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Sharp-interface model for eutectic alloys
Part I: Concentration dependent surface tension
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We consider the problem of phase separation in eutectic alloy such & &4. For this we derive

a phase field model from an atomistic point of view. We find the surface energy to be anisotropic,
having in general a nonlinear dependence on concentration. We use matched asymptotic analysis to
obtain a corresponding sharp-interface model. The resulting expression for the surface tension agrees
with that found on the basis of classical thermodynamics for jump conditions at singular interfaces.
A boundary integral formulation of the sharp-interface model enables us to numerically describe the
motion and deformation of the binary alloy.

1. Introduction

Already in 1958 J. W. Cahn and J. E. Hilliaid [4] considered the possibility of anisotropic surface
tension in a crystal lattice. This is generically the case when modeling phase separation in multi-
phase systems such as binary alloys. A number of models have been developed generalizing the
Cahn-Hilliard equation to multi-component systems by introducing a vector-valued order parameter
and by making some general assumptions on the form of the gradient energy [6]. [28], [26]. Using
matched asymptotic expansions, corresponding sharp-interface models were then developed and
expressions for surface tension were determined on the basis of results by Herring on anisotropic
surface energy [13].[20].

Recently, a phase field model for the description and simulation of coarsening processes
occurring in binary alloys, that are caused by diffusion in local inhomogeneous stress fields, has
been formulated in_[9]. There, the model is applied to the eutectic solder alloy consisting of lead
and tin. Figur¢ JL shows a typical morphology that developed from an initially fine mix of alternating
layers of lead-rich and tin-rich regions after 20 hours of slow cooling. The regions are resolved on
aum-scale. This coarsening process is initiated by diffusion subjected to the effects of anisotropic
surface tension and of thermomechanical stress fields. Here, the symmetry of the crystal lattices in
the two phases is tetragonal and face-centered-cubic in the lead-rich and tin-rich phase, respectively.
For further related work see also elg.|[27],I[17].][11].

We consider coarsening processes that may be subjected to external thermomechanical loads.
The given temperatur® is assumed to be uniform in space. In this case the morphology and its
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FiG. 1. Lead rich (dark) lamellae

evolution is described by the fields

. . . 1/ dvy; av;
v;(t, X) — displacement, leading to the strain = ~ (i + i) ,

2 an 0X; (1,1)

c(t, X) — mass concentration (e.g. tin)

Heret denotes the time an& = (X;, X2, X3) are the Lagrange coordinates with respect to a
Cartesian frame of reference of the material particles of the alloy, which are the smallest volume
units that can be resolved on the space scale considered. The motion of a particle with coordinates
X is given by the functione = x (¢, X), which gives the actual coordinates= (x1, x2, x3) of

the particle at time. Its displacement is; = x; — X;. The objective of the phase field model is the
determination of the field§ (1.1). Sometimes it is useful to refer the fields to the actual coordinates.
This can be done by the definitions

&t @) =c@t,x N, ) and 3 (1, ) = vi(t, x 1, ). (1.2)

The field equations for the displacement and the concentration rely on the quasistatic momentum
balance and on the conservation law for the content of one of the two constituents of the binary
alloy.

In Part | of this study we assume that the displacement field is given, so that we only need the

conservation law 5 a7
c k
PO + X, 0. 1.3)
Here and throughout, we use the Einstein summation convention. The constiEmotes the mass
density of the reference state, which is here given by a homogeneous phase mixture at the eutectic
composition, and; are the components of the diffusion flux.

The conservation law (1.3) becomes a field equation for the concentration if we relate the
diffusion flux to the concentration by a constitutive law that we determine as follows. In the
appendix of[[9], Dreyer and Mler have exploited the second law of thermodynamics relying on
the assumption that the specific free enetjgyis given by a function of the type

~ dc 92c
g1, 25 _2C o) 1.4
v w( X 9X0X; 8”) (1.4)
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and they choose Joule/kg as the unit/ofin Section 2 of this paper we will give a short survey on
the main points of the derivation. Furthermore Dreyer andié showed in[[9] that in accordance

with the second law of thermodynamics, the diffusion flixxmay be related to the specific free

energy by the constitutive law

By 9 9 9 9 92 9
LT LA d ,
T 39X, dc 09X, \3(dc/dX.m) XX, \ 9(82¢/(0XndX,))
(1.5)

which generalizes the well known diffusion law according to Fick. The newly introduced quantities
By; are the components of the mobility matrix, which can be related to the matrix of diffusion
coefficients.

The idea we pursue in this article is to form the free energy degsity the two-phase mixture
by interpolation within the interfacial region of the two phases, and use this for the derivation of
the diffusion flux for the binary alloy. The resulting model shows that when mechanical effects are
neglected the coefficients of the surface tension terms introduce some anisotropy which is due to
the concentration dependence of the coefficients. This effect is the main focus of Part | of this study.
Hence, here the only field equation will be the diffusion equation. In Part Il we will discuss the
contributions of mechanical effects to anisotropy.

The main objectives of Part | of this study on the coarsening problem of eutectic alloys are the
following:

(i) Atomistic motivations and derivations of the phase field model, which describes anisotropic
surface tension and mechanical stresses that appear during coarsening processes.

(ii) Establishment of the corresponding sharp-interface limit and its numerical exploitation for a
strongly reduced model that exclusively takes care of anisotropic surface tension and ignores
mechanical effects.

For this reason, a comparison of numerical experiments with real life processes in eutectic alloys
will be postponed to Part 11 of this study.

In the next section we begin with a presentation of the Helmholtz free energy, composed of

the potential energy between particles and the entropic part and derive expressions for the surface
tension coefficients. The corresponding coefficients in the expression for the diffusion flux are then
found via the mean field limit. In Section 3 we use matched asymptotic analysis to derive the
corresponding sharp-interface model. Interestingly, the expression for the surface tension that results
for the sharp-interface limit allows only two-fold symmetry if mechanical effects are neglected.
In Section 4 it is shown how the same expression can be found from classical thermodynamics
arguments based on the derivation of jump conditions at free boundaries. Finally, in Section 5 we
derive a boundary integral formulation for the sharp-interface model that enables us to employ the
nonstiff numerical method, due to [[16], for our numerical solution to the problem.

2. Atomistic modeling of phase field systems
2.1 The free energy function for the phase mixture

In this section we establish the constitutive law for the free energy density from an atomistic point
of view. To this end we consider separately the two phases, ealfdthse an@g-phase, of the two-
phase mixture and calculate first their individual specific free energy dengitiemdyg. In the
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second step we form the free energy density of the two-phase mixture by interpolation within the
interfacial region according to

_ : _]1 forX € a-phase,
V=uye +A—uwyp, with u= {0 for X e f-phase, (2.2)

whereu is the scaled concentration indicating the phase that occupies the logation
We may relate: to the concentration field by

ATy —ct, X)

N RN

(2.2)
where ¢*(T) and c?(T) refer to the equilibrium concentration of the-phase ands-phase,
respectively. Thus the scaled concentration variabieay change continuously in the interfacial
region from 0 to 1. It remains to derive the free energy functigpsand v for the individual
phases.

