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A system of degenerate parabolic nonlinear PDE’s:
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We prove existence of solutions of a new free boundary problem described by a system of degenerate
parabolic equations. The problem arises in petroleum engineering and concerns fluid flows in
diatomite rocks. The unknown functions represent the pressure of the fluid and a damage parameter
of the porous rock. These quantities are not necessarily continuous on the free boundary, which
considerably complicates the mathematical analysis.
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1. Introduction

In this paper we study the existence of compactly supported solutions of the system

o = (@ (p— D w) + Al —w)(p— DY inRxRT, )
Pt = (@% px)x in R x R+,
with initial data
o(x,0) = wo(x), p(x,0) = po(x) IinR. (2

Here wp and pg are given nonnegative and bounded functions which vanish outside an interval
[a, b], andq, B, ¥, u, A and[ are constants satisfying

a,B,y>0 u, A T>=0. 3)

Physically the problem is motivated by a mathematical model for fluid flow in porous rocks with
very low permeability in the pristine state, such as diatomite rocks, introduced by Barenblatt,
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Patzek, Prostokishin and Silinl[3] and further developed_in [2] and [12].lIn [3] the authors stress
the importance of the presence of microfractures caused by the fluid flow itself, and try to capture
in their model the presence of interfaces, sharp boundaries between regionsawhanishes
(undamaged rocks) and regions where- 0 (damaged rocks). So is a damage parameter apd

is the total pressure of water and oil.

The constant is related to the strength of the rockspifs below this value then no damage can
accumulate or diffuse in the rocks. The exact valué cén only be determined by experiments, and
in principle we can only say that it is nonnegative, otherwise during the geologic time microcracks
would have appeared in the rock. From the mathematical point of Yiew 0 and/ > 0 give
different results (see alsal [5]).

In system[(IL) we have not taken into account the physical constraint of no damage healing,
which is mathematically expressed by the conditign> 0. In the case of similar but simpler
models concerning damage accumulation [([4, 11]) it has been shown that this constraint can be
treated mathematically, but since the analysis of our system is already quite complicated we have
preferred not to consider it in the present paper.

Roughly speaking, we can describe our main result as follows (for its precise statement we refer
to Sectiorf R). lfwp > 0 andpg > 0'in (a, b) and if, in the casd > 0, p > 0 intersects the levdl
at most twice, then Problern|(1)4(2) has a solutien, p), which satisfies

w(x,t) >0andp(x,t) >0 ifa() <x <b(@®)
w(x,t)=pkx,t)=0 if x <a(t), x > b@@).

Herea(z) and—b(¢) are continuous nonincreasing function)) = a andb(0) = b. In addition
wx, H(pkx,t)— Ny —> 0 asx \ya@)andx /' b(t) fora.er >0, 4)

and
p>1in{(x,t):a@®) <x <b@®)} if po>1Iin(a,b). (5)

The latter result implies that, at least/if- 0, p may be discontinuous across the interfaces. In view
of property [(4) it is natural to ask whether bettand(p — I) are continuous across the interfaces.
An extensive analysis of traveling wave solutions of system (1)lin [5] suggests that the answer
heavily depends on the various parameters. In particular there exist traveling waves forvdrich
(p — )+ have jumps across the interfaces. We observe that-if0 andw is discontinuous across
the interface, then the tertp — I)ﬁwx is not well defined across the interface, being the product of
a discontinuous function and a measure. This indicates that the definition of a solution is a delicate
issue. For general solutions of systém ()—(2) the problem how to analyze possible discontinuities
at the free boundaries is completely open.

We list some other challenging open problems. We are not able to extend our existence result to
the case of higher space dimensions:

o = div(*(p — D Vo) + AL - w)(p — D, ©)
pr = div(w*Vp);

in particular the BV-estimates, which play an essential role in our analysis (see Section 3), are no
longer available. Also the problem of the uniqueness of solutions is completely open, even in the
one-dimensional case; this is hardly surprising, since even for much simpler systems of degenerate
parabolic equations there is no systematic theory for the uniqueness of solutions.
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Both the list of open problems and the behavior of solutions near the free boundaries suggest that
the degeneracies of the equations of sysf{gm (1) make the problem much more difficult to analyze
than “standard” degenerate parabolic equations such as the porous medium equation and the Stefan
problem. For example, formally one could easily write the Rankine—Hugoniot conditions which
determine the velocity of the free boundaries, but one has to distinguish several cases according to
the occurrence of discontinuities. For the time being, there is no hope to give a rigorous proof of the
free boundary conditions.

In [2], [3] and [12], it has been explained that the occurrence of a free boundary has been
observed in huge oil fields in California (the observation is based on the phenomenon of subsidence).
We emphasize that at this stage, validation of the model is impossible due to the lack of experimental
data.

In Sectior[ 2 we collect the hypotheses on the data, the definition of a solution, and the main
theorem. In Sectiop]3 we approximate syst@in (1) with a uniformly parabolic system and we use
some a priori estimates to show the existence of a pair of limit functieng). In Sectior{ # we
prove the basic support propertiessfind p, in particular the continuity of the functionst) and
b(t). In Sectior] b we prove thd, p) is a solution of our problem.

2. The main results

We shall often use concepts such as support, but sirsce p are not always continuous it is useful
to introduce the following notation.

NOTATION.

) If f:R—[0,00)andG = {x € R: f(x) > 0}, then

suppf = {xGG:(s"To%M(Gm(x_é’erS))>0}' @)

Equivalently, the support can be defined as the complement of the largest open sef where
a.e.
(i) If g: D CR" — [0, 00), withn > 1, then

{g>0):= Int{xeD:Iiminf][ g>o}, 8)
p=0 JB,(x)ND
where we have used the notatigfg £i=1AT fA f. B, (x) being the ball of radiug centered
atx.
(i) WesetQr :=R x (0, T]forall T > 0.

