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The N-membranes problem for quasilinear degenerate systems

AssISAZEVEDO!

Department of Mathematics, University of Minho,
Campus de Gualtar, 4710-057 Braga, Portugal

JOSE-FRANCISCO RODRIGUESF

CMUC/University of Coimbra & University of Lisbon/CMAF,
Av. Prof. Gama Pinto, 2, 1649-003 Lisbon, Portugal

AND

LISA SANTOS®

CMAF/University of Lisbon & Department of Mathematics, University of Minho,
Campus de Gualtar, 4710-057 Braga, Portugal

[Received 20 December 2004 and in revised form 2 June 2005]

We study the regularity of the solution of the variational inequality for the probleN-ofembranes

in equilibrium with a degenerate operator pfLaplacian type, 1< p < oo, for which we obtain

the corresponding Lewy—Stampacchia inequalities. By considering the problem as a system coupled
through the characteristic functions of the sets where at least two membranes are in contact, we
analyze the stability of the coincidence sets.

1. Introduction

In an open bounded subs@tof R?, d > 1, we consider the quasi-linear operator
Av=—V-.a(x,Vv) in2'(R),

wherea : 2 x R? — R4 is a CaratBodory function, and th&-membranes probletthat consists
in finding (u1, ..., uy) € Ky satisfying

N N
Z/ a(x, Vu;) - V(v —u;) = Z/ fitvi—up), Vi, ...,vy) € Ky. 1)
i—17/% i=17%

HereKy is the convex subset of the Sobolev spadé-P (2)]", 1 < p < oo, defined by

Ky = {1 ..., o8) € [WEP @)1V tv1 > -+ > oy ae. ing2,
1 .
vi—@p e WyP(R),i=1...,N}, (2
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320 A. AZEVEDO ET AL.
wheregs, ..., oy € WP (£2) are given and such th&y # @. For instance, if2 € C%lis a
Lipschitz boundary, it suffices to assume, in the trace sense, that
Y12+ 2 @N 0ONIS2.
In (@) we shall assume that
fuoo v eLI@) c W (@) 3)

where W17 (£2) denotes the dual space Wg’p(Q), so thatp’ = p/(p — 1) is the conjugate
exponent ofp and, by Sobolev imbeddingg, = 1if p > d,q > 1if p = d, andg =
dp/dp+p—-d)ifl <p<d.

Under the following assumptions for axee 2 andg, n € R?:

a(x,§)-§ 2 algl’, 1<p<oo, (4)
la(x, £)| < BIEIPTL, 5)
[a(xvé) _a(xv 77)] : (S - 77) >0 Ifé 75 7, (6)

for given constantg, 8 > 0, the general theory of variational inequalities for strictly monotone
operators (see [17].[13]) immediately yields the existence and uniqueness of solutionNe the
membranes probler](1).

If we choose the minimization functional

N 1
E(u, ..., = —|Vu;|? — fiu;
U1, ..., uy) ;/Q[p| ;| fu]

in the convex set of admissible displacements giver[by (2) as a model fav¥-thembranes in
equilibrium, each one under the action of the forgeand attached to rigid supports at height
we obtain the variational inequality](1) associated with phieaplacian

Av=—A=—-V-(|Vu|P"2Vp), 1< p<oo.

The N-membranes problem was considered [ih [6] for linear elliptic operators, where for
differentiable coefficients the regularity of the solution in Sobolev sp&zé$ ($2) was shown
for p > 2 (hence also it>*(2) for0 < A = 1 — d/p < 1) extending earlier results df [26] for
the two-membranes problem. Noting the analogy (and relation) with the one-obstacle problem, it
was observed in those problems that€tferegularity of the solution cannot be expected in general,
even for very smooth data.

Considering the analogy of the two- and three-membranes problem with the one- and two-
obstacles problems respectively,lin [1] we have shown the Lewy—Stampacchia type inequalities

i N
Nfi<au<\/f aein@ i=1...N, (7)
j=1 =i

for general second order linear elliptic operators with measurable coefficients, and in the cases
N = 2 andN = 3 we have established sufficient conditions on the external forces for the stability
of the coincidence sets

xe uyx)=ujp1(x)}, j=1...,N-1, (8)

where two consecutive membranes touch each other.
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In (7) we use the notation

k k
VéE=av-vE=supé,....& and A& =& A& =infE, ... &)
i=1

i=1

and we also writé™ = £ v 0andé~ = —(£ A 0).
In order to prove[(7) we shall approximate, in Secf{i¢n 2, the solutiqn. .., uy) of (1) by
solutions(u{, ..., u%,) of a suitable system of Dirichlet problems for the operatoassociated

to a particular new monotone perturbation that extends the bounded penalizatior,-a8, of
obstacle problems (sele [13] or [22] and their references). Under the further assumptions of strong
monotonicity of the vector field (x, &) with respect t&, i.e., for somex > 0,

alg —nl? if p>2
[a(-xv g) - a(x, )7)] ° (5 - ’7) 2 (9)
a(El+n)P21E —n2 ifl<p<2,

we are able to establish that the error of the approximating solutions i #h&($2)-norm is of
orders¥? if p > 2, and of ordee/2if 1 < p < 2, with a constant that depends only®n- 0 and
on theL?-norms off1, ..., fn. This type of estimate that appearslin!/[23] for the obstacle problem
in casep > 2 seems new for k& p < 2.