2.2 The free energy functions for the individual phagesnd g

We consider a body that consists exclusively of the pure phasterey may generically represent
either phase or 8. The body consists of a crystal lattice, whose symmetry is given, and the lattice
sites are randomly occupied bytype andB-type atoms. We decompose the total free energy of
the body into its energetic and entropic parts and write

W, =U, —TS,. (2.3)

U, andS$, denote the internal energy and the entropy of the body, which will now be determined
successively.

The internal energy can be decomposed into a thermal{a(T;), which does not interest us at
this point, and the potential palot, Which is due to the interaction energy between all particles.

For simplicity, we assume central forces to act between the ai@andb, {«, b} € {1,..., N}, and
we write
1 1 b .ab ; b b
Uyipot = @, (x2, ... xN) = > > ety with P = (P — x4, (2.4)
a,b=1
a#b
where the 3/-tuple (xil, e xiN) contains the current positions of the atoms. While central force

potentials are best suited to explore the key ideas and the atomistic origin of the various contributions
appearing in the diffusion flux of phase field models, we note that they are in general not appropriate
to describe the behavior of crystal lattices and may lead to some unrealistic results such as the so-
called Cauchy paradok [18]. In[10] some of the resulting shortcomings are discussed.

We introduce the microscopic displacements

£4 = x4 — X* 2.5)

in order to substitute the current positions by the Lagrange positions of the atoms. These
substitutions take care of terms up to second order in the displacements, resulting in a linear theory
of elasticity.
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The casel’ = 0. In this subsection we establish the expansiowpfat T = 0. In our derivation

we introduce the effects of thermal expansion and other eigenstrains only when taking the mean field
limit, which simplifies the calculation considerably. The justification for this procedure is given in
[18]. First, from [2.4) we obtain

Uppot = @, (x}, ..., xMy =@, (X}F+ &1 .. xN + &)

1 & 820, (xk ..., xY)
1 N )4 ’ ’ b
=&y (Xi, . X)) + 5 21 BXl,fale Llgagh. (2.6)
b=
aayﬁb

The first derivative does not appear here becausgé at 0 the potential energy assumes its
minimum. Next, we note that there are three different potential functions,@ﬁé. for AA-

interactionsy?” for B B-interactions ang!” for A B-interactions. The introduction of the particle
concentration operator

0 if a indicates am-type atom

(@)= {1 if « indicates arB-type atom @D

permits us to represent a generic poten&ﬁ&l by
Pl = (1= $@)(L—IB)ep* + $@Fb)et?
+HOA - $@) + F@@ - H)]e)”. (2.8)

This representation will be introduced now in both termg of]|(2.6). As a consequence, there appear
new quantities, which are defined as

1
0y (A7) = (A7) = Sl (A™) + 9y (A1),
(2.9)
1
Gy (A™) = Sy P(A") — gt (a™)),

where A% denotes the magnitude of the reference distance between at@md b. The term
@, (X}, ..., X")in (2.6) can now be rewritten as

N

1
a,b=1
a#b
N L oaa . ab R . > 1 A ] y
- (5% “ )”(")(1—Y<b>>wm )+ 50(@) + 50)G, (A”),  (2.10)
a,b=1
a#b

and the sum i (2]6) results in a similar manner.

Next we carry out the mean field limit, where quantities that describe the state of an individual
atom are replaced by their respective mean values, which are assumed to vary slowly in time and
space. A detailed discussion on various aspects of the mean field limit is found ir [12], [18] and [8].
Regarding the atomistic quantities appearing in this paper we define the mean field by the following
rules:
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(i) substitute the particle operator, which can only assume the values 0 or 1, by the particle
concentration, which may change continuously between 0 and 1:

y@) — y(t, X) = y(t, X),
ay(t, X)
0 Xy

3%yt X) b (2.11)

Aab + ,
k 0X0X k=l

Fb) — y(t, X* 4+ A% ~ y(t, X) +

(i) substitute the atomic displacement by the mean displacement:

E — ui(t, X = u;(t, X),
ou;(t, X) (2.12)

£P — wi(t, XU 4+ Ay 2w, X) +
0 Xy

A,
Note that the coordinat&? denotes the location of atom It is related to an expansion for atam
at the coordinat&“, which in turn is abbreviated by .

Finally, we collect all terms appearing and obtain three different contributions to the potential
part of the total free energy of the pure phase {«, 8}:

Uyjpot= Y [M‘A +ydy+ysyd—y)

¢ 1 @ A‘/’ 1A¢ azy
“\ Gy~ 5% T\ Ay lkimnopy — 52y lkimnop. | Emn€op X, 0X,
1 ~
+§(A;*|ﬁmop + AY opy T A‘;’Imnop)emngo,,]. (2.13)

Here, the dependence on the concentration and the strain is explicit and the newly introduced
coefficients are constants which can be calculated from the given interaction potentials. Their
definitions are given in appendix B. The first lineof (3.13) gives the classical local contribution and
its third term is the energy of mixing. The first two terms of the second line describe the nonlocal
interactions. Those terms depend on the concentration and are related to the classical Cahn—Hilliard
model (seel [4]). Note that the first derivatives of the atomic concentratiofd, X, do not appear

in the representatior (2.]L3), which is due to our restriction to crystal lattices which have either
tetragonal or cubic symmetry. Finally, the third line gives the purely elastic part of the potential
energy, and the bracket in front ef,,¢,, is the stiffness matrix, which, however, turns out to
depend on concentration.

The casel’ > 0. ForT > 0 a competition of the energy of mixing and the entropy arises. In
a phaser with a disordered distribution of tha-type andB-type atoms over the lattice sites, the
entropys, is given by

Sy = —k Y [yLog(y) + (1 - y) Log(1 — y)]. (2.14)

Herek is the Boltzmann constant. If the coefficignf in ) is positive, the energy of mixing

and the entropy may combine so that the local part of the free energy becomes a nonconvex function.
Next, we discuss further effects which are inducedfor- 0. These are eigenstresses as a

consequence of eigenstrains, and the most prominent representative is the eigenstrain due to thermal
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expansion. Other eigenstrains are due to point defects, dislocations and misfit strain. The latter arises
for example during phase transitions if the new phase needs more space than the old one. All these
effects are described by eigenstrains that have the generic form

(T, o). (2.15)

Eylmn = Eylmn
Eigenstrains can be incorporated into the model, i.e. into the equtiof (2.13), by the substitution

emn — (Emn — ejlmn). (2.16)
Suppressing its thermal part, we obtain the total free energy for a pure phase

W= [w;‘/‘ +yly + YLy —y)

a
1, 1 5 92y

@ 4 ¢ ¢
- (aylkly - anlkl + (Ayklmnopy - EAylklmnop> b(emn — S;Imn)(evp - 8;|0p)> X, 0X;

1 AA @ (2
+ E(Aylmrwp + Ay\mnr)py + Ay\mmp)(‘gm" - 8;ilmn)(‘gf’l’ - Eutlop)

14T Y (v Log(y) + (L — y) Log(l - y»}. (2.17)
a
Recall that we need to know the free energy as a function of the mass concentnaibar than a
function of the particle concentration Both quantities are related by the equation

_ Mac
Mp — (Mg — Myp)c’

y (2.18)

whereM 4 andM g are the molecular weights of the constitueAtand B, respectively.

