure 9, the center void is higher.

FIG. 11. First two images show sample evolution with a coil-shaped void. Last three views are of the final minimal surface.
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TABLE 1
Time required for reaching equilibrium in the example in Figure 7 on a Dell workstation. All
measurements are in seconds.

Mesh Time (sec.)
50× 50 18

100× 100 229
200× 200 1435
400× 400 20774

Finally, to demonstrate the ease of setting up arbitrary void regions, we show, in Figure 11, an
evolution where the void is formed by the distance function from a winding coil-shaped path. The
first two images show the evolution from an initial sine curve and the last three views are the final
minimal surface.

5.2 Results from the second algorithm

In Figure 12, we present a sample evolution with square voids using the second algorithm. The
initial condition (Figure 12a) is a simple sine wave but interpolated on the finite element mesh. Two
intermediate states are shown, and then the final minimal surface is shown in Figure 12d. When the
minimal surface (Figure 12d) enters through a side of the square, it appears to enter orthogonally.
We note that at the corners of the squares, the path appears to enter at 45◦. This is consistent with
the results of the first algorithm, in Figure 4.

Figure 13 shows the final contour corresponding to an evolution with staggered voids using
the second algorithm. The exclusions are shown, surrounded by a layer of small elements that were
introduced to resolve the sharp change in material properties along the boundaries of the exclusions.
The contour passes through all of the exclusions. Table 2 shows the compute times for the previous
two examples.

TABLE 2
Time required for reaching equilibrium in the examples in Figures 12 and 13 on a linux workstation.
All measurements are in seconds.

Mesh Time (sec.)
Figure 12 135
Figure 13 115

We note that the same solution as in Figure 13 is obtained by taking simpler initial conditions,
such as a straight line. One aspect of using a straight line for an initial condition should be
mentioned. Since a straight line has zero mean curvature, the algorithm can get “stuck” in this
local minimum if the reinitialization is done too often. Thus, in practical computations, care must
be taken to allow the algorithm to proceed for a sufficient number of time steps before reinitializing.
We recall that reinitialization is governed by the parameterTchop.

This is more fully illustrated by examining the behavior of the previous example for different
values of the parameterTchop, using a straight line as an initial condition. Figure 14 shows the
straight-line initial condition. Figure 15 shows a sequence of final surfaces, obtained usingTchop =
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FIG. 12. Sample evolution with four square voids using the second algorithm. The parameters are timestep= 0.0035(s),
ε = 0.01, andTchop = 0.07(s).

FIG. 13. Final minimal surface with square voids using the second algorithm. The same sine wave initial condition given in
Figure 12a is used. The parameters are timestep = 0.0035(s),ε = 0.01, andTchop = .07(s).

0.0035, 0.0175, 0.07, and 0.14(s). The first two values ofTchop are too small, and the surface does
not evolve sufficiently. The final two values ofTchop appear to be sufficient. We remark that ifTchop
is chosen to be too large, then the linearization (16) will not be an accurate approximation to the
solution of the full nonlinear equation (15).

The parameterε must also be chosen carefully. Ifε is chosen to be too large, then it will not
correctly represent the effect of the exclusions, which effectively require a value ofε = 0. On
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FIG. 14. Initial surface used for Figure 15.

a

b

c

d

FIG. 15. The variation of the solution with increasingTchop is studied. The curves a–d correspond toTchop of 0.0035(s),
.0175(s),.07(s), and 0.14(s). The time step in this case is 0.0035(s), andε = 0.01. Little change is observed between the two
larger values ofTchop.
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b

c

FIG. 16. The variation of the solution with decreasingε is studied. The curves a–c correspond toε of 0.5, .05, and.01. The
time step in this case is 0.0035(s), withTchop = 0.07(s). Little change is observed between the two smaller values ofε.

the other hand, ifε is chosen too small, then the weak formulation of equation (16) becomes ill-
conditioned, thus precluding an accurate finite element solution. Figure 16a shows the same example
presented in Figure 13, exceptε is chosen asε = 0.5, which is obviously too large. In this case,
the resulting solution fails to pass through the upper two exclusions, since the weight is not small
enough for the exclusions to attract the surface. Figures 16b and 16c show the results forε = 0.05
andε = 0.01, and these converge to the same solution as was seen previously.

Next, we discuss numerical convergence of the algorithm. There are two issues at hand—first,
the convergence of the weighted BMO linearization of the nonlinear equation (15). A proof of this
can be found in [35]. The second issue is the convergence of the finite element algorithm to the
solution of equation (16). We present temporal and spatial convergence examples.

Figure 17 shows the surfaces obtained from using time steps of 0.028(s), 0.0035(s),
0.0017(s), and 0.000875(s), for the same example as in Figure 13. The latter two time steps are
sufficiently fine that there is little difference between them, indicating convergence of the time
discretization.

Figure 18 shows the surfaces obtained from using 0, 1, 2, and 3 levels of local refinements around
the boundaries of the exclusions, again for the example of Figure 13. The only noticeable change
with refinement level is around the boundaries of the exclusions whose centers are at 0.65 and 1.85
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FIG. 17. Time discretization convergence study. In this case the variation of the solution with successively smaller time steps
is studied. The curves a–d correspond to time steps of 0.028(s), 0.0035, 0.0017(s), and 0.000875(s). Little change is observed
between the two smaller time steps, indicating convergence in time. The parameters areTchop = 0.07(s), andε = 0.01.

along theX axis. It appears that the local behavior of the surfaces is changing with refinement level,
but from the scale it is difficult to see.

