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2-Dimensional flat curvature flow of crystals
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In the impressive and seminal paper [5], Fred Almgren, Jean Taylor, and Lihe Wang introduced flat
curvature flow inR”, a variational time-discretization scheme for (isotropic or anisotropic) mean
curvature flow. Their main result asserts th@lder continuity, in time, of these flows. This essential
estimate requires a boundary regularity result, a uniform lower density ratio bound condition, which
they proved for eachh > 3. Similar estimates for Brownian flows, from important work by N. K.
Yip on stochastic mean curvature flow [30], also rely on this pivotal regularity result.

In this paper, we complete this analysis for the case 2 by establishing the necessary uniform
lower density ratio bounds.

2000 Mathematics Subject Classificati®3C44, 49Q20, 49N60.

1. Introduction

The field of mean curvature flow began with Ken Brakke’s pioneering papker [12], in which he used
Almgren’s varifolds to model surfaces. Varifolds, Radon measuresRiver G (n, m), are good for
modeling quite general unoriented surfaces, which may be very complex topologically, as well as
non-smooth (seé [2] andl[1]). Mean curvature flow®Rihattempt to decrease surface area, which

is independent of orientation (isotropic), and so varifolds are a natural choice for the model.

Brakke’s results were spectacular. He proved existence and partial regularity results, and he even
established strong barrier estimates. In particular, he showed that spheres are barriers to evolving
surfaces. He used powerful variational and measure-theoretic arguments, many of which were
relatively new and not widely known at the time.

Several years later, Richard Hamilton, Michael Gage, Gerhard Huisken, and Matthew Grayson,
in a series of remarkable papers, established several fundamental results for mean curvature flow. In
[17] and [18], Gage and Hamilton showed that convex curves in the plane become asymptotically
circular and smoothly shrink to a point. Grayson later showed that any embedded plane curve
remains embedded under mean curvature flow and also becomes convex; it follows that embedded
plane curves become asymptotically circular and shrink to a point [(sée [19]). Huisken [20] then
extended these results by showing that convex surfaces tend toward spheres.

Their results used classical differential geometry and partial differential equations. Those early
papers led to the rapid development of the extremely active field of curvature flow. Mean curvature
flow has been studied in the plane and in higher dimensions, with hypersurfaces and in higher co-
dimension, in both the isotropic and anisotropic cases, in Euclidean space and in other ambient
manifolds, using classical methods of partial differential equations as well as level-set approaches
or weak formulations, theoretically and computationally, for both single interface and multiple
interface configurations.
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In many applications, such as crystal growth, the relevant surface energy can be highly
anisotropic. Jean Taylor developed the notion of motion by weighted mean curvature, a process
by which a crystal seeks to reduce its surface energy as quickly as possible, subject to some
bulk constraints (see [27] for an excellent introduction). Motion by weighted mean curvature is
of fundamental importance in materials science (5eé [28]). Mean curvature and weighted mean
curvature flows necessarily develop singularities in finite time, but physical systems continue
nonetheless. From a practical standpoint, therefore, it is essential to consider a generalized notion of
curvature flow, one which can continue despite singularities. Several such weak formulations have
been proposed, in both the PDE and measure-theoretic settings.

In the seminal papel [5], Fred Almgren, Jean Taylor, and Lihe Wang introduced flat curvature
flow in R", a variational time-discretization scheme for weighted mean curvature flow. They defined
discrete flows, in which the crystal at the next time stepKaminimizer) is selected by minimizing
a certain surface plus bulk energy functior{d), (4), which itself was chosen so that the Euler—Lagrange
condition gives surface normal velocity pointwise proportional to mean curvature. The limit flow,
as the time step.r — O, is the desired flat curvature flow. Here, the word “flat” refers to the flat
semi-norm from geometric measure theory, not to the ambient spatial dimension! In [23], Frank
Morgan relates the story of how Hassler Whitneyi [29] named the larger of his two norms the sharp
norm,| |4, and the smaller one the flat norinj,, , by analogy with music.

The paperl]b] represented a major advance in the modeling of time-evolution phenomena
such as crystal growth. Their setting was so general that it admitted rough, realistic interfaces,
having orientation and a wide variety of singularities. These interfaces could even undergo complex
topological changes throughout their evolution. Moreover, their surface energy density functions
may be isotropic or anisotropic, and may be non-differentiable (as is the case for many naturally
occurring crystalline materials). Their paper was the first in such a general setting. Their flows
take place inR”, though the results should readily extend to other ambient manifolds, such as
Riemannian manifolds.