2.3 The specific free energy and the diffusion flux of the phase mixture

From [2.17) we may read off the specific free eneggyof the pure generic phage We consider
one mole, and abbreviate each term of the su2.17§rpy, with ¥, = [Na/ MYy 0,
whereN, = 6.023x 10?3 particlegmole is the Avogadro number. We recall the interpola (2.1)
and obtain the specific free energy of the phase mixture, viz.

N ~ .
¥ = M(/Z) () Vala + L — u(©)Vpia), (2.19)
where
M(c) = MaMp (2.20)

Mp — (Mp — My)c
is the mean molecular weight of the binary mixture. A function of the type

82c dc dc

0 bi(e, g — 2 2.21
axjax,+f’(c S’X)ax,-ax, (2.21)

¥ = Yolc, &rs) — Clj](C, &rs)
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is obtained, where the identification of the local part of the specific free engrgynd the matrix
functionsa;; andb;; is done after carrying out the necessary differentiations in order to transfer the
y-dependent function&ma and&ma into functions of the mass concentratiarirhis calculation is
easy but lengthy and left to the interested reader.

Finally, we use the constitutive lay (2.1) to calculate the diffusion flux. We abbrexiate-
aj; + bj; and obtain an expression of the following type:

Bu 9 (dvo(c, 32 dAji(c, ers) dc D
J=— Dki 0 Yolc, ers) _ ZAJ'](C, £rs) c ji1(c, &rs) _oc oc
T 9X; ac 0X;0X; ac 0X; 0X;
_ 0Aue ) D denn  O%aji(c, ery) cop D8mn _ daji(c, &rs) O2emn (2.22)
demn  0Xj X demndeop 0Xj 0X; demn  0X;0X;) '

3. Sharp-interface limit

In the following we ignore mechanical contributions to the free energy and to the diffusion flux,
and we consider exclusively the effect of a simple anisotropy of the gradient coeffigigntshich
become functions of the concentration.

A detailed evaluation of the mechanical phenomena is the content of Part Il of this study. For
the case we consider here, the diffusion flux (.22) reduces to

Bii 9 [0vo(c) 92c dAji(c) dc dc
k= —— —2Ai(c) - — )
T 8Xl- dc 8Xj8X1 dc an 8X1

For simplicity, we assume now a constant and isotropic mobility teBgoe Bdy;, and for further
simplification we refer to an eutectic alloy. We restrict ourselves to the regime below the eutectic
line of the Sn Pb phase diagram, which gives the coexistence region of a binary phase mixture,
with regions of high leado(-phase) and high ting-phase) concentration. The lattice symmetry of
thea-phase is cubic, whereas tiephase exhibit tetragonal symmetry. This symmetry leads to the
gradient coefficients

Af = a3, Al=1o a¥ o, (3.1)

jl

with constanta®, alﬂ andaz’g for thea- andg-phase, respectively|[9]. The interface region of the two
phases is the only region with significant contributions to the higher gradients. Here we interpolate
asin[21),i.e.

Aji = A%u+ AL —u), 3.2
with u defined as i (2]2). Note that since we neglect all mechanical effects the Lagrange coordinates
coincide with the actual coordinates We now substitute the resulting expression for the diffusion
flux into the conservation equatiop (L.3) and transform the equation to the scaled concentration
variableu(z, ), which is 0 in theg-phase and 1 in the-phase. We nondimensionalize via

xi=L%, t=of, ¥=vF®u), (3.3)

and obtain, after dropping the tildes for the governing equation,

u
— = Apu, 34
o w (3.4)



EUTECTIC ALLOYS 207

F(u)

FIG. 2.

whereA denotes the Laplacian operator and

92y u ou
= F'(u) — &2 24 AL (u) — — 3.5
o (u) —¢ ( kl(u)axkaxl + "l(u)axk 8x1> (3.5)

in a domain2 = £, U £2_ with

e .32
2= B9 and o= LA (3.6)
TL? By
where T is the constant temperature. The gradient energy coefficiépts:) are in general
nonlinear functions ofi(z, ), where we abbreviated; (c(x)) by Ay () with c(u) = cf —
(c? — ¢®)u(t, ). The prime denotes the derivative with respeciztdrhe free energyF (1) has
the form of a double-well potential (see Fjg. 2). On the boundarywe take zero flux and the
variational condition

n-Vu=0 n-Vu=0. 3.7)

""" (e) Q_

FiG. 3. Sketch of sharp interface.

Solutions of this problem reach phase equilibrium at¥gd) time. Near phase equilibrium, a
solution has developed an internal boundary layer structure, having a wiéttz pand approaching
sharp interfaced’ of the appearing precipitates as— 0 (see Fig[ ). The dynamics of the
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precipitates evolves then on the slow time scale- ¢t and the governing equation describing
this is 5
u
e— = Au, (3.8)
at

wherep is given by [3.5).
The solution to the corresponding internal boundary layer problem will yield the boundary
condition for the “outer problem”, i.e. in the region &f outside that boundary layer.

3.1 Outer problem
Letu have the asymptotic expansion

u(t, z; &) = uo(t, ) + ur(t, ) + 2uz(t, ) + 0(cd). (3.9)
Correspondingly we can develgpas

(T, @; €) = po(T, @) + epa (v, @) + 2ua(r, @ + 0(%). (3.10)
Substituting into[(3.4) we obtain together with (3.5) for the leading order problem

0= Apo = AF'(uo) (3.11)

sincewo = F'(uo). The O(¢) problem is

81/[0

5, = Am= A(F" (uo)u1), (3.12)
T
and for theO (¢2) terms we obtain
al/ll ” 1 " 2 ~ 82ﬁ0 ;o 8120 8ﬁo
— =Aux=A\F —F —2A — — A —_— 3.13
97 Hn2 ( (uo)uz + 2 (Uo)ul Kt (o) 9% 0%) k[(uo) 9x; 9% ( )

plus corresponding boundary conditions @2. The boundary conditions of; will be obtained
via matching to the solution of the “inner” problem valid in the vicinity of the interfage

3.2 Inner problem

3.2.1 Transformation to inner variables.We consider the 2D situation, wheie= (x1, x2) =
(x,y). Letr(z,s) = (ri(z, s), r2(z, s)) be a parametrization of the curvé, wheres denotes
arclength. Then

x(t,s,z2) =r(t,s) + ezv(t, ) (3.14)

defines the boundary layer withbeing the boundary layer or “inner” variable (see fig. 4). The
normal

d d
v(t,s) = <—£(r, s), ﬂ(r,s)) (3.15)
as as
points inside the precipitate and the tangent vector
0 0
t(r,s) = (ﬂu, 9, Qu,s)) (3.16)
as as

points in the counter-clockwise direction.
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FIG. 4. Boundary-layer region.

