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A system of degenerate parabolic nonlinear PDE’s:
a new free boundary problem
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We prove existence of solutions of a new free boundary problem described by a system of degenerate
parabolic equations. The problem arises in petroleum engineering and concerns fluid flows in
diatomite rocks. The unknown functions represent the pressure of the fluid and a damage parameter
of the porous rock. These quantities are not necessarily continuous on the free boundary, which
considerably complicates the mathematical analysis.
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1. Introduction

In this paper we study the existence of compactly supported solutions of the system{
ωt = (ωµ(p − I )

β
+ωx)x + A(1 − ω)(p − I )

γ
+ in R × R+,

pt = (ωαpx)x in R × R+,
(1)

with initial data
ω(x,0) = ω0(x), p(x, 0) = p0(x) in R. (2)

Hereω0 andp0 are given nonnegative and bounded functions which vanish outside an interval
[a, b], andα, β, γ , µ, A andI are constants satisfying

α, β, γ > 0, µ,A, I > 0. (3)

Physically the problem is motivated by a mathematical model for fluid flow in porous rocks with
very low permeability in the pristine state, such as diatomite rocks, introduced by Barenblatt,
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Patzek, Prostokishin and Silin [3] and further developed in [2] and [12]. In [3] the authors stress
the importance of the presence of microfractures caused by the fluid flow itself, and try to capture
in their model the presence of interfaces, sharp boundaries between regions whereω vanishes
(undamaged rocks) and regions whereω > 0 (damaged rocks). Soω is a damage parameter andp
is the total pressure of water and oil.

The constantI is related to the strength of the rocks: ifp is below this value then no damage can
accumulate or diffuse in the rocks. The exact value ofI can only be determined by experiments, and
in principle we can only say that it is nonnegative, otherwise during the geologic time microcracks
would have appeared in the rock. From the mathematical point of viewI = 0 andI > 0 give
different results (see also [5]).

In system (1) we have not taken into account the physical constraint of no damage healing,
which is mathematically expressed by the conditionωt > 0. In the case of similar but simpler
models concerning damage accumulation ([4, 11]) it has been shown that this constraint can be
treated mathematically, but since the analysis of our system is already quite complicated we have
preferred not to consider it in the present paper.

Roughly speaking, we can describe our main result as follows (for its precise statement we refer
to Section 2). Ifω0 > 0 andp0 > 0 in (a, b) and if, in the caseI > 0,p > 0 intersects the levelI
at most twice, then Problem (1)–(2) has a solution,(ω, p), which satisfies{

ω(x, t) > 0 andp(x, t) > 0 if a(t) < x < b(t)

ω(x, t) = p(x, t) = 0 if x < a(t), x > b(t).

Herea(t) and−b(t) are continuous nonincreasing functions,a(0) = a andb(0) = b. In addition

ω(x, t)(p(x, t)− I )+ → 0 asx ↘ a(t) andx ↗ b(t) for a.e.t > 0, (4)

and
p > I in {(x, t) : a(t) < x < b(t)} if p0 > I in (a, b). (5)

The latter result implies that, at least ifI > 0,p may be discontinuous across the interfaces. In view
of property (4) it is natural to ask whether bothω and(p− I )+ are continuous across the interfaces.
An extensive analysis of traveling wave solutions of system (1) in [5] suggests that the answer
heavily depends on the various parameters. In particular there exist traveling waves for whichω or
(p − I )+ have jumps across the interfaces. We observe that ifI > 0 andω is discontinuous across
the interface, then the term(p− I )

β
+ωx is not well defined across the interface, being the product of

a discontinuous function and a measure. This indicates that the definition of a solution is a delicate
issue. For general solutions of system (1)–(2) the problem how to analyze possible discontinuities
at the free boundaries is completely open.

We list some other challenging open problems. We are not able to extend our existence result to
the case of higher space dimensions:{

ωt = div(ωµ(p − I )
β
+∇ω)+ A(1 − ω)(p − I )

γ
+,

pt = div(ωα∇p);
(6)

in particular the BV-estimates, which play an essential role in our analysis (see Section 3), are no
longer available. Also the problem of the uniqueness of solutions is completely open, even in the
one-dimensional case; this is hardly surprising, since even for much simpler systems of degenerate
parabolic equations there is no systematic theory for the uniqueness of solutions.
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Both the list of open problems and the behavior of solutions near the free boundaries suggest that
the degeneracies of the equations of system (1) make the problem much more difficult to analyze
than “standard” degenerate parabolic equations such as the porous medium equation and the Stefan
problem. For example, formally one could easily write the Rankine–Hugoniot conditions which
determine the velocity of the free boundaries, but one has to distinguish several cases according to
the occurrence of discontinuities. For the time being, there is no hope to give a rigorous proof of the
free boundary conditions.

In [2], [3] and [12], it has been explained that the occurrence of a free boundary has been
observed in huge oil fields in California (the observation is based on the phenomenon of subsidence).
We emphasize that at this stage, validation of the model is impossible due to the lack of experimental
data.

In Section 2 we collect the hypotheses on the data, the definition of a solution, and the main
theorem. In Section 3 we approximate system (1) with a uniformly parabolic system and we use
some a priori estimates to show the existence of a pair of limit functions(ω, p). In Section 4 we
prove the basic support properties ofω andp, in particular the continuity of the functionsa(t) and
b(t). In Section 5 we prove that(ω, p) is a solution of our problem.

2. The main results

We shall often use concepts such as support, but sinceω andp are not always continuous it is useful
to introduce the following notation.

NOTATION.

(i) If f : R → [0,∞) andG = {x ∈ R : f (x) > 0}, then

suppf :=

{
x ∈ G : lim

δ→0

1

2δ
µ (G ∩ (x − δ, x + δ)) > 0

}
. (7)

Equivalently, the support can be defined as the complement of the largest open set wheref = 0
a.e.

(ii) If g : D ⊆ Rn → [0,∞), with n > 1, then

{g > 0} := Int
{
x ∈ D : lim inf

ρ→0
---
∫
Bρ (x)∩D

g > 0
}
, (8)

where we have used the notation --
∫
A
f := |A|

−1
∫
A
f ,Bρ(x) being the ball of radiusρ centered

atx.
(iii) We setQT := R × (0, T ] for all T > 0.

Throughout the paper we assume thatω0 andp0 satisfy the hypotheses{
p0, ω0 ∈ BV(R),
p0 > 0, 0 6 ω0 6 1 in R, (9)

{
ω0(x) > 0 andp0(x) > 0 if a < x < b,

ω0(x) = p0(x) = 0 if x < a or x > b,
(10)
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and  there exists̄ρ > 0 such that for anyρ ∈ [0, ρ̄)
the sets{x : ω0(x) > ρ} and{x : p0(x) > I ± ρ}

are intervals (if they are nonempty).
(11)

Before stating the main result we have to specify what we mean by solution. As we explained in the
introduction, it is not obvious how to define inR×R+ the products involvingωx andpx . Therefore
we restrict the domains of integration in some of the integrals appearing in the definition of solution.