The inequalities[(7) are a consequence of the fact that gaglis anL? function and we can
regardu; andu y as solutions of one-obstacle problems and all the other < i < N, as solutions
of two-obstacles problems, to which we can apply the well-known Lewy—Stampacchia inequalities
(see, for instance [22], [25], [23] or [20] and their references). Another important consequence of
these properties is the reduction of the regularity of the solution oMteembranes problem to
the regularity of each equation

Au; =h; a.e.inf,i=1...,N. (20)

Therefore, in Sectiofi|3, we conclude from the well-known properties of weak solutions of
quasilinear elliptic equations (see [14] ahd|[18]) that the solutigrase in fact Hlder continuous,
providedg > d/p in (@), or have Hlder continuous gradient (se€€ [8])jf> dp/(p — 1) and the
operatorA has the stronger structural properties, for a.e. $2,

d
da; _
D 5o mEg > aolnl” 2R, (11)
ij=1°M
da; p—2 da; p—1
—(x, )| < aln| and |—(x,n)| < aaln| 12)
an; 9x;
for some positive constanis, o1 and ally € R? \ {0}, € e R’ and alli, j = 1,...,d. We even
conclude that foreach=1,..., N,

u; € CO’)‘(E) or u;e Cl”\(ﬁ),

provided the Dirichlet data; andd$2 have the required regularity (see Secfipn 3).
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Finally, in Sectiof ## we study the stability of the coincidence $éts (8) in terms of the convergence
of their characteristic functions. For this purpose, we define, forazes2 and for 1< j < k < N,
the following N (N — 1)/2 coincidence sets:

Li={xe:ujx)=" - =u(x)} (13)
and notice that the sets defined[lp (8) are simply, 1. Moreover,l; y = I; jy1N--- N I_14. Set

1 ifuj(x) = =ur(x),

0 otherwise (14)

Xj k() = x1;,(x) = {

In [I] we have shown that the solutians, u, u3) of (1)) for N = 3 with a linear operator in
fact satisfies, a.e. if2,

Aur= fi+ 3(fo— fx12 + §2f3— f2— fOx13.
Auz = fo— 3(fo— fox2 + 3(f3— f2Dx23 + 2f2— f1— fa)xis, (15)
Auz = f3 — 3 fa— fIxes+ E2A— f2— fxLa.

which extends the remark of [27] for the ca¥e= 2 that corresponds to the first two equations of
(I35) with x2,3 = 0 (and consequently alsg 3 = 0). As

fi# fo ae.in

is a sufficient condition for the convergence of the unique coincidencé, sein caseN = 2,
additionally

f2#fz fi# f2-12-f3’ f3# fl;fz

in caseN = 3 are sufficient conditions for the convergence of the three coincidencé sets 3
and 1 3, with respect to the perturbation of the forcés f2, f3 (seel[1] for a direct proof).

In Section[# we extend the systefn |(15) to arbitrafyby showing that, for given forces
(f1, ..., fn) the solution(uy, ..., uy) of (@) solves a system of the form

a.e. in§2

Au; = fi + > b/ flxx  aein@, i=1,...,N, (16)
1<j<k<N, j<i<k

where eachb{"k[f] represents a certain linear combination of the forces.
We denote the average ¢f, ..., fi by

St +h .
=t 1<j<k<N, 17
<f>],k k—j+1 J ( )
and we shall establish that
(Frij #{(flj+re ae.in, foralli, j,ke{l,...,N}withi < j <k, (18)

is a sufficient condition for the stability of the coincidence dgjsin the N-membranes problem.
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2. Approximation by bounded penalization

In this section we approximate the variational inequality using bounded penalization. Defining

Sito-+fi .
&o max{ ; i , , s (19)
& =ik—(fa+---+fi) fori=1...,N,
we observe that
& =20 ifi >1, (20)
Ea—-&-2-GE-&D)=fi—fi-x fiz=2
Fore > 0, letd, be defined as follows:
L 0 if s >0,
0 : R—>R, s> 1{s/e if—e<s<0, (21)
-1 ifs < —s.
The approximate problem is given by the system
Au? + gies(”f - ”?4_1) - Ei—les(“?_l - ”,8) = fi ing, 22)
“fw(z:@i’ i=1...,N,
with the conventiong = +o0, ujy  , = —oo.
PrROPOSITION2.1 If the operatorA satisfies the assumptior]s (4)}-(6), then problen (22) has a
unique solution(ug, ..., ufy) € [WLP()]V. This solution satisfies
u; <ui_;+e fori=2,...,N. (23)

