Interfaces and Free Boundaries(2005), 303318

Geometric evolutions driven by threshold dynamics

MINSU SonG'

Department of Mathematics, University of lllinois at Urbana-Champaign, USA
Current address: Department of Mathematics, Pohang University of Science and Technology,
Pohang 790-784, Kyungpook, Korea

[Received 22 October 2004 and in revised form 2 May 2005]
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propagation speed. We develop general schemes for the convergence of threshold dynamics to
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1. Introduction

Consider the evolution of interfaces (hypersurface®irwhich propagate in the normal direction
with the velocity
V = ‘U(n, Dn), (11)

wheren and Dn are the unit normal vector to the surface and its gradient respectively. The
study of the evolving interfaces is very interesting sirice| (1.1) arises in many areas, such as phase
transitions, image processing, pattern formation, turbulent flame propagation, etc. Typical examples
are anisotropic motions with the normal velocity

V = —tr[S(n)Dn] + v(n), 1.2)

where S(-) is a continuous function taking values in the sp&feof n x n symmetric matrices

andv is real-valued. Special cases pf (1.2) are motion by curvature, correspondsiig)te= 7
andv(n) = 0, and curvature independent motions, correspondirffi® = 0. Solutions of these
geometric evolution problems typically develop singularities, regardless of the smoothness of the
initial data (seel[12],114]).

To overcome such difficulties, the level set approach was introduced by Chen, Giga, and Goto
[8] and independently by Evans and Spruckl [10].[Inl [10] motion by mean curvature is dealt with
while in [8] more general geometric motions are discussed. Their ideas are based on considering
interfaces as level sets of the solution of a degenerate parabolic partial differential equation.

One approach to[ (1.1) is that some classes of dynamics which model the microscopic
behavior of physical phenomena (for example, threshold dynamics, cellular automata) provide
approximate schemes fdr (IL.1). Among others, Bence, Merriman, and Osher [6] first proposed
a simple approximation scheme (BMO) for motion by mean curvature. Later, Evans [9] and
Barles and Georgelin[2] gave the first analysis of the BMO algorithm. More recently, Ishii, Pires,
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and Souganidis_[13] further extended the BMO scheme to anisotropic motions with the normal
velocity (1.2). These schemes are generalizations and extensions of the threshold dynamics models
introduced by Gravner and Griffeath J11] to study cellular automaton modeling of excitable media.

More precisely, Ishii, Pires, and Souganidis|[13] considered the following: Fix a threshold
numberd € (0, 1) and choose a measurable real-valued funcfian R” such that

f(x)dx=1 and f >0 onR".
Rn
Forh > 0, « € R, and a subseaf of R", define

Fy(G) = {x eR": /R fOMxc(x —h%y)dy > 9}, (1.3)

wherey is the characteristic function of the s&t By choosing the appropriate functighand the
valuesa andg, they showed thaF,f(G), thek-th iterate ofF;,(G), converges, akh — t, to £2(t)
in a suitable sense, where(r) with £2(0) = G is an evolution with normal velocity of the type
). In particular, ile =6 = 1/2 andf is a Gaussian, theﬁ}f(G) approximates motion by mean
curvature

V = —tr(Dn).

This is the scheme first proposed by Bence, Merriman, and Osher [6] and analyzed by Evans [9]
and Barles and Georgelinl[2].

1.1 The main results

In this study, we consider a class of threshold dynamics with the following properties: £ab,
suppose thafy, is a mapping from the set of open subset®&fnto itself such that

(F1) Monotonicity:If G ¢ H c R", thenF,G C F,H,

(F2) Translation invariance:Fj,(ty,G) = t,(F;G) for all y € R", wheret,G = {y + x :
x € G}, G C R

(F3) Finite propagation speedfhere existg > 0 such that ifG N Ba.,(x) = H N By (x), then

Fr,G N Bep(x) = FpH N By (x),
whereB, (x) = {y e R" : |y — x| < r}.

Notice that if we choose = 1,6 < (0, 1), and f a measurable real-valued function Bf with a
compact support, thefy, in (1.3) satisfies (F1)—(F3).

One way to generate a limiting process from a fanify} as above is to define, for> 0 and
an open subset in R”,

_ i Lt/ k] ~r\°

AMG = (G/gc Ilhm_lrgf F, G)
and .

