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Geometric evolutions driven by threshold dynamics
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1. Introduction

Consider the evolution of interfaces (hypersurfaces) inRn which propagate in the normal direction
with the velocity

V = v(n, Dn), (1.1)

where n and Dn are the unit normal vector to the surface and its gradient respectively. The
study of the evolving interfaces is very interesting since (1.1) arises in many areas, such as phase
transitions, image processing, pattern formation, turbulent flame propagation, etc. Typical examples
are anisotropic motions with the normal velocity

V = −tr[S(n)Dn] + v(n), (1.2)

whereS(·) is a continuous function taking values in the spaceSn of n × n symmetric matrices
andv is real-valued. Special cases of (1.2) are motion by curvature, corresponding toS(n) ≡ I

andv(n) ≡ 0, and curvature independent motions, corresponding toS(n) ≡ 0. Solutions of these
geometric evolution problems typically develop singularities, regardless of the smoothness of the
initial data (see [12], [14]).

To overcome such difficulties, the level set approach was introduced by Chen, Giga, and Goto
[8] and independently by Evans and Spruck [10]. In [10] motion by mean curvature is dealt with
while in [8] more general geometric motions are discussed. Their ideas are based on considering
interfaces as level sets of the solution of a degenerate parabolic partial differential equation.

One approach to (1.1) is that some classes of dynamics which model the microscopic
behavior of physical phenomena (for example, threshold dynamics, cellular automata) provide
approximate schemes for (1.1). Among others, Bence, Merriman, and Osher [6] first proposed
a simple approximation scheme (BMO) for motion by mean curvature. Later, Evans [9] and
Barles and Georgelin [2] gave the first analysis of the BMO algorithm. More recently, Ishii, Pires,
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and Souganidis [13] further extended the BMO scheme to anisotropic motions with the normal
velocity (1.2). These schemes are generalizations and extensions of the threshold dynamics models
introduced by Gravner and Griffeath [11] to study cellular automaton modeling of excitable media.

More precisely, Ishii, Pires, and Souganidis [13] considered the following: Fix a threshold
numberθ ∈ (0, 1) and choose a measurable real-valued functionf onRn such that∫

Rn

f (x) dx = 1 and f > 0 onRn.

Forh > 0, α ∈ R, and a subsetG of Rn, define

Fh(G) =

{
x ∈ Rn :

∫
Rn

f (y)χG(x − hαy) dy > θ

}
, (1.3)

whereχG is the characteristic function of the setG. By choosing the appropriate functionf and the
valuesα andθ , they showed thatF k

h (G), thek-th iterate ofFh(G), converges, askh → t , to Ω(t)

in a suitable sense, whereΩ(t) with Ω(0) = G is an evolution with normal velocity of the type
(1.2). In particular, ifα = θ = 1/2 andf is a Gaussian, thenF k

h (G) approximates motion by mean
curvature

V = −tr(Dn).

This is the scheme first proposed by Bence, Merriman, and Osher [6] and analyzed by Evans [9]
and Barles and Georgelin [2].

1.1 The main results

In this study, we consider a class of threshold dynamics with the following properties: Forh > 0,
suppose thatFh is a mapping from the set of open subsets inRn to itself such that

(F1) Monotonicity:If G ⊂ H ⊂ Rn, thenFhG ⊂ FhH ;
(F2) Translation invariance:Fh(τyG) = τy(FhG) for all y ∈ Rn, whereτyG = {y + x :

x ∈ G}, G ⊂ Rn;
(F3) Finite propagation speed:There existsc > 0 such that ifG ∩ B2ch(x) = H ∩ B2ch(x), then

FhG ∩ Bch(x) = FhH ∩ Bch(x),

whereBr(x) = {y ∈ Rn : |y − x| < r}.

Notice that if we chooseα = 1, θ ∈ (0, 1), andf a measurable real-valued function onRn with a
compact support, thenFh in (1.3) satisfies (F1)–(F3).

One way to generate a limiting process from a family{Fh} as above is to define, fort > 0 and
an open subsetG in Rn,

A(t)G =

( ⋃
G′⊂⊂G

lim inf
h→0

F
bt/hc

h G′

)o

and
A(t)G =

( ⋂
G′⊃⊃G

lim sup
h→0

F
bt/hc

h G′

)o

,

whereAo denotes the interior of the setA andbsc is the greatest integer which does not exceeds. In
view of (F1)–(F3), one can naturally consider the properties for the evolutionsA(t),A(t): Suppose
that for everyt > 0,A(t) is a mapping from the set of all open subsets ofRn to itself such that
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(A1) Semigroup: A(t + s) = A(t)A(s) for all s, t > 0;
(A2) Translation invariance: A(t)τy = τyA(t) for all t > 0 andy ∈ Rn;
(A3) Monotonicity:If G ⊂ H , thenA(t)G ⊂ A(t)H ;
(A4) Finite propagation speed:A(t)∅ = ∅,A(t)Rn

= Rn for all t > 0. In addition, there exists
c > 0 such that ifG ∩ Bct (x) = H ∩ Bct (x), then

(A(s)G) ∩ Bc(t−s)(x) = (A(s)H) ∩ Bc(t−s)(x), ∀s 6 t.