Proof. Existence and uniqueness of solution of problgnj (22) is an immediate consequence of the
theory of strictly monotone and coercive operators (seke [17]). In fact, if we su #guations of
the system, each one multiplied by a test functignthen problem[(22) implies that

N N
Z/ (Auf, w;) + (Bu®, w) =Z/ fiwi,  Yw= (w1, ..., wy) € [WEP@E]V,
=14 =17
where
N
(Bv, w) = Z fQ(EiQs(vi —Vi41) — &i-10:(vi—1 — v))w;
i=1

with the same conventiory = 400, vy +1 = —o0, satisfies

(Bv — Bw, v — w)
N—1
= Z /Q“;:i (O (vi — vig1) — O (w;j — wi+1)((v; —vip1) — (w; —wiy1) 20,  (24)
i=1

since¢; > 0fori = 1,..., N andé, is nondecreasing.
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To prove ), multiplying theé-th equation of) byut —uf_; — )™ and integrating o2,
noticing that(uf — uf_; — zs)l“gQ = 0 we obtain

/Q Aub e —uf_y—e)t = /Q[f,- — &0 (uf — uf q) +E—10: (u_y — ud)](uf —ui_y —e)*
= [ U= 00 =) — el g = o)

sincede (uf_q —ui) (uj —ui_;—e)* = —(uj —u;_,—e)*. In particular, becaust (u; —uf, ;) > -1,
we have

/ Auf(ui —ui_y —e)" < / [fi +& — &2l —uf_; —o)". (25)
2 2

With similar arguments, if we multiply, far > 2, the(i — 1)-th equation of|(2R) byu; —uf_; —&)*
and integrate o2 we obtain

[ s —uis =t > [t b -sedel -0t (@)
From inequalitieg (25) anfl (P6) we have, using (20),
/Q(a(x, Vub) —a(x, Vui_y) - Vs —uf | —e)t = /Q (Auf — Auf_q) uf —uf_y — )"
< fﬂ[fi —firr+ & — &) - G1— &2 —uj_;—e)T =0.

From the strict monotonicity [6) af, it follows thatu; < u;_; + ¢ a.e. ing2. O

PROPOSITION2.2 If (uf, ..., u}) and(u, ..., uy) are the solutions of problems (22) and (1)
respectively then

W, ... ufy) = (u1,...,uy) in[WtP(2)]¥-weak as — 0.

Proof. Multiplying the i-th equation of[(2R) bw; — uf, where (v, ..., vy) € Ky andu® =
(ui, ..., uly), integrating over2 and summing, we obtain

N N
Z/ a(x,Vui) - V(v; —uf) + (Bu®, v —u®) = Z/ fitvi —uf).
i=1 Q2 i=1 2

Noticing that(Bv, v — u®) = 0 and due to the monotonicity of the operatproved in [(24),

N N
Z/ a(x,w;?)-vw,-—uf»Z/ fiwi —uf) (27)
=17 =17

and using[(p) we conclude that

N N
Z/ a(x, V) - V(v —uf) > Z/ fii = uf). (28)
=174 i=17%
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From [4) and[(5) we easily deduce the uniform boundednea . .., u$)}e in [W7(2)]".
So, there existéu, ..., u%) € [W17(£2)]V such that

W, ... uly) = (i, ....uky) in[WiP(2)]V-weak ag — O,

and lettinge — 0 in (28) we obtain

N N
Z/ a(x, V) - V(v —uf) > Z/ fitvi —uf), Y(vi,...,vy) € K
i=17% i=17%

Furthermore, by|(23)] > --- > u;. Since we also have;"lm =g fori =1,...,N,it
follows that(uj, ..., uy) € Ky. The hemicontinuity of the operater allows us to conclude that
(uj,...,uy) actually solves the variational inequaligi] (1) and the uniqueness of solution of the

variational inequality implies that! = u;,i =1,..., N. O

We now present two lemmas that will be used to prove the next theorem. The first lemma states that,
under certain circumstances, weak convergence implies strong convergence. The second lemma is
a reverse ldlder inequality.

LEMMA 2.3 ([5, p. 190]) Under the assumptiop$ (#]-(6), wken 0, if

W —u—0 inWyTR) (29)

and
/Q[a(x, Vi) — alx, V)] - V' —u) — 0 (30)

then
u® —u—0 in Wol’p(fz)-strong O

LEMMA 2.4 ([24,p.8]) LetO< r < 1l andr’ = r/(r —1). If F € L"(2), FG € LY(£2) and
[o1G(x)|" dx < oo in a bounded domaire of R?, then

1/r , -1/r
(/ [F ol dx) < (/ |F(x)G(x)|dx></ |G ()l dx> . (31)
2 2 2

THEOREM2.5 Let(ui,...,u%)and(uy, ..., uy) denote, respectively, the solutions of problems
(22) and[(1). Under the assumptiop} (f}—(6):
() @, ....u%) > (u1,...,uy)in [WHP(2)]V ase — 0.

