
Interfaces and Free Boundaries7 (2005), 241–254

2-Dimensional flat curvature flow of crystals
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In the impressive and seminal paper [5], Fred Almgren, Jean Taylor, and Lihe Wang introduced flat
curvature flow inRn, a variational time-discretization scheme for (isotropic or anisotropic) mean
curvature flow. Their main result asserts the Hölder continuity, in time, of these flows. This essential
estimate requires a boundary regularity result, a uniform lower density ratio bound condition, which
they proved for eachn > 3. Similar estimates for Brownian flows, from important work by N. K.
Yip on stochastic mean curvature flow [30], also rely on this pivotal regularity result.

In this paper, we complete this analysis for the casen = 2 by establishing the necessary uniform
lower density ratio bounds.
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1. Introduction

The field of mean curvature flow began with Ken Brakke’s pioneering paper [12], in which he used
Almgren’s varifolds to model surfaces. Varifolds, Radon measures overRn

×G(n, m), are good for
modeling quite general unoriented surfaces, which may be very complex topologically, as well as
non-smooth (see [2] and [1]). Mean curvature flows inRn attempt to decrease surface area, which
is independent of orientation (isotropic), and so varifolds are a natural choice for the model.

Brakke’s results were spectacular. He proved existence and partial regularity results, and he even
established strong barrier estimates. In particular, he showed that spheres are barriers to evolving
surfaces. He used powerful variational and measure-theoretic arguments, many of which were
relatively new and not widely known at the time.

Several years later, Richard Hamilton, Michael Gage, Gerhard Huisken, and Matthew Grayson,
in a series of remarkable papers, established several fundamental results for mean curvature flow. In
[17] and [18], Gage and Hamilton showed that convex curves in the plane become asymptotically
circular and smoothly shrink to a point. Grayson later showed that any embedded plane curve
remains embedded under mean curvature flow and also becomes convex; it follows that embedded
plane curves become asymptotically circular and shrink to a point (see [19]). Huisken [20] then
extended these results by showing that convex surfaces tend toward spheres.

Their results used classical differential geometry and partial differential equations. Those early
papers led to the rapid development of the extremely active field of curvature flow. Mean curvature
flow has been studied in the plane and in higher dimensions, with hypersurfaces and in higher co-
dimension, in both the isotropic and anisotropic cases, in Euclidean space and in other ambient
manifolds, using classical methods of partial differential equations as well as level-set approaches
or weak formulations, theoretically and computationally, for both single interface and multiple
interface configurations.
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In many applications, such as crystal growth, the relevant surface energy can be highly
anisotropic. Jean Taylor developed the notion of motion by weighted mean curvature, a process
by which a crystal seeks to reduce its surface energy as quickly as possible, subject to some
bulk constraints (see [27] for an excellent introduction). Motion by weighted mean curvature is
of fundamental importance in materials science (see [28]). Mean curvature and weighted mean
curvature flows necessarily develop singularities in finite time, but physical systems continue
nonetheless. From a practical standpoint, therefore, it is essential to consider a generalized notion of
curvature flow, one which can continue despite singularities. Several such weak formulations have
been proposed, in both the PDE and measure-theoretic settings.

In the seminal paper [5], Fred Almgren, Jean Taylor, and Lihe Wang introduced flat curvature
flow in Rn, a variational time-discretization scheme for weighted mean curvature flow. They defined
discrete flows, in which the crystal at the next time step (anE-minimizer) is selected by minimizing
a certain surface plus bulk energy functional, (4), which itself was chosen so that the Euler–Lagrange
condition gives surface normal velocity pointwise proportional to mean curvature. The limit flow,
as the time step4t → 0, is the desired flat curvature flow. Here, the word “flat” refers to the flat
semi-norm from geometric measure theory, not to the ambient spatial dimension. In [23], Frank
Morgan relates the story of how Hassler Whitney [29] named the larger of his two norms the sharp
norm,| |# , and the smaller one the flat norm,| |b , by analogy with music.

The paper [5] represented a major advance in the modeling of time-evolution phenomena
such as crystal growth. Their setting was so general that it admitted rough, realistic interfaces,
having orientation and a wide variety of singularities. These interfaces could even undergo complex
topological changes throughout their evolution. Moreover, their surface energy density functions
may be isotropic or anisotropic, and may be non-differentiable (as is the case for many naturally
occurring crystalline materials). Their paper was the first in such a general setting. Their flows
take place inRn, though the results should readily extend to other ambient manifolds, such as
Riemannian manifolds.

When the interfaces and surface energy density function are sufficiently regular, these flows
coincide with classical flows given by partial differential equations until the latter develop
singularities. As with physical systems, flat flows continue beyond the occurrence of singularities.

In [21], Stephan Luckhaus gave another nice time-discretized model for the isotropic case. In
[4], Almgren and Taylor showed that flat flow, for crystalline energy density functionsφ, agrees with
2-dimensional crystalline curvature flow for polygonal crystals in the plane (see [10], [25], and [26]).

The flat flow model has been extended in several important ways. Almgren and Wang [6] added
heat flow to the model, allowing for differing heat capacities of the crystal and its melt, as well
as taking into account how the curvature of the interface affects the local freezing temperature
(the Gibbs–Thomson effect). Nung Kwan Yip [30] introduced a stochastic time-stepping model,
alternating minimization steps (which are the same as in the paper [5]) with stochastic perturbation
steps. Robert McCann used flat flow inR2 to give a new proof that non-equilibrium convex crystals
in R2 remain convex as they evolve by curvature-driven flow. In [13], the author allowed for
partitions involving several crystals, with each interface having its own surface energy density
function and its own mobility function.