Then we have the following:

THEOREM 1.1 AssumeA1(t), A2(t) satisfy (A2)–(A4) and, for allt, s > 0,

A1(t)A1(s) ⊂ A1(t + s), A2(t)A2(s) ⊃ A2(t + s).

Then there exist continuous functionsv1, v2 : Sn−1
→ R such that for every open setG,

{A1(t)G}t>0 is a supersolution ofV = v1(n) and {A2(t)G}t>0 is a subsolution ofV = v2(n).
In addition, ifA(t) satisfies (A1)–(A4), then there exists a continuous functionv : Sn−1

→ R such
that{A(t)G}t>0 is a weak solution ofV = v(n).

The definitions of subsolution, supersolution, and weak solution are given in Definition 3.1.
In view of nonlinear semigroup theory, Theorem 1.1 says that relaxed semigroup properties

with (A2)–(A4) ensure the existence of “one-sided infinitesimal generators”, which coincide if the
semigroup property (A1) holds.

Regarding the properties (A1)–(A4), Barles and Souganidis [4] and Biton [7] already studied
these kinds of semigroups acting on sets in a more general setting, which is motivated in part by
the axiomatic approach to image processing developed by Alvarez, Guichard, Lions, and Morel
in [1]. But we remark that Theorem 1.1 cannot be derived directly from the result of Barles and
Souganidis since here we do not assume what they call “locality and regularity”, which is more or
less the existence of a velocity functionv.

Note that because of the condition (A4), the limit motions are necessarily of order one, which
essentially excludes the mean curvature motion. It turns out that they are also of local nature. This
is due to the fact that the scheme is defined for any set, even unbounded. Interestingly, this can
be interpreted as a negative statement: one cannot expect to approximate second order or nonlocal
evolution motions by using threshold dynamics which are monotone, translation invariant, with
finite propagation speed and defined for any set.

Our main result, using Theorem 1.1, is the following:

THEOREM 1.2 A(t) andA(t) satisfy conditions (A2)–(A4). Moreover, for alls, t > 0, we have

A(t)A(s) ⊂ A(t + s), A(t)A(s) ⊃ A(t + s).

Consequently, there exist two continuous functionsv 6 v from Sn−1 to R such that for every open
setG, {A(t)G}t>0 is a supersolution ofV = v(n) and{A(t)G}t>0 is a subsolution ofV = v(n).

To ensurev = v, we further assume

(F4) For anys 6 h andn ∈ Sn−1, there existsC > 0 such that

ρ(FhHn, F
bh/sc
s Hn) 6 C

∣∣h − bh/scs
∣∣, (1.4)
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whereρ(A, B) is the distance between setsA andB in the Hausdorff metric, andHn = {x ∈ Rn :
x · n < 0}. The condition (F4) is not restrictive, in fact, any family{Fh} of operators as in (1.3) with
α = 1 satisfies (F4).

The method used in [13], to show the convergence of threshold dynamics approximation scheme
to geometric evolution, relies on a certain convergence theorem [3] for monotone approximations to
viscosity solutions. Therefore the authors have to invoke the level set approach. Our result bypasses
this machinery and works directly with evolving sets and their discrete approximations. This shows
that if a certain threshold dynamics satisfies the conditions (F1)–(F3), then one can analyze its
limiting dynamics without introducing the auxiliary level set functions and appealing to the well
developed machinery of viscosity solutions, as is typically done in the level set approach. We also
point out that some threshold dynamics satisfying (F1)–(F3) do not admit the convolution generated
from (1.3), and thus our method covers some classes of threshold dynamics not being dealt with
in [13].

1.2 Outline of the paper

This paper is organized in the following way. In Section 2, we list some notation which will be used
throughout the paper. In Section 3, we define the notion of weak solutions for geometric evolutions,
and study some properties of weak solutions. Section 4 is devoted to the proof of Theorem 1.1.
Finally, we consider the threshold dynamics in Section 5. We present Theorem 1.2 and discuss the
existence of a limiting geometric evolution obtained by iteration of the threshold dynamics.

2. Notation

We introduce some notation which will be used throughout this paper. We writeRn for n-
dimensional Euclidean space andR = R1. We denote generic points inRn by x, y, . . . , where
x = (x1, . . . , xn) and so on. We writeei = (0, . . . , 0, 1, . . . , 0) for thei-th standard unit vector.