DEFINITION 2.1 A pair(ω, p) that belongs toX2
T := [L∞((0, T ); BV(R)) ∩ L∞([0, T ] × R) ∩

H 1((0, T );H−1(R))]2 for all T > 0 is asolutionof system (1)–(2) if

(i) ωx ∈ L2
loc ({p > I }), px ∈ L2

loc ({ω > 0}),
(ii) ωαp2

x ∈ L1({ω > 0}) andωµ(p − I )βω2
x ∈ L1({p > I }),

(iii) for all T > 0 andφ,ψ ∈ H 1(R × [0, T ]) with compact support (i.e. for someM > 0,
φ = ψ = 0 for a.e.|x| > M) and for allt ∈ [0, T ],∫

R
φ(t)p(t)−

∫
R
φ(0)p0 =

∫ t

0

∫
R
φtp −

∫ ∫
{ω>0}∩Qt

φxω
αpx

and∫
R
ψ(t)ω(t)−

∫
R
ψ(0)ω0

=

∫ t

0

∫
R
ψtω −

∫ ∫
{p>I }∩Qt

ψxω
µ(p − I )βωx + A

∫ t

0

∫
R
ψ(p − I )

γ
+(1 − ω).

REMARK 2.2 SinceX2
T is embedded in [C([0, T ];L2

loc(R))]
2 (see proof of Proposition 3.1 for

more details), the integral equalities in (iii) are well defined for allt ∈ [0, T ].

Now we are ready to state the main result.

THEOREM 2.3 Let hypotheses (3), (9), (10) and (11) be satisfied. Then Problem (1)–(2) has a
solution(ω, p) which has the following properties:

(i) there exista, b ∈ C([0,∞)) such thata(0) = a, b(0) = b, a(t) is nonincreasing,b(t) is
nondecreasing, and

ω(x, t) > 0 andp(x, t) > 0 if a(t) < x < b(t),

ω(x, t) = p(x, t) = 0 if x < a(t) or x > b(t);

(ii) for a.e.t > 0,ω(p − I )+ → 0 asx ↘ a(t) andx ↗ b(t);
(iii) if p0 > I in (a, b) thenp(x, t) > I if a(t) < x < b(t).

3. A nondegenerate system

We introduce, forε > 0, the problem
pt = ((ωα + ε)px)x in R × R+,

ωt = ((ωµ(p − I )
β
+ + ε)ωx)x + A(1 − ω)(p − I )

γ
+ in R × R+,

p(x,0) = p0(x), ω(x,0) = ω0(x) for x ∈ R.
(12)
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A weak solution of (12) is defined in a standard way (requiring that 06 ω0 6 1, p0 > 0 and
ωx, px ∈ L2

loc(R × [0,∞))).

PROPOSITION3.1 Letω0 andp0 satisfy{
0 6 ω0 6 1, p0 > 0 in R,
ω0, p0 ∈ BV(R) ∩ Lq(R) (1 6 q 6 ∞).

(13)

Then, for allε > 0, problem (12) has a weak solution(ωε, pε) satisfying

(i) 0 6 ωε 6 1 and 06 pε 6 C in R × [0,∞);
(ii) for all T > 0 there existsCT > 0 such that∫ T

0

∫
R
(ωµε (pε − I )β + ε)ω2

εx dx dt +
∫ T

0

∫
R
(ωαε + ε)p2

εx dx dt 6 CT ; (14)

(iii) ωε andpε are uniformly bounded in

L∞((0, T );Lq(R)) ∩H 1((0, T );H−1(R)) ∩ L∞((0, T ); BV(R))

for all 1 6 q 6 ∞ andT > 0;
(iv) for all T > 0,

(ωε(pε − I )+)
ν

is uniformly bounded inL2((0, T );H 1(R)) if ν > 1
2 min {α + 1, β + 1, µ+ 2} .

Proof. The proof consists of two steps.

Step 1. We assume that problem (12) has asmoothsolution(ωε, pε). Then (i) follows from the
comparison principle. Multiplying the equation forpε by pq−1

ε (1 6 q < ∞) we obtain a uniform
bound ofpε in L∞((0,∞);Lq(R)). Multiplying the equation forωε by ωq−1

ε and using the bound
for pε, we find thatωε is uniformly bounded inL∞((0, T );Lq(R)). In particular, in the caseq = 2,
this procedure yields (14).

Since((p − I )+)
2
x 6 p2

εx, it follows from (14) thatωαε ((p − I )+)
2
x andωµε (p − I )βω2

εx are
uniformly bounded inL1(R × [0, T ]). By Hölder’s and Young’s inequalities this implies at once
that

((ωε(pε − I )+)
ν)x

is uniformly bounded inL2(R × [0, T ]) if 2ν > α + 1, 2ν > β + 1 and 2ν > µ+ 2, and we have
proved (iv). It follows from (14) and the equations forωε andpε thatωεt andpεt are uniformly
bounded inL2((0, T );H−1(R)).

Finally, we prove the uniform boundedness inL∞((0, T ); BV(R)). In order to estimatepεx
andωεx we adopt a standard technique and introduce a smooth functionηδ whose derivative is an
approximation of the sign function:

η′
δ(s) =

{
−1 if s < −δ,

1 if s > δ.

We assume thatηδ is even,η′′
δ > 0 andηδ ∈ C∞. Multiplying the equation forpεx by η′

δ(pεx) and
integrating yields

d

dt

∫
R
ηδ(pεx)dx =

∫
R
η′
δ(pεx)((ω

α
ε + ε)pεx)xx dx 6 −

∫
R
η′′
δ (pεx)pεxx(ω

α
ε )xpεx dx.
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For fixedε > 0, the latter term vanishes asδ → 0 and we see that
∫
R |pεx | is nonincreasing in

time and hence equibounded. The proof forωε is similar, and it is enough to observe that the term
Aη′

δ(ωεx)(1 − ωε)(1 − pε)
γ
+ is uniformly bounded inL∞((0, T );L1(R)).

Step 2. For fixedε > 0 we approximate the nonlinearitiesωα, ωµ(p − I )
β
+ and (p − I )

γ
+ by

smooth functions ofω andp, and the initial functionsω0 andp0 by smooth functions ofx. This
leads to a family of problems, say problemsPε,k, and following the proof in Step 1 we obtain a
priori estimates for problemPε,k which are similar to (i)–(ii)–(iii).

