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Phase transitions and sharp-interface limits
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The one-dimensional system of elasticity with a non-monotone or convex-concave stress-strain
relation provides a model to describe the longitudinal dynamics of solid-solid phase transitions
in a bar. If dissipative effects are neglected it takes the form of a system of first-order nonlinear
conservation laws and dynamical phase boundaries appear as shock wave solutions. In the physically
most relevant cases these shocks are of the non-classical undercompressive type and therefore
entropy solutions of the associated Cauchy problem are not uniquely determined. Important
dissipative effects that lead to unique regular solutions are viscosity and capillarity where the latter
effect is usually modelled by at least third-order spatial derivatives.
Unlike these models we consider a novel type of non-local regularization that models both effects
but avoids higher-order derivatives. We suggest a particular scaling for the dissipative terms and
conjecture that with this scaling the regular solutions single out unique physically relevant weak
solutions of the first-order conservation law in the limit of vanishing dissipation parameter. We verify
the conjecture first by proving that the non-local system admits special solutions of travelling-wave
type that correspond to dynamical phase boundaries. Moreover it is proven that regular solutions of
a general Cauchy problem converge to weak solutions of the system of first-order conservation laws.
The proof applies the method of compensated compactness.

Keywords: Non-local energy; viscosity-capillarity; sharp interface limit; undercompressive shock
waves.

1. Introduction

We consider the Cauchy problem for the one-dimensional system of elasticity which is given by

wt − vx = 0,

vt − σ(w)x = 0,
(1.1)

in R × (0, T ), T > 0, and
w(·,0) = w0, v(·,0) = v0, (1.2)

in R. Here the strainw : R × (0, T ) → (−1,∞) and the velocityv : R × (0, T ) → R are the
two unknowns depending onx ∈ R and timet > 0. The given functionσ : (−1,∞) → R is the
stress-strain relation andw0 : R → (−1,∞), v0 : R → R are the initial functions.

The system (1.1) governs the longitudinal dynamics of an elastic bar of infinite length at constant
temperature. We are interested in materials that occur in different phases and undergo dynamical
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phase transitions. More specifically we consider the following two choices forσ which describe
two-phase materials:

(a) σ is an increasing function except in a bounded interval,
(b) σ is an increasing function but has concave-convex shape.

Examples for materials to which choice (a) applies are shape-memory alloys (see e.g. [31, 43]). The
two distinct intervals of strain state for whichσ is increasing determine the two different phases.
An example for which (b) holds are rubber-like materials (see e.g. [32]). In this case the two distinct
intervals of strain states for whichσ is either convex or concave determine the two different phases.

Formally the system (1.1) with choice (a) or (b) is a nonlinear conservation law. Hence standard
weak solutions of (1.1) are shock waves connecting two end states. In particular dynamical phase
transitions can be constructed in a natural way as shock waves with strain components of the end
states in two different phases. However, if they are of the physically relevant subsonic type, then
they do not belong to the class of classical Laxian waves like e.g. hydrodynamical shock waves for
Euler’s equations with a perfect gas. Rather these waves are called non-classical undercompressive
waves (see [34] or [23] for a general classification of shock waves). One consequence of this non-
standard structure is that entropy solutions of the Cauchy problem (1.1), (1.2) are not uniquely
determined any more ([1, 29, 34]). By anentropy solutionfor (1.1), (1.2) we mean here a weak
solution(w, v)T ∈ (L∞

loc(R × [0, T )))2 of the Cauchy problem that satisfies the Clausius–Duhem
inequality

H(w, v)t + F(w, v)x 6 0 (1.3)

in the distributional sense. The entropyH and theentropy fluxF in (1.3) are given by

H(w, v) :=
v2

2
+

∫ w

0
σ(w̃)dw̃, F (w, v) := vH(w, v). (1.4)

This non-uniqueness problem is in contrast to the situation for one-phase materials governed
by an increasing and strictly convex stress-strain relation. In the latter case the entropy solution
is supposed to be the unique solution and allows only for compressive shock waves ([14] and
references therein).

Returning to the phase transition problem (1.1), (1.2) we note that a lot of research is devoted
to approaches that impose additional conditions for the undercompressive waves in order to enforce
unique solvability. We mention the so-called kinetic relations ([1, 13, 33, 28, 29]) and the entropy
rate criterion ([27]).

Here we will follow another, in fact more traditional path to single out unique physically relevant
solutions of the Cauchy problem for (1.1). We regularize (1.1) by supplementing it with terms which
model the effects of viscosity and capillarity. If we denote the small regularization parameter by
ε > 0 this leads to the problem

wεt − vεx = 0,

vεt − σ(wε)x = µεvεxx − γ [Dε[wε]]x,
(1.5)

in R × (0, T ), and
wε(·,0) = w0, vε(·,0) = v0, (1.6)

in R. In (1.5),µ andγ are nonnegative viscosity and capillarity constants. To model the viscosity
effect we restrict ourselves to a simple linear term; the choice for the capillarity termDε will be
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discussed below. We want to analyze the behaviour of solutions to (1.5), (1.6) in the sharp interface
limit ε → 0. To do this we must fixDε and identify an appropriate scaling with respect toε
between the viscosity and capillarity terms. Let us remark that one expects the capillarity effect to
be necessary in order to obtain dynamical phase boundaries in the limit of vanishing dissipation (see
e.g. [42]).

As a first prototypical choice for the capillarity termDε we consider the local term

Dε[w] = ε2wxx . (1.7)

Systems with capillarity terms likeDε given by (1.7) have been analyzed by many authors ([2, 8,
29, 39]), also in the closely related case of liquid-vapour phase transitions in van der Waals fluids
([3, 9, 19, 20, 26, 42]). In particular with theε-scaling given by (1.5), (1.7) solutions of the Cauchy
problem for (1.5) have been shown to converge to weak solutions of the Cauchy problem for the
sharp-interface limit system (1.1) which contain dynamical phase boundaries ([29]). In this way a
unique weak solution of (1.1) is singled out and the modelling of the capillarity mechanism with the
particularε-scaling is justified.

However, the choice (1.7) to model capillarity effects is not the only possible one and
considerations from statistical mechanics suggest different non-local models ([5, 22, 37]). In this
paper we shall focus therefore on these non-local alternatives for (1.7) which typically lead to a
capillarity term of the form

Dε[w](x) =
1

ε

∫
R
φ

(
x − y

ε

)
(w(y)− w(x))dy (x ∈ R). (1.8)

Hereφ : R → R is a given nonnegative kernel function. Of course also (1.8) fixes a certain scaling
with respect toε which is just postulated at this point. Note that the choice (1.8) does not lead to
higher-order derivatives in (1.5) as (1.7) does.

It is the aim of this paper to justify the capillarity term from (1.8) and the inducedε-scaling.
We shall develop a theory for the non-local model (1.5), (1.8) which is comparable to the theory for
the local regularization (1.5), (1.7). Let us give a more specific outline. In Sect. 2 we give a short
motivation of the model (1.5) with capillarity term given by (1.8) starting from the equilibrium
case. It is derived by means of the principle of least action, and the relations between (1.7) and
(1.8) are discussed. The model (1.5), (1.8) fixes a particular scaling with respect to the parameterε.
Sections 3 and 4 will show that the scaling prescribed through (1.8) for (1.5) is the correct one for
the non-local approach. As the first step to analyze (1.5), (1.8) we establish in Sect. 3 the existence
of travelling-wave solutions for (1.5) with capillarity term (1.8) which correspond to dynamical
phase boundaries. By construction and due to the selectedε-scaling these travelling waves single
out certain sharp-interface solutions of (1.1). This non-local viscosity-capillarity criterion could be
used to determine a unique solution of e.g. the Riemann problem for (1.1).