Throughout the paper we assume thaiand pg satisfy the hypotheses

po, wo € BV(R), o
po=20, 0<wp<1l INR,

{wo(x) > 0andpo(x) >0 ifa<x<b, (10)

wo(x) = po(x) =0 ifx <aorx > b,
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and
there existg > 0 such that for any € [0, p)

the setqx : wo(x) > p} and{x : po(x) > I + p} (12)
are intervals (if they are nonempty)

Before stating the main result we have to specify what we mean by solution. As we explained in the
introduction, it is not obvious how to definelkix R* the products involvingy, andp,.. Therefore
we restrict the domains of integration in some of the integrals appearing in the definition of solution.

DEFINITION 2.1 A pair(w, p) that belongs td(% =[L*®(0,T); BV(R)) N L*®°([0, T] x R) N
HY((0, T); H~X(R))]? for all T > 0 is asolutionof system|[(L)}}() if

() wx € L (p > 1)), px € Lige ({0 > 0O,
(i) w¥p? e L({o > 0}) andw*(p — DPw? € L1({p > I}),
(i) forall 7 > 0 and¢, v € HLY(R x [0, T]) with compact support (i.e. for som@ > O,
¢ = = 0fora.e|x| > M) and for allr € [0, T],

t
/¢(r>p(r>—/ ¢>(0>po=f f@p—/f e py
R R 0 JR {w>0}NQ,
and

/Vf(t)w(t)—/ ¥ (0)wo
R R

t t
=/ /w,w—ff Iﬂxw“(p—l)ﬂwx-irz‘\f /w(p—ni(l—w).
o Jr {(p>1NQ, 0 JR

REMARK 2.2 SinceX? is embedded in ([0, T]: L2 .(R))]? (see proof of Proposition 3.1 for

loc
more details), the integral equalities in (iii) are well defined for &[0, T].

Now we are ready to state the main result.

THEOREM2.3 Let hypothese$|(3),](9), (10) arjd|(11) be satisfied. Then Problenn](1)-(2) has a
solution(w, p) which has the following properties:

(i) there exista, b € C([0, 0c0)) such thata(0) = a, b(0) = b, a(t) is nonincreasingb(t) is
nondecreasing, and

w(x,t) >0andp(x,t) >0 ifa@) <x < b(z),
wx,t)=pkx,t)=0 if x <a(t)orx > b(r);

(ii) fora.e.t > 0,w(p — I+ — 0asx \  a(t) andx 7 b(t);
(i) if po>=1in(a,b)thenp(x,t) > Iif a(t) < x < b(z).

3. A nondegenerate system
We introduce, foe > 0, the problem
pr = (0% + &) px)x iNR x R,

o = (@"(p— DS + o) + AQ—w)(p— DY InRxRY, (12)
px,0) = po(x), w(x,0) = wo(x) forx € R.
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A weak solution of [(IR) is defined in a standard way (requiring that @ < 1, po > 0 and
oy, px € L2 (R x [0, 00))).

PROPOSITION3.1 Letwg and pg satisfy

0<wo<1l po=>0 IinR, (13)
wo, po € BVR)NLI(R) (1< g < 00).
Then, for alle > 0, problem[(IR) has a weak solutiea,, p.) satisfying
() 0w, <1land0< p, < CinR x [0, 00);
(ii) forall T > 0 there exist&€r > 0 such that
T T
/ /(a)g(ps — D +8)w?, dxdr +/ /(a)ff +&)p2 dxdr < Cr; (14)
o JrR o Jr

(i) we andp, are uniformly bounded in
L>®((0, T); LY(R)) N HX((0, T); H~1(R)) N L>((0, T); BV(R))

forall1 < g < o0 andT > 0;
(iv) forall T > 0,
(we(pe — I)+)U
is uniformly bounded inL2((0, T); HX(R)) if v > min{a + 1, + 1, u +2}.
Proof. The proof consists of two steps.

Step 1. We assume that proble (12) hasmoothsolution (v, p¢). Then (i) follows from the
comparison principle. Multiplying the equation fpg by pg‘l (1 < ¢ < o0) we obtain a uniform
bound ofp, in L*°((0, c0); L4 (R)). Multiplying the equation forv, by wg—l and using the bound
for p., we find thatw, is uniformly bounded ir.°°((0, T); L4 (R)). In particular, in the casg = 2,
this procedure yieId%IJA).

Since((p — 11)? < pZ, it follows from (14) thatw? ((p — 1)3)? andwk (p — NP2, are
uniformly bounded inL(R x [0, T']). By Hoélder's and Young’s inequalities this implies at once
that

(we(pe — D)")x

is uniformly bounded in.2(R x [0, T]) if2v > a4+ 1,20 > g+ 1and 2 > u + 2, and we have
proved (iv). It follows from [[I#) and the equations fer and p. thatw,, and p,; are uniformly
bounded inL2((0, T); H~1(R)).

Finally, we prove the uniform boundednessiif®((0, 7); BV (R)). In order to estimate,,
andw., we adopt a standard technique and introduce a smooth fungtisose derivative is an
approximation of the sign function:

[(s) = -1 ifs <=6,
BE=11 ifs>s.