ADG = ( ﬂ lim suthWhJG’) ,

G'>OG h—0

whereA? denotes the interior of the satand|s | is the greatest integer which does not excedd
view of (F1)—(F3), one can naturally consider the properties for the evolutlons .A(z): Suppose
that for everyr > 0, A(¢) is a mapping from the set of all open subset®bto itself such that
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(A1) Semigroup A(t +s) = A(t)A(s) forall s, r > 0;

(A2) Translation invarianceA(t)t, = t,.A(z) for all+ > 0 andy € R”;

(A3) Monotonicity:If G ¢ H, thenA(#)G C A(t)H,

(A4) Finite propagation speed4(:)¥ = @, A(t)R" = R”" for all + > 0. In addition, there exists
¢ > 0 such thatifG N B.;(x) = H N B.(x), then

(A()G) N Be(i—5)(x) = (A(S)H) N Ber—g)(x), Vs < 1.

Then we have the following:
THEOREM 1.1 Assumed;(r), Ax(¢) satisfy (A2)—(A4) and, for all, s > 0,

A1(DA1(s) € A1t +5),  A2()Az(s) D Ax(t +5).

Then there exist continuous functioms, v» : $"~1 — R such that for every open Sét,
{A1(1)G};>0 is a supersolution oF/ = v1(n) and{A2(t)G};>0 is a subsolution o = wva(n).
In addition, if A(r) satisfies (A1)—(A4), then there exists a continuous funciios”~* — R such
that{.A(t)G}; >0 is @ weak solution o¥/ = v(n).

The definitions of subsolution, supersolution, and weak solution are given in Def[nitjon 3.1.

In view of nonlinear semigroup theory, Theorém|1.1 says that relaxed semigroup properties
with (A2)—(A4) ensure the existence of “one-sided infinitesimal generators”, which coincide if the
semigroup property (Al) holds.

Regarding the properties (A1)—(A4), Barles and Souganidis [4] and Eilon [7] already studied
these kinds of semigroups acting on sets in a more general setting, which is motivated in part by
the axiomatic approach to image processing developed by Alvarez, Guichard, Lions, and Morel
in [1]. But we remark that Theorem 1.1 cannot be derived directly from the result of Barles and
Souganidis since here we do not assume what they call “locality and regularity”, which is more or
less the existence of a velocity function

Note that because of the condition (A4), the limit motions are necessarily of order one, which
essentially excludes the mean curvature motion. It turns out that they are also of local nature. This
is due to the fact that the scheme is defined for any set, even unbounded. Interestingly, this can
be interpreted as a negative statement: one cannot expect to approximate second order or nonlocal
evolution motions by using threshold dynamics which are monotone, translation invariant, with
finite propagation speed and defined for any set.

Our main result, using Theorgm [L.1, is the following:

THEOREM 1.2 A(r) and.A(r) satisfy conditions (A2)—(A4). Moreover, for all ¢ > 0, we have
AMAS) CAG+s),  AMAs) DAl +s).

Consequently, there exist two continuous functiens v from $"~1 to R such that for every open
setG, {A(t)G};>o is a supersolution of = v(n) and{A()G},;>o is a subsolution of/ = v(n).

To ensurev = v, we further assume

(F4) Foranys < h andn € "1, there exist&” > 0 such that

p(FiHn, FM Hy) < Clh = Lhys)s

, (1.4)
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wherep (A, B) is the distance between setsand B in the Hausdorff metric, andl, = {x € R" :
x -n < 0}. The condition (F4) is not restrictive, in fact, any famfli,} of operators as i (1}.3) with
o = 1 satisfies (F4).

The method used in [13], to show the convergence of threshold dynamics approximation scheme
to geometric evolution, relies on a certain convergence thearem [3] for monotone approximations to
viscosity solutions. Therefore the authors have to invoke the level set approach. Our result bypasses
this machinery and works directly with evolving sets and their discrete approximations. This shows
that if a certain threshold dynamics satisfies the conditions (F1)—(F3), then one can analyze its
limiting dynamics without introducing the auxiliary level set functions and appealing to the well
developed machinery of viscosity solutions, as is typically done in the level set approach. We also
point out that some threshold dynamics satisfying (F1)—(F3) do not admit the convolution generated
from (1.3), and thus our method covers some classes of threshold dynamics not being dealt with
in [13].