The sharp-interface limit for the Cauchy problem is analyzed in Sect. 4 by means of appropriate
a-priori estimates and the method of compensated compactness. The main theorem of that section
is Theorem 4.5 which states that the limit function exists and is a weak solution of (1.1).

2. Derivation of the non-local model

In this section we derive the non-local model (1.1) with capillarity term (1.8) from basic principles.
To illustrate the roots of the non-local modelling we start with a short description of the time-
independent equilibrium case. Even though the analytical results that will be presented in Sects. 3, 4
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are restricted to the spatially one-dimensional case we will present here the models for an arbitrary
number of space dimensions.

2.1 The energy functional for the equilibrium case

Let Ω ⊂ Rd , d ∈ {1,2,3}, be an open non-empty set andu = (u1, . . . , ud)
T : Ω → Rd be a

deformation field at fixed temperature. Here the deformation is assumed to be aC1-function. We
define the deformation gradient by

∇u := (∇u1| · · · |∇ud), (2.1)

and the matrix-valued functionF : Ω → Rd×d with F = (Fik) by

Fik(x) := ui,xk (x) (i, k = 1, . . . , d, x ∈ Ω), (2.2)

where the spatial coordinates are denoted byx = (x1, . . . , xd)
T .

The functionW = W(F) : Rd×d → R is the (isothermal) energy function which in particular
defines the different phases. For energy functions in the multidimensional case we refer to [17]. We
will specify the energy function only for the cased = 1 in Sect. 2.3 below. The associated total
stored energyE0 is given by

E0[u] =

∫
Ω

W(∇u(x))dx. (2.3)

Each equilibrium deformation field is expected to be a minimizer of (2.3) (in an appropriate function
space and under appropriate constraints enforced by a given extension, incompressibility, boundary
conditions,. . . ). One problem is that even ford = 1 the minimizers for (2.3) are not uniquely
determined (see [16]). To circumvent this drawback one usually considers modified versions ofE0

that incorporate higher-order strain gradient terms of van der Waals type. In this way the functional
is regularized and the non-uniqueness can be removed (see e.g. [12] for the cased = 1), however at
the cost of higher regularity of the minimizers not present in the original problem. Moreover one is
forced to introduce new possibly non-physical boundary conditions.

Motivated by mathematical models for liquid-vapour phase transitions in fluid mechanics, still
first-order butnon-localapproaches have been been suggested in [22] and also in [37]. Following
these authors we define forε > 0 the non-local stored energyEεglobal by

Eεglobal[u
ε] = E0[uε] +

γ

4

∫
Ω

∫
Ω

φε(x − y)|∇uε(x)− ∇uε(y)|22 dy dx. (2.4)

Hereγ > 0 is a fixed parameter and| · |2 denotes the Frobenius norm for matrices. Theε-scaled
kernel functionφε ∈ C1(Rd) is defined by

φε(x) =
1

εd
φ

(
x
ε

)
(x ∈ Rd). (2.5)

Finally, the functionφ : Rd → R in (2.5) is some interaction potential inRd . By an interaction
potential inRd we mean an even and non-negative functionφ ∈ L1(Rd) that satisfies∫

Rd
φ(x)dx = 1,

∫
Rd
φ(x)|x| dx +

∫
Rd
φ(x)|x|

2 dx < ∞. (2.6)
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We note that the conditions (2.6) are of more or less technical nature and simplify proofs while
non-negativity and evenness are necessary properties.

We will not get absorbed in the discussion on minimizers for the energiesE0, Eεglobal (see [22])
but conclude with some notes on non-local modelling and switch then to the time-dependent case.

NOTE 2.1 (i) A prototypical choice for an interaction potentialφ is such that its mass is
concentrated around zero, say in a ball of radius 1 around zero. From (2.5) we see thatφε
is concentrated in a ball of radiusε around zero. In other words, the non-local contribution
to Eεglobal penalizes variations of the deformation gradient on a length scale of orderε. Such
variations correspond to phase transitions which are supposed to be avoided in reality if
possible.

(ii) We mentioned the standard local van der Waals approach to penalizing phase transitions. In the
simplest cased = 1 andΩ = R with scalar deformationuε : R → R andx = x1 that would
lead to the total stored energy

E0
local[u

ε] = E0[uε] +

∫
R

γ

2
|εuεxx |

2 dx. (2.7)

Obviously minimizers ofE0
local are required to have higher regularity than those forE0

global in
the cased = 1, that is,

Eεglobal[u
ε] = E0[uε] +

γ

4

∫
R

∫
R
φε(x − y)|uεx(x)− uεx(y)|

2 dy dx. (2.8)

If we now assumeuε to be e.g. aC2-function and plug the Taylor approximationuεx(y) ≈

uεx(x)+ uεxx(x)(y − x) into (2.8) we get from (2.6), for some constantC > 0,

Eεglobal[u
ε] ≈ E0[uε] +

γ

4ε

∫
R

( ∫
R
φ(z)ε3z2 dz

)
|uεxx(x)|

2 dx

= E0[uε] + γCε2
∫

R
|uεxx(x)|

2 dx.

This is up to the constant 2C the expressionE0
local[u

ε]. In this sense the local functional can be
seen as an approximation of the non-local one.

(iii) Apart from the technical problems that occur for local higher-order strain gradient terms there
is a more fundamental reason to favour non-local models. Energy functionals of type (2.4)
show up as continuum limits for models in statistical mechanics and atomic lattices ([5, 37]).

(iv) As mentioned above a main issue is to prove that for eachε > 0 there is a unique minimizer
for Eεglobal, which converges to a physically relevant minimizer ofE0 in the limit ε → 0. In

this way the non-uniqueness problem forE0 is resolved. Rigorous results on this topic can be
found in [4].

2.2 A generalized wave equation for the time-dependent case

Let us consider again a non-empty open setΩ ⊂ Rd . For T > 0 the isothermal dynamics ofΩ
in the time interval(0, T ) is completely described by the space- and time-dependent displacement
functionuε = (uε1, . . . , u

ε
d)
T : Ω × (0, T ) → Rd which we assume to be three times continuously

differentiable in space and time.
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Following the principle of least action, in our case the dynamical process foruε = uε(x, t) is
governed inRd × (0, T ) by extremal points of the Lagrangian

I εglobal[u
ε] :=

∫ T

0

∫
Ω

(
W(∇uε(x, t))−

|uεt (x, t)|
2

2
+
γ

4

∫
Ω

φε(x−y)|∇uε(x)− ∇uε(y)|22 dy
)

dx dt.