Supposew is a quantity defined in the inner coordinat@sz, r). Then its derivatives are
related to the derivatives of the corresponding quantitin outer coordinates via the invertible
transformation matrix

0 dx  Jy
Q 0 3 ds
M = dx  dy , Where Q= ax oy | (3.17)
dt 0t dz 0z
by
ow ow
s dx
ow ow
— =M —1. 3.18
9z dy ( )
ow ow
ot ot
Sinces is arclength,
ory 2 dara 2 ary 321'1 ara 32}’2
— ) =1 4= f-0 3.19
(as) +(8s) as 8s2+8s 952 ( )
and for the curvature we have
ary 82r2 ara 32r1
=1 e 3.20
Kk(s, T) 35 32 T s 252 (3.20)
so that ot 5
Z e, Yot (3.21)
as as
and ) )
0ry ara 012 ary
o2tz _ i 3.22
852 « as asz . as ( )
Hence,
0 0
2 _q—eot, E—er, detQ =e(d— ). (3.23)
as 0z
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Now we can express the quantityin the outer variables in terms of the inner variables by

d ow ow
_w 0 _w (1+ SZK)% _871% _w
gx 01 s ds ds s
dw | _ o||2® ora  _yor 1 (324
dy 9z A+ewm)— e -— 0 9z
or 4 M as s >
ow -—.0 1 ow 1 Pt “1yw g ow
at o7 ot —A+ez)Vt —e at

where we have used the approximatiofill— ezx) = 1 + ezx + O(e2), and where we denote the
tangential and normal velocity by

a a
yt= 2% 4, VY= ox v, (3.25)
ot ot

respectively.
The higher derivatives then transform as follows:

Pw  _,(0r2\?0% [ (dri\%ow | _dr1drz 9% ar1\ 292w
—s =€ — | —= - k| —=) —+2—— +{— ) —
9x2 as ) 972 s ) 0z ds ds 350z as ) 952

dry rp AW ar \20w  _dry drp 8%
_ZKﬂﬁ_w_ZK[K(£>a_w+2££ w} (3.26)
Z

ds 0ds 0s as ds 0s 050z

Zw L (dr1\?0%w [ [0r2\?0w _dr dr2 9% ara\ 292w
— = N\—=) ——-¢|k|l—) ——-2—— +| =) —=
ayz as 972 as 0z ds ds 050z as 952

~ 2 a~ 2~
drq dr2 0 d d drq drp 0
PRAERA A N Y A A Y e (3.27)
ds 0ds 0ds 0s 9z ds 0s 050z
92w L0r10r20%w [ orior o ( (o2 2 (ar\?\ 0%
=—g‘f————¢ _—— — ) - —
9xdy s 0s 922 “as 9s 0z ds ds ) ) 950z
dry drp 320 ara\2  [9r1\?\ 0w
+————«(l==) - (=) )
ds ds 9s2 as as as
dry drp 0 ara\?  [0r1\% 02w
I L S S A AN LA | (3.28)
ds 0ds 0z as as 05027
3% 9% AW
Aw=¢2— g he—4 — —zk2—. 3.29
972 0z 952 0z ( )
3.2.2 Inner equations and matching.In what follows we write
dii 82t diio 3%l
g, = —, Ugg .= ———, ot .:=—, 1 = — (3.30)

Making use of[(3.19){(3.29) we can expand the gradient energy part in inner coordinates:

92u ou ou

2A A —_—
ki () 0X10x; +Au ) 0xi dx;

= 8728(”77 l;fk’ ’ZSk&) + 871h(ﬁ, f‘ék’ ﬁékél) + j(a, ﬁékv ﬁSkél)»
(3.31)
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where&, & € {s, z} and
02 901\ 2
0.1 ” _ T rt
g, g, ligg) = 2V AV 3_12 +vA'v (3_Z> ,

dit
h(i, g, , tig ) ——2/<tAtTa +2(tAvT +uAtT) —i—(tA’v + VA tT)a P

2= -2

92 dii
i, dg,, ) = 2tAtTa— +2(tAV +vA tT) -+ tAtTSE 4 ckh(@, it g

as

with

~ (A11(u) Aro()
Aw) = (Azl(ﬁ) Azz(ﬁ))’

and the superscript T denotes the transpose of a vector.
From this we obtain

20
Ap=¢ 2F[F’(u) — 8, g, ug)]
<

_1( 9%h S
—¢ = — (U, ug, ugg) [F () — g(u, g, , igg))

82' 2

Jo. .. oh _ _ d - - .
- 3_Z2(u’ Ug, Ugg) — KE(”’ Ug, Ugg) + F[F/(“) — g, g, igg)]

a - U
—a® F @) = g(@, g, )] + 0 (0).
Let the quantities andu have inner expansions
i(t,s,2) = fio(t, 5, 2) + eii1(t, 5, 2) + €%iia(1, 5, 2) + O(e3),
(T, s,2) = fio(T, s, 2) + efia (T, 5, 2) + e2fia(T, 5, 2) + O(e3).

The functionF (iz) can be expanded as
~ /o~ ~ 1o~ 1~ "~ ~ 1o~
F'(@t) = F'(ito) + €tir F (uo)+82<§M§F (o) + u2F (uo)>,

andA(u) can be expanded similarly.
Then, using[(3.49) anfl (3.36) the leading order inrte(2)) problem is
8% 3 3 Lo
?20 = B—ZZ[F/(Mo) — g(llo, log, , Uogg,)] = 0,

so that
fo(t, T, 2) = ao(t, 7)z + bo(z, T).
Recall that the leading order outer problem fois
Apg =0 ing2_,
n-Vu, =0 onos_,
Apd =0 ingy,

ou 8u

211

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)
(3.38)

(3.39)

(3.40)

(3.41)

(3.42)
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where gy and ud denote the chemical potential in the matrix and the precipitate, respectively.
Both problems have to be joined by a condition on the interfgcef the precipitate. This will

be provided by matching with the inner solution. For this we express the outer solution in inner
coordinates and reexpand

(g + 81y +e15 + 0E) (1,7 +82v) = g (1, 1) + (Ui (T, 7) + 2 - Vg (1, 7))
2
+ U T + v Vau(n,m) + =vHug @, ) + 063, (3.43)

2
where
2w 9w
9x2 0xdy
H(w) = 3.44
(w) 20 52w (3.44)
ayox ayz
Matching to leading order then requires
pd,r) = lm jio(r, 7, 2) (3.45)
z—+00

ase — 0. Thereforai(z, r) = 0 andu (z, r) = bo(z, 7).
Furthermore, from the ordinary differential equation dgrin z, (3.40) and[(3.32), we obtain

~ 1 821:;0 7~ t 8ﬁ0 2 ]~
(QuA(ig)v') P + (WA (ig)v") e = F'(ilo) — bo(t, 7). (3.46)