The most important result for flat flows, [K(t)], is ana priori existence and Ḧolder continuity
estimate [5, 4.5] which guarantees that the limit flat flows [K(s)] exist and satisfy

‖χK(s) − χK(t)‖L1 = Ln(K(s) ÷ K(t)) 6 Γ |s − t |1/2, (1)

where÷ denotes the symmetric difference operation.
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Because of how flat flows are defined technically, [K(s)] and [K(t)] are actually limits of
different sequences of integral currents, and the danger is that the flow will be wildly discontinuous
in time, which would make the flow useless. It is essential, therefore, to establish ana priori Hölder
continuity result to ensure that this does not happen.

The proof of the main Ḧolder continuity estimate, (1), is based on a volume inequality, [5, 4.2],
which boundsLn(K(s)÷K(s+4t)) from above in terms ofθ, ana priori lower bound to the(n−1)-
dimensional density ratios at boundary points ofE-minimizers. We sharpened and generalized
[5, 4.2] in [14]. However, in both [5] and [14], the upper bounds forLn(K(s) ÷ K(s + 4t)) have
θ in the denominator, which is one reason these lower density ratio bounds are critical. Another
reason is that they imply that boundaries ofE-minimizers have supports which are not too big (and
have Hausdorff dimensionn − 1 in particular). This is important, because if the supports were to
get too large then the entire evolution would degenerate.

In [5, 3.4], Almgren, Taylor, and Wang showed that boundaries ofE-minimizers do have
uniform (n − 1)-dimensional lower density ratio bounds. Their proof of this pivotal theorem relies
on estimating the mass of an integral(n−1)-current,R, in terms of the mass of its boundary,∂R, an
(n − 2)-dimensional current. That step uses an isoperimetric inequality, which perforce introduces
the ratio(n − 1)/(n − 2) into steps used throughout the rest of the proof. In this way, they establish
their main Ḧolder continuity theorem for eachn > 3.

The uniform lower density ratio bounds are also vital for stochastic mean curvature flow. In [30],
Yip states the result as in [5, 3.4] and gives the same proof forn > 3, citing [5]. He later uses the
result several times to establish an essential and impressive uniform lower density ratio bound for
Brownian flows and to establish a Hölder continuity theorem (following [5] and [21]).

For n > 2, uniform lower bounds on(n − 1)-dimensional density ratios at boundary points
play an important role in many contexts. For area-minimizing hypersurfaces, these density ratios
are monotonic (see [16, 5.4], [23, 9.3]), and that fact is very helpful in establishing strong regularity
for such surfaces.

Unfortunately, monotonicity does not hold for surface energy minimizers with general
anisotropic energies ([1, 5.1]), but even in such cases one can usually establish uniform lower
density ratio bounds (see [23, 9.5 and the discussion after 9.3]). In [24], Séverine Rigot establishes
lower density ratio bounds in a fairly general context, while studying quasiminimal crystals. In
[7], Luigi Ambrosio, Matteo Novaga, and Emanuele Paolini work in a general Minkowski space
and establish regularity results, including a uniform lower density ratio bound ([7, 3.5]) for general
ω-minimizers.

In this paper, we establish the necessary uniform lower density ratio bounds (Theorem 6) for
E-minimizers for the remaining casen = 2, thus completing the analysis for both flat flow and
stochastic mean curvature flow inR2.

The casen = 2 is not trivial. WhileH1 almost every point on the reduced boundary of a set of
finite perimeter inR2 has 1-dimensional density ratios which approach 1 as the balls shrink to a point
(see [16, 4.5.6]), we need lower density ratio bounds for all pointsp ∈ spt∂[K], which in general
may be much larger than∂K and may even have positiveL2 measure. We have to consider that there
may be sequences of tiny cycles around boundary points, not just a nice, connected, smooth curve.
Moreover, it is a very uniform, and not pointwise, estimate that is needed. We need to find a singleθ

which works all the way up to the same fixed positive radius for each pointp ∈ spt∂[K]. So,θ must
be independent ofp. Also, θ must be independent ofK itself (except for the essential fact that [K]
is anE-minimizer), because we need to use that sameθ to estimateL2(K(s + 4t) ÷ K(s + 24t)),
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and so on, for each step in the discrete flow. Furthermore,θ needs to be independent of4t as well,
since we need to use it for discrete flows with arbitrary time step.

We first briefly describe the formal setting. Following Almgren, Taylor, and Wang, we use the
integral and rectifiable currents of geometric measure theory. See [5], [16], and [23] for more details.

In [30], Yip also used the lower density ratio bound and a covering argument to prove a nice
theorem showing thatE-minimizers also haven-dimensional densities bounded uniformly from
below, for eachn > 3. In Theorem 5, we establish the same result forn = 2 using a new argument.
It is interesting to note that, whereas he had used the(n − 1)-dimensional density ratio bounds to
establish the strongern-dimensional density ratio bounds for eachn > 3, we will do the reverse for
n = 2.

Specifically, in Theorem 5, we show that boundaries ofE-minimizers have 2-dimensional
density ratios bounded uniformly from below and from above. We then use the relative isoperimetric
inequality to prove Theorem 6, which establishes the necessary 1-dimensional density ratio bounds
so that flat flows inR2 will be Hölder continuous.

We state additional regularity results in Theorem 8, and in Corollary 7 we show that boundary
supports differ from reduced boundaries of minimizers by at most a set havingH1 measure zero,
which guarantees that boundary supports have Hausdorff dimension 1, as desired.

Finally, in Proposition 10, we establish lower bounds on the areas of “detachable pieces” of
E-minimizers, and we use those bounds and Theorem 6 to prove Theorem 11, a sharper version of
Theorem 6 with optimal lower bounds.

I would like to thank Frank Morgan, who, when reviewing an early draft of my doctoral thesis,
observed that my theorem on lower density ratio bounds for polycrystals held only for eachn > 3;

it failed to work whenn = 2 for precisely the same reason that the proof of [5, 3.4] does not work
for the casen = 2. I then gave a separate proof [13] for the casen = 2, for crystals and polycrystals.
That proof made use of connected components and worked only for the casen = 2. By contrast,
each result in the present paper, with the sole exception of Theorem 11, extends with the same proof
to anyn > 2, the only difference being that various constants depend onn.