From Theorem 1 of [1], it follows that problemPε,k admits a unique maximal classical solution
in some interval(0, τε,k), which can be continued as long as it remains bounded ([1, Theorem 3]).
Hence it exists for allt > 0. Since for every compact subsetU ⊂ R,

BV(R) ∩ L2(R) ↪→↪→ L2(U) ↪→ (W1,2(U))′

it follows from (ii) and Corollary 4 in [13] that the corresponding solutions{(ωε,k, pε,k)} are
relatively compact in [C([0, T ];L2

loc(R))]
2. Since the spatial derivatives are uniformly bounded

in L2(R × [0, T ]), convergence along a subsequence yields a weak solution,{(ωε, pε)}, of (12).
This completes the proof of Proposition 3.1. 2

The compactness argument in [C([0, T ];L2
loc(R)]

2 which we have used before yields a limit
function(ω, p) which is a candidate for a solution of (1)–(2):

THEOREM 3.2 Let ω0 and p0 satisfy hypothesis (9)–(10) and let(ωε, pε) be defined by
Proposition 3.1. Then there exist a sequenceεn → 0 and functionsω andp such that for allT > 0,

(ωεn , pεn) → (ω, p) in [C([0, T ];L2
loc(R))]

2, (15)

and

(i) 0 6 ω 6 1 and 06 p 6 C in R × [0, T ];
(ii) ω, p ∈ C([0, T ];Lq(R)) ∩H 1((0, T );H−1(R)) ∩ L∞((0, T ); BV(R)), 1 6 q < ∞.

4. Support properties

In this section we prove that the functionsω andp defined by Theorem 3.2 satisfy

suppω(t) = suppp(t) = [a(t), b(t)] if t > 0, (16)

where
a, b ∈ C([0,∞)), a(0) = a, b(0) = b, (17)

and
a is nonincreasing andb nondecreasing in [0,∞). (18)

In addition

if b(t2) > b(t1) for some 06 t1 6 t2, then{p > I } ∩ ((b(t1), b(t2))× (t1, t2)) 6= ∅. (19)

We remind the reader the notation (7) for the support.
The proof of these results consists of several lemmas.
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LEMMA 4.1 If x̄ /∈ suppω(t̄) for some(x̄, t̄) ∈ R × R+, then there exists a neighborhoodU(x̄)
of x̄ such thatω = 0 a.e. inU(x̄)× [0, t̄ ]. The same result holds if we replaceω by p.

Proof. Since suppω(t̄) is closed, there exists a neighborhoodU(x̄) of x̄ such thatU(x̄) ∩

suppω(t̄) = ∅. Let (ωε, pε) be the solution of the nondegenerate problem (12). We multiply the
equation forωε by −ϕ2(x)/(ωε + δ), whereδ > 0 andϕ is a Lipschitz continuous function such
that suppϕ ⊆ U(x̄). Integrating by parts shows that for 06 t 6 t̄ ,

−

∫
R
ϕ2 log(ωε + δ)|t̄t + A

∫ t̄

t

∫
R
ϕ2 (1 − ωε)(pε − I )

γ
+

ωε + δ

= − 2
∫ t̄

t

∫
R
ϕϕx(ω

µ(pε − I )
β
+ + ε)(− log(ωε + δ))x

−

∫ t̄

t

∫
R
ϕ2[(− log(ωε + δ))x ]

2(ωµε (pε − I )
β
+ + ε)

6
∫ t̄

t

∫
R
ϕ2
x(ω

µ
ε (pε − I )

β
+ + ε) 6 C(ϕ)(t − t̄ ),

where we have used Ḧolder’s and Young’s inequalities. By (15) we have, for fixedδ > 0,

−

∫
R
ϕ2 log(ω + δ)(t̄) + A

∫ t̄

t

∫
R
ϕ2 (1 − ω)(p − I )

γ
+

ω + δ

6 −

∫
R
ϕ2 log(ω + δ)(t)+ C(ϕ)(t̄ − t), (20)

and sinceδ is arbitraryω andp satisfy

−

∫
R
ϕ2 logω(t̄)+ A

∫ t̄

t

∫
R
ϕ2 (1 − ω)(p − I )

γ
+

ω
6 −

∫
R
ϕ2 logω(t)+ C(ϕ)(t̄ − t). (21)

Sinceω(t̄) = 0 in suppϕ this implies that

−

∫
R
ϕ(x)2 logω(x, t) = +∞ for 0 6 t < t̄.

Hence the set{x ∈ U(x̄) : ω(x, t) = 0} is dense inU(x̄), and sinceω ∈ L∞((0, t̄); BV(R)) this
means thatω(x, t) = 0 for all 0 6 t < t̄ and for a.e.x ∈ U(x̄). To complete the proof of Lemma
4.1 it is enough to repeat the same argument forp. 2

LEMMA 4.2 For allt > 0,
suppω(t) = suppp(t). (22)

In addition
suppω(t1) ⊆ suppω(t2) if 0 6 t1 < t2. (23)

Proof. Property (23) follows at once from Lemma 4.1. We claim that

suppp(t) ⊆ suppω(t) for t > 0. (24)
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Taking(x̄, t̄) andU(x̄) as in Lemma 4.1, it is enough to prove that

p(x, t) = 0 for a.e.x ∈ U(x̄), 0 6 t 6 t̄ .

Since, by Lemma 4.1,ω(x, t) = 0 for a.e.x ∈ U(x̄) if 0 6 t 6 t̄ , it follows easily from the equation
for p that

p(x, t) = p0(x) for a.e.x ∈ U(x̄), 0 6 t 6 t̄ . (25)

Indeed, for any smooth and nonnegative functionψ in R such that suppψ ⊆ U(x̄), we see, by (14)
and Ḧolder’s inequality, that for all 0< t 6 t̄ ,∣∣∣∣∫R

pε(t)ψ −

∫
R
p0εψ

∣∣∣∣ =

∣∣∣∣∫ t

0

∫
R
ψx(ω

α
ε + ε)pεx

∣∣∣∣
6 C

(∫ t

0

∫
R
ψ2
x (ω

α
ε + ε)

)1/2

→ 0 asε → 0,

and (25) follows. SinceU(x̄)∩suppp0 = U(x̄)∩suppω0 = ∅, it follows from (24) thatp(x, t) = 0
for a.e.x ∈ U(x̄) if 0 6 t 6 t̄ . This proves (24).

Exchanging the roles ofω and p we find that suppω(t) ⊆ suppp(t), and the proof is
complete. 2

LEMMA 4.3 For allt > 0 the set suppω(t) is connected.

Proof. Arguing by contradiction we assume that there existx0 ∈ R andt0 > 0 such that

x0 /∈ suppω(t0), (−∞, x0) ∩ suppω(t0) 6= ∅, (x0,∞) ∩ suppω(t0) 6= ∅.

By (24),x0 /∈ suppω0 = [a, b]. Without loss of generality we may assume thatx0 > b. Since the
supports ofω andp coincide, we obtain a contradiction if we prove that

p(x, t0) = 0 for a.e.x > x0. (26)

In view of Lemmas 4.1 and 4.2 there exists a neighborhood(x0 − δ, x0 + δ) of x0 such that

ω = p = 0 a.e. in(x0 − δ, x0 + δ)× (0, t0). (27)

Let φ ∈ C∞(R) be a nonnegative function such that

φ = 0 if x < x0 − δ and φ(x) = 1 if x > x0.