We assume thats is even,ny > 0 andns € C*°. Multiplying the equation fop,, by n§(p..) and
integrating yields

d ,
_f N5 (Pex) dx = / ng(psx)((w? + &) Pex)xx dx < _/ na/(pax)paxx(wg)xpax dx.
dr Jr R R
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For fixede > 0, the latter term vanishes ds— 0 and we see thajﬁR | pex| IS NONiNncreasing in
time and hence equibounded. The proofdgris similar, and it is enough to observe that the term
Ang(we) (1 — we)(1 — ps)i is uniformly bounded ir.>°((0, T); L1(R)).

Step 2. For fixede > 0 we approximate the nonlinearities’, w*(p — I)i and(p — I)Z’F by
smooth functions ofv and p, and the initial functiong»sg and pg by smooth functions of. This
leads to a family of problems, say problemis,, and following the proof in Step 1 we obtain a
priori estimates for problen®. x which are similar to (i)—(ii)—(iii).

From Theorem 1 of [1], it follows that proble. ; admits a unique maximal classical solution
in some interval0, . ), which can be continued as long as it remains bounded ([1, Theorem 3]).
Hence it exists for alt > 0. Since for every compact subgétc R,

BV(R) N L4(R) << L2(U) — (WX2())

it follows from (ii) and Corollary 4 in[[13] that the corresponding solutiofi; «, p-x)} are
relatively compact in ([0, T]; L2 .(R))]2. Since the spatial derivatives are uniformly bounded

in L2(R x [0, T]), convergence along a subsequence yields a weak soltion,p;)}, of ).
This completes the proof of Proposition|3.1. O

The compactness argument i6' ([0, T]; Lﬁ)C(R)]2 which we have used before yields a limit
function (w, p) which is a candidate for a solution ¢fl (1)}-(2):

THEOREM3.2 Let wp and po satisfy hypothesis[[9)F(10) and l€tv., p.) be defined by
Proposition 3.]L. Then there exist a sequence> 0 and functions» andp such that for all” > 0,

(@e,+ Pe,) — (@, p) IN[C(0, T]; LZ (R))]?, (15)

loc
and

O0<w<land0< p < CinR x [0, TY;
(i) o, peC(O0,T]; LI(R) N HY(O, T); H-1(R)) N L>®((0, T); BV(R)), 1 < ¢ < 0.

4. Support properties
In this section we prove that the functiomsand p defined by Theorein 3.2 satisfy

SUppw (t) = suppp(t) = [a(®), b(®)] if 1t >0, (16)
where
a,beC(0,00), a0 =a, b0 =>b, 17)
and
a is nonincreasing anblnondecreasing in [o). (18)
In addition

if b(t2) > b(r1) for some 0< 11 < 2, then{p > I} N ((b(t1), b(t2)) x (11, 12)) # . (29)

We remind the reader the notati¢n (7) for the support.
The proof of these results consists of several lemmas.
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LEMMA 4.1 If X ¢ suppw(f) for some(x, ) € R x RT, then there exists a neighborhobdx)
of x such thatw = 0 a.e. inU (x) x [0, 7]. The same result holds if we replagedy p.

Proof. Since supm(7) is closed, there exists a neighborhobdx) of x such thatU(x) N
suppw(7) = #. Let (w,, pe) be the solution of the nondegenerate problenj (12). We multiply the
equation forw, by —¢?(x)/(ws + 8), wheres > 0 andg is a Lipschitz continuous function such
that supge € U (). Integrating by parts shows that forQr < 7,

, i 1- Y4
—/ wzlog(a)s+5)li+A/ /wz( @epe = 1)y
R ¢ JR we + 8

7
= - 2/ /R<P§0x(w“(l?s - [)55_ + &)(—log(we + 8))x
t
i
- / /sz[(— log (@: + 8))x12@(pe — DY + &)
t

r
< f fwf(wé‘(ps—I)ﬁ+s)<C(w)(t—f),
t JR

where we have useddter’s and Young’s inequalities. By ([15) we have, for fixeg 0,

‘ _ Y
—/¢2|09<w+6><f)+A/ /gpzw
R t JR w -+

< — A; p?log (o + 8)(1) + C(p) (T — 1), (20)

and since is arbitraryo and p satisfy

t _ I aY4
—/ <p2|ogw(f)+A/ /#M < —/ 0?logw(t) + C@)(F—1). (21)
R t R R

w
Sincew (f) = 0 in suppp this implies that
—/ p(x)?logw(x,t) = +o0 for0< s <7.
R

Hence the setx € U(x) : w(x,t) = 0} is dense inU (x), and sincav € L*°((0, r); BV(R)) this
means that»(x, 1) = 0 for all 0 < ¢ < 7 and for a.ex € U(x). To complete the proof of Lemma

[4.7 it is enough to repeat the same argumenpfor a
LEMMA 4.2 Forallz > 0,
suppw (t) = suppp(t). (22)
In addition
suppw (1) C suppw(tz) if0 <1 < 2. (23)

Proof. Property[(ZB) follows at once from Lemrha}4.1. We claim that

suppp(t) € suppw(t) forz > 0. (24)
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Taking (x, 7) andU (x) as in Lemma 4]1, it is enough to prove that
px,t)=0 foraexeU(x),0<t <t

Since, by Lemmlo(x, t) =0fora.ex € U(x)if0 < r < 1, it follows easily from the equation
for p that

p(x,t) = po(x) foraexecU(x),0<t <t (25)
Indeed, for any smooth and nonnegative functjoim R such that supgr € U (x), we see, by[(14)
and Hblder’s inequality, that for all O< r < 7,

t
‘f Ps(t)lﬂ—/ POsw‘Z / /l/fx(wg‘f‘g)l%x
R R 0 JR

' 1/2
SC(//t/ff(u)?%—@) — 0 ase — 0,
0 JR

and [25) follows. Sinc& (x) Nsupppo = U (¥) Nsuppwo = ¥, it follows from (24) thatp(x, 1) = 0
fora.e.x € U(x) if 0 < ¢ < 7. This proves[(24).
Exchanging the roles of» and p we find that supw(t) < suppp(t), and the proof is

complete. |

LEMMA 4.3 For allr > 0 the set supp (¢) is connected.
Proof. Arguing by contradiction we assume that there exjst R andr > 0 such that
X0 ¢ suppw(f0),  (—00, xp) N sUPPw(fo) # ¥,  (xo, 00) N SUPPw(fo) # .