Hence we find

%%[(2VA(ﬁo)uT)<aa—i°)2] = [(ZVA(ﬂo)uU a;f; + (vA’(%)u*)%] (aaiz)z
= (o) — bo(r, ™) 5 (3.47)
This yields, after integrating from = +oc to z = —oo and observing thadio,/9z — 0 as
7z — £o00, the solvability condition
/ Y LF i) — bo(z. 7] diig = 0 With F'(us) = b, (3.48)

Equation|(3.4B) is basically a system of three equations in three unknowms. andb,. It means
that for a given free energ¥ («) of the form of a double wellp, is the unique constant such that
the integral in[(3.48), i.e. the “area” in Figure 2 betweenandu., is zero.
Finally, the uniqueness of solution to the problem
Apg =0 ing2_,
n-Vu, =0 ondf_, (3.49)
ug =bo onry,
A,bbg =0 in QJ'_,

ensures thaf’ (1) = ue = constinall of £2.
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To orderO (¢~1) we obtain for the inner problem

3%h Gl ) + 92011
0= 8 (MO, Uog » uoé;'ké]) +Kx— 9z + a_ F (lfio)ul - VA(MO)V azz

+ 81/!0 81/!1

diig\ 2
A// ~ \~ 1 o
_3Z _81 +vA (uo)urv (_Bz

_ 0%h djio 0%, d _, _ R

= 8 (”0’ Uoky, Uokg) + K —— 9z + 3_ l@c) £(F () — g, ug,, ugg))
o 8%

=K— + —. 3.50
0z 972 ( )

Note /i, is constant so thatdfio/dz = 0 and the right hand side af (3)50) is equabfgii/9z2.
Hence,
pi(r,r,2) = ai(t, r)z + ba(z, 7). (3.51)

Moreover, sinceu, is constant, matching to next order yields
,uf(r, r)y= Ilim [i(z,r, 2). (3.52)
z—>+00

Henceai(z, r) = 0 andfi1 = b1(z, r) are independent afand

. o .d . -
f1(r, ) = —h(io, ligg, , Hogg) + M —(F'() — g(u, g, ligg)). (3.53)
e—0de

Note now that

3 diio\ > dito d%iio auo diio\
— At +vath( =2) | = tav’ + vath2=—=2 + AV +vAY )
0s 0z 0z 3597 07 82

2
—2ctat — VAVT)<8MO> . (3.54)
9z

This implies

ou Uo BMO 2 + 8140 2
—u1(r, r) = 2cvAvT - — (tAV + vAt")
0z 8z 9z

o S
+8—Z° lim, —(F (@) — g(i, fig,, fiz,g))- (3.55)
The condition joining the two outer problems fag is now obtained by integrating (355) from
7z = —oo 10 z = +4o00. First we observe that the third term on the right hand side vanishes. For this
recall that

dilo . . diig . 8201 dilo _ ( diig
8_zghm —(F (@) — g, g, lgg)) = F//(Mo)gul —2vAVT P vA'V i [ =
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and note tha{ (3.46) implies

F”(ﬁo)aa—'?ﬁl = 2yA’uT,zlaa—’ZZ° 8822’220 + 2uAuTalaa3fs°
+ UA”VTIZ1<8—IZO>3 + 2uA/uTﬁ18—ﬁ° 82&0. (3.57)
9z 9z 972
Hence
88—”; !igwo%(F’(ﬁ) — gl gy ig)) = %[2:/@*(&1882:20 - %%’)} (3.58)
the integral of which frony = —oo to z = 400 vanishes sincéiio/dz, 3%i/dz> — 0 asz —

+o0. For the integral of the other two terms on the right hand side of|(3.55), we define

G i) = / “LF (0) — bo] dv (3.59)

diig G(iio)
_ |Gl 3.60
9z vAvT ( )

so that the integral of (3.55) can be written

and observe that from (3.46),

[ Dace.r) = 2« [ CVraiGw - / Cartcoath) ) S0 0 @e)
u_ S u_ VAV

L

where [iZ]] denotes the jumpg — ug . This can also be written, after differentiation with respect
tos, as

- Kk o+ [ G) _1—/”* + +2 | G) )
a1(t, r) = —[[MS_L]] (2/}4_ tAt AT dv 2] (tAv' + VALY —(VAI/T)3 dv ). (3.62)

By the matching condition (3.52) this equals(z, r). Given F(x) and A(u) it represents the
chemical potential along the interfa¢g of a precipitate. This leads to the sharp interface model

Apy =0 inQ_, (3.63)
n-Vu;y =0 onde_, (3.64)
ui = fa(e, ), (3.65)
Apf =0 iney. (3.66)

In order to determine the velocity of the sharp interface we have to continue the matching to
higher order. To orde© (1) the inner problem reads
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dilo i oh . . . 3210 djio
— VY2 = ——(ilo, flog, — k— (ilo, fhog, » ok, — —Zk——
9z 972 (#to, itog » Uogsy ) Kaz (tto, thog » Uoggy) + 952 K 9z
. d L 3 N 3
- ![}T})&(hzz(u, g, Ugg) — Ka—Z[F/(u) - g(u)])
d? [ 92
lim — ( —[F'@) — ¢@@
#lim 2o (25l @ - e ).
Pip A1 %o o
=— —k— + — 2k —2, 3.67
972 3z s dz (3.67)

whereV¥ = (dx/dt) - v. Again, sinceu, is constant, we have

diig %2 [ . . d o,
_VV_8Z =52 % h(io, uogk,uogkg,)—!@O$(F/(M)—g(u’uék’“&&))
921 AL
=Kz TH (3.68)
872 dz

Sincefi1 is independent of, we simply have

v o _ 9?12

— = . 3.69
0z 872 ( )

We integrate[(3.69) once with respecttand use the matching condition ffi>/9z to obtain

.9
lim M2 _ . Vx,uf(r, T). (3.70)

z—>+o00 0z
The z2-term in [3.43) vanishes singe, is constant. Hence, for the interfacial speed we obtain

v Vsl

[[u5]]
Equations[(3.63)f(3.66) together wifh (3.71) constitute our sharp-interface model, governing the
long-time dynamics of the phase field model[3.f),]|(3.5) together fvith (3.7).

The sharp-interface model we obtained is very similar in structure to the one given in [25] and
reduces to it when the surface energy is independent of concentration.

VY =

(3.71)

3.3 The Cahn-Hoffmann law for concentration dependent surface energy

We also obtain a Cahn—Hoffmann law for a concentration dependent surface énérgyvi [14]] [3], [13].
To this end we define
ry = (C0sH(t, 5), SINO (7, 5)), (3.72)

whered(z, s) is the angle of the tangent at a point ppto thex-axis. In terms of this coordinate

we have
2

3
w(umﬁ) = 2(tAtT — vavh). (3.73)
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Using this we can derive

92 tAtt 1(tAvT + vAth?
2 — Avt AvT) =2 - = , 3.74
<892(\/u vh+Vv ,,) 5 A (3.74)

so that )
K 0“0
/Ll(T, ’I") = W(O’ + W)’ (375)

where the surface tensienis defined as
Ut
o= 2/ VVAVTG(v) dv. (3.76)

At this point it is interesting to observe that the expression for the surface tensitbows at most
two-fold symmetry. This is in contrast to previous theories, €.d. [15] etc., where it was assumed
that the surface tension reflects the symmetry of the underlying crystal lattice and could in principle
have higher symmetry. Our analysis shows that in fact higher symmetries of the surface tension
enter only through mechanical effects, which is shown in Part Il of this study.