Then ∫
∞

x0

pε(x, t0) 6
∫

∞

x0−δ

φ(x)pε(x, t0)

=

∫
∞

x0−δ

φ(x)p0ε(x)−

∫ t0

0

∫ x0

x0−δ

φ′(ωαε + ε)pεx . (28)

Sincep0 = 0 in (x0 − δ,∞), the first term on the right hand side vanishes asδ → 0. The second
term is bounded by(∫ t

0

∫ x0

x0−δ

(ωαε + ε)p2
εx

)1/2(∫ t

0

∫ x0

x0−δ

(ωαε + ε)(φ′(x))2
)1/2

,

which, in view of (14) and (27), vanishes asε → 0. Hence (26) follows from (28). 2

Combined with the following theorem, Lemmas 4.1–4.3 imply (17)–(18).
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THEOREM 4.4 Let (ω, p) be a weak solution of Problem (1)–(2) constructed in Theorem 2.3.
There exists a nondecreasing functionr ∈ C([0,∞); [0,∞)) with r(0) = 0 such that if suppω0 ⊆

B(x0, r0) then suppω(t) ⊆ B(x0, r0 + r(t)).

In other words, Theorem 4.4 states the property offinite speed of propagationfor solutions of
Problem (1)–(2). The proof of this theorem is postponed to the Appendix.

Finally, we prove property (19). Arguing by contradiction, we assume

{p > I } ∩ ((b(t1), b(t2))× (t1, t2)) = ∅.

Testing the equation forωε with a smooth, nonnegative functionϕ : (b(t1), b(t2)) → R with
compact support yields∫

R
ϕωε(t)−

∫
R
ϕωε(t1) = −

∫ t

t1

∫
R
ϕx(ω

µ
ε (pε − I )

β
+ + ε)ωεx + A

∫ t

t1

∫
R
ϕ(pε − I )

γ
+(1 − ωε)

6 C

(∫ t2

t1

∫ b(t2)

b(t1)

(ωµε (pε − I )
β
+ + ε)1/2 +

∫ t2

t1

∫ b(t2)

b(t1)

(pε − I )
γ
+

)
for all t1 < t 6 t2. Here we have used (14). If we letε → 0, the right hand side vanishes, and we
obtain ∫

R
ϕωε(t) =

∫
R
ϕωε(t1) = 0 for all t ∈ (t1, t2].

Sinceϕ is arbitrary, we get ∫ b(t2)

b(t1)

ωε(t) = 0 for all t ∈ (t1, t2],

which impliesb(t1) = b(t2), and we have found a contradiction.

5. Proof of the main result

In this section we show that the pair(ω, p), defined by Theorem 3.2, is a solution of problem (1)–(2)
and has all properties listed in Theorem 2.3. We shall need condition (11) on the initial functions,
and without loss of generality we may assume that for allε > 0,

ω0ε andp0ε satisfy condition (11). (29)

It follows from standard lap-number theory ([10]) that for allt > 0 and 06 ρ < ρ̄,

{x : pε(x, t) > I ± ρ} is an interval, (30)

and hence, by (15), we find that{x : p(t) > I ± ρ} is an interval.
This section is organized as follows. First we prove Theorem 2.3, except property (iii), assuming

that the following result holds:

PROPOSITION5.1 Let(ω, p) and the functiona(t) andb(t) be defined by, respectively, Theorem
3.2 and (16)–(18). Then for any compact set

K ⊂ {(x, t) : a(t) < x < b(t), t > 0}

there existsδK > 0 such that

ωε > δK in K for all 0 6 ε 6 εK . (31)

In particular it follows that{ω > 0} = {(x, t) : a(t) < x < b(t), t > 0}.
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Proof of Theorem 2.3. In view of Theorem 3.2,(ω, p) is a solution of problem (1)–(2) if we show
that it has properties (ii) and (iii) of Definition 2.1. By (31) and standard results on bounded weak
solutions of uniformly parabolic equations ([9]), the functions{pε, ε > 0} are uniformly Ḧolder
continuous in any compact setK ⊆ {ω > 0} ∩ (R × (0, T )). Hence, the functions{ωε, ε > 0} are
uniformly Hölder continuous in compact subsets of{p > I } ∩ (R × (0, T )) (here we have used the
fact that the supports ofω andp coincide). In particular

ωεx → ωx weakly inL2
loc({p > I }), pεx → px weakly inL2

loc({ω > 0}). (32)

Combining (14), (15) and (32) we obtain, for allT > 0,∫∫
{p>I }∩QT

ωµ(p − I )βω2
x +

∫∫
{ω>0}∩QT

ωαp2
x < CT ,

where the constantCT depends only onT , which implies (ii) of Definition 2.1.
To prove (iii), we observe that for everyϕ smooth enough, with compact support inR × [0, T ],∫

R
ϕ(t)pε(t)−

∫
R
ϕ(0)p0 −

∫ t

0

∫
R
ϕtpε = −

∫ t

0

∫
R
ϕx(ω

α
ε + ε)pεx .

By (15) the terms on the left hand side converge to the corresponding ones withpε replaced byp.
On the right hand side the term

∫ t
0

∫
R εpεxϕx vanishes asε → 0. The term

∫ t
0

∫
R ϕxω

α
ε pεx can be

rewritten as ∫ t

0

∫
R
((1 − ψn)+ ψn)ϕxω

α
ε pεx

whereψn is a smooth function such that suppψn ⊆ {ω > 0} andψn → χ{ω>0} a.e. asn → ∞.
Therefore ∫ t

0

∫
R
ψnϕxω

α
ε pεx

(ε→0)
−→

∫ t

0

∫
R
ϕxψnω

αpx
(n→∞)
−→

∫∫
{ω>0}∩Qt

ϕxω
αpx,

and, by (14),∣∣∣∣∫ t

0

∫
R
(1 − ψn)ϕxω

α
ε pεx

∣∣∣∣ 6 C

(∫ t

0

∫
R
ωαε (1 − ψn)

2
)1/2

(33)

(ε→0)
−→ C

(∫ t

0

∫
R
ωα(1 − ψn)

2
)1/2

(n→∞)
−→ 0.

This completes the proof of the first integral identity of (iii).
The equation forωε yields∫

R
ϕ(t)ωε(t)−

∫
R
ϕ(0)ωε(0)−

∫ t

0

∫
R
ϕtωε − A

∫ t

0

∫
R
ϕ(pε − I )

γ
+(1 − ωε)

= −

∫ t

0

∫
R
ϕx(ω

µ
ε (pε − I )

β
+ + ε)ωεx .
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Arguing as before, lettingε → 0, we can replaceωε andpε with ω andp on the left hand side. The
term on the right hand side can be rewritten as∫ t

0

∫
R
((1 − ψn)+ ψn)ϕx(ω

µ
ε (pε − I )

β
+ + ε)ωεx,

whereψn is chosen as before. Again the terms containing the factor 1− ψn or ε vanish asε → 0
and asn → ∞. We consider the remaining term∫ t

0

∫
R
ψnϕxω

µ
ε (pε − I )

β
+ωεx = I1 + I2

:=
∫∫

{p>I+δ}∩Qt
ψnϕxω

µ
ε (pε − I )

β
+ωεx +

∫∫
{p<I+δ}∩Qt

ψnϕxω
µ
ε (pε − I )

β
+ωεx . (34)

We observe that

|I2| 6
∫∫

{p<I+δ}∩Qt

|ψnϕxω
µ
ε (pε − I )

β
+ωεx | 6 C

(∫∫
{p<I+δ}∩Qt

ψ2
nϕ

2
xω

µ
ε (pε − I )

β
+

)1/2

6 Kδβ/2
(δ→0)
−→ 0, (35)

and

I1 =

∫∫
{p>I+δ}∩Qt

ψnϕxω
µ
ε (pε − I )

β
+ωεx

(ε→0)
−→

∫∫
{p>I+δ}∩Qt

ψnϕxω
µ(p − I )

β
+ωx

(n→∞)
−→

∫∫
{p>I+δ}∩Qt

ϕxω
µ(p − I )

β
+ωx

(δ→0)
−→

∫∫
{p>I }∩Qt

ϕxω
µ(p − I )

β
+ωx .