By (24), xo ¢ suppwo = [a, b]. Without loss of generality we may assume that> 5. Since the
supports ofv and p coincide, we obtain a contradiction if we prove that

p(x,t0) =0 fora.ex > xp. (26)
In view of Lemmag 4]1 ar{d 4.2 there exists a neighborh@gd- 8, xo + §) of xo such that
wo=p=0 a.e.in(xg—3,x0+38) x (0, 1p). (27)
Let¢ € C*°(R) be a nonnegative function such that
¢=0 ifx<xo—38 and ¢(x)=1 ifx > xo.
Then

/ pé‘(-xsto) < ¢(x)p8(xsto)

0 x0—98
o0 o rxo
Z/ ¢ (x) poe (x) _f / ¢/(wg + &) Pex- (28)
x0—38 0 x0—38

Sincepo = 0in (xg — 8, 00), the first term on the right hand side vanisheg as 0. The second
term is bounded by

1/2

t rxo 1/2 t X0
(/ / (@ +s>p§x> (/ / (@ +s)<¢/(x>)2) ,
0 Jxp—4 0 Jxp—48

which, in view of [14) and[(37), vanishes as> 0. Hence[(ZB) follows fron{ (38). O
Combined with the following theorem, Lemn{as}4.134.3 imply (17)}-(18).
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THEOREM4.4 Let (w, p) be a weak solution of Probler](1)4(2) constructed in Thedrerh 2.3.
There exists a nondecreasing functioa C ([0, 0o0); [0, 0o0)) with r(0) = 0 such that if suppg <
B(xo, ro) then suppo (1) € B(xo, ro + r(1)).

In other words, Theorein 4.4 states the propertfirofe speed of propagatiofor solutions of
Problem|[(1)4(R). The proof of this theorem is postponed to the Appendix.
Finally, we prove property (19). Arguing by contradiction, we assume

{p > 1} N ((b(t1), b(22)) x (11, 12)) = V.

Testing the equation faw, with a smooth, nonnegative functign : (b(r1), b(t2)) — R with
compact support yields

t t
/ (00)5([)—/ ‘pwe(tl):_/ / ¢x(wg(pa_l)ﬁ+8)wax+A/ / €0(P£_1)1(1_0)6)
R R n JR n JR

f2  rb(r2) 8 12 2 pb(t2) y
<C<'/ / (wéf(Ps—I)++8)/ +/ f (PS_I)+)
11 Jb(r) 11 Jb(11)

for all 11 < r < 1. Here we have usefl ([14). If we let— O, the right hand side vanishes, and we
obtain

/ Qw,(t) = / pwe(t1) =0 forallr € (11, 12].
R R

Sincey is arbitrary, we get

b(t2)
/ we(t) =0 forallt € (11, 1],
b(t1)

which impliesb(t1) = b(t2), and we have found a contradiction.

5. Proof of the main result

In this section we show that the p&is, p), defined by Theorefn 3.2, is a solution of probléin (I)—(2)
and has all properties listed in Theorpm|2.3. We shall need conditipn (11) on the initial functions,
and without loss of generality we may assume that fot all O,

woe andpg,  satisfy condition[(TJ1) (29)
It follows from standard lap-number theory ([10]) that forat 0 and 0< p < p,
{x:pe(x,t) > I+ p} isaninterval, (30)

and hence, by (15), we find tht : p(r) > I & p} is an interval.
This section is organized as follows. First we prove Thedrein 2.3, except property (iii), assuming
that the following result holds:

PrROPOSITIONS.1 Let(w, p) and the functior(¢) andb(¢) be defined by, respectively, Theorem
[3.2 and[(1p)+(1]8). Then for any compact set

K C{(x,t)a(t) <x <b), t >0}
there exist$x > 0 such that

ws =8 inKforall0<e <sg. (32)

In particular it follows thafw > 0} = {(x,t) : a(t) < x < b(t),t > 0}.
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Proof of Theorerp 2]3. In view of Theoreni 3]2(w, p) is a solution of problenj {1)F[2) if we show
that it has properties (ii) and (iii) of Definitign 3.1. By (31) and standard results on bounded weak
solutions of uniformly parabolic equation$([9]), the functidps, ¢ > 0} are uniformly Hilder
continuous in any compact s&t C {w > 0} N (R x (0, T)). Hence, the function&w,, ¢ > 0} are
uniformly Holder continuous in compact subsetg pf> 1} N (R x (0, 7)) (here we have used the
fact that the supports @ and p coincide). In particular

wex — wx  WeaklyinLZ ({p > I}),  pex — px WeaklyinL2 ({o > O}). (32)

loc
Combining [14),[(Ip) and (32) we obtain, for &@ll> 0,

// w”(p—])ﬂw§+// *p? < Cr,
{p>1IN07 {w>0lNQ07

where the constarti; depends only of', which implies (i) of Definitior] 2.1L.
To prove (iii), we observe that for evegysmooth enough, with compact supporiiinx [0, 71,

t t
/(p(t)pa(t)—/ <p(0)po—/ /(prps :_/ /wx(w2‘+8)pm.
R R 0 JR 0 JR

By (15) the terms on the left hand side converge to the corresponding ones witplaced byp.
On the right hand side the terff [ epsx¢x vanishes as — 0. The termf, [p x@% pex can be
rewritten as

t
/ / (L= W) + V)2 Pix
0 JR

wherey, is a smooth function such that supp € {o > 0} andy,, — x{»~0) a.€. as1 — 0.