When the interfaces and surface energy density function are sufficiently regular, these flows
coincide with classical flows given by partial differential equations until the latter develop
singularities. As with physical systems, flat flows continue beyond the occurrence of singularities.

In [21], Stephan Luckhaus gave another nice time-discretized model for the isotropic case. In
[4], Almgren and Taylor showed that flat flow, for crystalline energy density functioagrees with
2-dimensional crystalline curvature flow for polygonal crystals in the planel(skel[10], [25], and [26]).

The flat flow model has been extended in several important ways. Almgren and|Wang [6] added
heat flow to the model, allowing for differing heat capacities of the crystal and its melt, as well
as taking into account how the curvature of the interface affects the local freezing temperature
(the Gibbs—Thomson effect). Nung Kwan Yip_[30] introduced a stochastic time-stepping model,
alternating minimization steps (which are the same as in the paper [5]) with stochastic perturbation
steps. Robert McCann used flat flowR4 to give a new proof that non-equilibrium convex crystals
in R? remain convex as they evolve by curvature-driven flow.[In [13], the author allowed for
partitions involving several crystals, with each interface having its own surface energy density
function and its own mobility function.

The most important result for flat flowsK[(¢)], is ana priori existence and &lder continuity
estimate([5, 4.5] which guarantees that the limit flat flog4)] exist and satisfy

Xk = xxwlr = LK (s) = K@) < Tls — 112, (1)
where- denotes the symmetric difference operation.
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Because of how flat flows are defined technicall,({)] and [K (¢)] are actually limits of
different sequences of integral currents, and the danger is that the flow will be wildly discontinuous
in time, which would make the flow useless. It is essential, therefore, to establispraoti Holder
continuity result to ensure that this does not happen.

The proof of the main Elder continuity estimate] [1), is based on a volume inequélity, [5, 4.2],
which bound<C" (K (s)=K (s+At)) from above in terms of, ana priori lower bound to thén —1)-
dimensional density ratios at boundary points Bminimizers. We sharpened and generalized
[5 4.2] in [14]. However, in both [5] and [14], the upper bounds f61(K (s) ~ K (s + Ar)) have
6 in the denominator, which is one reason these lower density ratio bounds are critical. Another
reason is that they imply that boundariesfsminimizers have supports which are not too big (and
have Hausdorff dimensiom — 1 in particular). This is important, because if the supports were to
get too large then the entire evolution would degenerate.

In [5, 3.4], Alimgren, Taylor, and Wang showed that boundarie ahinimizers do have
uniform (n — 1)-dimensional lower density ratio bounds. Their proof of this pivotal theorem relies
on estimating the mass of an integ¢al- 1)-current,R, in terms of the mass of its bounday, an
(n — 2)-dimensional current. That step uses an isoperimetric inequality, which perforce introduces
the ratio(n — 1)/(n — 2) into steps used throughout the rest of the proof. In this way, they establish
their main Holder continuity theorem for each> 3.

The uniform lower density ratio bounds are also vital for stochastic mean curvature flow. In [30],
Yip states the result as ihl[5, 3.4] and gives the same proof far3, citing [5]. He later uses the
result several times to establish an essential and impressive uniform lower density ratio bound for
Brownian flows and to establish aldler continuity theorem (followind [5] and [21]).

Forn > 2, uniform lower bounds orin — 1)-dimensional density ratios at boundary points
play an important role in many contexts. For area-minimizing hypersurfaces, these density ratios
are monotonic (se€[16, 5.4], [23, 9.3]), and that fact is very helpful in establishing strong regularity
for such surfaces.

Unfortunately, monotonicity does not hold for surface energy minimizers with general
anisotropic energies[([1, 5.1]), but even in such cases one can usually establish uniform lower
density ratio bounds (see [23, 9.5 and the discussion after 9.3]).]In [@4érBe Rigot establishes
lower density ratio bounds in a fairly general context, while studying quasiminimal crystals. In
[7], Luigi Ambrosio, Matteo Novaga, and Emanuele Paolini work in a general Minkowski space
and establish regularity results, including a uniform lower density ratio bouhd ([7, 3.5]) for general
w-minimizers.

In this paper, we establish the necessary uniform lower density ratio bounds (THgorem 6) for
E-minimizers for the remaining case = 2, thus completing the analysis for both flat flow and
stochastic mean curvature flowR?.