I would like to thank Matteo Novaga for his helpful comments on earlier versions of this paper.
It was he who first suggested I try to prove a result like Theorem 11. He also suggested alternative
strategies for proving Theorem 6, including one using connected components, as in [13], and one
using the general notion of perimeter introduced in [7].

2. Some notation

Our ambient space isR2, endowed with the usual Euclidean norm| | . Throughout this paper,φ :
R2

→ R has all the properties of a norm, except thatφ need not be even. That is,φ is an asymmetric
norm (see [14]). It will represent a “surface energy integrand,” or “surface energy density function.”
We do not assume anything else (such as smoothness) aboutφ.

We let B2(p, r) = {x ∈ R2 : |x − p| 6 r} represent the closed Euclidean ball inR2, with
radiusr > 0 and centerp ∈ R2, and we letU2(p, r) = {x ∈ R2 : |x − p| < r} denote its interior.
We measure length and area inR2 with Hausdorff 1-dimensional measure,H1, and with Lebesgue
2-dimensional measure,L2, respectively.

For subsetsA, B ⊂ R2, we writeA ⊂2 B (and say thatA isL2 almost containedin B) provided
L2(A \ B) = 0; A ÷ B, the symmetric difference, is the set(A \ B) ∪ (B \ A).
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3. Flat curvature flow

3.1 E-minimizers

In this paper, crystals [K] are 2-dimensional integral currents associated with bounded,L2

measurable subsetsK ⊂ R2 having finite perimeter. For such setsK, the characteristic function
χK is a function of bounded variation. As a current, [K] = t(K, 1, e1 ∧ e2), so that [K](ϕ) =∫
K

〈e1 ∧ e2, ϕ(x)〉 dL2x, wheneverϕ is aC∞ differentialn-form with compact support.
Its boundary,∂[K], is a 1-dimensional integral current, defined via the relation(∂[K])(ϕ) =

[K](dϕ), wheneverϕ is a smooth differential 1-form. In the notation above, we have∂[K] =

H1x∂K ∧ ∗nK = t(∂K, 1, ∗nK), where nK is the measure-theoretic exterior unit normal in
the sense of Federer ([16, 4.5.5]), and∗ is the Hodge dual. Explicitly, we have(∂[K])(ϕ) =∫
x∈∂K

〈∗nK(x), ϕ(x)〉 dH1x. This integral is well defined, because∂K is precisely the rectifiable
set of points,x, at whichnK(x) is defined (see [16, 4.5.6]). There are various commonly used
definitions of reduced boundary for a subsetK ⊂ R2

; these differ by sets havingH1 measure 0.
We let K denote the collection of all such crystals, [K]. It is equipped with a metric,dM ,

defined bydM([K], [L]) = L2(K ÷ L). We say that a sequence,{[Ki ]} , of crystals inK converges
strongly (and write that [Ki ] → [K] strongly) if there exists a subsetK ⊂ R2 as above for which
dM([Ki ], [K]) → 0 asi → ∞.

If φ is an asymmetric norm, we define theφ surface energyof [K] ∈ K by

SE(∂[K]) =

∫
∂K

φ(nK(x)) dH1x. (2)

If φ is constant on unit vectors, we say that it isisotropic; otherwise, it isanisotropic. If φ is the
Euclidean norm, then clearlySE(∂[K]) = H1(∂K). We define

0 < φ0 = inf
|x|=1

{φ(x)} 6 sup
|x|=1

{φ(x)} = φ0 < ∞,

and we observe that (2) implies that

φ0H1(∂K) 6 SE(∂[K]) 6 φ0H1(∂K). (3)

Whenever [K0] and [K] are crystals inK, and4t > 0, we define (as in [5, 2.6])

E([K0], [K], 4t) = SE(∂[K]) +
1

4t

∫
K0÷K

dist(x, ∂K0) dL2x. (4)

If E([K0], [K], 4t) = inf {E([K0], [Q], 4t) : [Q] ∈ K} , we say that [K] is an E-minimizerfor
[K0] over4t. The bulk integral in (4) makes it expensive for an interface to move too far in a short
time interval. The Euler–Lagrange condition looks like

velocity = −
4(surface energy)

4(area)
. (5)

We note (as in [5, 3.3.1]) that, if [K] is anE-minimizer for [K0] over 4t, and if [L] is any other
crystal inK, then

SE(∂[K]) − SE(∂[L]) 6
1

4t

∫
K÷L

dist(x, ∂K0) dL2x. (6)
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3.2 Weighted mean curvature flow in the smooth case

Following [27] and [5], we will define theφ weighted mean curvature, Hφ,S(p), of a surfaceS at a
point p, in the smooth case. SupposeS is a smooth (twice continuously differentiable), embedded
closed curve inR2, oriented by the unit normal vector fieldn(p). We defineHφ,S : S → R2 by
setting, for eachp ∈ S,

Hφ,S(p) = n(p) trace[(Hessian(φ))(n(p)) ◦ (Hessian(R))(p)] = n(p)hφ,S(p),

whereR is anyC2 real-valued function defined in some neighborhoodU of p in R2, for which

S ∩ U = R−1(0) and (∇R)(p) = −n(p).

For example, ifS = ∂B2(0, r), we could useR(x, y) = (r2
−x2

−y2)/2r and computeHφ,S(p) =

−(1/r)p, wheneverp ∈ ∂B2(0, r).

Supposeg is a C1 vector field onR2, and define, for eacht > 0 and for eachx ∈ R2, the
deformationGt (x) = x + tg(x). We note thatG0(·) is the identity transformation onR2, thatGt

is a diffeomorphism for all sufficiently small values oft, and that ∂
∂t

Gt (x)
∣∣
t=0 = g(x), so thatg is

the initial velocity vector field. IfS = ∂K for some bounded,L2 measurable subsetK ⊂ R2 having
finite perimeter, then we have

−
d

dt
SE(Gt (∂K))

∣∣∣∣
t=0

=

∫
∂K

[g(p) · nK(p)]hφ,∂K(p) dH1p,

d

dt
L2(Gt (K))

∣∣∣∣
t=0

=

∫
∂K

[g(p) · nK(p)] dH1p.