For x, y ∈ Rn, x · y is the usual inner product ofx andy, and|x| =
√

x · x. For x ∈ Rn and
r > 0, we setBr(x) = {y ∈ Rn : |y − x| < r}, an open ball inRn with centerx and radius
r > 0, andSn−1

= {x ∈ Rn : |x| = 1}, the (n − 1)-dimensional unit sphere. We denote by
Hn = {x ∈ Rn : x · n < a} a generic half-plane inRn with normaln ∈ Sn−1 for some fixed but
arbitrarya ∈ R.

We normally useG, H, . . . to denote open subsets ofRn. For G ⊂ Rn, we writeGo, Ḡ and
∂G for the interior, closure, and boundary ofG, respectively. We often writeG ⊂ H in U to mean
G ∩ U ⊂ H ∩ U .

Let G ⊂ Rn
×(0, ∞) be open. We say∂G is Ck at(x0, t0) if there existr > 0 and aCk function

g : Rn−1
× (0, ∞) → R such that, upon relabeling and reorienting the coordinates if necessary, we

have
G ∩ Br(x0, t0) = {(x, t) ∈ Br(x0, t0) : xn > g(x1, . . . , xn−1, t)}.

We say that∂G is Ck if ∂G is Ck at (x, t) for all (x, t) ∈ ∂G with t > 0. Likewise,∂G is C∞ if
∂G is Ck for k = 1, 2, . . . . We say a family{C(t)}t>0 of sets is asmoothly evolving setin Rn if
∂(

⋃
t>0 C(t) × {t}) as a subset ofRn

× (0, ∞) is smooth.
GivenG ⊂ Rn andy ∈ Rn we denote byτyG the translation ofG by y, that is,τyG = {x + y :

x ∈ G}. We write χG for the characteristic function ofG, that is,χG(x) = 1 if x ∈ G and 0
otherwise. Notice thatτyχG = χτyG for y ∈ Rn. The support of a functionφ is denoted by sptφ.
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We denote by BUC(Rn) the space of bounded uniformly continuous functions onRn. Forx ∈ Rn

andG ⊂ Rn, we write dist(x, G) for the distance fromx to G. We denote byρ(G, H) the distance
betweenG andH in the Hausdorff metric, i.e.

ρ(G, H) = max{dist(x, H), dist(y, G) : x ∈ G, y ∈ H }.

Given an open subsetG ⊂ Rn, we definedG ∈ BUC(Rn) as follows:

dG(x) =


dist(x, ∂G), x ∈ G, dist(x, ∂G) 6 1,

−dist(x, ∂G), x /∈ G, dist(x, ∂G) 6 1,

1, x ∈ G, dist(x, ∂G) > 1,

−1, otherwise.

3. Weak solutions for geometric evolution problems

In this section, we study geometric evolutions satisfying (A1)–(A4). To study evolutions of open
sets, we first define the notion of subsolutions and supersolutions for geometric evolution problems,
and we find some properties of weak solutions.

We start by introducing the following definition which is motivated by the paper of Bellettini
and Novaga [5].

DEFINITION 3.1 A family {G(t)}t>0 of open sets is asupersolutionof the geometric evolution
problemV = v(n) if, whenevert 7→ C(t) is a smoothly evolving set inRn and

(1) C(t) ⊂ G(t) for all t ∈ (t0 − ε, t0] for small ε > 0,
(2)

∂C(t) ∩ ∂G(t) =

{
{x0} if t = t0,

∅ if t 6= t0,

then
k∂C(t)(x0, t0) > v(n),

wheren is normal to∂C(t0) atx0 and k∂C(t)(x0, t0) is the normal velocity of∂C(t) at (x0, t0).
Similarly, a family {G(t)}t>0 of open sets is asubsolutionof the geometric evolution problem
V = v(n) if, whenevert 7→ C(t) is a smoothly evolving set inRn and

(1) C(t) ⊃ G(t) for all t ∈ [t0, t0 + ε) for smallε > 0,
(2)

∂C(t) ∩ ∂G(t) =

{
{x0} if t = t0,

∅ if t 6= t0,

then
k∂C(t)(x0, t0) 6 v(n),

wheren is normal to∂C(t0) atx0. Finally, a family of open sets{G(t)}t>0 is a weak solutionof
V = v(n) if it is both a subsolution and a supersolution ofV = v(n).

REMARK 3.2 The condition(2) in Definition 3.1 can be replaced by

x0 ∈ ∂C(t0) ∩ ∂G(t0). (3.1)
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t < t0

C(t)
C(t)

G(t)

G(t)

n

t = t0

x0

FIG. 1. The touching condition for a supresolution.