The caser = 2 is not trivial. While?#* almost every point on the reduced boundary of a set of
finite perimeter ifk2 has 1-dimensional density ratios which approach 1 as the balls shrink to a point
(seel[16, 4.5.6]), we need lower density ratio bounds for all pgingssptd[ K], which in general
may be much larger thaihk and may even have positi# measure. We have to consider that there
may be sequences of tiny cycles around boundary points, not just a nice, connected, smooth curve.
Moreover, it is a very uniform, and not pointwise, estimate that is needed. We need to find @ single
which works all the way up to the same fixed positive radius for each poinsptd[ K]. So,6 must
be independent gb. Also, & must be independent & itself (except for the essential fact tha&t ]
is an E-minimizer), because we need to use that sarteestimateC?(K (s + At) +~ K (s + 2A1)),



244 D. G. CARABALLO

and so on, for each step in the discrete flow. Furthermoreeds to be independent &f as well,
since we need to use it for discrete flows with arbitrary time step.

We first briefly describe the formal setting. Following Almgren, Taylor, and Wang, we use the
integral and rectifiable currents of geometric measure theory._See [5], [16], and [23] for more details.

In [30Q], Yip also used the lower density ratio bound and a covering argument to prove a nice
theorem showing thak-minimizers also have-dimensional densities bounded uniformly from
below, for eactn > 3. In Theoreni b, we establish the same resultfes 2 using a new argument.
It is interesting to note that, whereas he had usedithe 1)-dimensional density ratio bounds to
establish the strongerdimensional density ratio bounds for eack: 3, we will do the reverse for
n=2

Specifically, in Theoreni]5, we show that boundariesEefminimizers have 2-dimensional
density ratios bounded uniformly from below and from above. We then use the relative isoperimetric
inequality to prove Theorefr] 6, which establishes the necessary 1-dimensional density ratio bounds
so that flat flows ifR? will be Holder continuous.

We state additional regularity results in Theofem 8, and in Cordllary 7 we show that boundary
supports differ from reduced boundaries of minimizers by at most a set hagfirngeasure zero,
which guarantees that boundary supports have Hausdorff dimension 1, as desired.

Finally, in Propositiorf 10, we establish lower bounds on the areas of “detachable pieces” of
E-minimizers, and we use those bounds and The@llem 6 to prove Theoyem 11, a sharper version of
Theorenj B with optimal lower bounds.

I would like to thank Frank Morgan, who, when reviewing an early draft of my doctoral thesis,
observed that my theorem on lower density ratio bounds for polycrystals held only for ga@
it failed to work whem = 2 for precisely the same reason that the proof of [5, 3.4] does not work
for the case: = 2. | then gave a separate proof [13] for the case 2, for crystals and polycrystals.
That proof made use of connected components and worked only for the casg By contrast,
each result in the present paper, with the sole exception of Th¢olem 11, extends with the same proof
to anyn > 2, the only difference being that various constants depend on

| would like to thank Matteo Novaga for his helpful comments on earlier versions of this paper.
It was he who first suggested | try to prove a result like Thedqrem 11. He also suggested alternative
strategies for proving Theorem 6, including one using connected components|_as in [13], and one
using the general notion of perimeter introduced in [7].

2. Some notation

Our ambient space &2, endowed with the usual Euclidean nofrh. Throughout this papet :
R? — R has all the properties of a norm, except thateed not be even. That i js an asymmetric
norm (seel[14]). It will represent a “surface energy integrand,” or “surface energy density function.”
We do not assume anything else (such as smoothness)@bout

We let B2(p,r) = {x € R? : |x — p| < r} represent the closed Euclidean ballRA, with
radiusr > 0 and centep € R?, and we letU%(p, r) = {x € R? : |x — p| < r} denote its interior.
We measure length and areaRA with Hausdorff 1-dimensional measufié!, and with Lebesgue
2-dimensional measurg?, respectively.

For subsets\, B c R2, we writeA C B (and say tha# is £2 almost containeéh B) provided
L?(A\ B) = 0; A = B, the symmetric difference, is the get \ B) U (B \ A).
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3. Flat curvature flow
3.1 E-minimizers

In this paper, crystalsK] are 2-dimensional integral currents associated with boundgd,
measurable subsefs ¢ R? having finite perimeter. For such seks the characteristic function
xx is a function of bounded variation. As a currerK][= t(K, 1, e1 A e2), so that K](¢) =
fK (e1 A €2, p(x)) dL%x, whenevel is aC™ differentialn-form with compact support.