According to the regularity ofuε extremal points ofI εglobal are classical solutions of the system
of Euler–Lagrange equations forI εglobal which we compute now. We denote the partial derivatives
of W , i.e., the components of the stress, by

sik(∇u) :=
∂W

∂Fik
(∇u) (i, k = 1, . . . , d),

whereFik are the components ofF defined as in (2.2). To determine the variation with respect to
the componentsuεi , i = 1, . . . , d, letψ ∈ C∞

0 (Ω × (0, T )) be an arbitrary test function,τ ∈ R and
ei be theith unit vector inRd . We compute

d

dτ
I εglobal[u

ε
+ τψei ]

∣∣∣∣
τ=0

=

∫ T

0

∫
Ω

−

d∑
k=1

sik(∇uε(x, t))ψ(x, t)+ uεi,t t (x, t)ψ(x, t)dx dt

+
γ

2

∫ T

0

∫
Ω

∫
Ω

φε(x − y)(∇uεi (x, t)− ∇uεi (y, t)) · (∇ψ(x, t)− ∇ψ(y, t))dy dx dt.

Since the kernelφ is supposed to be an even function we get

d

dτ
I εglobal[u

ε
+ τψei ]

∣∣∣∣
τ=0

=

∫ T

0

∫
Ω

−

d∑
k=1

[sik(∇uε(x, t))]xkψ(x, t)+ uεi,t t (x, t)ψ(x, t)dx dt

+ γ

∫ T

0

∫
Ω

( ∫
Ω

φε(x − y)(∇uεi (x, t)− ∇uεi (y, t))dy
)

· ∇ψ(x, t)dx dt

=

∫ T

0

∫
Ω

(
uεi,t t (x, t)−

d∑
k=1

[sik(∇uε(x, t))− γ (φε ∗ uεi,xk − uεi,xk )]xk

)
ψ(x, t)dx dt.

In the last equation and henceforth∗ denotes convolution, i.e., for some functionw : Ω → R we
have

[φε ∗ w](x) =

∫
Ω

φε(x − y)w(y)dy (x ∈ Ω).

The fundamental lemma of variational calculus implies thatuε satisfies a system of equations given
by

uεi,t t −

d∑
k=1

[sik(∇uε)]xk = −γ

d∑
k=1

[φε ∗ uεi,xk − uεi,xk ]xk
(i = 1, . . . , d)
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in Ω × (0, T ). The irreversible viscosity effect is not deduced from Hamilton’s principle. We add
viscosity terms and obtain forµ > 0 the equations

uεi,t t −

d∑
k=1

[sik(∇uε)]xk = µε∆uεi,t − γ

d∑
k=1

[φε ∗ uεi,xk − uεi,xk ]xk
(i = 1, . . . , d). (2.9)

Note that the scaling with respect toε between the viscosity and the capillarity term is still only
postulated at this stage and has to be verified later.

2.3 The one-dimensional case

If we choosed = 1 in (2.9) and definex := x1 we get foruε := uε1 the equation

uεtt − σ(uεx)x = µεuεtxx − γ ([φε ∗ uεx(·, t)](x)− uεx(x, t))x . (2.10)

Hereσ = s11 : R → R is a given stress-strain relation which is a one-dimensional counterpart
of the tensor(sik) in (2.9). For notational simplicity we will from now on extend the physical
range(−1,∞) for the strain to the whole real line. Moreover we chooseΩ = R. The strainwε :
R × (0, T ) → R and the (longitudinal) velocityvε : R × (0, T ) → R are then defined as partial
derivatives of the displacementuε : R × (0, T ) → R. For(x, t) ∈ R × (0, T ) we have

wε(x, t) := uεx(x, t), vε(x, t) := uεt (x, t). (2.11)

Obviously we can rewrite (2.10) in the evolutionary form (1.5) withDε given by (1.8).

NOTE 2.2 (i) The local approach ind = 1 with stored energy given by (2.7) would have led us
to the equation

uεtt − [σ(uεx)]x = µεuεtxx − γ ε2uεxxxx . (2.12)

A Taylor approximation as in Note 2.1(ii) establishes again that (2.12) is an approximation of
the non-local wave equation (2.10).

(ii) For other time-dependent non-local models in the framework of phase transition problems we
refer to [21, 24]. The paper [21] provides an overview on non-local Allen–Cahn equations and
[24] deals with a non-local Cahn–Hilliard equation.

As said in the introduction we consider two different choices forσ . The following assumption
makes precise what we need for the analysis.

ASSUMPTION2.3 The functionσ ∈ C3(R) satisfies either condition (a) or condition (b) below.

(a) There are numbersα1, α2 ∈ R such thatα1 < α2 and

σ ′(w) > 0 forw ∈ (−∞, α1) ∪ (α2,∞), σ ′(w) < 0 forw ∈ (α1, α2).

(b) The functionσ is increasing and there is a numberα ∈ R such that

σ ′′(w) < 0 forw ∈ (−∞, α), σ ′′(w) > 0 forw ∈ (α,∞).
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FIG. 2.1. Graph of the stress-strain relationσ for case (a) (left-hand figure) and case (b) (right-hand figure) from
Assumption 2.3.

The non-monotone shape ofσ for case (a) in Assumption 2.3 allows us to define different phases
in the following way. The strain values in the interval(−∞, α1] are identified with alow-strain
phase, and those in [α2,∞) with a high-strain phase. All other strain values are calledelliptic.
If Assumption 2.3(b) applies we associate withw ∈ (−∞, α) (resp.w ∈ (α,∞)) a low-strain
phase (resp. a high-strain phase). In Fig. 2.1 we present the graphs of examples for the stress-strain
function.

We record some remarks on the first-order conservation law (1.1) that we obtain if we neglect
the dissipative effects in (1.5), resp. (2.10). Let

f(w, v) :=

(
−v

−σ(w)

)
, (w, v) ∈ R2.

The eigenvaluesλ∓ = λ∓(v,w) and associated eigenvectorsr∓ = r∓(v,w) of the Jacobian off
are given by

λ∓(v,w) = ∓

√
σ ′(w), r∓(v,w) =

(
1

±
√
σ ′(w)

)
,

provided(w, v) ∈ R2 are such thatσ ′(w) > 0. Otherwise there are no real eigenvalues. Moreover
for the classification of the characteristic fields we compute

∇λ∓(v,w) · r∓(v,w) = ∓
σ ′′(w)
√
σ ′(w)

, (w, v) ∈ R2. (2.13)

The (sign of the) expression∇λ∓ · r∓ generalizes the notions of convexity/concavity to a vector-
valued function, here to the fluxf (see [14] for instance).

Let now Assumption 2.3(a) hold. From the calculations above we observe that the first-order
system (1.1) is hyperbolic in the low and high strain phases(−∞, α1] ∩ [α2,∞) but not in(α1, α2).
Furthermore we note that there are unique numbersβ1, β2 ∈ R with β1 < β2 andσ(β1) = σ(β2)

such that ∫ β2

β1

(σ (β)− σ(βi))dβ = 0 (i = 1,2). (2.14)

These are theMaxwell states(see Fig. 2.1).
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For case (b) the hyperbolic state space is the complete spaceR2 but the characteristic fields
change their type inw = α according to (2.13) and the convex-concave behaviour ofσ . But even in
this case it makes sense to speak of different phases as defined above.

3. Dynamical phase boundaries and non-local viscosity-capillarity profiles

In this section we prove that the system (1.5), (1.8) has special solutions which correspond to
dynamical phase boundaries. Throughout the section we suppose that Assumption 2.3(a) holds,
i.e. σ has a non-monotone shape. Let us stress that all definitions, notations etc. are specialized to
(1.1) or (1.5) and not meant to hold for general conservation laws.