Intuitively, then,hφ,∂K(p) is the infinitesimal rate of decrease of surface energy with respect to
area atp, and so (5) takes the form velocity= φ weighted mean curvature, as desired. Therefore,
we see that the energy functionalE has been chosen so as to approximate motion byφ weighted
mean curvature at each time step. This heuristic argument can be made more precise, and, indeed,
Almgren, Taylor, and Wang showed that, in the smooth case, the limit flat curvature flows agree
with PDE flows until the latter develop singularities ([5]).

3.3 Flat curvature flows

The following is the main existence and Hölder continuity theorem for flat curvature flow inRn, for
n > 2.

THEOREM 1 (Existence and Ḧolder continuity of flat flows [5, 2.6, 4.4, 4.5])

(a) Suppose [K(0)] ∈ K, with Ln(spt(∂[K(0)])) = 0.

(b) Define discrete flows, [Kj (t)], with time step4tj = 2−j , for all positive integersj as follows:
for each integerj > 1,

(b.1) set [Kj (0)] = [K(0)],
(b.2) for each integerk > 0, let [Kj (k4tj +4tj )] be anE-minimizer for [Kj (k4tj )] over4tj ,

(b.3) define [Kj (t)] for all t > 0 by setting [Kj (t)] = [Kj (k4tj + 4tj )] wheneverk4tj < t 6
(k + 1)4tj ,

(b.4) supposeN is a positive integer for which4t = N4tj 6 1.
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(c) Suppose there exists a constantθ (a uniform lower density ratio bound) such that, for each
j > 1, k > 0, andp ∈ spt∂[Kj (k4tj )],

Hn−1(∂Kj (k4tj ) ∩ Bn(p, r))

rn−1
> θ for 0 < r 6 4t1/2.

Then there is a subsequencei(1), i(2), i(3), . . . , of 1, 2, 3, . . . , and for eacht > 0 there exist
crystals [K(t)] ∈ K (we call [K(t)] a flat flow) such that

dM([K(t)], [Ki(j)(t)]) → 0

locally uniformly in timet asj → ∞.

Moreover, there is a constantΓ = Γ (θ, φ, n, SE([K(0)])) ∈ (0, ∞) such that

dM([K(s)], [K(s + 4t)]) 6 Γ 4t1/2 (7)

whenevers ∈ [0, ∞) and4t ∈ [0, 1].

REMARK 2 The existence ofE-minimizers in hypothesis (b.2) above follows from a lower-
semicontinuity/compactness argument given in [5].

The proof of existence of flat flows given in [5] holds for eachn > 2, whereas the proof in [5] of
the central Ḧolder continuity estimate (7) holds only for eachn > 3. Specifically, Almgren, Taylor,
and Wang showed that hypotheses (a) and (b) imply hypothesis (c) whenn > 3, and that (a), (b),
and (c) together imply the existence and Hölder continuity asserted in the conclusion of the theorem
above.

Our main goal is to show that hypotheses (a) and (b) imply hypothesis (c) whenn = 2 as well.
By the remarks above, it will then follow that the pivotal Hölder continuity inequality (7) holds
whenn = 2.

REMARK 3 In [5], the uniform lower density ratio bound is given for 0< r 6 4t, rather than
up to radius4t1/2. Also, their published Ḧolder continuity estimate involves exponent 1/(n + 1),

rather than 1/2. However, Almgren, Taylor, and Wang had discovered these stronger results, which
they mentioned in a brief remark inserted into [5] shortly before publication.

Because of how the flow [K(t)] is constructed, the main Ḧolder estimate (7) is essential in order
to preclude the evolution [K(t)] from being wildly discontinuous. [K(1/2)] is defined by showing
there exists some subsequencei1(1), i1(2), i1(3), . . . of 1, 2, 3, . . . for which

{
[Ki1(j)(1/2)]

}
converges asj → ∞. To show [K(t)] exists for some other dyadic time,t (i.e., t = k2−j for some
integersk > 0, j > 1), we find a subsequencei2(1), i2(2), i2(3), . . . of i1(1), i1(2), i1(3), . . . for
which {[Ki2(j)(t)]} also converges asj → ∞.

We continue to take subsequences of subsequences (and so on) until this Cantor-like argument
yields a limit flow, [K(t)], defined for non-negative dyadict (a countable, dense set of times).
That is, we conclude that there exists a subsequencei(1), i(2), i(3), . . . of 1, 2, 3, . . . such that
dM([K(t)], [Ki(j)(t)]) → 0 asj → ∞ for each dyadict > 0.

Even if s and t are non-negative dyadic numbers which are very close together,a priori,
dM([K(s)], [K(t)]) = L2(K(s)÷K(t)) may be quite large, because [K(s)] and [K(t)] were defined
by using limits of different subsequences. It is very important, then, that we be able to establish a
Hölder continuity estimate such as (7), so that [K(t)] will constitute a reasonable evolution.
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4. Regularity results

To estimate the bulk term in (4) from above, we will need an estimate on how far points on∂K can
be from∂K0, if [ K] is anE-minimizer for [K0] over4t. The following proposition ([5, 5.4]) gives
precisely this estimate (also, see [30, 3.0.3]). In general, the constantC = Cφ does also depend on
the ambient space dimension,n, but we fixn = 2.

PROPOSITION4 (An upper bound on how far an interface can move) Suppose [K] is an E-mini-
mizer for [K0] over4t. Then there exists a constant,C = Cφ, depending only onφ, for which

dist(p, ∂K0) 6 Cφ4t1/2

whenever [K] is anE-minimizer for [K0] over4t andp ∈ ∂K.