(if) If, in addition, a is strongly monotone, i.e., satisfi¢s$ (9), then there exists a positive cogstant
independent of, such that, forall =1,..., N,

celr if p>2,

& u; p < .
V(@i —u)lLre) < {Cel/z it1<p<2
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Proof. (i) Choose, fori = 1,...,N,v; = \/,’{V:i ug in @) Indeed, since;_1 > v; a.e. ins2 and
—g € Wol’p(.Q), we have(vy, ..., vy) € Ky and

N

N N N
2 f v S(V i) > 32 [ (V)

=

So,
N N
;/Qa(x,Vui)-V(uf—u,) ;/Qf,(u
N N N
+;/ a(x, Vu;) - V( \/ui)+Z/ﬂfl(\/ui—uf)

198 k=i i=1

On the other hand, by (7),

N N
,Vuby - Vui —u;) < (Ui — u;
l:Zl/Qg(x u;) (u; —u;) ;/Qf(u u;)

and we conclude that

N
Z/ [a(x, Vui) —a(x, Vu)] - V(ui — u;)
_1J82

N

<éf:2a(x,Vui)-V(gui—u?) lngﬁ(\/“k—“f)

N N
= Z (Au; — f7) \/u,‘i —u). (32)
l=l‘/‘;2 (k:i l>
Here we have used the fact thét; € L9(2) fori =1, ..., N, since we know that

fi —&i1 < Auj = —§0:(uf —uj ) + & 10:(ui_q —ui) + fi < fi + &,
by (22) and-1 < 6, < 0.

Noticing that, from|[(2B),
N
0< \ug —uf <uf + (N —i+De—uf <(N—i+De (33)
it is immediate to conclude that

N
< Z [a(x, Vul) — a(x, Vui)] - V(ué —u;) < Ce, (34)
— _Q 1 1

and, since[(29) andl (B0) hold, Lemfna]2.3 shows that for eaeh, ..., N

uf — u; in WhP(2) ase — 0.
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(if) From (34) and using the strong monotonicityaffor p > 2 we have

N N
a;fg V(@i —up)|? < ;/ﬂ[a(x, Vué) — a(x, Vuy)] - V(ué —u;) < Ce.

Letnow 1< p < 2. Using also the strong monotonicity @fand [34), we obtain
N
aZ/ (VU |+ [Vui D72V (uf — ui)|?
—Je

N
<Y latx, Vub) —alx, Vup)] - Vb —u;) < Ce. (35)
— Q 1 1

Let2; = {x € 2 : [Vui| + |Vu;| # 0}. We may use the reverse inequal(31) with= p/2,
noticing that 0< r < 1 andr’ = p/(p —2), settingF = |V(u{ — u)|?andG = (IVuf| +
|Vu;|)?=2. Then we obtain, for = 1, ..., N,

2/p
(/ IV (uf —Lt[)|p) dx
£2;
2-p)/p
< (/9 IV (ué — u)2(|Vul| + |w,»|)1’—2dx)(/é (IVui| + |Vu; )P dx) .

Since by[(3b),
1
f IV (@f = up) P(Vu| + Vi )P 2 dx < =Ce,
N .

£2;
and
@2-p)/p
iM, >0: </ (|Vuf|+|Vu,-|)”dx> < My,
£2;
the conclusion follows immediately by summing tNeinequalities above. |

3. Lewy—Stampacchia inequalities and regularity

As a consequence of the approximation by bounded penalization we already knotuthat
L1(2),i = 1,..., N, and so we can use the analogy with the obstacle problem to show further
regularity of the solution; .

In [15] Lewy and Stampacchia have shown that the solution of the obstacle problem for the
Laplacian satisfies a dual inequality, which in fact holds in more general cases, as observed in
[10] or [4] for nonlinear operators. Summarizing the known results for the one- and two-obstacles
problem that we shall apply to tié-membranes problem, the following theorem may be proved as
in [22] or [20].