To see this, suppose thatC(t) satisfies the condition (1) for supersolutions, for example, and let
Cδ(t) = {x ∈ Rn : dC(t)(x) > δ(|x − x0|

2
+ |t − t0|

2)} for δ > 0. SinceC(t) is smooth,Cδ(t) is
smooth at least near(x0, t0) andCδ(t) ⊂ C(t) for smallδ > 0. Since we are only interested in local
behavior near(x0, t0), we may assumeCδ is smooth globally. Moreover,

∂Cδ(t) ∩ ∂G(t) =

{
{x0} if t = t0,

∅ if t 6= t0.
(3.2)

By Definition 3.1, the velocity of∂Cδ(t) at (x0, t0) is > v(n) for everyδ > 0. Now letδ → 0 to get
(3.1). By analogy to viscosity solutions in PDEs, the condition (3.1) is similar to the use of extrema
instead of strict extrema.

In [5] Bellettini and Novaga studied a wide class of geometric evolution problems in terms of
minimal barriers. The following comes from Definition 2.1 in [5]. We denote byP(Rn) the set of
all subsets ofRn.

DEFINITION 3.3 LetF be a family of functions with the following property: for anyf ∈ F there
exist a, b ∈ R, a < b, such thatf : [a, b] → P(Rn). A function φ is a barrier with respect to
F if and only if there exists a convex setL ⊆ I := [0, ∞) such thatφ : L → P(Rn) and if
f : [a, b] ⊆ L → P(Rn) belongs toF andf (a) ⊆ φ(a) thenf (b) ⊆ φ(b).

REMARK 3.4 We show that a subsolution or a supersolution in the sense of Definition 3.1 is a
barrier with respect to an appropriate familyF . We present the argument only for subsolutions
since the case of supersolutions is similar. Let{G(t)}t>0 be a subsolution in the sense of Definition
3.1. LetF be the collection of all smoothly evolving open sets{C(t)}t>0 such that

k∂C(t) < v(n), (3.3)
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wheren is normal to∂C(t). We want to show that{G(t)}t>0 is a barrier with respect toF . In fact,
if not, there existt0 < t1 and{C(t)}t>0 ∈ F such that

C(t0) ⊂ G(t0), but C(t1) " G(t1). (3.4)

In view of (3.4), there existt∗ and ε > 0 such thatC(t) ⊂ G(t) for all t ∈ (t∗ − ε, t∗] and
∂C(t∗) ∩ ∂G(t∗) 6= ∅. Fix x0 ∈ ∂C(t∗) ∩ ∂G(t∗). SinceG(t) is a subsolution in the sense of
Definition 3.1 we can conclude, in view of Remark 3.2, that the velocity of∂C(t∗) at x0 is at least
v(n), which contradictsC(t) ∈ F .

The following lemma shows that Definition 3.1 gives a reasonable notion of weak solutions for
geometric evolutions.

LEMMA 3.5 If G(t) is a supersolution of the geometric evolutionV = v(n) and if ∂G(t) is C1 at
(x0, t0), then

k∂G(t)(x0, t0) > v(n).

A similar result holds for a subsolution with reverse inequality.

Proof. Since∂G(t) is C1 at (x0, t0), after a rotation, there existr > 0 and aC1 functiong such that

G ∩ Br(x0, t0) = {(x, t) ∈ Br(x0, t0) : xn > g(x′, t), x′
∈ Rn−1

}.

Then for smallδ > 0, there existsGδ(t) (see Remark 3.2 for a simple construction) such that

Gδ(t) → G(t) ∩ Br(x0, t0) in Hausdorff metric, and

(1), (2) in Definition 3.1 hold.

Since∂G(t) is C1 at(x0, t0) and this is a local property, we may assume thatGδ(t) is aC1 smoothly
evolving set. By Definition 3.1, the velocity of∂Gδ(t) at(x0, t0) is greater thanv(n) for everyδ > 0.
Let δ → 0 to get the result. 2

4. The proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1. The crucial step in the proof is the following
lemma.

LEMMA 4.1 LetA(t) satisfy

(A1) Semigroup: A(t + s) = A(t)A(s) for all s, t > 0;
(A2) Translation invariance: A(t)τy = τyA(t) for all t > 0 andy ∈ Rn;
(A3) Monotonicity: If G ⊂ H , thenA(t)G ⊂ A(t)H ;
(A4) Finite propagation speed: Let A(t)∅ = ∅, A(t)Rn

= Rn for all t > 0. There existsc > 0
such that ifG ∩ Bct (x) = H ∩ Bct (x), then

(A(s)G) ∩ Bc(t−s)(x) = (A(s)H) ∩ Bc(t−s)(x), ∀s 6 t.

ThenA(t) maps half-planes to half-planes. Moreover, there exists a continuous functionv : Sn−1
→

R such that{A(t)G}t>0 is a weak solution ofV = v(n) wheneverG is a half-plane.
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Proof. 1. Fix somet > 0 and letn ∈ Sn−1. By finite propagation speed (A4), there existsyn ∈ Rn

such that

A(t)Hn ⊂ τynHn. (4.1)

Define

d(n, t) = inf{yn · n : A(t)Hn ⊂ τynHn}.