Hence(ω, p) is a solution of Problem (1)–(2).
Part (i) of Theorem 2.3 follows at once from (16)–(18). Part (ii) is a consequence of Proposition

3.1(iv):
(ωε(pε − I )+)

ν
∈ L2((0, T );H 1(R)) ⊆ L2((0, T );C(R)),

i.e., the functionx 7→ ω(x, t)(p(x, t) − I )+ is continuous for a.e.t > 0. Finally, part (iii) follows
from the following result, which we prove at the end of this section.

PROPOSITION5.2 If p0 > I , respectivelyp0 > I , a.e. in(a, b), then for allt > 0, p(t) > I ,
respectivelyp(t) > I , a.e. in(a(t), b(t)).

Proof of Proposition 5.1. Letωε be the solution of zt = ((ω
µ
ε (pε − I )

β
+ + ε)zx)x in (a, b)× R+,

z(x,0) = ω0(x) for x ∈ (a, b),

z(a, t) = z(b, t) = 0 for t > 0.
(36)

Then, by the comparison principle,

ωε > ωε in (a, b)× R+,
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and, up to subsequences, for allT > 0,

ωε → ω 6 ω in C([0, T ];L2(a, b)).

Arguing as in the proof forω(x, t), we find that

[a, b] = suppω(t1) = suppω(t2) if 0 6 t1 6 t2. (37)

We fix T > 0. We divide the proof into several steps.

CLAIM 1 For all sufficiently smallσ > 0 there existsλσ > 0 such that

ωε > ωε > λσ in [a + σ, b − σ ] × [0, T ]. (38)

Proof of Claim 1. By (37) we have, for 06 t 6 T ,

Aσ (t) := ---
∫

[a,a+σ ]
ω(t) 6= 0 and Bσ (t) := ---

∫
[b−σ,b]

ω(t) 6= 0.

We defineAεσ (t) andBεσ (t) in a similar way. SinceAσ andBσ are continuous in [0, T ] there exists
λσ > 0 such that

Aσ (t), Bσ (t) > 2λσ for 0 6 t 6 T .

Sinceωε → ω in C([0, T ];L2(a, b)),

Aεσ → Aσ and Bεσ → Bσ uniformly in [0, T ].

Hence, forε > 0 small enough,

Aεσ (t), B
ε
σ (t) > λσ for 0 6 t 6 T .

Now (38) follows from standard lap-number theory ([10]), whereσ is chosen so small thatλσ < ρ̄

(ρ̄ is defined by (11)).

REMARK 5.3 If A = 0, we can apply the lap-number theory to the equation forωε itself, and
arguing as in the proof of Claim 1, withAσ replaced by --

∫
[a(t),a(t)+σ ] ω, we obtain Proposition 5.1.

So it remains to consider the case

A > 0. (39)

CLAIM 2 Let {p0 > I } 6= ∅ and let 0< t0 < t1 andx0 < x1 be such that

K = [x0, x1] × [t0, t1] ⊆ {p > I }.

Thenwε andpε are uniformly Ḧolder continuous inK, ω, p ∈ C(K) and there existsδK > 0 such
that for allε > 0 small enough

ωε > δK and pε > I + δK in K.
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REMARK 5.4

(i) If {p0 > I } = ∅, thenp 6 I in R × [0,∞), ω(x, t) = ω0(x) for all x and t , and problem
(1)–(2) becomes trivial.

(ii) As a consequence of Claim 2,ωε andpε are uniformly Ḧolder continuous in any finite union of
rectangles.

Proof of Claim 2. Since{p(t) > I + ρ} is an interval if 06 ρ < ρ̄ andp ∈ C([0,∞);L2(R)), it
follows that

t > 0 andx ∈ {p(t) > I } ⇒ (x, t) ∈ {p > I }. (40)

Moreover, (40) holds with⇒ replaced by⇔. Indeed, let(x, t) ∈ {p > I }. Since the set{p > I }

is open andp ∈ C([0,∞);L2
loc(R)), without loss of generality, we may assume that there exist

c, d ∈ R+ such that

[x − c, x + c] × [t − d, t + d] ⊆ {p > I },

[x − c, x + c] ⊆ {p(s) > I } for all s ∈ (t − d, t + d]

and
[x − c, x + c] ⊆ {p(t − d) > I + ρ′

}

for someρ′ > 0. Arguing by contradiction we assume thatp(y, t) = I for all y ∈ [x − c, x + c].
Denote by(ωε, pε) the sequence defined by Theorem 3.2. By property (15) it follows that for each
δ > 0,

pε − I > −δ in [x − c, x + c] × [t − d, t + d],

for ε = ε(δ) small enough; in particular,

pε(y, t − d) > I + ρ′/2 in [x − c, x + c].

Now, we proceed as in the proof of Lemma 4.1. We multiply the equation forpε by−φ2/((pε−I )+

2δ), whereφ = φ(y) is a Lipschitz continuous function with suppφ ⊆ [x − c, x + c]. Integrating
by parts and lettingε → 0, we find

−

∫
R
φ2 log(p − I + 2δ)(t) 6 −

∫
R
φ2 log(p − I + 2δ)(t − d)+ C(φ)d 6 C̄.

Sinceδ is arbitrary, we have proved that

t > 0 andx ∈ {p(t) > I } ⇔ (x, t) ∈ {p > I }. (41)

The set{p > I } is connected, has a nonempty intersection with(a, b)× {0}, and

p(x, t) 6 I for all x ∈ {{p(t) > I }, t > 0.

Since{p > I } is open there existsη0 ∈ (0, t0) such that for all 06 η 6 η0,

Kη := [x0 − η, x1 + η] × [t0 − η, t1] ⊆ {p > I }.