THEOREM3.1 Giveng, v, ¥o € WLP(2) (1 < p < o0), with f, (Ay» — f)* and
(Ay1— )7 InL1(2) C w-Lr'(2) (g=1lifp>d,q>1lif p=d,andg =dp/(dp + p — d)
if 1 < p < d) such that

KiP={ve WhP(2):y1>v > ypae.inR,v—ge Wy (2)) #4, (36)
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the unique solutiom € Kgg to the variational inequality

/ a(x, Vu) - V(v — u) >/ fo—u), VveKJ (37)
Q Q
under the assumptior|s| (4)}-(6) satisfies the Lewy—Stampacchia inequality

fAAYL <Au< fV Ay, ae.inf. (38)

REMARK 3.2 Settingé, = (Ay1— f)~ and& = (Ay> — f)* and using the penalization
functiond, of the previous section we may approachs as 0, the solution of{(37) by the solutions
u® of the equation

Au® +E20,(u® — Y2) — E10: (Y1 —uf) = f In 2 (39)
with the Dirichlet boundary condition® = ¢ ond$2. Noting that
FAAYL = f—(Ay1—f)" and fVAY2 = f+ (Aya— )T

we easily deducé (38) from the analogous inequalities that are satisfied far®each

REMARK 3.3 Theorenj 311, although stated for the two-obstacles problem, also contains the case
of only one obstacle. Indeed, by takigg = +oo, (37) is a lower obstacle problem afd](38) reads

f<Au< fVv Ay foru > yp, a.e.ing, (40)
and by takingy, = —oo, (37) is an upper obstacle problem for whiEh](38) reads
fAAY1 < Au < f foru <y, a.e.ing. (42)

REMARK 3.4 In [20], for more general operators and under a strong monotonicity assumption of
the type[(®), which however is not necessary in our Theprem 3.1, it was shown that the inequalities of
(39) still hold independently of one another in the duality sense, provided— f and/orAy, — f
areinV’ = [W=2r' ()]t — [W=2P'(2)]*, i.e., in the ordered dual spaceWf” (£2).

THEOREM 3.5 The solution(uy, ..., uy) of the N-membranes problem, under the assumptions
(@)—(8), satisfies the following Lewy—Stampacchia type inequalities:

fi<Aur < fav---Vfy
AN <Auy < fov---V fa

: a.e.ing2. (42)
fin--Afv-1 < Aun-1 < fy-1V fN
fin--nfy<Auny < fy
Proof. Observe that choosin@, uo, ..., uy) € Ky, with v € K,,, we see that; € K,, (asin

(38) with 1 = +00) solves the variational inequality (37) with= 1, and so by[(40) we have

fi<Aui1 < fiv Auz a.e.ing.
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Analogously, we see that; < K, solves the two-obstacles proble@(37) with="f;,

Ujt1

j=2,...,N —1,and satisfies, by (88),
finAuj_1 < Auj < fj vV Aujy1 a.e.ing2.
Sinceuy € K"¥-1, by (41), also satisfies
InANAun_1 < Auy < fy a.e.ing,

(42) is easily obtained by simple iteration. O

For p > d, the Sobolev inclusionV 1?7 (2) c C%*(£2)for0 < » = 1 —d/p < 1 immediately
implies the Hdlder continuity of the solutiong; of the N-membranes problem; however, this
property still holds for 1< p < d by using the fact that eachu; is in the samd.?(£2) as the
forcesf;,i =1,..., N. So under the classical assumptions of [14] (see aldo [18]) we may state for
completeness the following regularity result.

COROLLARY 3.6 Under the assumptiorjd (3)}H(6) foxlp < d with g > d/p in (3), the solution
(u1, - .., uy) of (@) is such that

u; € CO*(2) forsomeO<i<1,i=1,...,N,

and is also inC%*(2) if, in addition, eachy; € C%*(32) and 32 is smooth, for instance, of
classc01, O

REMARK 3.7 The above classical result for equations was also shown to hold for the one-obstacle
problem, for instance, in_[7] and_[19], and for the two-obstacles problems_in [12], under more
general assumptions on the data. It would be interesting to obtain dgfdeHcontinuity of the
solution of @) directly under the classical and more general assumptions thaf éachw —14 (£2)

fors >d/(p —1).

A more interesting regularity is thedttler continuity of the gradient of the solution, by analogy
with the results for solutions of degenerate elliptic equations. For instance, as a consequence of the
inequalities) and the results of [8] on thé* local regularity of weak solutions, as well as on
the regularity up to the boundary in [16], we may also state the following results.

COROLLARY 3.8 Under the stronger differentiability propertigs|(1[L),| (12),if (3) holds with
dp/(p — 1), then the solutioriuy, . .., uy) of (1) is such that

ui € CY*(2) forsomeO<i<1,i=1,...,N,

and is also inCY*(£2) if, in addition, eachy; € C17(882) for somey (A < y < 1), andf; e
L>®(2)foralli=1,...,N. O

REMARK 3.9 Additional regularity can be obtained fprLaplacian type operators. For instance,
as a consequence of recent results[of [9], for> 2, in a convex polyhedral domain with
@i =0andf, e wr=2/r-P(22), we could obtain solutions in the fractional order Sobolev spaces
wit2/r—er () forall e > 0.