We now show that boundaries of 2-dimensionalE-minimizers cannot be too “pointy” in a
measure-theoretic sense.

THEOREM 5 (Uniform 2-dimensional lower density ratio bounds forE-minimizers) Suppose [K]
is an E-minimizer for [K0] over 4t. Then there exists a constantµ > 0 such that, for all
p ∈ spt∂[K], we have

min{L2(K ∩ B2(p, R)),L2((R2
\ K) ∩ B2(p, R))} > µR2 for each 0< R 6 4t1/2.

Proof. If the measureL2xK has density ratios bounded from below at each point of∂K up to
some fixed positive radius, then it follows thatL2xK also has density ratios bounded from below at
each point of spt∂[K], up to the same radius. Therefore, it suffices to consider eachp ∈ ∂K.

Let Q = K ∩ B2(p, 4t1/2). Wheneverr ∈ (0, 4t1/2), we letQr = K ∩ B2(p, r) andV (r) =

M([Qr ]) = L2(Qr). ThenV ′(r) exists forL1 almost everyr > 0, sinceV (r) is non-decreasing.
Also, V (r) > 0 sincep ∈ ∂K. Let Lr = K \ Qr , and consider the comparison crystal [Lr ]. Let
d(x) = dist(x, ∂K0) and4SE = SE(∂[K]) − SE(∂[Lr ]). Then, since [K] is anE-minimizer for
[K0] over4t andr 6 4t1/2,

4SE 6

∫
K0÷Lr

d(x) dL2
−

∫
K0÷K

d(x) dL2

4t
6

∫
x∈Qr

d(x) dL2

4t
6

Cφ + 1

4t1/2
V (r). (8)

Next, we will estimate4SE from below, using results on slicing of integral currents by Lipschitz
functions ([16, 4.3], [5, 3.1.8]). Defineρ(x) = |x − p|, and note that Lipρ = 1. It follows that, for
L1 almost everyr > 0, the sliceCr = 〈[Q], ρ, r〉 is an integral 1-current, withM(Cr) 6 V ′(r) and

∂([Q]x{x : ρ(x) < r}) = Cr + ∂[Qr ]x{x : ρ(x) < r} . (9)

We letm(r) = M(∂[Qr ]x{x : ρ(x) < r}). The isoperimetric inequality implies that

V ′(r) + m(r) > M(Cr) + m(r) > 2
√

πV (r)1/2. (10)

This estimate, (9), and (3) imply that

4SE > φ0m(r) − φ0M(Cr) > φ0(2
√

πV (r)1/2
− V ′(r)) − φ0V ′(r). (11)
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We combine (8) and (11) to get

(φ0
+ φ0)V

′(r) > 2φ0
√

πV (r)1/2
−

Cφ + 1

4t1/2
V (r). (12)

For sufficiently small values ofr, V (r) will be negligible compared toV (r)1/2. We now require that
r ∈ (0,

φ0
Cφ+14t1/2). It follows that

V (r) = V (r)1/2V (r)1/2 6 V (r)1/2
√

πr2 < V (r)1/2√π

(
φ0

Cφ + 1

)
4t1/2,

and so

2φ0
√

πV (r)1/2 > φ0
√

πV (r)1/2
+

Cφ + 1

4t1/2
V (r).

(12) then becomes
(φ0

+ φ0)V
′(r) > φ0

√
πV (r)1/2. (13)

We therefore have
d

dr
[V (r)1/2] =

1

2

V ′(r)

V (r)1/2
>

1

2

φ0

φ0 + φ0

√
π, (14)

and this holds (as noted above) forL1 almost everyr ∈ (0, [min{1,
φ0

Cφ+1}]4t1/2).

For anys ∈ (0, [min{1,
φ0

Cφ+1}]4t1/2], we can integrate (14) fromr = 0 to s and square both
sides to get

V (s) >
π

4

(
φ0

φ0 + φ0

)2

s2.

If min{1,
φ0

Cφ+1} = 1, then we are done since for that case we have established uniform lower density

ratio bounds up to radius4t1/2, with µ =
π
4 (

φ0
φ0+φ0

)2. If φ0
Cφ+1 < 1, we letR0 =

φ0
Cφ+14t1/2. For

eachR ∈ [R0, 4t1/2], we have

V (R)

R2
>

V (R0)

R2
0

R2
0

R2
>

π

4

(
φ0

φ0 + φ0

)2(
φ0

Cφ + 1

)2

.

Combining these cases, we see that, for eachR ∈ (0, 4t1/2],

V (R)

R2
>

π

4

(
φ0

φ0 + φ0

)2

min

{
1,

(
φ0

Cφ + 1

)2}
= µ.

To establish the lower bounds on the density ratios ofR2
\ K atp, we can proceed using the same

steps, with crystals [K0], [K], and [Lr ] replaced by [K0], [K], and [L′
r ], whereQ′

r = (R2
\ K)

∩ B2(p, r) andL′
r = K ∪ Q′

r . 2

As noted above, the following theorem is the key result needed to establish Hölder continuity of flat
flows in the casen = 2.
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THEOREM 6 (Uniform 1-dimensional lower density ratio bounds forE-minimizers) Suppose [K]
is anE-minimizer for [K0] over 4t. Then there exists a constantθ > 0, constructed in the proof,
such that for eachp ∈ spt∂[K] we have

H1(∂K ∩ B2(p, r))

r
> θ for each 0< r 6 4t1/2.

Proof. Fix p ∈ spt∂[K], 0 < r 6 4t1/2. The relative isoperimetric inequality (see, for example,
[15, 5.6.2]) guarantees that there exists an absolute constantλ > 0 such that

H1(∂K ∩ B2(p, r)) > λ min{L2(K ∩ B2(p, r)),L2((R2
\ K) ∩ B2(p, r))}1/2.