1.2 Outline of the paper

This paper is organized in the following way. In Section 2, we list some notation which will be used
throughout the paper. In Section 3, we define the notion of weak solutions for geometric evolutions,
and study some properties of weak solutions. Section 4 is devoted to the proof of Thegrem 1.1.
Finally, we consider the threshold dynamics in Section 5. We present Thgorem 1.2 and discuss the
existence of a limiting geometric evolution obtained by iteration of the threshold dynamics.

2. Notation

We introduce some notation which will be used throughout this paper. We Wfitdor n-
dimensional Euclidean space aRd= R!. We denote generic points iR” by x, y, ..., where
x = (x1,...,x,) and so on. We write; = (0,...,0,1, ..., 0) for thei-th standard unit vector.

Forx,y € R", x - y is the usual inner product of andy, and|x| = \/x - x. Forx € R"” and
r > 0,wesetB,(x) = {y € R" : |y — x| < r}, an open ball inR" with centerx and radius
r > 0,ands" 1 = {x € R* : |x| = 1}, the (n — 1)-dimensional unit sphere. We denote by
Hn = {x € R" : x - n < a} a generic half-plane iiR"” with normaln e $”~1 for some fixed but
arbitrarya € R.

We normally useG, H, ... to denote open subsets &f. For G ¢ R”*, we write G°, G and
aG for the interior, closure, and boundary Gf respectively. We often writ& C H in U to mean
GNUCHNU.

LetG C R" x (0, co) be open. We sa§G is C* at (xo, to) if there exist- > 0 and aC¥ function
g 1 R*1 % (0, 00) — R such that, upon relabeling and reorienting the coordinates if necessary, we
have

G N B, (xo, to) = {(x, 1) € B, (x0,0) - X > g(x1, ..., Xp—1,1)}.

We say thabG is CX if 3G is C* at (x, ¢) for all (x, 1) € 3G with ¢ > 0. Likewise,dG is C* if
aG isCkfork =1,2,.... We say a family{C (r)};,>0 of sets is amoothly evolving seén R" if
9(U,~0C (1) x {t}) as a subset d&" x (0, oo) is smooth.

GivenG C R" andy € R" we denote by, G the translation o5 by y, thatis,7y,G = {x + y :
x € G}. We write xs for the characteristic function of, that is,xg(x) = 1if x € Gand 0
otherwise. Notice thaty xc = x,c for y € R". The support of a functioth is denoted by spt.
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We denote by BUQR") the space of bounded uniformly continuous function®R8nForx € R”
andG c R”, we write distx, G) for the distance fromx to G. We denote by (G, H) the distance
betweenG and H in the Hausdorff metric, i.e.

o(G, H) = max(dist(x, H), dist(y, G) : x € G, y € H}.
Given an open subsét c R”, we definedg € BUC(R") as follows:

dist(x, 0G), x € G,dist(x, 0G) < 1,

dg(x) = —dist(x, 0G), x ¢ G,dist(x,dG) <1,
1, x € G, dist(x,0G) > 1,
-1, otherwise.

3. Weak solutions for geometric evolution problems

In this section, we study geometric evolutions satisfying (A1)—(A4). To study evolutions of open
sets, we first define the notion of subsolutions and supersolutions for geometric evolution problems,
and we find some properties of weak solutions.

We start by introducing the following definition which is motivated by the paper of Bellettini
and Novaga [5].

DEFINITION 3.1 A family {G(#)},>0 of open sets is aupersolutiorof the geometric evolution
problemV = v(n) if, whenever — C(¢) is a smoothly evolving set iR"” and

1) C(®) c G(t)forallr € (tp — €, to] for smalle > 0,

()
{xo} if t = 1o,

AC(H)NIG(t) = { b it £

then
kycr (x0, f0) = v(Nn),
wheren is normal t0dC(tg) atxo and kyc () (xo, fo) is the normal velocity obC(¢) at (xo, to).

Similarly, a family {G(¢)},>0 of open sets is @ubsolutionof the geometric evolution problem
V = v(n) if, whenever — C(¢) is a smoothly evolving set iR" and

(1) C@t) D G@)forallt € [t, tg + €) for smalle > 0O,

2
{xo} if t =19,

aC() NAG(r) = {g if t #1o

then
kac () (xo, to) < v(n),

wheren is normal todC (tp) atxg. Finally, a family of open set§G (¢)}; >0 is aweak solutiorof
V = v(n) if it is both a subsolution and a supersolutionlot= v(n).