If we choosey = d(n, t)n, then (4.1) impliesA(t)Hn ⊂ τyHn. For anyx such thatx · n 6 0, we
haveτxHn ⊂ Hn sinceHn is open. Hence, by translation invariance (A2) and monotonicity (A3),

τxA(t)Hn ⊂ A(t)Hn.

This impliesA(t)Hn is a half-plane with normaln. But by the definition ofy, we haveA(t)Hn =

τyHn.
2. We definev(n) by the relation

A(t)Hn = τtv(n)nHn. (4.2)

First, we claim that there existsC > 0 such that

|v(n)| 6 C, ∀n ∈ Sn−1. (4.3)

Suppose that (4.3) does not hold. Then for givenc > 0 in (A4), there existsn ∈ Sn−1 such that
|v(n)| > 2c. We may assumev(n) > 0. ForHn = {y ∈ Rn : y · n < a}, fix x ∈ Rn such that
x · n = v(n) + a. ThenHn ∩ B2c(x) = ∅.

n

0

a

v(n)

Hn

A(1)Hn

x
c

2c

Bc(x)

B2c(x)

FIG. 2. The bound ofv(n).
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By finite propagation speed (A4),(A(1)Hn) ∩ Bc(x) = (A(1)∅) ∩ Bc(x) = ∅. This implies
x /∈ A(1)Hn and hencev(n) = x · n − a 6 2c, which is a contradiction, and hencev is bounded.
Note that so far we have made no use of (A1).

Fory = v(n)n, we haveA(1)Hn = τyHn. We claimA(t)Hn = τtyHn. By semigroup property
(A1), we have, for anyh > 0,

A(nh)Hn = A(h)nHn. (4.4)

In particular,A(1/n)Hn = τ(1/n)yHn, n ∈ N. By finite propagation speed (A4), we have

ρ(A(h)Hn, Hn) 6 Ch. (4.5)

Fix anyn ∈ N. Then we choosem ∈ N such thatm/n 6 t < (m + 1)/n. Without loss of generality,
we may assume

A
(

m

n

)
Hn ⊂ A(t)Hn ⊂ A

(
m + 1

n

)
Hn. (4.6)

Then (4.6) implies

ρ(A(t)Hn, τtyHn) 6 ρ

(
A(t)Hn,A

(
1

n

)m

Hn

)
+ ρ

(
A

(
1

n

)m

Hn, τtyHn

)
6 2ρ

(
A

(
1

n

)m

Hn,A
(

1

n

)m+1

Hn

)
6

2

n
|v(n)| → 0 asn → ∞.

HenceHn has constant speedv(n) along normaln.
3. Now we show that the functionv is continuous. For given open subsetsG, H , by finite

propagation speed (A4), there existsR > 0 such that ifG ∩ B2R(0) = H ∩ B2R(0), then
(A(1)G) ∩ BR(0) = (A(1)H) ∩ BR(0). By (4.3), we may assumeR > 4C. Fix n ∈ Sn−1. We
need to estimate|v(n) − v(n′)| for n′

∈ Sn−1 close ton (see Figure 3). In particular, we can restrict
our attention ton′ such that

1 − ε 6 |n · n′
| < 1, (4.7)

with ε to be chosen later. Given such ann′, we define

H−

n′ = {x ∈ B2R(0) : x · n′ < a−
}, (4.8)

where we selecta− to be the smallest number such that

x ∈ B2R(0), x · n′ > a−
⇒ x · n > 0.

A simple calculation shows that

a−
= 2R

√
1 − (n · n′)2. (4.9)

In particular, the choice ofa− implies that

Hn ∩ B2R(0) ⊂ H−

n′ ∩ B2R(0).

As a result, we know that
A(1)Hn ⊂ A(1)H−

n′ in BR(0). (4.10)
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Hn

a
−

0

2R

n n′

H
−

n′

FIG. 3. Hn andH−

n′

Let
σ0 = inf{σ ∈ R : σn /∈ A(1)H−

n′ }.

We try to findσ0. In fact,A(1)H−

n′ = {x ∈ Rn : x · n′ < a−
+ v(n′)}. Hence for anyσ > σ0, we

haveσn · n′ > a−
+ v(n′). Therefore

σ0 =
1

n · n′
(a−

+ v(n′)).

In view of (4.7) and (4.9), we have

|σ0n| 6
1

|n · n′|
(2R

√
1 − (n · n′)2 + C) 6 R

(
2
√

2ε − ε2 + 1/4

1 − ε

)
. (4.11)

Since the right-hand side in (4.11) is less thanR for small ε > 0 we may assumeσ0n ∈ BR(0).
Thus we find by (4.10),

v(n) = inf{σ ∈ R : σn /∈ A(1)Hn} 6 inf{σ ∈ R : σn /∈ A(1)H−

n′ } 6
1

n · n′
(a−

+ v(n′)).