Arguing as in the proof of Claim 1 it follows that for all 06 η < η0 there existsδ(η) such that

pε > δ(η) > 0 inKη,

for ε sufficiently small. Hence, by [8],ωε, and thereforeω, are equicontinuous inKη for 0 6 η < η0.
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It remains to prove thatω > 0 in K. Arguing by contradiction, assume thatω(x̄, t̄) = 0 for
some(x̄, t̄) ∈ K. We chooseη ∈ (0, η0). Since [x1 − η, x2 + η] ⊆ suppp(t̄) = suppω(t̄), there
existx−

∈ (x1 − η, x̄) andx+
∈ (x̄, x2 + η) such thatω(x±, t) > 0. By the continuity ofω there

existst− ∈ (t0 − η, t̄) such that

ω(x±, t) > C0 > 0 for t− 6 t 6 t̄ .

SinceA > 0 andp > δ(η) > 0, the comparison principle shows that

ω(x, t) > C1(t − t−) for x− 6 x 6 x+, t− 6 t 6 t̄ ,

whereC1 > 0 is a sufficiently small constant. Henceω(x̄, t̄) > C1(t̄ − t−) > 0 and we have found
a contradiction. 2

Now we are ready to complete the proof of Proposition 5.1. We argue by contradiction and suppose
that ω(x0, t0) = 0 for somet0 > 0. By Claim 1, we can assumex0 > b (the casex0 6 a is
completely similar). Sinceb(t) is continuous andb(t0) > x0 > b = b(0), we have

τ := inf {t > 0 : b(t) > x0} > 0 and x0 = b(τ).

We claim that
{p > I } ∩Λ(τ, t0) 6= ∅,

where we have set
Λ(τ, t0) := {(x, t) : x0 < x < b(t), τ < t < t0} .

Indeed, otherwiseω = 0 inΛ(τ, t0), and since [a(t), b(t)] = suppω(t) we obtain a contradiction.
Let (x1, t1) ∈ {p > I } ∩Λ(τ, t0). From the connectedness of{p > I }, it follows that there exist

(η1, τ1) ∈ {p > I } and a smooth functiong(t) (τ1 6 t 6 t1) such that

0 6 τ1 < t0, η1 ∈ (a, b), g(τ1) = η1, g(t1) = x1,

(g(t), t) ∈ {p > I }, g(t) > a if τ1 6 t 6 t1.

Let x− > a be such thatx− < g(t) for all τ1 6 t 6 t1. By Claims 1 and 2 there existsC > 0 such
that

ω(x, t) > 2C > C

if (x, t) satisfies one of the following conditions:

(i) x = x−, τ1 6 t 6 t1;
(ii) t = τ1, x− < x < η1 = g(τ1);

(iii) x = g(t), τ1 6 t 6 t1.

Observing that
E := {(g(t), t) : t ∈ [τ1, t1]}

is compact, we can find a finite number of sets of the form

Kj := [xj , xj ] × [tj , tj ], j = 1, . . . , n,

such that

E ⊂ K̃ :=
n⋃
j=1

Kj ⊆ {p > I },
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andωε > C in K̃ for all ε sufficiently small. In addition, by Claim 1,ωε(x, t) > C for ε small
enough, if(x, t) satisfies conditions (i) and (iii). Hence, by the maximum principle,

ωε(x, t), ω(x, t) > C if x− 6 x 6 g(t), τ1 6 t 6 t1.

Arguing as in Claim 1, with(a, b) × (0, T ) replaced by(x−, x1) × (t, t0), we conclude that
ωε(x0, t0), ω(x0, t0) > C′ and we have found a contradiction. 2

Proof of Proposition 5.2. First we consider the casep0 > I in (a, b). We assume{p0 > I } 6= ∅,
otherwise the result is trivial. We argue by contradiction and assume that the set{p < I } ∩ {ω > 0}

is not empty. Define

τ = sup{t : {p(t) > I } 6= ∅} (possiblyτ = +∞).

We dinstinguish two different cases:

CASE 1 There exists(x1, t1) ∈ {p < I } ∩ {ω > 0} such thatt1 6 τ .
CASE 2 The set{p < I } ∩ {ω > 0} ∩ ([0, τ ] × R) is empty.

Case 1. Since{p(t) > I } is an interval andp ∈ C([0, T ];L2
loc(R)), without loss of generality,

we may suppose that there existδ > 0 andx2 > x1 such that

p < I in [x2,∞)× [t1 − δ, t1 + δ],

and
x2 < b(t) for t1 − δ 6 t 6 t1 + δ.

As a consequence, by (19),b(t) = b(t1) for all t ∈ [t1 − δ, t1 + δ]. Let

t0 := inf{t 6 t1 : for all t 6 s 6 t1 there existsxs ∈ (a(s), b(s))

such thatp(x, s) < I for all x > xs}.

Thenb(t) = b(t0) for t0 6 t 6 t1. By construction, there existsx0 ∈ (a(t), b(t)) such that

p(x, t0) > I in (x0, b(t0)). (42)

Let us still denote by(x0, b(t0)) the maximal interval for which (42) is satisfied. Sinceτ > t0 we
can assume that

(y0, t0) ∈ {p > I } (43)

for somey0 ∈ (x0, b(t0)). On the other hand{p > I } is open, therefore there existsδ0 > 0 such
that

p > I in [y0 − δ0, y0 + δ0] × [t0, t0 + δ].

Now letϕ ∈ Lip(R) be such that 06 ϕ 6 1 and

ϕ(x) =

{
1 if x ∈ [y0 + δ0, b(t0)],
0 if x ∈ (−∞, y0 − δ0] ∪ [b(t0)+ δ,∞).

Testing the equation forpε with ϕ2(pε − I )− in R × [t0, t0 + δ0], we find

−
d

dt

∫
R

1

2
ϕ2(pε − I )2− = 2

∫
R
(ωαε + ε)(pε − I )−[(pε − I )−]xϕϕx

+

∫
R

[(pε − I )−]2x(ω
α
ε + ε)ϕ2

> −C

∫
R

[(pε − I )−]2(ωαε + ε)ϕ2
x ,
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where the last term vanishes asε → 0. Since
∫

∞

b(t0)
(p − I )−ϕ

2 is constant, this yields∫ b(t0)

y0+δ0

(p − I )2−(t) 6
∫ b(t0)

y0+δ0

ϕ2(p − I )2−(t0) = 0 for t ∈ (t0, t0 + δ0].

In view of the definition oft0, we have found a contradiction.

Case 2. We have

p > I in {ω > 0} ∩Qτ , p(τ) = I in (a(τ ), b(τ )), p(t) 6 I for t > τ.

Therefore, for allt > τ we have

ω(x, t) = ω(x, τ ) for x ∈ R,

and
a(t) = a(τ), b(t) = b(τ).