3.1 Shock waves and phase boundaries

We start to consider the first-order system (1.1). Let(w±, v±) ∈ R2 ands ∈ R be given. A function(
w0

v0

)
=

(
w0(x, t)

v0(x, t)

)
=

{
(w−, v−)

T if x − st < 0,

(w+, v+)
T if x − st > 0,

(3.1)

is ashock wave for(1.1)with speeds connecting the states(w−, v−) and(w+, v+) if

−s(w+ − w−) = v+ − v−, −s(v+ − v−) = σ(w+)− σ(w−). (3.2)

A shock wave with speeds connecting the states(w−, v−) and(w+, v+) is called aphase boundary
for (1.1) ifw− andw+ lie in different phases but not in the interval(α1, α2).

We note that (3.2) is nothing but the Rankine–Hugoniot relation. It ensures that each shock wave
is a weak solution of (1.1), (1.2) with the jump initial datumw0 = w−, v0 = v− for x < 0 and
w0 = w+, w0 = v+ for x > 0.

We classify shock waves according to the following definitions. A shock wave(w0, v0)T for
(1.1) is called aLaxianor compressiveshock wave if either

λ−(w−, v−) > s > λ−(w+, v+) or λ+(w−, v−) > s > λ+(w+, v+).

A shock wave(w0, v0)T for (1.1) is called anundercompressiveshock wave if

λ+(w−, v−) > s > λ−(w+, v+) and λ+(w+, v+) > s > λ−(w−, v−)

(see Fig. 3.1). Phase boundaries can be compressive or undercompressive. If the chord connecting
the points(w±, σ (w±)) intersects the graph ofσ in a third point they are undercompressive. Since
these connections are close to the equilibrium configuration, i.e., the shock wave with speed zero
connecting the states withw-component equal to the Maxwell states and vanishingv-component, it
is believed that such waves are the physically most relevant ones ([1]). We will focus on this kind
of phase boundaries in what follows. Let us mention that undercompressive waves have also been
observed in magnetohydrodynamics (see [23] for a review) and in the theory of thin films ([10, 11]).

3.2 Non-local viscosity-capillarity profiles

We now turn to the non-locally regularized system (1.5), (1.8) and discuss the admissibility problem
of undercompressive phase boundaries. For the sake of simplicity the capillarity constantγ is set
to 1.
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x

s =
x
t

(w−, v−)

(w+, v+)

0

t

(a) Laxian shock wave

0

x

t
s =

x
t

(w−, v−)

(w+, v+)

(b) undercompressive shock wave

FIG. 3.1. Shock lines{(x, t) ∈ R×(0,∞) | x = st} for shocks with speeds ∈ R and characteristic curves (dotted lines) in the
(x, t)-plane. The two characteristic curves for a state(w−, v−) are the lines with slopes 1/λ−(w−, v−) and 1/λ+(w−, v−)

intersecting the horizontal axis at some negativex-value. The two characteristic curves for a state(w+, v+) are the lines
with slopes 1/λ−(τ+, v+) and 1/λ+(w+, v+) intersecting the horizontal axis at some positivex-value.

Let (w±, v±) ∈ R2 ands ∈ R be given such that(w0, v0) from (3.1) is a shock wave with speed
s connecting the states(w−, v−) and(w+, v+). A function(w, v)T : R → R2 with

w ∈ C1(R), v ∈ C2(R)

is anon-local viscosity-capillarity profile for(w0, v0)T if it solves the integro-differential boundary
value problem

− sw − v = −sw− − v−,

− (φ ∗ w − w)+ µv̇ = −σ(w)− sv − (−σ(w−)− sv−) in R,
w(±∞) = w±, v(±∞) = v±.

(3.3)

Hereφ : R → [0,∞) is an interaction potential as defined in (2.6) in the case ofd = 1. For some
given non-local viscosity-capillarity profile we have [φ ∗w](x)−w(x) → 0 for x → ±∞ by using
φ ∈ L1(R) and Lebesgue’s theorem. Sincew±, v± ands obey the Rankine–Hugoniot conditions
(3.2) we see that the states(w±, v±) are rest points of the generalized flow associated with (3.3).
From the definition of a viscosity-capillarity profile we deduce the following statement.

COROLLARY 3.1 Let (w±, v±) ∈ R2 and s ∈ R be given such that(w0, v0)T from (3.1) is a
shock wave with speeds connecting the states(w−, v−) and(w+, v+). Assume that there exists a
non-local viscosity-capillarity profile(w, v)T : R → R2 for the shock wave(w0, v0)T . Then for
eachT > 0 and eachε > 0 the functionswε ∈ C1(R × (0, T )) andvε ∈ C2(R × (0, T )) defined
by

wε(x, t) = w

(
x − st

ε

)
, vε(x, t) = v

(
x − st

ε

)
((x, t) ∈ R × (0, T ))

are classical solutions of (1.5) withγ = 1. Moreover for almost all(x, t) ∈ R × (0, T ) we have

wε(x, t) → w0(x, t), vε(x, t) → v0(x, t).
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Proof. Straightforward calculation using (1.5), (1.8), (3.3), and the definition of theε-scaled
potential in (2.5). 2

We observe that admissibility of a shock wave in the sense of a non-local viscosity-capillarity
criterion means to prove the existence of a solution for theε-independent problem (3.3). The
ε-independence of (3.3) underlines that our conjecture on theε-scaling between viscosity and
capillarity terms in (1.5) is correct.

Before we proceed let us put down the following useful consequence of (3.2):

h(w+, w−, s
2) = 0,

h(r, r ′, q) := −(q(r − r ′)− σ(r)+ σ(r ′)) (r, r ′ ∈ R, q > 0).
(3.4)

With (3.4) we can reduce the problem (3.3) to a first-order integro-differential problem forw alone:

φ ∗ w − w + sµẇ = h(w,w−, s
2), w(±∞) = w±. (3.5)

The velocityv is then determined from the first equation in (3.3).
Our travelling-wave analysis relies on a result from [7] for general boundary value problems of

type (3.5). We summarize what we need from that paper.

THEOREM 3.2 (Bates et al.)Let φ ∈ Cr(R) ∩W r,1(R) for r ∈ N be an interaction potential inR.
Let u−, u+ ∈ R andF ∈ Cr(R) be given. For the unknownsu : R → R andν ∈ R consider the
problem

φ ∗ u− u+ νu̇ = F(u), u(±∞) = u±. (3.6)

Suppose that the statesu± ∈ R and the functionF satisfy

(i) u− > u+,

(ii) F (u±) = 0, F ′(u±) > 0,
(iii ) ∃!u0 ∈ (u+, u−) : F(u0) = 0,
(iv) u ∈ [u+, u−] ⇒ F ′(u)+ 1> 0.

Then exactly one of the following statements holds true.

(i) There is a decreasing functionu ∈ Cr+1(R) and a uniqueν ∈ R \ {0} such that (3.6) holds. In
this case we have

ν = H(u−, u+)

( ∫
∞

−∞

(u̇(ξ))2 dξ

)−1

, H(u−, u+) :=
∫ u+

u−

F(u)du. (3.7)

(ii) There is a decreasing functionu ∈ Cr(R) such that (3.6) holds forν = 0. In this case we have

H(u−, u+) = 0. (3.8)

In both cases the functionv is unique up to translation.