Next chooseH+

n′ = {x ∈ B2R(0) : x · n′ < a+
} in place of (4.8) wherea+ is the greatest number

such that
x ∈ B2R(0), x · n′ < a+

⇒ x · n < 0.

Applying the previous argument, we have

v(n) >
1

n · n′
(−a+

+ v(n′)).
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Combining these two inequalities, we conclude

1

n · n′
(−a+

+ v(n′)) 6 v(n) 6
1

n · n′
(a−

+ v(n′)). (4.12)

The continuity ofv(n) follows from (4.9) and (4.12).
4. Finally, if G is a half-plane, then{A(t)G}t>0 is both a subsolution and a supersolution of

V = v(n) sinceA(t)G itself is smooth for allt > 0 and the normal velocity isv(n), wheren is the
normal to∂G. 2

We now turn to the proof of our first main result.

Proof of Theorem 1.1. 1. We only prove the supersolution case since the other case can be proved
similarly. So writeA(t) = A1(t). SupposeA(t) satisfies (A2)–(A4) and

A(t)A(s) ⊂ A(t + s) ∀t, s > 0. (4.13)

The existence of a continuous functionv follows from Lemma 4.1 (careful inspection of the proof
of Lemma 4.1 tells us that we do not need the property (A1) for the existence ofv).

2. To prove{A(t)G}t>0 is a supersolution ofV = v(n), fix any smoothly evolving set{C(t)}t>0
such that for an open subsetG in Rn, C(t) ⊂ A(t)G for all t ∈ (t0 − ε, t0] for small ε > 0 and

∂C(t) ∩ ∂(A(t)G) =

{
{x0} if t = t0,

∅ if not.

Let w denote the normal velocity ofC(t0) atx0, and suppose toward a contradiction thatw < v(n).
SinceC(t) is a smoothly evolving set, after a change of coordinates, we may as well assume that
near(x0, t0), ∂C(t) is the graph of a smooth functiong(x′, t), x′

∈ Rn−1, such that

n = en, x0 = 0, g(0, t0) = 0, Dg(0, t0) = 0.

Then we can choose smallh > 0 andc > 0 such that, by expansion, we have

|g(x′, t0 − h) + wh| 6 kh2 for somek, and allx′
∈ B2ch(0).

Henceτy1Hn ⊂ {g(x′, t0−h) > xn} ⊂ A(t0−h)G in B2ch(0), wherey1 ·n = −wh−kh2. Utilizing
monotonicity (A3) and finite propagation speed (A4), we find

A(h)τy1Hn ⊂ A(h)A(t0 − h)G ⊂ A(t0)G in Bch(0), (4.14)

where we used (4.13) in the second inclusion. Notice thatA(h)τy1Hn = {x ·n < (v(n)−w)h−kh2
}.

Hence(v(n) − w)h < kh2 according to (4.14). Sinceh > 0 can be arbitrarily small, we have a
contradiction.

3. If A(t) satisfies (A1)–(A4), then steps 1 and 2 imply that there existv1, v2 : Sn−1
→ R such

that for every openG, {A(t)G}t>0 is a supersolution ofV = v1(n) and a subsolution ofV = v2(n).
If v1(n) 6= v2(n) for somen ∈ Sn−1, then

A(1)Hn = {x ∈ Rn : x · n < v1(n)} = {x ∈ Rn : x · n < v2(n)},

which is impossible. 2

The following result is a direct consequence of Lemma 3.5 and Theorem 1.1 which shows that the
velocity motion is classical as long as the evolution is smooth.
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COROLLARY 4.2 Suppose thatA(t) satisfies the hypotheses (A1)–(A4). Then there exists a
continuous functionv : Sn−1

→ R such that for every open setG, {A(t)G}t>0 is a classical
solution ofV = v(n) whenever its boundary isC1.

5. Threshold dynamics onRn

In this section, we consider threshold type dynamics onRn introduced by Gravner and Griffeath
[11]. In Section 2 of [13], Ishii et al. studied approximation schemes for curvature-independent
motion by using threshold type dynamics. We consider a more general class of threshold type
dynamics. We do not make any assumptions about the detailed structure of dynamics. Rather, we
merely assume simple properties: monotonicity, translation invariance and finite propagation speed.
We recall the hypotheses (F1)–(F4) from the Introduction. Forh > 0, suppose thatFh is a mapping
from the set of open subsets inRn to itself such that

(F1) Monotonicity: If G ⊂ H ⊂ Rn, thenFhG ⊂ FhH ;
(F2) Translation invariance: Fh(τxG) = τxFhG, for all x ∈ Rn;
(F3) Finite propagation speed:There existsc > 0 such that ifG ∩ B2ch(x) = H ∩ B2ch(x), then

FhG ∩ Bch(x) = FhH ∩ Bch(x);

(F4) For anys 6 h andn ∈ Sn−1, there existsC > 0 such that

ρ(FhHn, F
bh/sc
s Hn) 6 C

∣∣h − bh/scs
∣∣. (5.1)

n

n

Hn

FsHn

F 2
s Hn

F
⌊h/s⌋
s Hn

FhH

ρ

· · · · · ·

FIG. 4. The distance betweenFhHn andF
bh/sc
s Hn.