REMARK 3.2 The conditiorn(2) in Definition[3.] can be replaced by

x0 € dC(to) N dG (to). (3.1)
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FIG. 1. The touching condition for a supresolution.

To see this, suppose that(r) satisfies the condition (1) for supersolutions, for example, and let
Cs(t) = {x € R" : dcgy(x) > 8(|x — xo|? + |t — 10|?)} for § > 0. SinceC(¢) is smooth,Cs(z) is
smooth at least nedxo, 7o) andCs(¢) C C(¢) for small§ > 0. Since we are only interested in local
behavior neatxy, tp), we may assume€; is smooth globally. Moreover,

(3.2)

scnnaon = [ 1=

By Definition[3.1, the velocity 06 C;(r) at (xo, fo) is > v(n) for everys > 0. Now let§ — O to get
(3.7). By analogy to viscosity solutions in PDEs, the conditjon|(3.1) is similar to the use of extrema
instead of strict extrema.

In [5] Bellettini and Novaga studied a wide class of geometric evolution problems in terms of
minimal barriers. The following comes from Definition 2.1 iinl [5]. We denote™iR") the set of
all subsets oR".

DEFINITION 3.3 LetF be a family of functions with the following property: for any e F there
exista,b € R, a < b, such thatf : [a,b] — P(R"). A function ¢ is abarrier with respect to
F if and only if there exists a convex sét C I := [0, c0) such thatp : L — P(R") and if
f ila,b] € L — P([R") belongs taF and f (a) < ¢ (a) then f(b) C ¢(b).

REMARK 3.4 We show that a subsolution or a supersolution in the sense of Definition 3.1 is a
barrier with respect to an appropriate family. We present the argument only for subsolutions
since the case of supersolutions is similar. {&{t)},>0 be a subsolution in the sense of Definition
@. LetF be the collection of all smoothly evolving open s@f¥r)};>0 such that

ka(j(;) < v(n), (3.3)
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wheren is normal tod C(¢). We want to show thallG (1)};>0 is a barrier with respect t&. In fact,
if not, there existg < 11 and{C(t)};>0 € F such that

C(to) C G(to), but C(t1) € G(tp). (3.4)

In view of (3.4), there exist* ande > 0 such thatC(rt) c G() for all t € (+* — ¢, ¢*] and
AC(E*) NG (t*) # B. Fix xg € aC(t*) N 3G (¢*). SinceG(¢) is a subsolution in the sense of
Definition[3.1 we can conclude, in view of Remark]3.2, that the velocity@fi*) atxg is at least
v(n), which contradict€ (¢) € F.

The following lemma shows that Definitipn 3.1 gives a reasonable notion of weak solutions for
geometric evolutions.

LEMMA 3.5 If G(¢) is a supersolution of the geometric evolutitn= v(n) and if G (1) is C* at
(xo0, f0), then
kyc ) (xo0, fo) = v(N).

A similar result holds for a subsolution with reverse inequality.

Proof. SincedG(¢) is C1 at(xo, 19), after a rotation, there exist> 0 and aC functiong such that
G N B (x0, o) = {(x,1) € Br(x0,10) : xp > g(x', 1), x' € R" 1}
Then for smalls > 0, there exist&5s(¢) (see Remark 3|2 for a simple construction) such that

Gs(t) — G(t) N B, (xg, to) in Hausdorff metric, and
(1), (2) in Definition[3.1 hold.

Sinced G (r) is CL at (xq, 7o) and this is a local property, we may assume gt ) is aC* smoothly
evolving set. By Definitiof 3]1, the velocity 8155 (r) at (xo, 7o) is greater tham(n) for everys > 0.
Lets — 0 to get the result. O

4. The proof of Theorem[1.]1

In this section, we give the proof of Theor¢m]1.1. The crucial step in the proof is the following
lemma.

LEMMA 4.1 LetA(r) satisfy

(A1) Semigroup A(t +s) = A(t)A(s) forall s, r > 0;

(A2) Translation invarianceA(t)t, = t,.A(r) for allr > 0 andy € R";

(A3) Monotonicity If G C H, thenA#)G C A@)H,

(A4) Finite propagation speed.et A(1)? = @, A(t)R" = R” for all r > 0. There existe > 0
such that ifG N B, (x) = H N By (x), then

(A)G) N Ber—g)(x) = (AG)H) N By (x), Vs < 1.