Its boundaryd[K], is a 1-dimensional integral current, defined via the relatigfrk ) (¢) =
[K](dp), whenevery is a smooth differential 1-form. In the notation above, we halE] =
HL 9K A snx = t(3K, 1, *nk), whereng is the measure-theoretic exterior unit normal in
the sense of Federel ([16, 4.5.5]), ands the Hodge dual. Explicitly, we hav®[K])(¢) =
Jrcax (ng(x), @(x)) dH1x. This integral is well defined, becaus& is precisely the rectifiable
set of points,x, at whichng (x) is defined (see [16, 4.5.6]). There are various commonly used
definitions of reduced boundary for a sub&et- R?; these differ by sets havirlg® measure 0.

We let K denote the collection of all such crystal&][ It is equipped with a metricdy,,
defined bydy ([K], [L]) = £3(K + L). We say that a sequend§k;]}, of crystals inkC converges
strongly (and write that§;] — [K] strongly) if there exists a subs&t ¢ R? as above for which
dy(K;],[K]) — 0asi — oo.

If ¢ is an asymmetric norm, we define thesurface energpf [K] € K by

SEG[K]) = /d o) drtx @

If ¢ is constant on unit vectors, we say that iigetropic otherwise, it isanisotropic If ¢ is the
Euclidean norm, then clearlyE (3[K]) = H1(dK). We define

0< o= inf (0} < sWD($(0) = ¢° < oo,

and we observe thdt](2) implies that
poH (0K) < SED[K]) < ¢°H'(K). 3
Whenever K] and [K] are crystals infC, andAr > 0, we define (as in |5, 2.6])
1
E([Kol,[K], At) = SEQQ[K]) + —/ dist(x, 3Ko) dC%x. 4)
At Jgo=k

If E([Kol,[K], Ar) = inf{E([Ko],[Q], Af) : [Q] € K}, we say that K] is an E-minimizerfor
[Ko] over Az. The bulk integral in[(#) makes it expensive for an interface to move too far in a short
time interval. The Euler—Lagrange condition looks like

A(surface energy)

velocity = — Aarea)

()

We note (as in[[b, 3.3.1]) that, ifq] is an E-minimizer for [Ko] over At, and if [L] is any other
crystal in/C, then

SE[K]) — SEQ[L]) < é/ dist(x, 3Ko) dC%x. (6)
L
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3.2 Weighted mean curvature flow in the smooth case

Following [27] and[[5], we will define the weighted mean curvaturél, s(p), of a surfaces at a
point p, in the smooth case. SuppoSés a smooth (twice continuously differentiable), embedded
closed curve irR?, oriented by the unit normal vector field p). We defineHy s : S — R? by
setting, for eaclp € S,

Hy s(p) = n(p) trace[Hessialg)) (n(p)) o (HessianR))(p)] = n(p)hg s(p),
whereR is anyC? real-valued function defined in some neighborh@bdf p in R?, for which
SNU=RY0) and (VR)(p) = —n(p).

For example, ifS = 9 B2(0, r), we could useR (x, y) = (r?>—x2—y?)/2r and computéd, s(p) =
—(1/r)p, wheneverp € 3B2(0, r).

Supposeg is a C! vector field onR?, and define, for each > 0 and for eachr € R?, the
deformationG, (x) = x + rg(x). We note thaiGo(-) is the identity transformation oR?, thatG,
is a diffeomorphism for all sufficiently small values gfand that%G,(x)\t:O = g(x), so thatg is
the initial velocity vector field. IfS = K for some bounded;? measurable subs&t c R? having
finite perimeter, then we have

d
— g SEG:(0K))

=/ [¢(p) - nkx (P))hg ok (p) dH p,
=0 K

d .,
aﬁ (Gi(K))

= [ 1o neonartp.
t=0 K

Intuitively, then, 4 5k (p) is the infinitesimal rate of decrease of surface energy with respect to
area atp, and so[(b) takes the form velocity ¢ weighted mean curvature, as desired. Therefore,

we see that the energy functiondlhas been chosen so as to approximate motiot seighted

mean curvature at each time step. This heuristic argument can be made more precise, and, indeed,
Almgren, Taylor, and Wang showed that, in the smooth case, the limit flat curvature flows agree
with PDE flows until the latter develop singularities!([5]).

3.3 Flat curvature flows

The following is the main existence andlder continuity theorem for flat curvature flowRf, for
n=>2.