Therefore
! w. @0 ! w. (100 w
wn‘pxwg Pex —> OxYn@” py —> OxW” Px,
0 /R 0 /R {w>0}NQ;

and, by [(I#),

t t 1/2
’ / / (1= Y)gr0f pex| < c( / / w?(l—w,az) (33)
0 JR 0 JR

(e—0) d 12 (n—00)
=’c (/ / o*(1— w,,)2> ==’o0.
0 JR

This completes the proof of the first integral identity of (jii).
The equation fot, yields

t t
/ oo (1) — f 0(0)ws (0) — f / gron — A f / o(pe — I (1 — wp)
R R 0 JR 0 JR

t
:—/ / (px(wg(pe_l)f_‘i‘g)wex-
0 JR
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Arguing as before, letting — 0, we can replace, and p, with w andp on the left hand side. The
term on the right hand side can be rewritten as

t
/(; /R((l — V) + V) ox (@) (pe — 1)5 + &)wex,

wherey, is chosen as before. Again the terms containing the facter/}, or ¢ vanish ag — 0
and as: — oo. We consider the remaining term

t
/ le//n(pxwg(Pa - I)g_wsx =h+D
0

= // Wn(pxwg(pa - I)ﬁwsx + f/ %%%‘(Ps - I)iwsx- (34)
{p=1+8}N0Q; {p<I+8}N0;

We observe that

1/2
I2] < / / [Yn@x et (pe — D 0| < C( f / V2020l (pe — I)ﬁ)
{p<I+8}NQ; {p<I+8}NQ;

< ksp220 ¢, (35)

and

(e—0)
h= f / Vel (pe — Doy 3 f / Ve (p — D o
{p=I+81N0; {(p=1+8}N0;
(n—00) (8—0)
’ // Pt (p — I)}j-a)x — f/ prt (p — I)ia))w
{p=I+8}NQ; {p>1}NQ;

Hence(w, p) is a solution of Problenj [1)H2).
Part (i) of Theorem 2]3 follows at once frofjn {16)5(18). Part (ii) is a consequence of Proposition

B(v):
(we(pe — D4)" € L2((0,T); HY(R)) € L%((0, T); C(R)),

i.e., the functionx — w(x, r)(p(x,t) — I)+ is continuous for a.e. > 0. Finally, part (iii) follows
from the following result, which we prove at the end of this section.

PROPOSITIONS.2 If pg > I, respectivelypg > I, a.e. in(a, b), then for allz > 0, p(¢) > I,
respectivelyp(t) > I, a.e. in(a(t), b(t)).

Proof of Propositiof 5]1. Let w, be the solution of

o= (@ (pe — D + &)z i (a,b) x RY,
z(x, 0) = wo(x) forx € (a, b), (36)
z(a,t) =z(b,t) =0 fort > 0.

Then, by the comparison principle,

we > we in(a,b) x RT,



266 M. BERTSCH ET AL
and, up to subsequences, forAlk 0,

w: > w<w inC(0,T]; La,b)).
Arguing as in the proof fow (x, t), we find that

[a, b] = suppw(r1) = suppw(r2) if0 <n <. (37)
We fix T > 0. We divide the proof into several steps.

CLaiMm 1 For all sufficiently smalb > 0 there exists., > 0 such that
we = we =2 Ay iN[a+o,b—0c] x][0,T]. (38)

Proof of Claim 1. By (37) we have, for 6< ¢ < T,

Ay (1) = ][ o) #0 and B, (1) := ][ () #0.
[a,a+0] b

—o,b]

We defineAZ (r) and BZ (¢) in a similar way. Sinced, and B, are continuous in [0T'] there exists
As > 0 such that

As(t),Bs(t) > 20s; forO<e<T.

Sincew, — win C([0, T]; L%(a, b)),
A, - A, and B — B, uniformlyin]0, T].

o

Hence, fore > 0 small enough,
A (), Bo(t) > As for0O<sr<T.

Now (38) follows from standard lap-number theory ([10]), wheres chosen so small that, < 5
(p is defined by[(T]1)).

REMARK 5.3 If A = 0, we can apply the lap-number theory to the equationfoitself, and
arguing as in the proof of Claim 1, with,, replaced byfm)ﬂ(t)wl , We obtain Propositioﬁ.l.
So it remains to consider the case

A>0. (39)

CLAIM 2 Let{po > I} # ¥ andlet 0< tp < t1 andxg < x1 be such that
K =[x0,x1] x [to,t1] S {p > I}.

Thenw, andp, are uniformly Hlder continuous irK, w, p € C(K) and there existdx > 0 such
that for alle > 0 small enough

we =8¢ and p.>1+38¢ InkK.
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REMARK 5.4

() If {po > I} = @,thenp < IinR x [0, ), w(x,t) = wo(x) for all x andz, and problem
(D—(2) becomes trivial.

(ii) As a consequence of Claim &, andp, are uniformly Hilder continuous in any finite union of
rectangles.