Then.A(r) maps half-planes to half-planes. Moreover, there exists a continuous functigir! —
R such tha{ A(r)G}; >0 is a weak solution o¥/ = v(n) whenevelG is a half-plane.
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Proof. 1. Fix somer > 0 and letn € $”~1. By finite propagation speed (A4), there existse R”
such that

A(t)Hn C 1y, Hn. (4.1)

Define
d(n, 1) =inf{yn-n: A@)Hn C 1y, Hn}.

If we choosey = d(n, r)n, then @) impliesd(z) Hn C t, Hn. For anyx such thatc - n < 0, we
haver, H, C Hpy sinceHy is open. Hence, by translation invariance (A2) and monotonicity (A3),

7. A(t)Hy C A(t) Hp.
This implies.A(¢) Hy is a half-plane with normai. But by the definition ofy, we haveA(r) H, =
Ty Hp.

2. We definev(n) by the relation

A(t)Hn = ty(nynHn. (4.2)

First, we claim that there exist > 0 such that
lv(n)| < C, Vne §" L (4.3)

Suppose tha.3) does not hold. Then for gives 0 in (A4), there exist: € "~ such that

lv(n)] > 2¢. We may assume(n) > 0. ForH, = {y € R" : y - n < a}, fix x € R” such that
x -n=v(Nn) +a. ThenHy N Ba.(x) = @.

A(1)Hp

\Hn

FiG. 2. The bound ob(n).
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By finite propagation speed (A4).A(1)Hy) N B.(x) = (AQ1)?P) N B.(x) = @. This implies
x ¢ A(1)Hp and hencey(n) = x - n — a < 2¢, which is a contradiction, and heneds bounded.
Note that so far we have made no use of (Al).
Fory = v(n)n, we haveA(1) H, = t,H,. We claimA(t) Hy = 1;, Hy. By semigroup property
(A1), we have, for any: > 0,
A(nh)H, = A(h)" Hp. (4.4)

In particular,A(1/n) Hy = t(1/n)y Hn, n € N. By finite propagation speed (A4), we have
p(A(h)Hn, Hp) < Ch. (4.5)

Fix anyn € N. Then we choose: € N such thain/n <t < (m + 1)/n. Without loss of generality,
we may assume

A(%) Hy C A(t)Hy C A(’”TH) H. (4.6)

Then [4.6) implies

1\" 1\"
p(A(t)Hn, Ty Hp) < P(A(f)Hn, A(;) Hn) + P(A<—) Hp, TtyHn>

n
1 m 1 m+l 2

<20l Al - ) Hn, Al — Hn) <=|v(n)] — 0 asn— oo.
n n n

HenceH, has constant speedn) along normah.

3. Now we show that the function is continuous. For given open subséisH, by finite
propagation speed (A4), there exiRs > 0 such that ifG N Bap(0) = H N Bg(0), then
(A1)G) N Br(0) = (A()H) N Bg(0). By ), we may assumB > 4C. Fixn € §"~1. We
need to estimatg (n) — v(n’)| for n’ € $*~1 close ton (see FigurE]3). In particular, we can restrict
our attention ta’ such that

l—e<|n-n] <1, 4.7)

with € to be chosen later. Given such @inwe define
H, ={xeBpr :x-n <a}, (4.8)
where we seleai™ to be the smallest number such that
xe B0, x-N">a = x-n>0.
A simple calculation shows that
a” =2RY1—(n-n)2 (4.9)
In particular, the choice af ~ implies that

Hn N B2g(0) C Hy, N Bag(0).

As a result, we know that
A Hy C AD)H,,  in BR(0). (4.10)
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FIG. 3. Hp andHr;

Let
op=inflc e R:on ¢ ADH,}.

We try to findoo. In fact, A(DH,, = {x e R" : x-n" <a~ +v(n")}. Hence for any > oo, we
haveon-n’ > a~ + v(n'). Therefore

_ — /
0o = —— (@ +v(m).
In view of (4.7) and[(419), we have
o r—)
joon < - 1n/| (2RV1I—(n-n)2+0C) < R<22€1—€+1/4>. (4.11)
. — €

Since the right-hand side ifi (4]11) is less thaufior smalle > 0 we may assumegn € Bg(0).
Thus we find by[(4.7)0),

v(n) =inflo e R : on¢ A(DHn} <inflo eR 1 on¢ ADH,} < ﬁ(a‘ +v(n)).