An analogous theorem holds for the inverse inequality in condition (i) of the last theorem.
We present directly the following result on the existence of non-local profiles and recall the

definition of the Maxwell states in (2.14).
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THEOREM 3.3 Let φ ∈ C1(R)∩W1,1(R) be an interaction potential inR. Moreover suppose that
σ satisfies Assumption 2.3(a), 2σ ′ > −1, andσ ′′ vanishes only at a finite number of points. Then
there exists a numberδ0 > 0 such that for all states

(w−, v−) ∈ {(w, v) ∈ (α2,∞)× R | |σ(w)− σ(β1)| < δ0} (3.9)

there exists a numberµ > 0, a speeds ∈ R \ {0} and a state

(w+, v+) ∈ (−∞, α1)× R

with the properties:

(i) w±, v±, s satisfy the Rankine–Hugoniot condition (3.2),
(ii) the phase boundary(w0, v0)T with speeds connecting(w−, v−)with (w+, v+) has a non-local

viscosity-capillarity profile(w, v)T ∈ C2(R)× C2(R),
(iii) the phase boundary(w0, v0)T is undercompressive.

Before we prove Theorem 3.3 let us give some remarks on the statement.

NOTE 3.4 (i) In Theorem 3.3 the left-hand state(w−, v−) was chosen such thatw− is located in
the high-strain phase. Of course an analogous theorem holds forw− located in the low-strain
phase.

(ii) We get existence of non-local viscosity-capillarity profiles for dynamical phase boundaries that
are undercompressive and have strain end states close to the Maxwell states. As mentioned
before such phase boundaries are expected to exist in reality.

(iii) In this section we handled case (a) of Assumption 2.3. In fact Theorem 3.2 can also be applied
in the purely hyperbolic case (b) of Assumption 2.3. We refer to [38] for the detailed treatment
of a closely related scalar problem.

(iv) From Theorem 3.3 (in fact from 3.2) we observe that for a given phase boundary the existence
of a viscosity-capillarity profile depends crucially on the viscosity coefficientµ which controls
the ratio between viscosity and capillarity. Recall that the capillarity constant has been set to 1
in this section. This is in complete agreement with existence results for the local model (1.5),
(1.7) and related systems. We refer to [8, 30, 42].

Proof of Theorem 3.3. For δ > 0 we define

Sδ := {w ∈ (−∞, α1) ∪ (α2,∞) | |σ(w)− σ(β1)| < δ}.

Furthermore we introduce forw1, w2 ∈ R with w1 6= w2 the quantity

q[w1, w2] =
σ(w1)− σ(w2)

w1 − w2
.

Now we chooseδ0 > 0 so small that for allw1 ∈ Sδ0 ∩ (α2,∞) andw2 ∈ Sδ0 ∩ (−∞, α1) we have

min{σ ′(w1), σ
′(w2)} > q[w1, w2], (3.10)

q[w1, w2] < 1/2, (3.11)

the chord connecting(w2, σ (w2)) with (w1, σ (w1)) intersects the graph ofσ in (α1, α2). (3.12)

Note that we can always find aδ0 > 0 with these properties sinceq[β1, β2] = 0 by construction of
the Maxwell states in (2.14) and since the chord connecting(β1, σ (β1)) with (β2, σ (β2)) intersects
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the graph ofσ three times. Note moreover that Assumption 2.3(a) implies that the slope ofσ close
to the Maxwell states is bounded from below by a positive constant.

Now according to the assumptions of the theorem we choose an arbitrary state

(w−, v−) ∈ (Sδ0 ∩ (α2,∞))× R.

Furthermore we take a numberw̃+ with w̃+ ∈ Sδ0 ∩ (−∞, α1) and

σ(w̃+) < σ(w−). (3.13)

Consider the auxiliary problem to find̃µ ∈ R andw ∈ C1(R) such that

φ ∗ w − w + µ̃ẇ = h(w,w−, q[w−, w̃+]), w(−∞) = w−, w(∞) = w̃+. (3.14)

Note thatq[w−, w̃+] is positive due to (3.13).
We apply Theorem 3.2 withF(w) = h(w,w−, q[w−, w̃+]) to solve (3.14) and check conditions

(i)–(iv). Condition (i) is clear sincew− > w̃+ by construction. The Rankine–Hugoniot relations
(3.2) implyF(w−) = F(w̃+) = 0. Forw ∈ R we have

∂

∂w
h(w,w−, q[w−, w̃+]) = σ ′(w)− q[w−, w̃+].

The latter quantity is positive forw = w−, w̃+ due to (3.10). Thus (ii) holds. Condition (iii) is a
direct consequence of the definition ofh (cf. (3.4)), (3.12) and the fact thatσ ′ < 0 in (α1, α2) due
to Assumption 2.3(a). Using (3.11) we compute, forw ∈ (w̃+, w−),

∂

∂w
h(w,w−, q[w−, w̃+])+ 1 = σ ′(w)− q[w−, w̃+] + 1> σ ′(w)+ 1/2.

The assumptionσ ′ > −1/2 on the stress-strain relation ensures condition (iv). Hence we can apply
Theorem 3.2 which tells us that there is a unique (up to translation) functionw ∈ C1(R) and a
unique number̃µ ∈ R that solves (3.14).

In the next step we want to show thatw̃+ can be chosen such thatµ̃ 6= 0. To determine the sign
of µ̃ it suffices by (3.7) and (3.8) to compute the sign of the term

H(w−, w̃+) =

∫ w̃+

w−

h(w,w−, q[w−, w̃+])dw.

For some functionW with W ′
= −σ , from (3.4), after straightforward calculations we obtain∫ w̃+

w−

h(w,w−, q[w−, w̃+])dw =
w̃+ − w−

2

(
−σ(w̃+)− σ(w−)− 2

W(w̃+)−W(w−)

w̃+ − w−

)
=:

w̃+ − w−

2
G(w−, w̃+).

To analyze the functionG(w−, ·) we compute

d

dw
G(w−, w) =

−2

(w − w−)
2

(
W(w−)−W(w)−W ′(w)(w− − w)−

1

2
W ′′(w)(w− − w)2

)

=
−1

3(w − w−)2

∫ w−

w

σ ′′(z)(w− − z)3 dz.



120 C. ROHDE

The preceding computation and the assumption thatσ ′′ vanishes only in finitely many points implies
the following. IfG(w−, ·) vanishes at̃w+ and thus we havẽµ = 0 in (3.14) there is a specific volume
w+ ∈ Sδ0 ∩ (−∞, α1) close tow̃+ with

σ(w+) < σ(w−) (3.15)

such thatG(w−, w+) does not vanish. In this degenerate case we take the new specific volumew+

(and keep it unchanged ifG(w−, ·) does not vanish at̃w+) as a new end state in (3.14). By repeating
all arguments above with the new end state and applying Theorem 3.2 we obtain a solution(µ̃, w) ∈

R \ {0} × C2(R) of (3.14).
In the final step we construct a solution of the original problem (3.5) by setting

s := sgn(µ̃)

√
σ(w−)− σ(w+)

w− − w+

, µ :=
|µ̃|

|s|
.

To fulfill the Rankine–Hugoniot conditions for the velocity components we set

v+ = v− − s(w+ − w−).