Since ∫ b(τ)

a(τ )

p(t) =

∫ b(τ)

a(τ )

p(τ) = I (b(τ )− a(τ)),

we conclude that
p = I in (a(τ ), b(τ ))× [τ,∞),

and we have found a contradiction.
Finally, consider the casep0 > I in (a, b). Thenp > I in {ω > 0} and arguing as in the proof

of (41) we obtain the result easily. 2

Appendix A. Finite speed of propagation

This section is devoted to the proof of Theorem 4.4. Our approach will use the techniques originally
developed in [6, 7] to establish the occurrence of waiting time phenomena for the thin film equation
as well as for higher order doubly nonlinear equations with variational structure. Therefore the main
tool will be to derive a suitable integral inequality, to which we can apply Stampacchia’s iteration
lemma [14, Lemma 4.1]:

LEMMA A.1 Assume that a given nonnegative nonincreasing functionG : [0, ξ0] → R satisfies

G(ξ) 6
c0

(ξ − η)λ
G(η)1+κ (44)

for 0 6 η 6 ξ 6 ξ0 and positive numbersc0, λ andκ. If

ξλ0 > 2λ(1+κ)/κc0G(0)
κ , (45)

thenG(ξ0) = 0.

In the proof we will use the Gagliardo–Nirenberg inequality. In the version stated below, some of
the summability powers are allowed to be less than one (see [6] for a more general statement).
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THEOREM A.2 (Gagliardo–Nirenberg) Let 0< s < p, 1 6 r 6 ∞, n ∈ N, n > 0, 0 6 θ < 1.
LetΩ ⊆ RN be open and diffeomorphic to a cone. Suppose thatu ∈ Ls(Ω) and its derivative of
ordern belongs toLr(Ω). Then the following inequality holds (with a constantK depending only
onN , n, r, s andΩ):

‖u‖p 6 K‖Dnu‖θr ‖u‖
1−θ
s

if
1

p
= θ

(
1

r
−
n

N

)
+ (1 − θ)

1

s
.

Proof of Theorem 4.4. First we will derive the integral inequality. Letε > 0 and let(ωε, pε)
be the solution of Problem (12) defined by Proposition 3.1. For a compactly supported function
ϕ ∈ W1,∞(R), we set

Φ := ϕm(pε − I )δ+, Ψ := ϕmωσε .

We keep the possibility to choose later the constantsδ, σ , m ∈ R+, m > 2. TakingΦ (resp.Ψ ),
as test function for the equation forpε (resp.ωε), and integrating by parts inR × [0, t ], t 6 T , we
obtain∫

R
ϕm
(pε − I )δ+1

+

δ + 1
(t)−

∫
R
ϕm
(p0 − I )δ+1

+

δ + 1

= −m

∫ t

0

∫
R
ϕm−1ϕx(ω

α
ε + ε)(pε − I )δ+pεx − δ

∫ t

0

∫
R
ϕm(ωαε + ε)(pε − I )δ−1

+ (pεx)
2 (46)

and∫
R
ϕm

ωσ+1
ε

σ + 1
(t)−

∫
R
ϕm

ωσ+1
0

σ + 1
= −m

∫ t

0

∫
R
ϕm−1ϕx(ω

µ
ε (pε − I )

β
+ + ε)ωσε ωεx

− σ

∫ t

0

∫
R
ϕm(ωµε (pε − I )

β
+ + ε)ωσ−1

ε (ωεx)
2
+ A

∫ t

0

∫
R
ϕmωσε (pε − I )

γ
+(1 − ωε). (47)

Adding (46) and (47) and applying Ḧolder’s and Young’s inequalities, we find

∫
R
ϕm
(
(pε − I )δ+1

+

δ + 1
(t)+

ωσ+1
ε

σ + 1
(t)

)
6
∫

R
ϕm
(
(p0 − I )δ+1

+

δ + 1
+
ωσ+1

0

σ + 1

)
+ C1

∫ t

0

∫
R
ϕm−2ϕ2

x((ω
α
ε + ε)(pε − I )δ+1

+ + ωµε ((pε − I )
β
+ + ε)ωσ+1

ε )

− C2

∫ t

0

∫
R
ϕm((ωαε + ε)(pε − I )δ−1

+ p2
εx + (ωµε (pε − I )

β
+ + ε)ωσ−1

ε ω2
εx)

+ C3

∫ t

0

∫
R
ϕmωσε (pε − I )

γ
+ =: I0 + C1I1 − C2I2 + C3I3,

where the constantsC1,C2,C3 depend only onm, δ, σ andA. Letting β̄ := min{β, αγ }, we choose
δ andσ such that

σ + 1> α, δ + 1> max{β̄, γ }. (48)
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To estimateI1, we rewrite

I1 =

∫ t

0

∫
R
ϕm−2ϕ2

x(ω
α
ε (pε − I )δ+1

+ + ωµ+σ+1
ε (pε − I )

β
+)

+ ε

∫ t

0

∫
R
ϕm−2ϕ2

x((pε − I )δ+1
+ + ωµ+σ+1

ε ) =: I1
1 + I2

1

and we observe that
I2
1 → 0 asε → 0.

Hence

I1
1 =

∫ t

0

∫
R
ϕm−2ϕ2

xω
α
ε (pε − I )

β̄
+((pε − I )

δ+1−β̄
+ + ωµ+σ+1−α

ε (pε − I )
β−β̄
+ ),

and from Ḧolder’s and Young’s inequalities it follows that

I1
1 6

q − 1

q

∫ t

0

∫
R
ϕ
(m−2) q

q−1 ((pε − I )
(δ+1−β̄)

q
q−1

+ + ω
(µ+σ+1−α)

q
q−1

ε )

+
‖ϕx‖∞

q

∫ t

0

∫
suppϕ

ωαqε (pε − I )
β̄q
+ , (49)

whereq > 1. Choosingδ, σ andm such that

(i)
δ + 1

β̄
= q =

σ + 1

α
, (ii) m = 2q, (50)

we obtain

I1
1 6 C4

∫ t

0

∫
R
ϕm((pε − I )δ+1

+ + ωσ+1
ε )+ C5

∫ t

0

∫
suppϕ

ωσ+1
ε (pε − I )δ+1

+ . (51)

To handleI2 we have to determinel ∈ R+ such that

[(ωσ+1
ε (pε − I )δ+1

+ )l ]2x 6 C6(ω
α
ε (pε − I )δ−1

+ p2
εx + ωµ+σ+1

ε (pε − I )
β
+ω

2
εx). (52)

A straightforward computation leads to the condition

l > max

{
µ+ σ + 1

2(σ + 1)
,

β

2(δ + 1)

}
.