Next choosd{; = {x € Bor(0) : x - n’ < a™}in place of ) whera™ is the greatest number
such that
x € Bor(0), x-n<a™ = x-n<D0.

Applying the previous argument, we have

1
n-n

v(n) = (—a* +o(n)).
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Combining these two inequalities, we conclude

1
n-n
The continuity ofu(n) follows from (4.9) and[(4.72).
4. Finally, if G is a half-plane, thef.A(t)G},>o is both a subsolution and a supersolution of

V = v(n) since A(t)G itself is smooth for alk > 0 and the normal velocity is(n), wheren is the
normal todG. |

1
(—a* +v(n)) <v(n) < (@ + o). (4.12)

We now turn to the proof of our first main result.
Proof of Theorerp I]1. 1. We only prove the supersolution case since the other case can be proved
similarly. So write A(¢) = A1(¢). SupposeA(r) satisfies (A2)-(A4) and

ANA(Gs) C At +s5) Vi, s > 0. (4.13)

The existence of a continuous functieriollows from Lemmg 4.]L (careful inspection of the proof
of Lemmg 4.1 tells us that we do not need the property (A1) for the existenge of

2. To prove{A(t) G} >0 is a supersolution of = v(n), fix any smoothly evolving s€iC(r)}; >0
such that for an open subs@tin R", C(r) C A(¢)G for all ¢ € (19 — ¢, 1g] for smalle > 0 and

3C(1) N I(AM)G) = { PR

Let w denote the normal velocity @ (¢p) atxg, and suppose toward a contradiction thak v(n).
SinceC(¢) is a smoothly evolving set, after a change of coordinates, we may as well assume that
near(xo, to), C (1) is the graph of a smooth functign(x’, 1), x’ € R*~1, such that

nZen’ XOZO, g(O, IO)ZO, Dg(07 t0)=0
Then we can choose small> 0 andc > 0 such that, by expansion, we have
lg(x', to — h) + wh| < kh® for somek, and allx’ € By (0).

Hencery, Hy C {g(x', to—h) > x,} C A(to—h)G in Ba.;(0), whereyy-n = —wh —kh?. Utilizing
monotonicity (A3) and finite propagation speed (A4), we find

A(h)ty, Hy C A(h)A(tg — h)G C A(to))G  in B, (0), (4.14)

where we used (4.13) in the second inclusion. Noticett@bzy, Hn = {x-n < (v(n)—w)h—kh?}.
Hence(v(n) — w)k < kh? according to4). Sinck > 0 can be arbitrarily small, we have a
contradiction.

3. If A(r) satisfies (A1)—(A4), then steps 1 and 2 imply that there exist, : $”~1 — R such
that for every opeis, {A(1)G};>0 is a supersolution of = v1(n) and a subsolution df = vo(n).
If v1(n) # vo(n) for somen € §”~1, then

ADH, ={xeR":x-n<viN)}={x eR":x-n < van)},
which is impossible. ]

The following result is a direct consequence of Lenimé 3.5 and Theorém 1.1 which shows that the
velocity motion is classical as long as the evolution is smooth.
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COROLLARY 4.2 Suppose thatd(¢) satisfies the hypotheses (Al)—(A4). Then there exists a
continuous functiorv : §*~1 — R such that for every open sét, {A()G};>0 is a classical
solution of V = v(n) whenever its boundary is®.

5. Threshold dynamics onR”

In this section, we consider threshold type dynamic$Rérintroduced by Gravner and Griffeath

[11]]. In Section 2 of [[1B], Ishii et al. studied approximation schemes for curvature-independent
motion by using threshold type dynamics. We consider a more general class of threshold type
dynamics. We do not make any assumptions about the detailed structure of dynamics. Rather, we
merely assume simple properties: monotonicity, translation invariance and finite propagation speed.
We recall the hypotheses (F1)—(F4) from the Introduction./Fsr 0, suppose thaf;, is a mapping

from the set of open subsetsiitf to itself such that

(F1) Monotonicity If G ¢ H c R", thenF,G C FyH;
(F2) Translation invarianceFy (t,G) = 1, F;,G, for all x € R”;
(F3) Finite propagation speedfhere existg > 0 such that ifG N By, (x) = H N Bacp(x), then

FrnG N Bep(x) = FpH N Bep(x);
(F4) Foranys < h andn e S"1, there exist&” > 0 such that

p(FyHn, FY" Hy) < Ch = Lh/s]s). (5.1)

F2Hp
FyHp
Hn

FIG. 4. The distance betwedh, Hn and F"/*) Hy,.