Note thatv− was given. We have proven (ii).
By construction it is clear that (i) also holds. Moreover (iii) is true since the condition (3.12)

is true forw1 = w− andw2 = w+ and implies that the associated shock wave(w0, v0)T is
undercompressive (see discussion at the end of Sect. 3.1). 2

4. The sharp-interface limit for a general Cauchy problem

In this section we do not consider special solutions of (1.5), (1.6) and the sharp-interface limit for
these solutions as in Sect. 3. Rather we consider (quite) general initial data for the Cauchy problem
(1.5), (1.6), whereσ is chosen according to Assumption 2.3(b). In this case we show that a sequence
of classical solutions for (1.5), (1.6) converges to a weak solution of (1.1) (Theorem 4.5). Even if
one cannot say anything on the structure of this weak solution the result underlines that the chosen
ε-scaling is correct and leads to a well-defined limit process. We will first collect some preliminaries
in Sect. 4.1, present the crucialε-independent estimates in Sect. 4.2, and state and prove the main
theorem in Sect. 4.3. Let us note that the analogous analysis for the local version (1.5), (1.7) has
been performed in [29].

4.1 Global existence of classical solutions for the non-local model

We consider the Cauchy problem for (1.5), (1.6). For the rest of this section we suppose that initial
data, kernel functions, and stress-strain relations are chosen according to the following assumption.

ASSUMPTION4.1 (i) The stress-strain functionσ satisfies Assumption 2.3(b) withα = 0 and
fulfills

σ ′′, σ ′′′
∈ L1(R) ∩ L∞(R), σ (0) = 0.

Moreover there are constantsa,A > 0 such that for allw ∈ R we have

a 6 σ ′(w) 6 A.



PHASE TRANSITIONS AND NON-LOCAL ENERGY 121

(ii) The interaction potentialφ in R is inC1(R) and satisfies

supp(φ) ⊂ [−1,1].

The functionφε is given by (2.5) ford = 1.
(iii) The initial functionsw0, v0 belong toC1(R) and satisfy

w0, w0x, v0 ∈ L2(R). (4.1)

A consequence of Assumption 4.1(ii),(iii) is that for allε > 0 we have the estimate∫
R
Eε[w0](x)dx < γ ‖w0‖L2(R) < ∞.

Here the mappingEε : L2(R) → L1(R) is given by

Eε[w](x) =
γ

4

∫
R
φε(x − y)(w(y)− w(x))2 dy (w ∈ L2(R), x ∈ R). (4.2)

The conditions on the stress-strain relationσ in Assumption 4.1 look quite restrictive. We have
chosen them so that the theory of compensated compactness as developed by Serre and Shearer
applies ([40]). For us the important point is thatσ is not convex. This still allows the construction
of undercompressive shock waves for the first-order system (1.1) which have physical relevance
([29]). Finally, we note that the choiceα = 0 is no restriction but only a simplification of notation.
The analysis holds for any position of the inflection point.

ForT > 0 letC2
1(R × (0, T )) denote the set of real-valued functions onR × [0, T ] such that all

spatial derivatives up to order 2 and the first-order time derivative are continuous inR×(0, T ). By a
classical solution of (1.5), (1.6) we mean a function(wε, vε)T ∈ (C2

1(R × (0, T )))2 such that (1.5)
and (1.6) hold pointwise. We need the existence of a sequence{(wε, vε)}ε>0 of classical solutions
of the Cauchy problem for (1.5) to analyze the limit behaviour asε → 0. We make the following
assumption on the existence of classical solutions.

ASSUMPTION4.2 For eachT > 0 and eachε > 0 there exists a unique classical solution
(wε, vε)T ∈ (C2

1(R × (0, T )))2 of (1.5), (1.6) with

wε, vε, wεx ∈ C([0, T ];L2(R)), wε, vε ∈ C2
1(R × (0, T )).

The classical solution satisfies, fort ∈ (0, T ],

vεx(·, t), w
ε
t (·, t), w

ε
xx(·, t) ∈ L2(R).

As a consequence of Assumption 4.2 we have fort ∈ (0, T ] the decay property

lim
|x|→∞

(|wε(x, t)| + |wεx(x, t)| + |vε(x, t)| + |vεx(x, t)|) = 0. (4.3)

Since the capillarity term in (1.5) with choice (1.8) is of first order we can absorb it into the flux
term−σ(w)x in (1.5) and obtain a problem that has formally the structure of a hyperbolic-parabolic
problem like (1.5), (1.6) withγ = 0. For the latter case the existence of classical solutions for an
initial boundary value problem under Assumption 4.1 has been proven in [25] (see also [6]). We
conjecture that this result can be extended to our case if one considers the non-local capillarity term
as a contribution to the flux. Since we are not interested in the case of positive but fixed value ofε

we do not give the proof of this statement but focus on the limit processε → 0. We note that the
existence of weak solutions for (1.5), (1.6) under Assumption 4.1 has been shown in [39].
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4.2 Estimates independent ofε

The first step towards the convergence statement is an estimate on the family{(wε, vε)}ε>0 of
classical solutions which is uniform with respect to the regularization parameterε. We obtain
this estimate only in terms of someLp-norms withp 6= ∞. For system (1.5) and also its local
counterpart, global-in-timeL∞-estimates independent ofε are not available. These have only been
derived for systems equipped with additional non-physical viscosity (see e.g. [15]).

The estimate rather exploits the properties of the physical energyH ∈ C4(R2) given by

H(w, v) =
v2

2
+W(w) (v,w ∈ R).

Here the functionW ∈ C4(R) is defined by

W(w) =

∫ w

w0

σ(w̃)dw̃ (w ∈ R),

which leads by Taylor expansion and Assumption 4.1(i) to the estimate

0<
a

2
w2 6 W(w) 6

A

2
w2 (w ∈ R).

To derive the a-priori estimate in Lemma 4.4 below we need a technical result.

LEMMA 4.3 Letw ∈ C2
1(R × (0, T )) be such that for allt ∈ (0, T ),

w(·, t), wt (·, t), wx(·, t), wxx(·, t) ∈ L2(R).

Then fort ∈ (0, T ) we have

d

dt

∫
R
Eε[w(·, t)](x)dx = −γ

∫
R

[[φε ∗ w(·, t)](x)− w(x, t)]wt (x, t)dx (4.4)

and

2
∫

R
Eε[wx(·, t)](x)dx = γ

∫
R

[[φε ∗ w(·, t)](x)− w(x, t)]wxx(x, t)dx. (4.5)

Proof. For t ∈ (0, T ) we compute

γ

4

d

dt

∫
R

∫
R
φε(x − y)(w(y, t)− w(x, t))2 dy dx

=
γ

2

∫
R

∫
R
φε(x − y)(w(y, t)− w(x, t))wt (y, t)dy dx

+
γ

2

∫
R

∫
R
φε(y − x)(w(x, t)− w(y, t))wt (x, t)dy dx

= γ

∫
R

∫
R
φε(x − y)(w(y, t)− w(x, t))wt (y, t)dy dx

= − γ

∫
R
([φε ∗ w(·, t)](x)− w(x, t))wt (x, t)dx.
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This is (4.4). Note that we used the symmetry ofφ. To derive (4.5) consider, fort ∈ (0, T ),∫
R
Eε[wx(·, t)](x)dx = −

γ

2

∫
R

∫
R
φε(x − y)(wx(x, t)wx(y, t)− w2

x(x, t))dy dx

= −
γ

2

∫
R
wx(x, t)([φε ∗ wx(·, t)](x)− wx(x, t))dx

=
γ

2

∫
R
wxx(x, t)([φε ∗ w(·, t)] − w(x, t))dx. 2

We can now proceed to verify the announcedε-independent estimate.