There is a very interesting different approach to modeling anisotropic surface tension, which
is due to [1], [2]. There, the authors start from a nonlocal discrete spin lattice model in order
to derive a hierarchy of higher gradient phase field models. However, they are interested in non-
conserved order parameters, so that their treatment generalizes the Allen—Cahn model but not the
Cahn—Hilliard models, which is the focus of the current study. But this is a minor point compared
to the different origins for anisotropic surface tensions in [1], [2] and in our results. In our model,
anisotropic gradient coefficients are in general mainly due to mechanical stresses in the crystal
lattices of the two phases and they reflect the symmetry of the undistorted lattices. Inl [1], [2]
anisotropic gradient coefficients result by taking into account higher gradient terms in the Taylor
expansion of the nonlocal interaction functién

3.4 Generalization to 3D

The sharp interface limit implies in first and second order the conditipns](3.48)[and (3.61),
respectively. The conditiof (3.48) yields the equilibrium concentrations according to the common
tangent construction, which describes the jump conditions if the curvature of the interface is ignored.
The condition[(3.6]1) takes care of curvature and yields the corrections to the plane interface case.
Up to now we considered exclusively a phase mixture in 2D with interfaces as 1D objects. While
the common tangent construction is not influenced by this restriction, the condition (3.61) is. A
generalization to the case of a phase mixture in 3D with interfaces as 2D surfaces can be carried
out along similar lines. In this case the interfaces are described by two Gaussian pardiieters
A € {1, 2}, and the functionr(z, UL, U?) gives the location of the surface points. The surface is
equipped with a unit normal, two tangent vectorg,, a metric,gar, and a Gaussian curvature
tensor,bor. The mean curvature is defined ky, = %‘gArbA[‘. All these quantities can be
calculated from the surface functietr, UL, U2).

The expression corresponding fto (3.61) reads

[T s = 2000 + (—%w) , (3.77)
A
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where the semicolon indicates the covariant derivative, and with

U4 u4
G
o=2 / VvArtGydv, o4 =2 / WAt +t AvT) % dv. (3.78)
VAV
u_ u

The interfacial speed is just as in the 2D case and given in [7].

3.5 Aremark on the Gibbs adsorbtion equation

We conclude from[(3.78)that the surface tension depends on the interfacial normal vector and
on the limiting values of the concentrations of the adjacent phases. Moreover, the surface tension
depends also on the temperature and elastic strain. However, these dependencies will be discussed
in Part Il of this study.

The normal and concentration dependencesois explicitly given by [3.78) because the
phase field study of this model relies on atomistic reasonings. Phase field models that rely on
phenomenological reasoning need a different source of information on the dependencies of the
surface tension. In this case, the strategy is the identification of the Gibbs adsorbtion equation, which
allows likewise the calculation of the surface tension, at least in phase equilibrium. The background
and strategy are carefully describedlinl[22], where also a phase field model of a binary mixture is
formulated. Despite the fact that mechanical effects are ignored here, the main basic difference to
our approach is the following. We start from the assumption that the phase field is given by the
concentration itself. I [22] additionally to the concentration a phase field is introduced, to take care
of the possibility that there might be no one-to-one correspondence between the present phase and
the present concentration.

4. Jump conditions for a binary mixture according to classical thermodynamics

The sharp interface limit from Section 3 reveals jump conditions at the interface between the two
coexisting phases. Jump conditions, however, can also be obtained from classical thermodynamics
that models the interfaces from the very beginning as singular surfaces [7]. Here, we consider
classical thermodynamics of a binary disordered mixture that may consist of two coexisting phases
« and 8, and we ignore mechanical stress fields in the bulk. In this case the variables are the
temperaturel’ and the partial mass densitipd and p? of the two constituentst and B. The

specific free energy density is given by a function of the type

¥ =9(T, p*, p?), (4.1)
and R .
py py
A B

are the chemical potentials of the constituents (seele.g. [24]). Here4 + p® denotes the mass
density of the mixture.
It is useful to change the variableg, o according to

(0™, 0%) = (p.c = p®/p). (4.3)
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We write . 3
V(T, p*, p%) = (T, p, ©), (4.4)
and ~
opyr
=p*—— (4.5)
0
defines the pressure. Next we calculate the chemical potentials from the fuictida obtain
. P 1/
MA=¢+%—c¢/ and M3=w+§+(1—c)w’ with ‘/’/Za_lf' (4.6)
Note that y
pw=pub —pt =9y (4.7)

The jump conditions at the interface are derived in classical thermodynamics by means of
generic balance equations! [7]. If we denote the limits of a generic quagtitptained by
approaching the interface from thephase angs-phase, respectively, by, and gg, the jump
conditions read

uh—ud =0, puf—pub =0 ps—pa=5Tbar + 5. (4.8)

The newly introduced quantities are the tangential surface st¥é4s,the normal surface stress,
$4, and the semicolon indicates the covariant derivative.

Thermodynamics of interfaces relates the surface str&sSeands4 to the free energy density,
Y, of the interface. Under the assumptions that

() Ip=T, =T, ‘
(i) ¥y may depend off, v' andgar,
one obtains as a consequence of the second law of thermodynamics

1 8Iﬁ i 3%
sAI = A 2 77 and §4 = —gAl¢l -2 4.9
¥sg 292Ar 8 T (4.9)

(see [7] for details). The first contribution ¢/ leads in to the classical capillary force
which is proportional to the mean curvatuegy = %gAFbAF. The metric dependence of the
interfacial free energy describes elastic effects of the interface and the normal surface stress, given
by (4.9», which is related to the Cahn—Hoffmann vector.

Next we will evaluate the jump conditiofi (4.8). First we write the conditigns| {4.8hore
explicitly:

Pa

; ~ R &
1/f,/3(T7 10,37 Cﬁ) = w(;(T’ Pas CD() =Nu and (cﬂ - CD()/J’ = Ipﬂ - ‘(//0( + ,O_Z - p_a (410)
Let us assume for simplicityg ~ p, = p, and letcg,, cq, be the solution of

Y (T, p.cp) = U, (T.p.cy) and (cg—co)it =Vp — Va. (4.11)
which describes the common tangent construction, also called the Maxwell construction. We
conclude that the common tangent construction only holds if

() pg = pa = po,
(i) pg = pPa = po-
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Note at this point that condition (i) is well known, but the necessity of the second condition is
in general not noted. In the following we will take the condition (ii) for granted. Note that in the
derivation of the sharp-interface limit from the reduced phase field model we also did not consider
the variation of the total density of the binary mixture. Furthermore, note that this variation is related
to the trace of the mechanical strain, which will be included in Part Il of this study.