Proof of Claim 2 Since{p(t) > I + p} is aninterval if 0< p < 5 andp € C([0, 00); L2(R)), it
follows that
t >0andx € {p(t) > I} = (x,t) e{p> I} (40)

Moreover, [(4D) holds with= replaced bys. Indeed, let(x, r) € {p > I}. Since the setp > I}
is open andp € C([0, c0); L%C(R)), without loss of generality, we may assume that there exist
c,d € R such that

[x—c,x+c] x[t—d,t+d] < {p> I},
[x—c,x+c] S {p(s)>1} foralse (t—d, t+d]

and
[x—c.x+c] S{ptt —d) > 1 +p'}

for somep’ > 0. Arguing by contradiction we assume thaty, r) = I forall y € [x — ¢, x + c].
Denote by(w,, p.) the sequence defined by Theorlem 3.2. By propgriy (15) it follows that for each
>0,

pe—1>-8 in[x—c,x+c]x[t—d,t+d],

for ¢ = ¢(8) small enough; in particular,
pey,t—d)>1+p/2 in[x—c, x+c]

Now, we proceed as in the proof of Lem@4.1. We multiply the equatiopfoy —¢2/((p. — 1)+
28), whereg = ¢(y) is a Lipschitz continuous function with supp< [x — ¢, x + ¢]. Integrating
by parts and letting — 0, we find

—/H;qszlog(p —1428)(1) < —/quzlog(p — 1428 —d)+C(p)d <C.

Sinces is arbitrary, we have proved that

t>20andx e {p(t) > I} & (x,t)e{p>1}. (42)
The set{p > I} is connected, has a nonempty intersection withb) x {0}, and

px,t) < I forallx e C{p@) > I}, t>0.

Since{p > I} is open there existg € (0, r9) such that for all 0< 1 < no,

Ky =[xo—n,x1+n] x[to—n,1] € {p > I}.
Arguing as in the proof of Claim 1 it follows that for all€ n < ng there exist$(n) such that

pe 28 >0 Ink,,

for ¢ sufficiently small. Hence, by [8ly., and therefore, are equicontinuous i, for 0 < n < no.
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It remains to prove thab > 0 in K. Arguing by contradiction, assume thatx, ) = 0 for
some(x, ) € K. We choose) € (0, no). Since k1 — 1, x2 + n] € suppp(f) = suppw(7), there
existx~ € (x1 — n, %) andxt € (%, x2 4+ n) such thatw (x*, r) > 0. By the continuity ofv there
existst~ € (tg — n, 1) such that

o, 1) >Co>0 forr~ <t <7
SinceA > 0 andp > §(n) > 0, the comparison principle shows that
wx,t) > Cit—1t7) forx™ <x<xt, <<,
whereC1 > 0 is a sufficiently small constant. Henedx, 1) > C1(f — t~) > 0 and we have found
a contradiction. |

Now we are ready to complete the proof of Proposifion 5.1. We argue by contradiction and suppose
that w(xg, t0) = O for somerg > 0. By Claim 1, we can assumg > b (the casexg < a is
completely similar). Sincé(z) is continuous and(zg) > xo > b = b(0), we have

t:=inf{r>0:b@F)>x0}>0 and xg=b(1).
We claim that
{p>1}NA(t,tg) #9,

where we have set
A(t,t0) ' ={(x,t) :xo<x <b(), T <t <1g}.

Indeed, otherwise = 0 in A(z, #), and sinced(t), b(t)] = suppw (¢) we obtain a contradiction.
Let (x1,11) € {p > I} N A(x, tg). From the connectedness{of > 1}, it follows that there exist
(n1, 11) € {p > I} and a smooth functiop(r) (1 < ¢ < 11) such that

O0<ti<tg, me(ab), glr)=mn, gt)=xy,
gm),ye{p>1}, gt)y>a fru<r<n.

Letx™ > a be suchthat™ < g(¢) forall r1 <t < 71. By Claims 1 and 2 there exist > 0 such
that
wkx,t) >2C >C

if (x, ) satisfies one of the following conditions:

() x=x"7, 1<t <1,
(i) t =11, x~ <x <n1=g(r1);
(i) x=g@®), n <t <.

Observing that
E:={(@g®),n 1 €[r,n]}
is compact, we can find a finite number of sets of the form
Kj :=[§j,)_cj]><[£j,fj], j=l,...,l’l,
such that

n
Eck:=JKc{p>1
j=1
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andw, > Cin K for all sufficiently small. In addition, by Claim Xy, (x,t) > C for ¢ small
enough, if(x, r) satisfies conditions (i) and (iii). Hence, by the maximum principle,
we(x,1), w(x, 1) 2C ifx” <x<gl), it <t <.

Arguing as in Claim 1, with(a, b) x (0, T) replaced by(x~, x1) x (¢, tp), we conclude that
we(x0, 1), @ (xg, to) > C’ and we have found a contradiction. O

Proof of Propositiof 5]2. First we consider the cage > I in (a, b). We assumépg > I} # 0,
otherwise the result is trivial. We argue by contradiction and assume that the sef} N {w > 0}
is not empty. Define

T =suf:t: {pkt) > I} #0@} (possiblyr = +00).
We dinstinguish two different cases:

CASE 1 There existgx1, 1) € {p < I} N {w > 0} such that; < t.
CAase2 Thesefp < I} N{w > 0} N ([0, 7] x R) is empty.

Case 1. Since{p(tr) > I} is aninterval angp € C([0,T]; L
we may suppose that there exdst 0 andx, > x1 such that

|20C(R)), without loss of generality,
p<I1 in[x2,00)x[t1—35,1+46]

and
x2<b@®) fornn—8<tr<n+6.