Theorem 5 then impliesH1(∂K ∩ B2(p, r)) > λµ1/2r. 2

COROLLARY 7 (Dimension of boundary support ofE-minimizers) Suppose [K] is an E-mini-
mizer for [K0] over4t. Then

(1) H1(∂K ÷ ∂K) = H1(spt∂[K] ÷ ∂K) = 0.

(2) ∂K and spt∂[K] each have Hausdorff dimension one.

Proof. As noted in [5, 3.1.3], Theorem 6 implies (1), because of [16, 2.10.19(4) and 2.10.6].
(2) follows from (1) since∂K has Hausdorff dimension one. 2

Theorem 6 and Corollary 7 show that boundary supports ofE-minimizers cannot develop elaborate
filigree structures. Conclusion (2) of Corollary 7 is essential in order to define the discrete flows,
since we need

Ln(spt∂[Kj (k4tj )]) = 0 (15)

for eachk > 0, j > 1. We start by supposing (15) to be true fork = 0, for eachj > 1 (see
Theorem 1, hypotheses (a) and (b.1)). Corollary 7 ensures that theE-minimizers will continue to
satisfy those hypotheses, and so (15) will hold for eachk > 0, j > 1, as required. Finally, we note
thatE-minimizers satisfy even stronger regularity conditions.

THEOREM 8 (Additional regularity ofE-minimizers) Suppose [K] is an E-minimizer for [K0]
over4t. Then

(1) ([5, 3.5]) The current∂[K] is a (φ, w, δ) minimal current in the sense of Bombieri ([11]).
(2) ([5, 3.6]) If φ is even, spt∂[K] is a (φ, ε, δ) minimal set in the sense of Almgren ([3]).
(3) ([5, 3.10]) If φ is three times Ḧolder continuously differentiable except at the origin, and if

φ is elliptic (i.e., the restriction ofφ to any arc-length parametrized line inR2 not containing
the origin has strictly positive second derivatives), then spt∂[K] = ∂K is a 1-dimensional
submanifold ofR2 of class 2.

5. Sharp density ratio bounds

In this section, we use Theorem 6 to show that the 1-dimensional density ratios ofE-minimizers are
in fact uniformly bounded from below by 2, up to a fixed radius depending only onφ and on4t.

We first introduce a notion, that of a “detachable piece,” which will be quite helpful in the proof of
our theorem.
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DEFINITION 9 SupposeX is anL2 measurable subset ofR2 having finite perimeter.D is called a
detachable pieceof X provided

(1) D is anL2 measurable subset ofR2, with L2(D) > 0, and with finite perimeter.
(2) D is a subset ofX, except possibly for a set havingL2 measure zero.
(3) ∂D ∪ ∂(X \ D) is equal to∂X, except possibly for a set havingH1 measure zero.
(4) ForH1 almost everyx ∈ ∂D, we havenD(x) = nX(x), and forH1 almost everyx ∈ ∂(X \ D)

we havenX\D(x) = nX(x).

(5) spt∂[D] ∩ spt∂[X \ D] hasH1 measure zero.

If X has no non-trivial detachable pieces, we say thatX is attached.

We note that a connected component ofX may consist of several detachable pieces ofX, and
a detachable piece ofX may consist of several connected components ofX. MoreoverX may be
attached or not, regardless of whether it is connected or not. Also, it follows immediately from the
definitions that

SE(∂[D]) + SE(∂[X \ D]) = SE(∂[X]) (16)

wheneverD is a detachable piece ofX. The following proposition estimates from below the area of a
detachable piece. Since connected components separated by positive distance are detachable pieces
as well, the proposition applies, in particular, to pairwise disjoint closed connected components of
a minimizer or its complement.

PROPOSITION10 (Area bounds for detachable pieces ofE-minimizers) Suppose [K] is an E-
minimizer for [K0] over4t. SupposeD is a detachable piece ofK (or of R2

\ K). Then

(1) If c is any number such that dist(x, ∂K) 6 c4t1/2 for L2 almost everyx ∈ D, then

L2(D) > π

(
2φ0

c + Cφ

4t1/2
)2

.

(2) If λ is the unique positive real number for whichλ =
2φ0

λ+Cφ
, then

L2(D) > π(λ4t1/2)2.

Proof. First, supposeD is a detachable piece ofK, and letL = K \ D. Using the isoperimetric
inequality, (3), (16), (6), and Proposition 4 (noting that dist(x, ∂K0) 6 dist(x, ∂K)+Cφ4t1/2), we
estimate

2φ0
√

π
√
L2(D) 6 φ0H1(∂D) 6 SE(∂[D]) = SE(∂[K]) − SE(∂[K \ D])

6
1

4t

∫
D

dist(x, ∂K0) dL2x

6
1

4t

∫
D

(c4t1/2
+ Cφ4t1/2) dL2x =

1

4t1/2
L2(D)(c + Cφ).

(1) now follows by elementary algebra. ForL2 almost everyx ∈ D, we haveL2(D ∩B2(x, r)) > 0
for eachr > 0. Let x be such a point. IfL2(D) > πλ2

4t, we are done, so consider the case
whereL2(D) < πλ2

4t. For anyr > λ4t1/2, we haveL2((R2
\ D) ∩ B2(x, r)) > 0, so the

relative isoperimetric inequality implies thatH1(∂K ∩ B2(x, r)) > 0, and so dist(x, ∂K) 6 r.

Thus, dist(x, ∂K) 6 λ4t1/2 for L2 almost everyx ∈ D, sinceλ depends only onφ, and so (2)
follows from (1). IfD is a detachable piece ofR2

\K, we proceed as above but withL = K ∪D. 2
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THEOREM 11 (Sharper 1-dimensional density ratio bounds) Suppose [K] is an E-minimizer for
[K0] over4t. Then for eachp ∈ spt∂[K] we have

H1(∂K ∩ B2(p, r))

r
> 2

whenever 0< r < r0 = δφ4t1/2. Here,δφ = min{1,
2φ0

1+Cφ
}, whereCφ is the constant from

Proposition 4.