LEMMA 4.4 Let Assumptions 4.1 and 4.2 be satisfied. Then for allt ∈ [0, T ] we have

a

2
‖wε(·, t)‖2

L2(R) +
1

2
‖vε(·, t)‖2

L2(R) +

∫
R
Eε[wε(·, t)](x)dx + ε‖vεx‖

2
L2(R×(0,t))

6
∫

R
H(w0(x), v0(x))dx +

1

2
‖v0‖

2
L2(R) +

∫
R
Eε[w0](x)dx (4.6)

and

ε‖
√
σ ′(wε)wεx‖

2
L2(R×(0,t)) + 2γ ε

∫
R
Eε[wεx(·, t)](x)dx

6 ‖εwε0x‖
2
L2(R) +

∫
R
H(w0(x), v0(x))dx + ‖v0‖

2
L2(R) +

∫
R
Eε[w0](x)dx. (4.7)

Note that Assumption 4.1(i) implies that inequality (4.7) also gives a uniform estimate for the
termε‖wεx‖

2
L2(R×(0,t))

.

Proof of Lemma 4.4. We multiply the two equations in (1.5) by the components of

∇H(wε, vε) = (σ (wε), vε)T .

From the first equation in (1.5) we obtain, fort ∈ (0, T ),

d

dt

∫
R
H(wε(x, t), vε(x, t))dx −

∫
R
σ(wε(x, t))vεx(x, t)dx = 0. (4.8)

From (4.3) we observe thatvε(x, t) andvεx(x, t) vanish forx → ±∞ andt ∈ (0, T ). Therefore,
sincewεt = vεx , the second equation gives

d

dt

∫
R

1

2
(vε(x, t))2 dx −

∫
R
vε(x, t)(σ (wε(x, t)))x dx

= −ε

∫
R
(vεx(x, t))

2 dx + γ

∫
R
wεt (x, t)([φε ∗ wε(·, t)](x)− wε(x, t))dx.

Due to Assumption 4.2 we can apply Lemma 4.3 forwε and conclude

1

2

d

dt
‖vε(·, t)‖2

L2(R) −

∫
R
vε(x, t)(σ (wε(x, t)))x dx

= −ε

∫
R
(vεx(x, t))

2 dx −
d

dt

∫
R
Eε[wε(·, t)](x)dx. (4.9)



124 C. ROHDE

We add up (4.8) and (4.9) and get after integration with respect tot the estimate (4.6) from the decay
properties (4.3) ofvε, wε and Assumption 4.1(i).

To prove (4.7) we multiply the second equation in (1.5) byεwεx , and usingwεt = vεx after
integration with respect to time and space we get

ε

∫ T

0

∫
R
wεx(x, t)v

ε
t (x, t)dx dt − ε

∫ T

0

∫
R
(wεx(x, t))

2σ ′(w(x, t))dx dt

= ε2
∫ T

0

∫
R
wεx(x, t)w

ε
xt (x, t)dx dt − γ ε

∫ T

0

∫
R
wεx(x, t)([φε ∗ wεx(·, t)](x)− wεx(x, t))dx dt.

This is equivalent to

ε

[ ∫
R
wεx(x, t)v

ε(x, t)dx

]T
0

− ε

∫ T

0

∫
R
vεxx(x, t)v

ε(x, t)dx dt

− ε

∫ T

0

∫
R
(wεx(x, t))

2σ ′(w(x, t))dx dt

=
ε2

2

∫ T

0

∫
R

d

dt
(wεx(x, t))

2 dx dt + 2γ ε
∫ T

0

∫
R
Eε[wεx(·, t)](x)dx dt.

Note that we used Lemma 4.3 again. We rearrange the terms in the last equation and arrive at

2γ ε
∫ T

0

∫
R
Eε[wεx(·, t)](x)dx dt + ε

∫ T

0

∫
R
(wεx(x, t))

2σ ′(wε(x, t))dx dt

= ε

∫
R
wεx(x, T )v

ε(x, T )dx − ε

∫
R
w0x(x)v0(x)dx

+ ε

∫ T

0

∫
R
(vεx(x, t))

2 dx dt −
ε2

2

∫
R
(wεx(x, T ))

2 dx +
ε2

2

∫
R
(w0x(x))

2 dx

6
ε2

2

∫
R
(wεx(x, T ))

2 dx +
1

2

∫
R
(vε(x, T ))2 dx +

ε2

2

∫
R
(w0x(x))

2 dx +
1

2

∫
R
(v0(x))

2 dx

+ ε‖vεx‖
2
L2(R×(0,T )) −

ε2

2

∫
R
(wεx(x, T ))

2 dx +
ε2

2

∫
R
(w0x(x))

2 dx

6 ‖εw0x‖
2
L2(R) +

∫
R
H(w0(x), v0(x))dx + ‖v0‖

2
L2(R) +

∫
R
Eε[w0](x)dx.

This is (4.7). Note that we used (4.6) for the last estimate. 2

4.3 The limit process of vanishing dissipation

To let ε → 0 in (1.5), (1.6) we use the framework of compensated compactness. Since we have
only Lp-estimates from Lemma 4.4 and moreoverσ is not convex but has a (single) inflection
point we cannot use the standard version due to DiPerna but rely on the extensions by Shearer and
Serre ([41, 40]).
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THEOREM 4.5 Let Assumptions 4.1 and 4.2 be satisfied. Then there exists a subsequence
{(wεk , vεk )T }k∈N of the family {(wε, vε)T }ε>0 of classical solutions of (1.5), (1.6) and a function
(w, v)T ∈ L2(R × (0, T ))× L2(R × (0, T )) such that

(i) the subsequence converges ask → ∞ to (w, v)T in (Lqloc(R × (0, T )))2, q ∈ [1,2),
(ii) (w, v)T is a weak solution of (1.1), i.e.,∫ T

0

∫
R

((
w(x, t)

v(x, t)

)
ψt (x, t)−

(
v(x, t)

σ (w(x, t))

)
ψx(x, t)

)
dx dt = 0 (4.10)

for all ψ ∈ C∞

0 (R × (0, T )).

Before we can present the proof of Theorem 4.5 we need the following lemma.

LEMMA 4.6 Let the assumptions of Theorem 4.5 be valid. Then there exists a constantC > 0
independent ofε such that

‖φε ∗ wε − wε‖L2(R×(0,T )) 6 Cε‖wεx‖L2(R×(0,T )).

Proof. Let (x, t) ∈ R × (0, T ) be arbitrary but fixed. SetBε(x) = {y ∈ R | |x − y| 6 ε}. We define
I : R × (0, T ) → R by

I (x, t) = [φε ∗ wε(·, t)](x)− wε(x, t) =

∫
R
φε(x − y)(wε(x, t)− wε(y, t))dy.

Assumption 4.1(ii) and the Morrey-type inequality (see Sect. 5.6.2 of [18])

|w(x)− w(y)| 6 C1
√
ε

( ∫ x+2ε

x−2ε
|wx(z)|

2 dz

)1/2

(x ∈ R, y ∈ Bε(x), w ∈ C1(R))

show that the following estimate holds:

|I (x, t)| 6
∫
Bε(x)

φε(x − y)|(wε(x, t)− wε(y, t))| dy

6 C1
√
ε

∫
Bε(x)

φε(x − y)

( ∫ x+2ε

x−2ε
|wεx(z, t)|

2 dz

)1/2

dy

= C1
√
ε

( ∫ x+2ε

x−2ε
|wεx(z, t)|

2 dz

)1/2

.