Therefore, in Figure 19 we investigate more closely the effects of local adaptivity in the example
from Figure 18. These figures show a sequence of blow ups around one of the boundaries of
an exclusion. Each subfigure shows an increased level of adaptivity, resulting in more and more
degrees of freedom near the exclusion boundary. With more levels of adaptivity, the contour is
shifted vertically and, more importantly, the angle at which the contour impinges on the exclusion
gradually approaches 90◦. For the case with no adaptivity, the angle of incidence is approximately
75◦, far from the ideal of normal incidence. This illustrates the need forh-adaptivity in resolving
the fine properties of the contour near the boundary of the exclusion.
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FIG. 18. Spatial discretization convergence study. In this case the variation of the solution with increasing numbers of mesh
refinements near the exclusion boundaries is studied. The curves a–d correspond to 0, 1, 2, and 3 refinements. After one
refinement, the solution converges quickly. The parameters are timestep= .0035(s),Tchop = 0.07(s), andε = 0.01.

6. Conclusions

The two algorithms presented in this paper are quite different, and yet they lead to similar results.
They also provide insight into the issues raised in the introduction.

1. We have extended standard level set methods to handle the case with exclusions. For the
first algorithm, this involved developing a numerical approach for enforcing numerically the
orthogonality condition. For the second algorithm, this involved extending the standard BMO
algorithm to include a convection term in addition to the standard diffusion term.

2. For both algorithms, the exclusions act as attractors for the surfaces; which is expected since the
metric degenerates inside the exclusions, and hence the surfaces tend to enter the exclusions.
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no adaptivity

1 level of refinements

two levels of refinements

three levels of refinements

FIG. 19. The dependence of the angle of incidence on the level of adaptivity.

3. The first algorithm implements the orthogonality condition while the second one uses an
additional weight function which produces the same orthogonality condition at equilibrium.
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(Aussois, 1990). LeśEditions de Physique, Les Ulis (1990). MR 1090143

19. EVANS, L. C. Convergence of an algorithm for mean curvature motion.Indiana Univ. Math. J.42(1993),
533–557. Zbl 0802.65098 MR 1237058

20. EVANS, L. C. & GARIEPY, R. F. Measure Theory and Fine Properties of Functions. CRC Press, Boca
Raton, FL (1992). Zbl 0804.28001 MR 1158660

21. EVANS, L. & SPRUCK, J. Motion of level sets by mean curvature. I.J. Differential Geom.33 (1991),
635–681. Zbl 0726.53029 MR 1100206

22. EVANS, L. & SPRUCK, J. Motion of level sets by mean curvature. II.Trans. Amer. Math. Soc.330
(1992), 321–332. Zbl 0776.53005 MR 1068927

http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0823.65137&format=complete
http://www.ams.org/mathscinet-getitem?mr=1329634
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0952.65113&format=complete
http://www.ams.org/mathscinet-getitem?mr=1484289
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0919.65074&format=complete
http://www.ams.org/mathscinet-getitem?mr=1665209
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0831.65138&format=complete
http://www.ams.org/mathscinet-getitem?mr=1324298
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0904.35034&format=complete
http://www.ams.org/mathscinet-getitem?mr=1617291
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0386.53047&format=complete
http://www.ams.org/mathscinet-getitem?mr=0485012
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0769.49033&format=complete
http://www.ams.org/mathscinet-getitem?mr=1203871
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0870.76065&format=complete
http://www.ams.org/mathscinet-getitem?mr=1421042
http://www.ams.org/mathscinet-getitem?mr=1607360
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1036.49040&format=complete
http://www.ams.org/mathscinet-getitem?mr=1852978
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0786.65015&format=complete
http://www.ams.org/mathscinet-getitem?mr=1214016
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0811.53011&format=complete
http://www.ams.org/mathscinet-getitem?mr=1302814
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0991.65105&format=complete
http://www.ams.org/mathscinet-getitem?mr=1860913
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0806.53004&format=complete
http://www.ams.org/mathscinet-getitem?mr=1281473
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0776.68009&format=complete
http://www.ams.org/mathscinet-getitem?mr=1081324
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0912.68014&format=complete
http://www.ams.org/mathscinet-getitem?mr=1090143
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0802.65098&format=complete
http://www.ams.org/mathscinet-getitem?mr=1237058
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0804.28001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1158660
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0726.53029&format=complete
http://www.ams.org/mathscinet-getitem?mr=1100206
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0776.53005&format=complete
http://www.ams.org/mathscinet-getitem?mr=1068927


184 M . TORRES ET AL.

23. EVANS, L. & SPRUCK, J. Motion of level sets by mean curvature. III.J. Geom. Anal.2 (1992), 121–150.
Zbl 0768.53003 MR 1151756

24. EVANS, L. & SPRUCK, J. Motion of level sets by mean curvature. IV.J. Geom. Anal.5 (1995), 77–114.
Zbl 0829.53040 MR 1315658

25. FEDERER, H. Geometric Measure Theory. Grundlehren Math. Wiss. 153, Springer, New York (1969).
Zbl 0176.00801 MR 0257325

26. FINN , R. Equilibrium Capillary Surfaces. Springer (1986). Zbl pre00583.35002 MR 0816345
27. GIUSTI, E. Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Basel (1984).
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