THEOREM 1 (Existence and blder continuity of flat flows([5, 2.6, 4.4, 4.5])

(8) SupposeK (0)] € K, with L™ (sptd[K (0)])) = 0. '
(b) Define discrete flows §; (r)], with time stepAz; = 27/, for all positive integers as follows:
for each integey > 1,

(b.1) setK;(0)] = [K (0)].

(b.2) for each integek > 0, let [K; (kAt; 4+ At;)] be anE-minimizer for [K; (kAt;)] over At;,

(b.3) define K; ()] forall + > 0 by setting K; ()] = [K;(kAt; + Atj)] wheneverkAt; <t <
(k+ DAy,

(b.4) suppos&V is a positive integer for whichht = NA#; < 1.



FLAT CURVATURE FLOW 247

(c) Suppose there exists a constanfa uniform lower density ratio boudsuch that, for each
j =1,k >0, andp € sptd[K; (kAt))],

H'L(DK;(kAt) N B"(p, 1))

it >0 for0<r < AtY?
;

Then there is a subsequendd), i(2),i(3),..., of 1,2,3,..., and for eachr > O there exist
crystals K (1)] € K (we call [K (¢)] aflat flow) such that

du([(K@®)], [KiH(®)]) — 0

locally uniformly in timer asj — oo.
Moreover, there is a constaht= I"(0, ¢, n, SE([K (0)])) € (0, co) such that

du((K ()], [K(s + An]) < Tar/? @)

whenever € [0, oo) andAr € [0, 1].

REMARK 2 The existence of£-minimizers in hypothesis (b.2) above follows from a lower-
semicontinuity/compactness argument giver in [5].

The proof of existence of flat flows given in [5] holds for eack: 2, whereas the proof in][5] of
the central Klder continuity estimatg [7) holds only for each> 3. Specifically, Aimgren, Taylor,
and Wang showed that hypotheses (a) and (b) imply hypothesis (c) avBeB, and that (a), (b),
and (c) together imply the existence andléier continuity asserted in the conclusion of the theorem
above.

Our main goal is to show that hypotheses (a) and (b) imply hypothesis (c) wheh as well
By the remarks above, it will then follow that the pivotablder continuity inequality[(7) holds
whenn = 2.

REMARK 3 In [5], the uniform lower density ratio bound is given for0 r < At, rather than

up to radiusAr/2. Also, their published Blder continuity estimate involves exponenid + 1),

rather than 12. However, Aimgren, Taylor, and Wang had discovered these stronger results, which
they mentioned in a brief remark inserted irito [5] shortly before publication.

Because of how the flow{ (¢)] is constructed, the maindider estimate {7) is essential in order
to preclude the evolutionK (¢)] from being wildly discontinuous.K (1/2)] is defined by showing
there exists some subsequengél), i1(2),i1(3),... of 1,2,3,... for which {[K;,;(1/2)]}
converges ag — oo. To show [K (¢)] exists for some other dyadic time(i.e.,r = k2~/ for some
integersk > 0, j > 1), we find a subsequenég(l), i2(2), i2(3), ... of i1(1), i1(2), i1(3), ... for
which {[K;,(;)(t)]} also converges ag— oo.

We continue to take subsequences of subsequences (and so on) until this Cantor-like argument
yields a limit flow, [K(¢)], defined for non-negative dyadic(a countable, dense set of times).
That is, we conclude that there exists a subsequetigei (2),i(3),... of 1,2,3,... such that
dy (K], [Kij)®)]) — 0asj — oo for each dyadic > 0.

Even if s and ¢ are non-negative dyadic numbers which are very close togethpriori,
du (K ()], [K()]) = L2(K (s)=K (1)) may be quite large, becausié (s)] and [K ()] were defined
by using limits of different subsequences. It is very important, then, that we be able to establish a
Holder continuity estimate such &g (7), so thii{{)] will constitute a reasonable evolution.
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4. Regularity results

To estimate the bulk term if|(4) from above, we will need an estimate on how far poiat§ can
be fromd Ky, if [ K] is an E-minimizer for [Ko] over Az. The following proposition ([b, 5.4]) gives
precisely this estimate (also, s€el[30, 3.0.3]). In general, the cortanty does also depend on
the ambient space dimension,but we fixn = 2.

PROPOSITION4 (An upper bound on how far an interface can move) Suppé&Jeid an E-mini-
mizer for [Ko] over At. Then there exists a constagt,= Cy, depending only o, for which

dist(p, dKo) < CpAtY2

whenever K] is an E-minimizer for [Kg] over At andp € 0K.