Proof. If the measureH1x∂K has density ratios bounded from below at each point of∂K up to
some fixed positive radius, it follows thatH1x∂K also has density ratios bounded from below at
each point of spt∂[K], up to the same radius and with the same bounds. Therefore, it suffices to
consider eachp ∈ ∂K. Supposep ∈ ∂K, and definef (x) = |x − p| for x ∈ R2. We note that
Lip f = 1.

The remainder of the proof will be devoted to showing thatH0(∂K ∩ ∂B2(p, r)) > 2 for
H1 almost everyr ∈ (0, r0); our result then follows immediately by applying Corollary 7(1) and
Corollary 2.10.11 of [16], withf, X, Y, A, andm there replaced byf, R2, R, ∂K ∩B2(p, r), and 1,
respectively, since

H1(∂K ∩ B2(p, r)) = H1(∂K ∩ B2(p, r)) >
∫ r

0
H0(∂K ∩ ∂B2(p, y)) dH1y > 2r.

[5, 3.1.8] implies that forH1 almost everyr > 0 we haveH1(∂K ∩ ∂B2(x, r)) = 0, and the
slice current〈∂[K], f, r〉 is a zero-dimensional integral current. We restrict attention to suchr ’s and
note that, ifH0(∂K ∩ ∂B2(p, r)) equals 0 or 1, then the set

S = ∂B2(p, r) \ (∂K ∩ ∂B2(p, r))

is connected. Because∂K and∂B2(p, r) are closed,S = A ∪ B, where

A = {x ∈ S : U2(x, R) ⊂2 K for someR > 0},

B = {x ∈ S : U2(x, R) ⊂2 R2
\ K for someR > 0}.

Clearly, bothA andB are relatively open inS. Since they are complements, they are also relatively
closed inS. SinceS is connected, it follows that eitherA = ∅ andB = S, or A = S andB = ∅. In
the former case,K∩U2(p, r) is a detachable piece ofK, while in the latter case(R2

\K)∩U2(p, r)

is a detachable piece ofR2
\ K.

We restrictr so thatr < 4t1/2 and then apply Proposition 10(1) withc = 1 to deduce that this
detachable piece must have area at leastπ(

2φ0
1+Cφ

4t1/2)2, which is impossible since the area of any

subset ofU2(p, r) must be strictly less thanπr2
0 . We conclude thatH0(∂K ∩ ∂B2(p, r)) > 2 for

H1 almost everyr ∈ (0, r0). 2

6. Conclusion

Flat curvature flow, introduced by Almgren, Taylor, and Wang in [5], is a very powerful, versatile
model for studying curvature flow, whether isotropic or non-isotropic. It is general enough to allow
for singularities and topology changes, as with physical systems, and the flows agree with classical
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flows as long as the latter are non-singular. In addition, it can be used as a tool to re-prove classical
results in the smooth setting, and it can even be used to provide limits to which computational flows
might converge as4t → 0. The method can be extended to incorporate more physically interesting
properties, such as heat flow and the Gibbs–Thomson effect ([6]), or randomness ([30]).

The most essential result for any flat flow model is ana priori Hölder continuity theorem
(Theorem 1), first established in [5]. This result depends primarily on a regularity result—a uniform
lower density ratio bound estimate—previously established for eachn > 3 in [5] and established
here using a different approach forn = 2 in Theorem 6. Our approach has the added advantage that
it works without alteration (except for constants that now depend onn) for anyn > 2, so that it is
not necessary to treat the casesn = 2 andn > 3 separately. Using Theorem 6, we establish sharp
lower bounds on the 1-dimensional density ratios of boundaries ofE-minimizers, using techniques
that will extend to other, related minimization problems inR2.

REFERENCES

1. ALLARD , W. K. On the first variation of a varifold.Ann. of Math.95 (1972), 417–491. Zbl 0252.49028
MR 0307015

2. ALMGREN, F. J., JR. The Theory of Varifolds. Multilithed notes, Princeton Univ. Library (1965), 178
pages.

3. ALMGREN, F. J., JR. Existence and regularity almost everywhere of solutions to elliptic variational
problems with constraints.Mem. Amer. Math. Soc.165(1976). Zbl 0327.49043 MR 0420406

4. ALMGREN, F. J., JR. & TAYLOR , J. E. Flat flow is motion by crystalline curvature for curves with
crystalline energies.J. Differential Geometry42 (1995), 1–22. Zbl 0867.58020 MR 1350693

5. ALMGREN, F. J., JR., TAYLOR , J. E., & WANG, L. Curvature driven flows: a variational approach.
SIAM J. Control Optim.31 (1993), 387–438. Zbl 0783.35002 MR 1205983

6. ALMGREN, F. J., JR. & WANG, L. Mathematical existence of crystal growth with Gibbs–Thomson
curvature effects.J. Geom. Anal.10 (2000), 1–100. Zbl 0981.74041 MR 1758583

7. AMBROSIO, L., NOVAGA , M., & PAOLINI , E. Some regularity results for minimal crystals,ESAIM
Control Optim. Calc. Var.8 (2002), 69–103. Zbl pre01967368 MR 1932945

8. AMBROSIO, L. & SONER, H. M. Level set approach to mean curvature flow in arbitrary codimension.
J. Differential Geom.43 (1996), 693–737. Zbl 0868.35046 MR 1412682

9. ANGENENT, S. Some recent results on mean curvature flow.Recent Advances in Partial Differential
Equations(El Escorial, 1992), RAM Res. Appl. Math. 30, Masson, Paris (1994), 1–18. Zbl 0796.35068
MR 1266199

10. ANGENENT, S. & GURTIN, M. E. Multiphase thermomechanics with interfacial structure.Arch. Rat.
Mech. Anal.108(1989), 323–391. Zbl 0723.73017 MR 1013461

11. BOMBIERI, E. Regularity theory for almost minimal currents.Arch. Rat. Mech. Anal.78 (1982), 99–130.
Zbl 0485.49024 MR 0648941

12. BRAKKE , K. A. The Motion of a Surface by its Mean Curvature. Math. Notes 20, Princeton Univ. Press,
Princeton, NJ (1978) Zbl 0386.53047 MR 0485012

13. CARABALLO , D. G. A variational scheme for the evolution of polycrystals by curvature. Princeton Univ.
Ph.D. thesis (1997).