As a consequence,

I2 > C7

∫ t

0

∫
R
ϕm[(ωσ+1

ε (pε − I )δ+1
+ )l ]2x . (53)

Finally, we estimateI3. By Hölder’s and Young’s inequalities, we get

I3 6 C8

∫ t

0

∫
R
ϕm(ω

σ δ+1
δ+1−γ

ε + (pε − I )δ+1
+ ).
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It follows from assumption (50)(i) thatσ + 1 > (δ + 1)/γ . Henceσ(δ + 1)/(δ + 1 − γ ) > σ + 1,
and

I3 6 C8

∫ t

0

∫
R
ϕm((pε − I )δ+1

+ + ωσ+1
ε ). (54)

Combining (51), (53) and (54) and lettingε → 0, we obtain∫
R
ϕm(ωσ+1

+ (p − I )δ+1
+ )(t)+ C9

∫ t

0

∫
R
ϕm[(ωσ+1(p − I )δ+1

+ )l ]2x

6 C10

∫
R
ϕm(ωσ+1

0 + (p0 − I )δ+1
+ )+ C11

∫ t

0

∫
R
ϕm(ωσ+1

+ (p − I )δ+1
+ )

+ C12

∫ t

0

∫
suppϕ

ωσ+1(p − I )δ+1
+

6 C10

∫
R
ϕm(ωσ+1

0 + (p0 − I )δ+1
+ )+ C11t sup

τ

∫
R
ϕm(ωσ+1

+ (p − I )δ+1
+ )

+ C12

∫ t

0

∫
suppϕ

ωσ+1(p − I )δ+1
+

for all 0 < t < τ 6 T . Taking the supremum in(0, τ ) on the left hand side and imposingC11τ 6
1/2, we find

sup
t∈(0,τ )

∫
R
ϕm(ωσ+1

+ (p − I )δ+1
+ )(t)+ C9

∫ τ

0

∫
R
ϕm[(ωσ+1(p − I )δ+1

+ )l ]2x

6 C′

10

∫
R
ϕm(ωσ+1

0 + (p0 − I )δ+1
+ )+ C′

12

∫ τ

0

∫
suppϕ

ωσ+1(p − I )δ+1
+ . (55)

Finally, defining
w = (ω(σ+1)/2(p − I )

(δ+1)/2
+ )l

′

, l′ = 2l,

it follows from (55) that for some positive constantC̄,

sup
t∈(0,τ )

∫
R
ϕmw1/l′(t)+ C̄−1

∫ τ

0

∫
R
ϕmw2

x

6 C̄

∫
R
ϕm(ωσ+1

0 + (p0 − I )δ+1
+ )+ C̄

∫ τ

0

∫
suppϕ

w2/l′ , (56)

which is the desired integral inequality.
Sinceω, p ∈ L∞

loc([0,∞);Lq(R)) for all 1 6 q < ∞, we observe that (56) is still satisfied for
all ϕ ∈ W1,∞(R).

Without loss of generality, we may assume thata = min suppω0 = 1. For a positive number
r < 1 we take

ϕ = ϕr(x) :=


1 if x < r − 1,

r − x if x ∈ [r − 1, r],

0 otherwise.
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Thus, for arbitrary 0< ρ < r, (56) can be rewritten in the following way:

sup
t∈(0,τ )

∫ ρ

−∞

w1/l′
+ C̄−1

∫ τ

0

∫ ρ

−∞

w2
x 6

C̄

(r − ρ)m

∫ τ

0

∫ r

−∞

w2/l′ . (57)

We estimate
∫ τ

0

∫ ρ
−∞

w2/l′ by Gagliardo–Nirenberg’s inequality (cf. Theorem A.2):(∫ ρ

−∞

w2/l′
)l′/2

6 K

(∫ ρ

−∞

w2
x

)θ/2(∫ ρ

−∞

w1/l′
)l′(1−θ)

with

θ =
l′

1 + 2l′
< 1.

As a consequence,

∫ τ

0

∫ ρ

−∞

w2/l′ 6 K1

∫ τ

0

(∫ ρ

−∞

w2
x

) 1
1+2l′

(∫ ρ

−∞

w
1
l′

)2 1+l′

1+2l′

6 K1

(∫ τ

0

∫ ρ

−∞

w2
x

) 1
1+2l′

∫ τ

0

(∫ ρ

−∞

w
1
l′

)2 1+l′

1+2l′
1+2l′

2l′

 2l′

1+2l′

6 K1

(∫ τ

0

∫ ρ

−∞

w2
x

) 1
1+2l′

τ
2l′

1+2l′

(
sup
(0,τ )

∫ ρ

−∞

w
1
l′

)2 1+l′

1+2l′

.

Combining this with (57) yields∫ τ

0

∫ ρ

−∞

w2/l′ 6 K2τ
2l′

1+2l′

(
1

(r − ρ)m

∫ τ

0

∫ r

−∞

w2/l′
)1+

2
1+2l′

. (58)

Let us introduce forξ > 0 the decreasing nonnegative function

G(ξ) :=
∫ τ

0

∫ 1−ξ

−∞

w2/l′ .

Hence, forξ = 1 − ρ andη = 1 − r, (58) becomes

G(ξ) 6 K2
τ

2l′

1+2l′

(ξ − η)m(1+κ)
G(η)1+κ

for 0 6 η 6 ξ 6 1, κ = 2/(1 + 2l′). Applying Stampacchia’s Lemma A.1, we findG(ξ0) = 0
provided

ξ
m(1+κ)
0 > 2m(1+κ)2/κK2τ

(2−κ)/2G(0)κ . (59)

SinceG(0) 6 τ‖p0‖1, (59) is satisfied if

ξ0 > K3τ
2+κ

2m(1+κ) =: 1 − ρ0(τ ). (60)
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Thus, for sufficiently smallτ ∗
= τ ∗(K3), from (60) we conclude that∫ t

0

∫ ρ0(t)

−∞

ωσ+1(p − I )δ+1
+ = 0

for all 0 6 t 6 τ ∗. This yieldsω(x, t) = 0 for all x < ρ0(t), 0 6 t 6 τ ∗, i.e.

r(t) = K3t
2+κ

2m(1+κ) , 0 6 t 6 τ ∗.

Since the constants involved in the proof are independent of time the proof of the theorem is
complete. 2

Conclusions

The system we consider is motivated by the study of subterranean fluid flows in the framework of
nonlocal continuum damage mechanics, according to a model which has recently been introduced
by Barenblatt, Patzek, Prostokishin and Silin [3]. In particular they conjectured the existence of a
free moving boundary of the damaged region. The system is nonstandard and, even after a slight
simplification explained in the introduction, the definition and the existence of solutions turn out to
be nontrivial problems. In fact both the pressurep and the damageω may become discontinuous
across the free boundary, as was pointed out in [5]. Therefore a detailed analysis of the support
properties is essential in our study.

One of the main open problems is to extend our analysis to higher space dimension, since even
the validity of the basic BV estimates, which play an essential role in the compactness results, is
not clear. The problem of uniqueness of solutions is completely open, even in the case of one space
dimension.
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l’Univ. Montréal (1966). Zbl 0151.15501 MR 0251373

http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1024.35051&format=complete
http://www.ams.org/mathscinet-getitem?mr=1895718
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1028.35078&format=complete
http://www.ams.org/mathscinet-getitem?mr=2008360
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0174.15403&format=complete
http://www.ams.org/mathscinet-getitem?mr=0241821
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0496.35011&format=complete
http://www.ams.org/mathscinet-getitem?mr=0672070
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=02165053&format=complete
http://www.ams.org/mathscinet-getitem?mr=2130060
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0629.46031&format=complete
http://www.ams.org/mathscinet-getitem?mr=0916688
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0151.15501&format=complete
http://www.ams.org/mathscinet-getitem?mr=0251373

	Introduction
	The main results
	A nondegenerate system
	Support properties
	Proof of the main result
	Finite speed of propagation