We now show that boundaries of 2-dimensio#&aminimizers cannot be too “pointy” in a
measure-theoretic sense.

THEOREM 5 (Uniform 2-dimensional lower density ratio bounds fominimizers) Suppose K]
is an E-minimizer for [Kg] over At. Then there exists a constant > 0 such that, for all
p € sSpta[K], we have

min{£2(K N B%(p, R)), L>(R®\ K) N B(p, R))} > nR?> foreach O< R < ArY/2,

Proof. If the measureC?_K has density ratios bounded from below at each poird Kfup to
some fixed positive radius, then it follows thzd_ K also has density ratios bounded from below at
each point of spi[ K], up to the same radius. Therefore, it suffices to consider pacli K.

Let Q = K N B%(p, AtY/2). Whenever € (0, AtY2), we letQ, = K N B2(p,r) andV (r) =
M([0,]) = £2(Q,). ThenV’(r) exists for£! almost every- > 0, sinceV (r) is non-decreasing.
Also, V(r) > O sincep € dK. Let L, = K \ Q,, and consider the comparison crysta}]. Let
d(x) = dist(x, 0Kp) andASE = SE(J[K]) — SE(J[L,]). Then, since K] is an E-minimizer for
[Ko] over Ar andr < Arl/2,

[ dx)dL?— [ d(x)dc? [ d(x)dc?
ASE < Ko~L, Ko+K < x€0, < Co+1
At At At1/2

V(r). (8)

Next, we will estimateA S E from below, using results on slicing of integral currents by Lipschitz
functions ([16, 4.3],15, 3.1.8]). Define(x) = |x — p|, and note that Lipp = 1. It follows that, for
£1 almost every > 0, the sliceC, = ([Q], p, r) is an integral 1-current, witM (C,) < V'(r) and

A[Qluix s p(x) <r}) =Cr +3[Q/]fx : p(x) <r}. 9)
We letm(r) = M([Q,]{x : p(x) < r}). The isoperimetric inequality implies that
V') +m@r) = M(Cr) +m(r) = 247V ()2 (10)
This estimate[(9), anl|(3) imply that

ASE = ¢om(r) — ¢°M(C,) = ¢o2/mV (Y2 = V'(r)) — ¢°V'(r). (11)
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We combine[(B) and (11) to get

C 1
@°+ B0V () > 20TV (V2 = LT 2y (), (12)

For sufficiently small values of V () will be negligible compared t& (). We now require that

r € (0, Cd)g_lAtl/z). It follows that

V) = VIOY2V (Y2 < VY22 < v<r>l/2f<c 0 1>m1/2

and so P
26037V (VY2 2 dov/TV (D2 + L2 (),
(I2) then becomes
@° + ¢ V'(r) > do/TV (Y2, (13)

We therefore have
1 V') 1 ¢

iy = L 1

and this holds (as noted above) ot almost every- € (0, [min{1, o +l}]At1/2)

For anys € (0, [min{1, o +1}]At1/2] we can |ntegrat'4) from = 0 tos and square both

sides to get
2
T do 2
> = .
'O=3 <¢° +¢o) '

If min{1, ﬂl} = 1, then we are done since for that case we have established uniform lower density

—P0_)2 |f c¢+1 <1 weletRg = CfilAtl/z. For

ratio bounds up to radiuar/2, with p = Z (-2~
eachR € [Ro, AtY/?], we have

V(R) V(Ro>R_S>n< %o >2< %o )2

R Z R R 4\ 0+ o) \Cpt1

¢°+¢

Combining these cases, we see that, for éaeh(0, ArY/?],

VIR _m( ¢o \° . ¢ \°)| _
7>Z(¢°+¢o> m'n{1’<c¢+1> }_“'

To establish the lower bounds on the density ratioRdf K at p, we can proceed using the same
steps, with crystalsKo], [K], and [L,] replaced by Ko], [K], and [L'], where Q. = (R? \ K)
NB%(p,r)andL. = KU Q.. O

As noted above, the following theorem is the key result needed to estaldidertontinuity of flat
flows in the case = 2.
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THEOREM 6 (Uniform 1-dimensional lower density ratio bounds fomminimizers) Suppose K]
is an E-minimizer for [Ko] over At. Then there exists a constaht> 0, constructed in the proof,
such that for eaclp € sptd[ K] we have

HLOK N B%(p,r)) o
r =

6 foreach O< r < AtY2,

Proof. Fix p e sptd[K], 0 < r < ArY/2. The relative isoperimetric inequality (see, for example,
[15, 5.6.2]) guarantees that there exists an absolute cornstarit such that

HYOK N B2(p,r)) = Amin{L3(K N B2(p, r)), L2(R?\ K) N B?(p, r)}¥2.