14. CARABALLO , D. G. Estimates on the areas of level sets of distance functions induced by asymmetric
norms.Pacific J. Math.218(2005), 37–52.

15. EVANS, L. C. & GARIEPY, R. F. Measure Theory and Fine Properties of Functions, CRC Press (1992).
Zbl 0804.28001 MR 1158660

16. FEDERER, H. Geometric Measure Theory,Springer (1969). Zbl 0176.00801 MR 0257325

http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0252.49028&format=complete
http://www.ams.org/mathscinet-getitem?mr=0307015
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0327.49043&format=complete
http://www.ams.org/mathscinet-getitem?mr=0420406
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0867.58020&format=complete
http://www.ams.org/mathscinet-getitem?mr=1350693
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0783.35002&format=complete
http://www.ams.org/mathscinet-getitem?mr=1205983
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0981.74041&format=complete
http://www.ams.org/mathscinet-getitem?mr=1758583
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=01967368&format=complete
http://www.ams.org/mathscinet-getitem?mr=1932945
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0868.35046&format=complete
http://www.ams.org/mathscinet-getitem?mr=1412682
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0796.35068&format=complete
http://www.ams.org/mathscinet-getitem?mr=1266199
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0723.73017&format=complete
http://www.ams.org/mathscinet-getitem?mr=1013461
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0485.49024&format=complete
http://www.ams.org/mathscinet-getitem?mr=0648941
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0386.53047&format=complete
http://www.ams.org/mathscinet-getitem?mr=0485012
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0804.28001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1158660
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0176.00801&format=complete
http://www.ams.org/mathscinet-getitem?mr=0257325


254 D. G. CARABALLO

17. GAGE, M. E. Curve shortening makes convex curves circular.Invent. Math.76 (1984), 357–364.
Zbl 0542.53004 MR 0742856

18. GAGE, M. E. & HAMILTON , R. S. The heat equation shrinking convex plane curves.J. Differential
Geom.23 (1986), 69–96. Zbl 0621.53001 MR 0840401

19. GRAYSON, M. A. The heat equation shrinks embedded plane curves to round points.J. Differential
Geom.26 (1987), 285–314. Zbl 0667.53001 MR 0906392

20. HUISKEN, G. Flow by mean curvature of convex surfaces into spheres.J. Differential Geom.20 (1984),
237–266. Zbl 0556.53001 MR 0772132

21. LUCKHAUS, S. Implicit time discretization for the mean curvature flow equation.Calc. Var. Partial
Differential Equations3 (1995), 253–271. Zbl 0821.35003 MR 1386964

22. MCCANN , R. J. Equilibrium shapes for planar crystals in an external field.Comm. Math. Phys.195
(1998), 699–723. Zbl 0936.74029 MR 1641031

23. MORGAN, F. Geometric Measure Theory: a Beginner’s Guide. 3rd ed., Academic Press (2000).
Zbl 0974.49025 MR 1775760

24. RIGOT, S. Quasiminimal crystals with a volume constraint and uniform rectifiability.J. Math. Pures Appl.
(9) 82 (2003), 1651–1695. Zbl 1034.49044 MR 2025315

25. TAYLOR , J. E. Motion by crystalline curvature.Computing Optimal Geometries, J. E. Taylor (ed.),
Selected Lectures in Mathematics, Amer. Math. Soc. (1991), 63–65 plus video.

26. TAYLOR , J. E. Motion of curves by crystalline curvature, including triple junctions and boundary
points.Differential Geometry, Proc. Sympos. Pure Math. 51, Part 1, Amer. Math. Soc. (1993), 417–438.
Zbl 0823.49028 MR 1216599

27. TAYLOR , J. E. Mean curvature and weighted mean curvature.Acta Metall. Mater.40 (1992), 1475–1485.
28. TAYLOR , J. E., CAHN , J. W. & HANDWERKER, C. A. Geometric models of crystal growth.Acta Metall.

Mater.40 (1992), 1443–1474.
29. WHITNEY, H. Geometric Integration Theory. Princeton Univ. Press, Princeton (1957). Zbl 0083.28204

MR 0087148
30. YIP, N. K. Stochastic motion by mean curvature.Arch. Rat. Mech. Anal.144 (1998), 313–355.

Zbl 0930.60047 MR 1656479

http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0542.53004&format=complete
http://www.ams.org/mathscinet-getitem?mr=0742856
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0621.53001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0840401
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0667.53001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0906392
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0556.53001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0772132
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0821.35003&format=complete
http://www.ams.org/mathscinet-getitem?mr=1386964
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0936.74029&format=complete
http://www.ams.org/mathscinet-getitem?mr=1641031
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0974.49025&format=complete
http://www.ams.org/mathscinet-getitem?mr=1775760
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1034.49044&format=complete
http://www.ams.org/mathscinet-getitem?mr=2025315
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0823.49028&format=complete
http://www.ams.org/mathscinet-getitem?mr=1216599
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0083.28204&format=complete
http://www.ams.org/mathscinet-getitem?mr=0087148
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0930.60047&format=complete
http://www.ams.org/mathscinet-getitem?mr=1656479

	Introduction
	Some notation
	Flat curvature flow
	E-minimizers
	Weighted mean curvature flow in the smooth case
	Flat curvature flows

	Regularity results
	Sharp density ratio bounds
	Conclusion