The assumption (F4) may appear unusual. (F1)–(F3) are the conditions for single parameterh.
It is reasonable to compare the evolution between two parameters. The assumption (F4) together
with (F3) gives us some control on at least the evolution of half-planes.
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For givent > 0 and an open subsetG in Rn, we define

A(t)G =

( ⋃
G′⊂⊂G

lim inf
h→0

F
bt/hc

h G′

)o

, (5.2)

A(t)G =

( ⋂
G′⊃⊃G

lim sup
h→0

F
bt/hc

h G′

)o

, (5.3)

whereAo denotes the interior of the setA and

lim inf
h→0

F
bt/hc

h =

⋃
h>0

⋂
0<s6h

F
bt/sc
s , (5.4)

lim sup
h→0

F
bt/hc

h =

⋂
h>0

⋃
0<s6h

F
bt/sc
s . (5.5)

In (5.3), if G is not bounded, one can modify the definition to makeA(t) well defined. For
example, one can take the intersection ofGδ

↘ G whereGδ
= {x ∈ Rn : dist(x, G) < δ}. First we

prove the following

LEMMA 5.1 If G1 ⊂ G2 then

%(Fh(G1), Fh(G2)) > %(G1, G2)

where%(G, H) = min{dist(x, H c), dist(y, Gc) : x ∈ G, y ∈ H }. Similarly,

%(lim inf
h→0

F
[t/h]
h G1, lim inf

h→0
F

[t/h]
h G2) > %(G1, G2).

Proof. The lemma follows from noting that ifG andH are open andG ⊂ H then

%(G, H) > a if and only if τyG ⊂ H for all |y| 6 a. (5.6)

In particular, forG1 ⊂ G2, if we write d := %(G1, G2) then the above implies thatτyG1 ⊂ G2 for
all |y| 6 d. Then monotonicity (F1) and translation invariance (F2) imply thatτyFhG1 ⊂ FhG2
for all |y| 6 d, and again using (5.6), we deduce the first conclusion of the lemma. The second
conclusion follows by essentially the same argument, after noting that lim inf is monotone in the
sense that

Uh ⊂ Vh ∀h > 0 ⇒ lim inf Uh ⊂ lim inf Vh. 2

We are now ready to give the proof of Theorem 1.2.

Proof of Theorem 1.2. 1. The hypotheses (A2)–(A3) directly follow from (F1)–(F2). To prove
(A4), fix a constantc > 0 in (F3). Suppose thatG ∩ Bct (x) = H ∩ Bct (x), G, H ⊂ Rn, t > 0. Fix
anys 6 t . By finite propagation speed (F3) and iterations, we have for anyh > 0,

F
bs/hc

h G ∩ Bc(t−bs/hch)(x) = F
bs/hc

h H ∩ Bc(t−bs/hch)(x).

Sincebs/hch 6 s for anyh > 0, we get

F
bs/hc

h G ∩ Bc(t−s)(x) = F
bs/hc

h H ∩ Bc(t−s)(x). (5.7)

Then (A4) follows by taking lim sup in (5.7).
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2. We only proveA(t)A(s) ⊂ A(s + t), since the other case is similar. Fix an open setG ⊂

Rn ands, t > 0. We may assume thatG is bounded, because if not, we can prove the result for
G ∩ BR(0) for arbitraryR > 0, and then use finite propagation speed (F3) to deduce that

A(t)A(s)G =

⋃
R>0

A(t)A(s)(G ∩ BR(0)) ⊂

⋃
R>0

A(s + t)(G ∩ BR(0)) = A(s + t)G.

Let H = A(s)G, and note that sinceG is assumed to be bounded, finite propagation speed implies
thatH is bounded. Our goal is now to show thatA(t)H ⊂ A(t + s)G. Toward this end, we fix any
H ′

⊂⊂ H , and we let

Gk := {x ∈ G : dist(x, ∂G) > 1/k}, Hk =

( ⋃
h>0

⋂
0<h′<h

F
[s/h′]
h′ Gk

)o

.