Theoren] b then implies* (0K N B2(p, r)) = iul/?r. -

COROLLARY 7 (Dimension of boundary support &-minimizers) Suppose K] is an E-mini-
mizer for [Ko] over At. Then

(1) HY(OK < 8K) = H(sptd[K] ~ dK) = 0.
(2) 9K and spb[K] each have Hausdorff dimension one.

Proof. As noted in [5, 3.1.3], Theoreir] 6 implies (1), becauselof [16, 2.10.19(4) and 2.10.6].
(2) follows from (1) sincéd K has Hausdorff dimension one. d

Theorenj  and Corollafy] 7 show that boundary supporis-afinimizers cannot develop elaborate
filigree structures. Conclusion (2) of Corolldry 7 is essential in order to define the discrete flows,
since we need

L"(sptd[Kj(kAt)]) =0 (15)

for eachk > 0, j > 1. We start by supposing (L5) to be true for= 0, for each;j > 1 (see
Theoreni 1L, hypotheses (a) and (b.1)). Corol[gry 7 ensures tha-thaimizers will continue to
satisfy those hypotheses, and[sq (15) will hold for éach0, j > 1, as required. Finally, we note
that E-minimizers satisfy even stronger regularity conditions.

THEOREM 8 (Additional regularity ofE-minimizers) SupposeK] is an E-minimizer for [Kg]
overAt. Then

(1) (5, 3.5]) The currend[K]is a (¢, w, §) minimal current in the sense of Bombiefi ([11]).

(2) (9, 3.6]) If¢iseven, sp[K]is a(e, e, §) minimal set in the sense of Aimgren|([3]).

3) (5, 3.10]) If¢ is three times K&lder continuously differentiable except at the origin, and if
¢ is elliptic (i.e., the restriction o to any arc-length parametrized line ¥ not containing
the origin has strictly positive second derivatives), thendggff = 9K is a 1-dimensional
submanifold ofR? of class 2.

5. Sharp density ratio bounds

In this section, we use Theorgh 6 to show that the 1-dimensional density rafiesiafimizers are

in fact uniformly bounded from below by 2, up to a fixed radius depending onky and onA¢.

We first introduce a notion, that of a “detachable piece,” which will be quite helpful in the proof of
our theorem.
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DEFINITION 9 SupposeX is an£? measurable subset B? having finite perimeterD is called a
detachable piecef X provided

(1) D is an£? measurable subset B, with £2(D) > 0, and with finite perimeter.

(2) Dis asubset ok, except possibly for a set havingf measure zero.

(8) aD U 3(X \ D) is equal tod X, except possibly for a set havirtg! measure zero.

(4) ForH! almost every: € 3D, we havenp(x) = nx(x), and for! almost every € 3(X \ D)
we havenx\D(x) =nx(x).

(5) sptda[D] Nsptd[X \ D] hasH! measure zero.

If X has no non-trivial detachable pieces, we say ¥t attached

We note that a connected componentXofmay consist of several detachable pieceXptnd
a detachable piece af may consist of several connected componentX .dfloreoverX may be
attached or not, regardless of whether it is connected or not. Also, it follows immediately from the
definitions that
SE@[D]) + SE[X \ D]) = SE[X]) (16)

wheneverD is a detachable piece a&f. The following proposition estimates from below the area of a
detachable piece. Since connected components separated by positive distance are detachable pieces
as well, the proposition applies, in particular, to pairwise disjoint closed connected components of

a minimizer or its complement.

PROPOSITION1O (Area bounds for detachable pieceseminimizers) Suppose K] is an E-
minimizer for [Ko] over At. SupposeD is a detachable piece &f (or of R2\ K). Then

(1) If ¢ is any number such that dist 8K) < cArY/? for £2 almost everye € D, then

2
£2(D) > n(ﬂAtW) .
c+ C¢

(2) If A is the unique positive real number for whizh= A?g(p’ then

L2(D) > 7 (AA1Y?)2,

Proof. First, supposé is a detachable piece &f, and letL = K \ D. Using the isoperimetric
inequality, @),),), and Propositiph 4 (noting that disb Ko) < dist(x, dK) + CyAr/2), we
estimate

2po/7V/ L2(D) < poHY(ID) < SE@D[D]) = SEB[K]) — SED[K \ D])
1 .
<o /D dist(x, 8 Ko) dC%x

1

< Ait /D(cAtl/z + CpArY?)dL2x = L2(D)(c + Cy).