As a consequence, by (19)¢) = b(ry) forall r € [r1 — 8, 11 + 5]. Let
to:=inf{r < :forallt <s <t there exists € (a(s), b(s))
such thatp(x, s) < I forall x > x;}.
Thenb(t) = b(tg) for 1o < t < t1. By construction, there exisig € (a(t), b(¢)) such that
p(x,10) =1 in (xo, b(t0)). (42)

Let us still denote byixo, b(#9)) the maximal interval for whicH (42) is satisfied. Since- 1o we

can assume that
(yo. t0) € {p > I} (43)
for someyg € (xg, b(7p)). On the other han¢lp > I} is open, therefore there exisis > 0 such
that
p>1 in[yo—do, yo+do] x [to, to + 4.
Now lety € Lip(R) be such that & ¢ < 1 and

) = 1 ifx € [yo+ 8o, b(t0)],
P=10 ifx e (—o00, yo — 80] U [b(to) + 8, 00).

Testing the equation fgv, with ¢2(p, — I)_ in R x [, to + 8¢], we find
d 1
——/ ~¢%(pe — D% = 2/ (g +&)(pe — D-[(pe — D-]xp@x
dr R 2 R
+[l;[(175 — D_P (0 + e)¢?

> _c / [(pe — D12 + £)?.
R
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where the last term vanishesas> 0. Sincefb"(jo) (p — I)_¢? is constant, this yields

b(tp) ) b(to) 2 2
/ (p—l)_(t)</ ¢“(p— D)= (t0) =0 forz € (to, 1o + d0].
Yo+3do yo+do

In view of the definition ofy, we have found a contradiction.

Case 2. We have
p=21 in{fo>0NQ;, ph)=1 in(a(r),b(r)), pkt)<I fort>r.
Therefore, for alk > 7 we have
wx,t)=wx,7) forx eR,

and
a(t) =a(r), b@)=b().

b(t) b(t)
/( : p@) = /( : p() =1((1) —a(r)),

Since

we conclude that
p=1 in(a(r),b(1)) x [1,00),

and we have found a contradiction.
Finally, consider the casgy > I in (a, b). Thenp > I in { > 0} and arguing as in the proof
of (41)) we obtain the result easily. O

Appendix A. Finite speed of propagation

This section is devoted to the proof of Theolen] 4.4. Our approach will use the techniques originally
developed in[@,17] to establish the occurrence of waiting time phenomena for the thin film equation
as well as for higher order doubly nonlinear equations with variational structure. Therefore the main
tool will be to derive a suitable integral inequality, to which we can apply Stampacchia’s iteration
lemma[14, Lemma 4.1]:

LEMMA A.1 Assume that a given nonnegative nonincreasing funeionfo, &) — R satisfies
)
& —m*

for 0 < n < & < & and positive numbers, A andx. If

G#) < G(mtte (44)

g5 > 220/ 4G (0)", (45)

thenG (&) = 0.

In the proof we will use the Gagliardo—Nirenberg inequality. In the version stated below, some of
the summability powers are allowed to be less than one((See [6] for a more general statement).
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THEOREM A.2 (Gagliardo—Nirenberg) Let& s < p,1<r <oo,n e N,n > 0,0< 60 < 1.
Let 2 < RY be open and diffeomorphic to a cone. SupposeithatL®(£2) and its derivative of
ordern belongs toL” (£2). Then the following inequality holds (with a constatitdepending only
onN,n,r,s and$2):

lully < KD )| lulls™°

Proof of Theoren 4]4. First we will derive the integral inequality. Let > 0 and let(w,, p;)
be the solution of Problenj (L2) defined by Proposifior} 3.1. For a compactly supported function
¢ € Wh®(R), we set
@ =" (pe = DY, W= ¢l
We keep the possibility to choose later the constants, m € R™, m > 2. Taking® (resp.¥),

as test function for the equation fpg (resp.w.), and integrating by parts iR x [0, 7], < T, we
obtain

/ m(ps—n‘i“(t)_ / m(po— DY
R(p s+1 R(p s+1

t t
=-—m / / " o (@ 4+ &) (pe — DS pex — 8 / / " (@ + &) (pe — D5 (per)?  (46)
0 JR 0 JR

wa—i—l 0'+1 p
A'% a+1(’)_/R %= /f T (@ (pe — D + )0 g

t
—0 / / 9" (@ (pe — D + &) Hwen)? + A / / "0l (pe — D(1—we).  (47)
0 JR 0 JR

Adding (48) and[(4]7) and applyingtttler's and Young’s inequalities, we find

_ \6+1 o+1 15+1 o+1
[o(Tro+Zn0) < [or(Boh 2
R s+1 o+1 R s+1 o+1

t
+C1 / /R 9" 202 + &) (pe — D+ ol (pe — DF + £)o Y
0

t
—C2 fo fR P (@2 + &) (pe — D2 + (@ (pe — DY + )07 102,
t
+ C3/ / "l (pe — D =: Io+ C111 — C2I> + C3l3,
0o JR

where the constants;, C,, C3 depend only om:, 8, o andA. Letting 8 := min{8, ay}, we choose
8 ando such that
o+1>a, §+1>maxp,y). (48)
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To estimatel;, we rewrite
t
I = /O fR 0" 2@ (pe — DI+ 0P (p, — D)
t
+S\/0 / m—2 2((1)8 I)3+l+wéi+0+l) — I]:!._’_If

and we observe that
1?0 ass— 0.