Now we integrate|I (x, t)|2 with respect to space and obtain, with the substitutionz = x +
4ε
π

arctan(z̃),∫
R

|I (x, t)|2 dx = C1ε

∫
R

( ∫ x+2ε

x−2ε
|wεx(z, t)|

2 dz

)
dx

= C1ε

∫
R

( ∫
R

∣∣∣∣wεx(x +
4ε

π
arctan(z̃), t

)∣∣∣∣2 dx

)
4ε

π

1

1 + z̃2
dz̃

= C1
4ε2

π

∫
R

( ∫
R

|wεx(x, t)|
2 dx

)
1

1 + z̃2
dz̃

6 C2ε
2
‖wεx(·, t)‖

2
L2(R).

Integration with respect to time yields the statement of the lemma. 2
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Proof of Theorem 4.5. From Lemma 4.4 we know that the family{(wε, vε)T }ε>0 of classical
solutions of (1.5), (1.6) is in particular uniformly bounded inL2(R × (0, T ))×L2(R × (0, T )). We
shall now show that the inclusion

η(wε, vε)t + q(wε, vε)x ⊂ compact set inW−1,2(Q) + bounded set inM(Q) (4.11)

holds for all open bounded setsQ ⊂ R × (0, T ) and two special entropy pairs(η, q) ∈ C2(R2,R2)

for (1.1) that have been constructed in [41]. ByM(Q) we have denoted the space of Radon
measures onQ. Then the Lemma of Murat ([36]) and the theorem of Shearer and Serre (see [35]
for instance) apply, and statement (i) follows.

We have to establish (4.11). We do not give the exact formulae for the Shearer entropies which
can be found in [41]. For our purposes it suffices to note that there is a constantC > 0 such that the
entropies of a Shearer entropy pair(η, q) satisfy the estimates

‖ηw/
√
σ ′‖L∞(R2) + ‖ηv‖L∞(R2) + ‖ηwv/

√
σ ′‖L∞(R2) + ‖ηww/σ

′
‖L∞(R2) + ‖ηvv‖L∞(R2) < C.

(4.12)
Let such an entropy pair be given. From (1.5) we compute

η(wε, vε)t + q(wε, vε)x = εηv(w
ε, vε)vεxx + γ ηv(w

ε, vε)(φε ∗ wε − wε)x

=: I ε1 + I ε2 .

Let θ ∈ W
1,2
0 (Q) andψ ∈ C∞

0 (Q). We start with the termI ε1 which we rewrite in the form

I ε1 = εη(wε, vε)xx − ε(wε, vε)∇2η(wε, vε)(wε, vε)T − εηw(w
ε, vε)wεxx

=: I ε11 + I ε12 + I ε13.

The terms can be treated exactly as in [41], and using (4.12) one obtains, for someε-independent
constantC12 > 0,

lim
ε→0

|〈I ε11, θ〉| = 0, |〈I ε12, ψ〉| 6 C12‖ψ‖L∞(Q). (4.13)

To work out the termI ε13 we take into account the splitting

I ε13 = ε(ηw(w
ε, vε)wεx)x − ε∇ηw(w

ε, vε) · (wεx, v
ε
x)
Twεx =: I ε131 + I ε132

and compute, with (4.12) and Lemma 4.4,

|〈I ε131, θ〉| = ε

∣∣∣∣ ∫
Q

ηw(w
ε(x, t), vε(x, t))wεx(x, t)θx(x, t)dx dt

∣∣∣∣
= εC131‖

√
σ ′(wε)wεx‖L2(Q)‖θ‖W1,2(Q) → 0 (ε → 0). (4.14)

Furthermore, forI ε132 we estimate

|〈I ε132, ψ〉| = ε

∣∣∣∣ ∫
Q

(ηww(w
ε(x, t), vε(x, t))wεx(x, t)

+ ηvw(w
ε(x, t), vε(x, t))vεx(x, t)w

ε
x(x, t))ψ(x, t)dx dt

∣∣∣∣
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6 C132ε

∣∣∣∣ ∫
Q

(2σ ′(wε(x, t))(wεx(x, t))
2
+ vεx(x, t))dx dt

∣∣∣∣
6 C132ε(‖

√
σ ′(wε)wεx‖

2
L2(Q)

+ ‖vεx‖
2
L2(Q)

)‖ψ‖L∞(Q)

6 C132‖ψ‖L∞(Q). (4.15)

We proceed withI ε2 which we split up according to

I ε2 = γ∇η(wε, vε) ·

(
0

φε ∗ wε − wε

)
x

− γ∇
2η(wε, vε)

(
wεx
vεx

)
·

(
0

φε ∗ wε − wε

)
=: I ε21 + I ε22.

Here∇
2η is the Hessian matrix of the entropyη. Using Lemma 4.6 and again (4.12), Lemma 4.4

leads to

|〈I ε21, θ〉| = γ

∣∣∣∣ ∫
Q

ηv(w
ε(x, t), vε(x, t))([φε ∗ wε(·, t)](x)− wε(x, t))θx(x, t)dx dt

∣∣∣∣
6 C21γ ‖φε ∗ wε − wε‖L2(Q)‖θ‖W1,2(Q) → 0 (ε → 0) (4.16)

and

|〈I ε22, ψ〉| = γ

∣∣∣∣ ∫
Q

ηwv(w
ε(x, t), vε(x, t))wεx(x, t)([φε ∗ wε(·, t)](x)− wε(x, t))ψ(x, t)dx dt

∣∣∣∣
+ γ

∣∣∣∣ ∫
Q

ηvv(w
ε(x, t), vε(x, t))vεx(x, t)([φε ∗ wε(·, t)](x)− wε(x, t))ψ(x, t)dx dt

∣∣∣∣
6 C22γ (‖

√
σ ′(wε)wεx‖L2(Q) + ‖vεx‖L2(Q))‖φε ∗ wε − wε‖L2(Q)‖ψ‖L∞(Q)

6 C22γ ‖ψ‖L∞(Q). (4.17)

Collecting the results from (4.13)–(4.17) we observe that (4.11) holds.
We proceed to statement (ii). Since the elements of the converging subsequence

{(wεk , vεk )T }k∈N are classical solutions of (1.5), (1.6), fork ∈ N and for allψ ∈ C∞

0 (R × (0, T ))
we have∫ T

0

∫
R

((
wεk (x, t)

vεk (x, t)

)
ψt (x, t)−

(
vεk (x, t)

σ (wεk (x, t))

)
ψx(x, t)

)
dx dt

= −

∫ T

0

∫
R

(
0

εkv
εk (x, t)

)
ψxx(x, t)dx dt

−γ

∫ T

0

∫
R

(
0

[φεk ∗ wεk (·, t)](x)− wεk (x, t)

)
ψx(x, t)dx dt. (4.18)

Since all expressions on the left-hand side of (4.18) are globally Lipschitz-continuous invεk and
wεk (recall Assumption 4.1(i) forσ ) the convergence of{(wεk , vεk )T }k∈N in (Lqloc(R × (0, T )))2,
q < 2, implies convergence to the left-hand side of (4.10). The same argument shows that the first
term on the right-hand side of (4.18) vanishes asεk → 0. Finally, the last term on the right-hand
side of (4.18) vanishes due to Lemmas 4.6 and 4.4. 2
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