We proceed to exploit the jump conditiofis (4.8). To this end we make the Ansatz

Ca = CagFCars  Cp=ChoTCp1s  Pa=Pagt+Pers Pp=PpotPp H=potpr (412)

and exploit the jump conditiof (4.l0under the assumption that quantities with index 1 are small
corrections to the corresponding quantities with index 0. We obtain

10 = V4 (T. po, cag) = V(T po, cpo)s 111 =¥y (T, po, cag)cay = V(T po. cpo)cpy. (4.13)

while the conditions] (4.30)and [4.8) imply
1
(Cho — Cap)l1 = %(s“bﬂ + 55). (4.14)

Let us now ignore elastic effects of the interface so that the right hand side df (4.14) can be rewritten
as

1 LY/
(Cgy — Cag)1 = —(21//st + (—gAFT} 8—‘1,,5) ) (4.15)
£o ViJ.a

A comparison of{(4.7]5) with the corresponding reqult (B.77), which we have obtained from the phase
field model, suggests identifying
Ys = 0. (4.16)

In this case the definition§ (3]78) imply that the interfacial free energy density has the following
properties:

Vs ;0Ys 1

=~ =Yg d 7 — = —0A. 4.17

gt Ve and Tag =504 (4.17)

The result[(4.15) of classical thermodynamics can thus be written

vi

1
Pol(Cpy — Cag)1 = 20Ky + (—EO‘A> . (4.18)
A

This result is in agreement with (3]77) developed from the phase field model.

Originally, the Cahn—Hoffmann vectog’, was introduced to describe interfaces with
anisotropic surface tension within sharp-interface models. It was shown, elg.lin [21], that the
Cahn—Hoffmann vector can also be identified with the phase field models and they provide useful
generalizations of the classical concepts. In the current study we can also identify the Cahn-
Hoffmann vector, which is here related to the normal surface stre§$ by —g2/ <X £X (see also
[7] for details). A comparison wit7) an@gwields thus the identificationf £ = 3o,
which gives the tangential component of the Cahn—Hoffmann vector within the phase field model,
via equation[(3.78) However, the role of changes, if we consider the elastic contributions of the
current model to the gradient coefficients. A detailed discussion of this topic is found in Part Il of
this study.
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5. Numerical methods

For our numerical treatment we follow [15] and transform the sharp-interface nfodg| (8.63)—(3.66),

(3.71) into a boundary integral formulation. Note that the sharp-interface model describes mass
diffusion in the matrix and mass diffusion in the precipitates connected by the common boundary
condition [3.65). Here, we make the simplifying assumption that diffusion in the precipitates can be

neglected, i.e. we treat only the one-sided model

Apg =0 in2_, (5.1)
n-Vu; =0 onoas2_, (5.2)
ny =1 onrl, (5.3)
MuglV¥ =v-Vu; onl, (5.4)

and drop the superscript ( —) from now on. Note that this does restrict the range of morphological
scenarios in comparison to the solutions of the phase field model (see [19]). However, we expect the
shapes shown here to qualitatively correspond to those of a two-sided model for very small diffusion
inside the precipitate.

We further assume thai2 has been shifted to infinity and replace the local condition
n - V1 = 0 by the condition of no flux in the far field

lim /n -Vu1=0. (5.5)

Ryo— 0

In what follows, we note that the tangential vectdo the boundary of a precipitate always points

into the mathematically positive direction, andilways points to the left, i.e. inside the precipitate.
We next derive a boundary integral representation for the solutidnugf= 0 in £2_ by setting

nr=ReW (), z=x+iy, z€ 2, (5.6)
where N
1 @(¢) 1
1 = Arl - M P — — ()] . 7
(2) 1;21 kIn(z O+ el _Zdé“ + 271/ (¢)dg (5.7)

Here Ay € R, @ is a complex function and the complex numidéy is in §2;, the interior of the
k-th precipitate, bounded b, wherel" := U1]<V:1 I. The first term on the r.h.s. represents the
contribution of the 2D-precipitates, the second term is the analytical partdof2_ and the third
part is a constant correctionyf A 0 asz — oo. As shown by Mikhlin [23] this representation is
unique for givery. Furthermore, it is shown in [23] that fer— z € I',

1 ul 1 @ 1
Re( im @) =—Z0@) + Y AcInE — Mp) + —— Im ©) g4 2 / (o) de
z—;zz 2 = 2 r¢—z 2
zesfd_

i.e. forpuq on I". Substitution of[(5.6)[(5]7) int¢ (5.5) yields

N
> Ar=0. (5.9)
k=1
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Note that the I.h.s. of (58) is an integral operatord@rmwith kernel of dimensionV — 1 so that

we haveN — 1 solvability conditions for the r.h.s. of (3.8). Together with [5.9) this will fix the
Ay, so that we can find the correspondigg In order to obtain uniqueness one has to impose the
constraints (see again [23])

/ &(¢)de =0. (5.10)
I

Now we can determing; onI” and hencé& 1, which allows us to calculateL[EE]] VY =v-Vui.

Note that knowledge of the normal velocity is sufficient to evolve the interface. For the numerical
implementation we use a parametrizatiqic, t) for eachly, wherex € [0, 27]. These parameter
functions are evolved according to

dz
d—: = VP + Vit (5.11)

wherev; andt; denote the normal and tangent vectors with respect ta-heprecipitate. The
tangential componerlt’kt of dz;/dr remains arbitrary and a special choice of the parametrization
for the boundarieg}, will be used to simplify the numerical implementation. Here we follow [16]
in the choice of the coordinate system, whéyrés the angle of the tangent vector at pointsign

to thex-axis andL; denotes the length of the corresponding interface. The componesiofr)

are then replaced by the coordinatgs andg; through

St = |ze| and (oSt (@, 7). sindy(a, 7)) = ewEk), IM(z4)) (5.12)
Sko

so that the evolution equations

0Skq
ot

O Vi + Vibra

5.13
ot Sko ( )

=V, — 6V and

are obtained. Note that the indéxefers to thek-th precipitate, while the index denotes partial
derivative with respect to the parameterThen the special choice of

o o 27
Vi, 1) = / O VY o’ — — f Orar V¥ dot’ (5.14)
0 2 Jo

yields the equal arclength parametrization

L
k(®) for all o, (5.15)

Ska =
and hence the simpler ODE-PDE system

2
a0 2
0 at Ly

oLy
ot
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In summary, the complete boundary integral formulation for the evolution of the precipitates is:

1 2o (@) ' 2”
__@k(a r)—i——Z/ &y, r)lm(zl(a/) zl(q))d Lk, 1/ @;(a’, ) do’

N

+ ) Ain(zi(@) — M) = palr,  (5.17)
=1

2
/ S, 7)dd’ =0 k=1,...,N—1, (5.18)
0

Zlol(a) /
V(1) =—— Z/ D (0, T) Re(z;(ot’) — zl(oz)) do’, (5.19)

together with[(5.9)(5.14) anfi (5]16).