Another example for thep-Laplacian is provided by the results ofl [2], for 2-dimensional
domains § = 2), with 82 of classC?, in the case 1< p < 2: the solutions are itH2(2) =
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W22(2) if fi € L1(2),q > 2, andy; € H?(2). These regularity results may be important

in finite element approximations of th&-membranes problem for degenerate systems (see, for
instance,[[3]). To our knowledge that extension has not yet been considered in the literature for the
N-membranes problem.

For differentiable strongly coercive vector fields satisfying the assumptjions [11), (12), with
p = 2, there is no degeneration of the operatoand stronger regularity iW=*(£2) may be
obtained also from the fact thdt (42) holds for the solution of Ahenembranes problem. For
instance, as in Theorem 3.3 0f [13, p. 114] (see also [22, Remark 4.5, p. 244]), we can prove the
following result.

COROLLARY 3.10 Let [11),[(1P) hold fop = 2, suppos@2 € C 1t and f; € L®(£2), ¢; €
w2 @)foralli =1,..., N. Then the solutiofiu, . .., uy) of @) is such that

uie W@2)nctr(@2), i=1,...,N, forall1<s <ocoand0<y < 1. (43)

REMARK 3.11 ForN linear operators of the form
d
af(x.&) =Y aE, k=1....N,
j=1

the regularity[(4B) was shown inl[6] for evesy> 2 and, for the same operators with lower order
terms in[1] fors > 1if d = 2, and fors > 2d/(d + 2) if d > 3. For the case of two membranes
with linear operators, earlier results [n [26] were shown by using similar regularity results for the
one-obstacle problem. In spite of this analogy, the opti#&P° regularity of solutions to obstacle
problems is an open problem for themembranes system.

REMARK 3.12 In the case of two membranes with constant mean curvature, i.e., Avisethe
minimal surface operator ang and f> are constants in a smooth domain with mean curvatijkg

of 382 greater than or equal tg1| Vv | f2]/(d — 1), in [27] the existence of a unique solution with
the regularity[(4B) was shown. Thé-membranes problem for the minimal surface operator is, in
general, an open problem.

4. Convergence of coincidence sets

In this section we prove that, {7, ..., u’) is the solution of thev-membranes problem, under
the assumptionﬂ4B(6) with given datg’, ..., fy), n € N, and if (f]', ..., fy) converges in
[L9(SD]V to (f1, ..., fv), we have the stability result ib* (£2), 1 < s < oo, for the corresponding
coincidence sets:

X ==} —> Xfux=-=ur} forl<k<Il<N.

We begin by presenting a lemma that will be needed.

LEMMA 4.1 ([23]) Given functions., v € WHP(£2),1 < p < oo, such thatdu, Av € L1(2), we
have
Au=Av ae.in{x e 2 ulkx)=vx)} |

In what follows we continue using the conventiog = +o0o anduy1 = —oo. Given 1< j <
k < N, we define the following sets:

Ok ={x e uj_1(x) > u;x) = =up(x) > upr1(x)}. (44)
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The first part of the following proposition identifies the valueAf; a.e. on each coincidence
setl; . defined in[(IB). The second part states a necessary condition on the forces in order that there
exists contact among consecutive membranes.

PrRoPOSITION4.2 If j,k € Nare suchthat X j < k < N, we have
v oa.e.in®; ifie{j, ... .k},
(i) Auj = (f )k NG| l {J' 1
fi a.e.in®;ifi &{j,..., k},
(i) if j <kthenforalli € {j,...,k}, (f)iv1ik = (f);; a.e.in@j.

Proof. (i) Suppose < {j, ..., k} (the other case has a similar and simpler proof). Forae®;
we haveu;_1(x) —u;j(x) = o > 0 andui(x) — ury1(x) = g > 0, for somex = a(x) and
B = B(x). Sincex belongs to the open s¢p € 2 : u;_1(y) —u;(y) —a/2 > 0 N{y € 2
urp(y) — ug+1(y) — B/2 > 0}, there exist$d > 0 such that, for al € D(B(x, 3)), there exists
g0 > O suchthat, if O< & < o, thenu;_1 > u; & ep anduy > urq1 %+ €p.

Choose for test functions

u, ifr &{j,...,k},
TV e ifredj... k).

Then . )
e Zf a(x, Vuy) - Vo > isZ/ fro. Vo € D(B(x.9)).
r=j 2 r=j 2

and
k k
Z/ a(x,Vu,) - Vo = Z/ fro, Yo € D(B(x,6)).
r=j 2 r=j 2

So we conclude that

k k
ZAu, = Zf, a.e.inB(x, §).
r=j

r=j
We know thatdu; € L1(2),foralli =1, ..., N. So, using Lemm@.l, we have
Auj=---=Au; =---=Aur inOj;
and we conclude that
k—j+DAu; = fi+---+ fi ae.in®j.