Hence

t _
S+1— _ —
= /0 f m2020% (o — 1Y (pe — DI 4 ooy, — Py,

and from Hlder's and Young’s inequalities it follows that

-1 E+1-Pzy  (totl-wgh
C[ // (m— Z)q ((pe — 1)y B +w8#‘7 aql)

i ”‘pxnoof / a)g“’(pg _ I)f.q
q 0 Jsuppy

whereqg > 1. Choosing}, o andm such that

M2 —g=2 ym=2,
B o

we obtain

<Ca / / & (pe — D2 4 07t 4 Cs / / W+ (pe — DI,
suppy

To handlel> we have to determinke RT such that
[@ ™ (pe = DEHE < Co@l (pe — DY, + 0 (pe = D,
A straightforward computation leads to the condition

l>max{“+a+1, p }
20+ 266+D

As a consequence,
> Cy / / ¢" (@ (pe = DYH]Z

Finally, we estimatds. By Holder's and Young's inequalities, we get

5+
< Cs / / ol T 4 (p, — ),

(49)

(50)

(51)

(52)

(53)
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It follows from assumptior{ (50)(i) that + 1 > (§ + 1)/y. Hences (§ + 1)/ +1—y) > o + 1,
and

<co [onip - it ogth (54)
Combining [51),[(5B) and ($4) and lettiag— 0, we obtain

/R " (@ 4+ (p — DIH @) + Co / / " (p — D52

< C1o0 / "I 4 (po— D) + Cua / / o (@™ (p — YY)

t
+ C12/ / o (p — DY
0 Jsuppp

< Co / @™ (@3 + (po — 1)‘”1>+Cnrsup / " (@ 4 (p — DY

+ C]_Z/ / 0’+1(p I)8+1
suppy

forall 0 <t < < T. Taking the supremum if0, 7) on the left hand side and imposiig1t <
1/2, we find

sup | ¢" @+ (p— DFH() + Co / f ¢" [ (p — DEH)?
te(0,7) JR

< Ciof ) (w0+1+(p0 I)8+1)+C12/ / (1)0+l(p—l)i_+1. (55)
0 Jsuppy

Finally, defining

w = (w(0+1)/2(p _ ])Ef+l)/2)l/’ ! = 2,

it follows from (59) that for some positive constaff

T
sup gomwl/l (t)—I—C_‘_l/ /(pmwf
te(0,7) /R 0 JR
<C/<p (@5 ™+ (po — “+1)+C/ / w?! (56)
suppy

which is the desired integral inequality.
Sincew, p € Li5.([0, 00); L4(R)) forall 1 < g < oo, we observe tha@B) is still satisfied for
all g € WLo(R).
Without loss of generality, we may assume that min suppwg = 1. For a positive number
r < 1 we take
1 ifx <r—1,
o=@ x)=3r—x fxe[r—21r],
0 otherwise.
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Thus, for arbitrary O< p < r, (58) can be rewritten in the following way:

P ’ — T p (_: T r ’
sup w/! +C‘1/ / w? < —/ / w?!,
1€(0,7) J—oc0 0 J-o (r—p"Jo J-x

(57)
We estimatefy [“. w?" by Gagliardo—Nirenberg’s inequality (cf. Theor.2):
)2 0/2 I'(1-0)
(o) (o) ()
—0o0 —0oQ —0Q0
with
U 1
v
As a consequence,
1 2141//
[Lorenf () </P wff>
0 J—0 0 00 00
1 o 14" 142 2]7//
L A 1 25\
n(f [ /
0 J—
1+
T 14 l+121/ 1 21:21/
< K1 (f / wf) . sup [ w? .
0 00 ©O,7)
Combining this with[(57) yields
T opp , ’ T pr , 1+2;
/ / w?! < Kyrioa (;/ [ wz/z) = (58)
0 J—oo (r—p"Jo J-x
Let us introduce fot > 0 the decreasing nonnegative function
T 1-¢ ,
G(§) ::/ / w?!
0 J—o0
Hence, fort =1 — p andn = 1 — r, (58) becomes
v/
T 1+«
G@$) < KZWGU?)
for0 < n <& <1,k =2/(1+2). Applying Stampacchia’s Lemnja_A.1, we fir@&y) = 0O
provided
Em(l+l€) > 2m(1+K)2/KKZT(Z_K)/ZG(O)K. (59)
SinceG(0) < 7| poll1, (B9) is satisfied if

2+«
0 > K3t 2@ =11 — po(T).

(60)
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Thus, for sufficiently smalt* = t*(K3), from (6Q) we conclude that

t prpo(t)
1 5+1
/ / a)o+ (p_1)++ =0
0 J—oo

forall 0 <t < t*. Thisyieldsw(x,t) = 0forallx < po(¢),0< 1 < 7%, i.e.
2+«
r(t) = Katzn@o |, 0<tr<1™

Since the constants involved in the proof are independent of time the proof of the theorem is
complete. O

Conclusions

The system we consider is motivated by the study of subterranean fluid flows in the framework of
nonlocal continuum damage mechanics, according to a model which has recently been introduced
by Barenblatt, Patzek, Prostokishin and Silih [3]. In particular they conjectured the existence of a
free moving boundary of the damaged region. The system is nonstandard and, even after a slight
simplification explained in the introduction, the definition and the existence of solutions turn out to
be nontrivial problems. In fact both the pressgrand the damage may become discontinuous
across the free boundary, as was pointed outin [5]. Therefore a detailed analysis of the support
properties is essential in our study.

One of the main open problems is to extend our analysis to higher space dimension, since even
the validity of the basic BV estimates, which play an essential role in the compactness results, is
not clear. The problem of uniqueness of solutions is completely open, even in the case of one space
dimension.
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