Now, consideb,, in the second equation ¢f (5]16). It gets another derivative in the first equation
of (5.18) and another one ipn (5]17), sinc&iny, coordinates the curvature jry| - is expressed as
k = 0y/sq. Hence, there are three derivatives. Such high derivatives in an evolution equation will
lead to numerically stiff problems (the stability constraint e\g.< O((Ax)3) leads to prohibitive
time stepping). However, the advantage of the above formulation is that the evolution equation can
for eachk be written as

90 (2m\°
— = (—> AH [Ogaa] + N(a, 1), (5.20)
ot L
where
2n
= / odf. (5.21)
[us] Jo
The first term of[(5.20) becomes in Fourier space
27\3 3
—| =) ljI°0 5.22
(5) i 522

which is the stiffest term and will be treated implicitly. However, in this form it is linear and diagonal

in Fourier space and hence one only has to solve a diagonal system. The remaining complicated
nonlinear expressiotV («, ) can be treated explicitly. We use a pseudo-spectral method (using
FFT) in space, and Leap—Frog for the explicit and Crank—Nicholson for the implicit time integration.
The integration of theL, ODE is done with an Adams—Bashforth integrator. Equatipns 5.17),
(5.18), [5.19) and (5]9) yield the andA. They represent a linear system which we solve iteratively
using GMRES.

5.1 Examples

We are interested here in some first characteristic features of the influence of anisotropic surface
tension on the dynamics of coarsening. This will be extended to include elastic effects in Part Il.
For the numerical simulations we use (i) the linear interpolating expression

« p
A(ii) = (ao a%) i + (ao %) (1— i), (5.23)
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where thex-matrix corresponds to a cubic symmetry and ghmatrix to a tetragonal symmetry,
frequently occurring in binary alloys (see eld. [9]). For the configurational part of the free energy we
choose a fourth order polynomial, i.B!(iig) = io(iic — 1/2)(iio — 1) S0 thatbg = O, [[uoi]] =1

andG (v) = 1/4v2(v — 1)2. With this choice we obtain the following explicit expression or

4

o =+a® [(1—p)¥?@—p—3p*) —4+T7p]. (5.24)
105p3
where 4 5 5
o p— f—
p=q+5siPe with g=2 44 s-2"% (5.25)
a% a%

In all simulations for Figureg|$}7 we lgt = 0.4 ands = 0.1. For the initial conditions we
always choose a pair of circles, where the left one has its center at the origin and is of radius
R = 0.13 and the right one has its center shifted to the righd by 2.01R from the origin and has
1% larger radius. We are interested in the effect of anisotropic surface tension and distance of the
precipitates on the coarsening rate and their shape.

0.2

0.1

FIG. 5. Two evolving precipitates with centers initialy= 5.2 apart (solid line). Middle portion.@ < x < 5.2 not shown.

In Figure[$ we see the change in area for two precipitates, initially of circular shape (solid line),
where the second one has center shifted by 5.2 to the right and having 1% larger radius (also
solid line). Note that we do not show the middle portio & x < 5 to better focus on the shape of
the precipitates. For both precipitates, the growing (rigintj the shrinking (left) one, coarsening
proceeds by quickly assuming and retaining almost equilibrium shape (dotted lines), which can be

found analytically as the stationary solution [of (3.1)—(p.19),| (5.9), [5.14)[and (5.16), for a single

precipitate
K %
cosf 1 . ]
ristat= / cosf ds = / do = —— | osind + i cosh |,
0 o 00/0s C 90

s % sing 1 do .
rostat= sinf ds = dd = —| o cosh — — sind
0 o 00/0s C 06

with scaling factorC.

(5.26)




224 W. DREYER & B. WAGNER

0.2

0.1+

FIG. 6. Two evolving precipitates with centers initially= 0.325 apart.

In Figure[§ the center of the left initial circle is the origin, while the center of the right initial
circle has been shifted only by = 0.325 to the right. We see that while the right precipitate
is growing at the expense of the left one, the influence of diffusion dominates the shape of the
precipitates. Only for the smallest precipitate shown is the equilibrium shape attained, i.e. when
surface tension dominates.

0.05

0.08

0.01

-0.01 -

Area(t)-Area(0)

-0.03 -

-0.05

FiG. 7. Change in area for two precipitates, placed next to each other (solid line) and over each other (dotted line).

In Figure[T we show the influence of distance of the precipitates on the coarsening rate, which
is smaller for larger distances. Additionally, we performed a second set of simulations, where the
center of the second precipitate was placed a distdradmve the origin instead to the right. While
the influence of the distance on the shape is analogous to the previous examples, we also notice a
dependence of the coarsening rate on the orientation of the precipitates with respect to each other.
Figure[T shows the area of the precipitates minus their initial area for three pairs initially with
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distanced = 0.325 (left),d = 0.65 (middle) andd = 5.2 (right). The solid lines represent pairs

of precipitates, where the center of the second one is placed to the right of the origin, as in the
previous figures, and the dotted lines represent those where the center of the second precipitate is
placed above the origin. We see that the effect of anisotropic surface tension on the coarsening is felt
largely for nearby particles. Furthermore, we see a tendency that coarsening proceeds faster when
the points of higher curvature are closer.

Conclusion

In this paper we derived a phase field model for a binary alloy suc$n@b from an atomistic
point of view. The resulting model has anisotropic surface energy with a nonlinear dependence on
concentration. For the study of phase separation we employ the method of matched asymptotic
expansion to obtain a corresponding sharp-interface model for the case when mechanical effects are
neglected. As a result we also obtain an analytic expression for the concentration dependent surface
tension. Interestingly, the expression allows at most a two-fold symmetry. It furthermore agrees with
the one obtained on the basis of classical thermodynamics for jump conditions at singular interfaces.
We finally investigate the dynamics of precipitates numerically, using a boundary integral
formulation of our sharp-interface model.
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Appendix A. Higher gradient coefficients

In this appendix we relate the coefficients which appe2.13) to the three pair poteﬁﬁals
9BE, o8 and to the combinationl?), respectively. Recall the definitititfs= x? — x¢,
A% = |X? — X4| and let us furthermore s&f = A% /A%,

The coefficients determining the local part of the free energy read

1 -1 1
Upt =32 et @AT) W =23 6, (A). Y =53 e A (AD)
b b b

The higher gradient coefficients, which we also call extended Cahn—Hilliard coefficients, read

1 o )
Gy =5 ;(A“b)zwy(A“”)Nsz, @y =5 §b (A5, (AP)NN., (A2)
and
3%, (A)
b\4 979y (A7)
AL imnop = 2 (A7) 9 by Adb ———— Ny N;N,N,,
52 (A9 by (A.3)
Z b4 970y (A7)
Iklmnop (Aa ) aAabaAab NkN[Nan.
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Finally, there are the coefficients which determine the elastic stiffness matrix, and these are

aby2 ( ab) AY ab 28 Py (A ab)
\m”f’P Z(A ) BAabaA”b S aaba rap NN y|mnop — Z(A ) 8Aab3Aab “aba xab NN
(A.4)
9%y (AP)
V\mnﬂp Z(Aab)Z 3AayhaAab NN

We conclude that the constitutive law for the phase field model is completely determined by the
three pair potential functions. How these functions can be fitted to experimental data is described in
[10].
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