(ii) The proof of this item is analogous to the previous one. We choose for test functions

o ifr i), ...,
o= u-+ep ifrefj, ..., i},

with ¢ € D(B(x, d)), ¢ > 0,& > 0 such thafvs, ..., vy) € Ky. We then conclude that

i i
Z/ a(x,Vuy) - Vo > Z/ fro. Vo e D(B(x,9)), ¢ >0,
r=j % j=r’g
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and so, we havdu; > (f);; a.e. in®; . Then using the first part of the proposition we conclude
that

(k= (fi ae.in®j,

or equivalently, that
(flitik = (f)ji a.e.in@;. O

Our goal is to determine a system &f equations, coupled by the characteristic functions of the
N(N — 1)/2 coincidence sets, which is equivalent to problppn (1).

This was done in [26] for the cageé = 2 and in [1] for the cas&/ = 3. The system foV = 2
is simply

fo— A

Aui = fi+ T Xu=u),
fo— N

Aup = fo — 2 X{ui=uz}>

and forN = 3 it is the systen{(15). From these two examples we see that the determination of the
coefficients of this system is not a very simple problem of combinatorics. We present the result for
the case of general in Theorenj 4.5.

DEFINITION 4.3 Givenfi, ..., fnv € L1($2) we define, forj, k,i € {1,..., N}, with j < k and
J<i<k,

(Fhje = {fje—1 ifi=j
b £] = (Fjke = {F)j+1k if i =k,
' 2

1 o .
75D ((f)j+1,k—1—§(fj+fk)> if j<i<k.

Observe that, iff <i < k, thenbij’k[f] does not depend oh It is also not difficult to see that
Zk .b.”k[f] = 0. We first record some auxiliary results concerning the coeffici@l’n'i{sf] that

i=j i .
will be needed. From now on we drop the dependendg"é[f] on f in notation.
LEMMA 4.4

@) If j <l <rthen

" ik r—1
A — ()i
k;:l 7= g e = i)
In particulard ;4 b}"k is positive if and only if the average ¢f1, ..., f, is greater than or
equal to the average ¢f, . . ., f;.

(i) If m < i then

,
Vrefi,....N} Y bt =pr
k=i
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Proof. (i) We have

r

b = 3 (k= (PjkeD) = i — ()

k=l+1 k=Il+1
it S i+ S
T or—j+1 I—j+1
it i fate+ S i+ i
T or—j+1 r—j+1 - j+1

St C=DU )

r—j+1 r—j+DI—-j+1
r—l<ﬂu+m+ﬂ_ﬁ+~+ﬁ>

Tr—j+1 r—1 [—j+1
r—1
= m((f)l—s—l,r — {0

(ii) We prove the equality by induction on If r = i, the equality is trivial. For > i we have

r+1

> -
k=i

= p™" 4+ b1 by induction hypothesis
2
:<f)m,r_(f>m+l,r+(r_m+1)(r_m+2)
_fm+"‘+fr fm+1+"'+fr
T r—m+1 r—m
2(fm+1+ -+ fr) Jm + fre1
(r—m)(r—m+1)(r—m+2)_(r—m+1)(r—m+2)'

,
bm,k + bm,r+1
i i
k=i

1
<<f)m+1,r - E(fm + fr+1))

Then

bt = - fon = fri1
; ! (r—m+1 (r—m+1)(r—m+2)> T r—-m+Dr—-—m+2) ™

1 1 2
+<r—m+1_r—m+(r—m)(r—m+1)(r—m+2)>(fm+l+.“+fr)
— Jm . Jr+1 _ Jmir 4t o
remt2 r=—mtDe-—m+2) r—m+ D —m+2)
:fm+~-~+fr+l_f;n+1+"'+fr+1:bm,r+l |
r—m+2 r—m+1 AR

We are now able to deduce the system of equations involving the characteristic functions of the
coincidence sets which is equivalent to problgin (1).

THEOREM4.5 )
Aui = fi + Z pi* Xjk a.e.ing. (45)

l
1<) <k <N, j<i<k
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Proof. We prove that the equality is valid a.e.@, , for m,r such that 1< m < r < N. This is
enough becaude); ¢, <, <y Om,r = £2.

If i & {m,...,r}, then[45) results immediately from Propositjon|4.2(i).

Suppose that e {m, ..., r}. In view of Lemmd 4., the equality (45) fare ©,, , becomes

i,k
fit > b = Fmr
m<j<k<r, j<i<k
We now prove this equality by induction ér- m. If i —m = 0, then
j k
fr R e 3o
m<j<k<r, j<i<k m<k<r

=fut+ Y UPmk = (Plmk-1) = (Fmr-

m<k<r
For the induction step, if — m > 0, then

fit Y bt =g+ > AR

m<j<k<r, j<i<k m+1<j<k<r, j<ISr i<k<r

= (/Im+1r + Zb:."’k by induction hypothesis
k=i

= (flm+rr + 07" by Lemmd 4-H4(ii)
= (f)mr O

We now state the main result of this section.