(1) now follows by elementary algebra. F6f aimost everyc € D, we have£?(D N B?(x, r)) > 0

for eachr > 0. Let x be such a point. Ii£2(D) > mA2Ar, we are done, so consider the case
where £2(D) < mA2Ar. For anyr > AAtY2, we havel2((R? \ D) N B2(x,r)) > 0, so the
relative isoperimetric inequality implies that* (8K N B2(x,r)) > 0, and so distx, dK) < r.
Thus, distx, dK) < rArY/2 for £2 almost everyx € D, sincei depends only o, and so (2)
follows from (1). If D is a detachable piece B \ K, we proceed as above but with= K U D. O
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THEOREM 11 (Sharper 1-dimensional density ratio bounds) Suppé&deid an E-minimizer for
[Ko] over Az. Then for eactp € sptd[ K] we have

HYOK N B2(p,r)) -
r =

2

whenever 0< r < rg = 83AtY2. Here,8; = min{1, %}, where Cy is the constant from
Propositiorf 4.

Proof. If the measuré{'LdK has density ratios bounded from below at each poiritifup to
some fixed positive radius, it follows that' 9K also has density ratios bounded from below at
each point of spi[ K], up to the same radius and with the same bounds. Therefore, it suffices to
consider eactp € 9K. Supposep € 9K, and definef (x) = |x — p| for x € R We note that
Lip f = 1.

The remainder of the proof will be devoted to showing th&X@K N dB2%(p,r)) > 2 for
H* almost every € (0, rp); our result then follows immediately by applying Coroll@y 7(1) and
Corollary 2.10.11 of [16], withf, X, Y, A, andm there replaced by, R?, R, 9K N B2(p, r), and 1
respectively, since

HYOK N B2(p,r)) = HYX@K N B2(p,r)) > /0 HO@K NIB2(p,y)) dHty > 2r.

[5, 3.1.8] implies that fof{! almost every- > 0 we haveH1(3K N 9B2(x,r)) = 0, and the
slice currentd[ K], f, r) is a zero-dimensional integral current. We restrict attention to ss@nd
note that, ifH°(3K N 8 B2(p, r)) equals 0 or 1, then the set

S =03B%(p.r)\ (3K NIB*(p,r))
is connected. Becaus& anddB2(p, r) are closedS = A U B, where

A={xeS:U?%x,R)Cs K for someR > 0},
B={xeS:U%x, R) C2 R?\ K for someR > 0}.

Clearly, bothA and B are relatively open it§. Since they are complements, they are also relatively
closed inS. SinceS is connected, it follows that either = # andB = S, or A = SandB = {. In
the former casek NU?(p, r) is a detachable piece &, while in the latter caséR?\ K)NU2(p, r)
is a detachable piece B \ K.

We restrict- so thatr < ArY/2 and then apply Propositi¢n [L0(1) with= 1 to deduce that this
detachable piece must have area at led ¢c0¢ ArY/2)2 which is impossible since the area of any

subset ofU2(p, r) must be strictly less thamrZ. We conclude that° @K N dB2(p,r)) > 2 for
! almost every- € (0, ro). O

6. Conclusion

Flat curvature flow, introduced by Almgren, Taylor, and Wand_in [5], is a very powerful, versatile
model for studying curvature flow, whether isotropic or non-isotropic. It is general enough to allow
for singularities and topology changes, as with physical systems, and the flows agree with classical
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flows as long as the latter are non-singular. In addition, it can be used as a tool to re-prove classical
results in the smooth setting, and it can even be used to provide limits to which computational flows
might converge aa+r — 0. The method can be extended to incorporate more physically interesting
properties, such as heat flow and the Gibbs—Thomson efféct ([6]), or randoninéss ([30]).

The most essential result for any flat flow model is apriori Holder continuity theorem
(Theoreni 11), first established in [5]. This result depends primarily on a regularity result—a uniform
lower density ratio bound estimate—previously established for gaeh3 in [5] and established
here using a different approach foe= 2 in Theorenj . Our approach has the added advantage that
it works without alteration (except for constants that now depend)dar anyn > 2, so that it is
not necessary to treat the cages- 2 andn > 3 separately. Using Theordm 6, we establish sharp
lower bounds on the 1-dimensional density ratios of boundariésminimizers, using techniques
that will extend to other, related minimization problemsRif
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