It then follows from the definitions thatG =
⋃

k Gk andH =
⋃

k Hk. It also follows from the
above lemma that%(Hj , Hk) > %(Gj , Gk). We first claim that

H ′
⊂ Hk for somek. (5.8)

To prove this, suppose toward a contradiction that it does not hold. Then for eachk there exists some
xk ∈ H ′

\ Hk. Upon passing to a subsequence, we may assume (sinceH is bounded) that

xk → x ∈ H̄ ′ ⊂ H. (5.9)

Sincex ∈ H , clearly x must belong toHk for somek. ThenHk ⊂ Hk+1 and%(Hk, Hk+1) >
%(Gk, Gk+1) = ck > 0, and these together imply thatHk+1 contains a small ballBck

(x). It follows
that Bck

(x) ⊂ Hj for all j > k + 1. Thus an open neighborhood ofx is contained inHk. This
however is impossible, in view of (5.9), and so we have provedthe claim.

3. Now fix k satisfying (5.8) and note that

A(t + s)G ⊃ lim inf
h→0

F
[(t+s)/h]
h Gk = lim inf F

[(t+s)/h]−[s/h]
h F [s/h]Gk

⊃ lim inf F
[(t+s)/h]−[s/h]
h H ′

= lim inf F
[t/h]
h H ′.

Since this holds for allH ′
⊂⊂ H , the definition ofA implies thatA(t + s)G ⊃ A(t)H , as was to

be proved.
4. By Theorem 1.1 there existv, v corresponding toA(t),A(t) respectively such that for every

openG, {A(t)G} is a supersolution ofV = v(n) and{A(t)G} is a subsolution ofV = v(n). Since
A(1)Hn = {x ∈ Rn : x · n < v(n)} ⊂ A(1)Hn = {x ∈ Rn : x · n < v(n)}, we havev 6 v. 2

To finish the remaining part, we need the following lemma.

LEMMA 5.2 Suppose (F1)–(F4) hold. Then

A(t)Hn = A(t)Hn for eacht > 0 andn ∈ Sn−1.

Proof. Fix s 6 h 6 t andn ∈ Sn−1. Write

bt/hc = m 6 bt/sc = n, bh/sc = k, k,m, n ∈ N ∪ {0}.
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Then (F4) andFsFhHn = FhFsHn imply

ρ(Fm
h Hn, F n

s Hn) 6 ρ(Fm
h Hn, F k

s Fm−1
h Hn) + · · · + ρ(F k(m−1)

s FhHn, F km
s Hn)

+ ρ(F km
s Hn, F n

s Hn)

6 Cbt/hc|h − bh/scs| + ρ(F km
s Hn, F n

s Hn).

Note thatkm 6 n. We can estimateρ(F km
s Hn, F n

s Hn) via finite propagation speed (F3) as follows:

ρ(F n
s Hn, F km

s Hn) 6 ρ(F n
s Hn, F n−1

s Hn) + · · · + ρ(F km+1
s Hn, F km

s Hn)

6 Cs(n − km) 6 C(t − skm).

Considerskm = sbh/scbt/hc. We may assumekm > 1 sincek = 0 or m = 0 implies
ρ(Fm

h Hn, F n
s Hn) 6 C

∣∣h − bh/scs
∣∣. Therefore we have

skm = sbh/scbt/hc → t ass 6 h → 0.

Hence we have a Cauchy estimate

ρ(F
bt/hc

h Hn, F
bt/sc
s Hn) → 0 ash, s → 0. (5.10)

The conclusion follows from (5.10). 2

Let us showv = v under the hypothesis (F4). Supposev(n) 6= v(n) for somen ∈ Sn−1. By Lemma
5.2,{A(t)Hn}t>0 = {A(t)Hn}t>0 is a weak solution ofV = v(n) andV = v(n). Then we have

A(t)Hn = {x ∈ Rn : x · n < v(n)} = {x ∈ Rn : x · n < v(n)},

which is a contradiction.

REMARK 5.3 We notice that if (F4) does not hold, then we cannot guarantee the existence of a
limiting velocity v. To see this, let{A1(t)G}t>0 and{A2(t)G}t>0 be families satisfying (A1)–(A4),
and such that the associated velocity functionsv1 andv2 (guaranteed by Theorem 1.1) satisfy

v1(n) < v2(n) ∀n ∈ Sn−1.

We define

FhG =

{
A1(h)G if 2−(j+1) 6 h < 2−j for j even,
A2(h)G if 2−(j+1) 6 h < 2−j for j odd.

Set

A(t)G =

( ⋃
G′⊂⊂G

lim inf
h→0

F
bt/hc

h G′

)o

, A(t)G =

( ⋂
G′⊃⊃G

lim sup
h→0

F
bt/hc

h G′

)o

.

Sincev1(n) < v2(n), it is formally clear that

A(t)G = A1(t)G, A(t)G = A2(t)G ∀t > 0.
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