THEOREM4.6 Givenn € N, let (u, ..., uy,) denote the solution of problelﬁ](l) with given data
(fl .o [ e [L9(s)]Y, with g as in @). Suppose that
f'— fi inL9I(R),i=1...,N. (46)
Then
u! - u; inWLP(R),i=1...,N. (47)

n

If, in addition, the limit forces satisfy
(fij #(f)j+re  foralli, j.kef{l,...,N}withi < j <k, (48)
then, for any 1< s < oo,
Vike{l... N} j <k Xut==u) = Xlujmomu) N L°(R). (49)

Before proving the theorem we need another auxiliary lemma:

LEMMA 4.7 Letn € Nanday, ..., a, € R be such than’:j a, >0forallj =1,...,n. Then
the inequality
a1+ ---+a, ¥, <0

with the restrictions &< Y1 < --- < ¥, has only the trivial solutiory; =--- =Y, = 0.
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Proof. If n = 1 the conclusion is immediate. Supposing the result proved,ftat us prove it for
n—+ 1
a1+ -+ an¥y +ant1¥nir 2 aiYi+ -+ an ¥y + anp1¥n

>
> 0 anda,4+1 > 0. Then

0
sinceY, 1 > Y,
0>2aiY1+ -+ (an + an+1)Yn

and, because the result is true fgrwe havey; = --- = Y, = 0 and, therefore, sincg,;1 > 0,
alsoY,+1 = 0. O

Proof of Theorer 4]6. The convergencé (#7) of the solutions is an immediate consequence of a
theorem due to Mosco.

For simplicity, we writex;=..—u,} = x;.x and we denote({u;?:_.:uz} by X/"Q,k'

Let j,k € {1,..., N} with j < k. Since 0< x;« < 1, there existsgjffk € L9(£2) such that
(X]’-fk)neN converges tQ(j?fk in LY9(£2)-weak. Of course we have

0< X/ <1, because & x/', <1, (50)
X;:,,r < X;k,k (ifm<j<k<r), because(,’},’, < X;’k.
Moreover, letting: — oo in the equalityxjffk(u;' —u})* =0, we conclude
X — u )T =0 a.e.in®. (51)
Consider now the systein (45), with the coefficienteplaced by,, for dataf’, ..., fy, with
neN, )
A=+ Y !ty aein2i=1....N.
J<k<N, j<i<k
Passing to the weak limit ih?(£2) asn — oo, we have
Au; = fi + Z bl.j'k X;k ae. in2,i=1...,N.
J<k<N, j<i<k
Subtracting the equality (#5) for the limit solution from this one, we obtain
> b u—x0 =0 aein2i=1....N. (52)

J<k<N, j<isk

Fork > j,letY;, denotey; , — Xj*k- To complete the proof we only need to show that, fot &,
Yk =0, i.e.,(X;lk)neN converges tq; , in L9($2)-weak.
From equation[(51) we know that

Vi<k Yir=0 infu; #ur}={u;j > ur}. (53)

Fix jo andko such thatjo < ko. Using [53), we only need to see thgf ,, = 0 in Ij; 4, =
{ujo = - -+ = uiy}. Itis then enough to prove this in two cases:
(i) in @, forr > jo;
(i) in ®, , form < joandr > ko.
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In the first case, using (b3), we ha¥g, = 0in )y, if j < joork > r. So, lettingi = jo in
equation|(5p), we have, i®;, ,

.
_ iky iky Joky,
0= > bpYu= > b Yik= Y b Yok

J<k<N.j<jo<k Jo<j<k<N. I <jo<k<r K=ol

We can now apply Lemnfa 4.7 to conclude thigty = 0in ©j, , fork € {jo+1,...,r}, since

o forx € Ojo.r, Yo, (x) = 1— x5 , (x) and, using[(50)Yj, jp+1(x) < -+ < ¥j r (x);
e forl > jo, by Lemmg 4.4 (i),
.

~ —1

b{O»k = r— ;= . ,

2 = e~ e
which is positive, by Propositidn 4.2(ii), ase ©j, -, and [48).

In the second case, B, , (m < jo andr > ko),

*
0 < Yjoko = Xjosko — Xjo,ko
=1— Xk SiNCem < jo<ko<r

<1—Xmi by (E0)

= Xm.ko = Xm.ko

= Yi.ko

=0 asinthe previous case.

Notice that, sincej, «, IS a characteristic functior(xj’.é,ko)neN converges in fact tg, i, in
L% (£2)-strong, for all 1< s < oo. |

REMARK 4.8 Arguing as in Theoreff.5, under the strong monotonicity assumptioh (9), itis easy
to show the following continuous dependence on the data:

N N
Dl =il o) < Cq YIS = fillio@),
i=1 i=1

for ¢ defined as inm?s). However, a correspondiby estimate for the characteristic functions of
the coincidence sets, similar to the one in the obstacle problern ([22], [23]), seems more difficult to
obtain.
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