The assumption (F4) may appear unusual. (F1)—(F3) are the conditions for single parameter
It is reasonable to compare the evolution between two parameters. The assumption (F4) together
with (F3) gives us some control on at least the evolution of half-planes.



THRESHOLD DYNAMICS 315

For givens > 0 and an open subsétin R", we define

AnG =( | liminf £/M6') (5.2)
G¢cce "

JTl(t)G:( N IimsuthL’/hJG’)o, (5.3)
G/:)DG h—0

whereA? denotes the interior of the sgtand

iminf 7" =) () F7Y (5.4)
h—0 h>00<s<h
limsupF\/" = N U FU/s, (5.5)
h—0 h>00<s<h

In ), if G is not bounded, one can modify the definition to make) well defined. For
example, one can take the intersectioGof\, G whereG? = {x € R" : dist(x, G) < §}. First we
prove the following

LEMMA 5.1 IfG1 C G, then
0(Fr(G1), Fr(G2) = 0(G1, G2)
whereo(G, H) = min{dist(x, H¢), dist(y, G°) : x € G, y € H}. Similarly,

o(liminf FM Gy, limin F''MGy) > 0(G1, G2).

Proof. The lemma follows from noting that & and H are open and; C H then
0(G,H) >a ifandonlyif 7,G C H forall|y| <a. (5.6)

In particular, forG, C G, if we write d := 0(G1, G») then the above implies thatG, C G for
all |y| < d. Then monotonicity (F1) and translation invariance (F2) imply thal,G1 C F;G2
for all |y| < d, and again usind (5.6), we deduce the first conclusion of the lemma. The second
conclusion follows by essentially the same argument, after noting that liminf is monotone in the
sense that

U, C VyVh >0 = liminf U, C liminf V. |

We are now ready to give the proof of Theorem 1.2.

Proof of Theorenf I]2. 1. The hypotheses (A2)—-(A3) directly follow from (F1)—(F2). To prove
(A4), fix a constant > 0 in (F3). Suppose th&t N B.;(x) = H N B, (x), G, H C R",t > 0. Fix
anys < t. By finite propagation speed (F3) and iterations, we have for:any0,

h h
Fth/ ‘G n Ber—s/nny (x) = F;,LS/ THN Bee—1s/nn) (%).
Since|s/h]h < s foranyh > 0, we get
FE'™MG N Beg_gy(x) = FP H 0 By (x). (5.7)

Then (A4) follows by taking lim sup i (5] 7).
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2. We only proveA(r)A(s) C A(s + t), since the other case is similar. Fix an openGet
R" ands,t > 0. We may assume thé&t is bounded, because if not, we can prove the result for
G N Bg(0) for arbitraryR > 0, and then use finite propagation speed (F3) to deduce that

ADASG = | ADAG)G N Br(O) C | Als +1)(G N Br(0)) = A(s +1)G.

R>0 R>0

Let H = A(s)G, and note that sinc€ is assumed to be bounded, finite propagation speed implies
that H is bounded. Our goal is now to show théfr) H C A(z + s)G. Toward this end, we fix any
H' cc H, and we let

Gy = {x € G : dist(x, 0G) > 1/k}, Hy = (U N F,Ef/h’]Gk)O.
h>00<h’'<h

It then follows from the definitions that = | J, Gx and H = | J;, Hi. It also follows from the
above lemma thai(H;, Hy) > o(G;, Gi). We first claim that

H' C H; for somek. (5.8)

To prove this, suppose toward a contradiction that it does not hold. Then fok ¢aete exists some
xx € H'\ Hy. Upon passing to a subsequence, we may assume Himedounded) that

xy > xeH CH. (5.9)

Sincex € H, clearly x must belong toH; for somek. Then H, C Hyy1 ando(Hy, Hyy1) >
0(Gk, Gry1) = ¢ > 0, and these together imply thHj1 contains a small balB,, (x). It follows
that B, (x) C H; forall j > k 4 1. Thus an open neighborhood ofis contained inH. This
however is impossible, in view df (5.9), and so we have provedthe claim.

3. Now fix k satisfying [5.8) and note that

At +5)G > liminf FLM G = liming pLOE/AE/ M pls/H G
> liminf LA g jiming I B

Since this holds for alH’ cc H, the definition ofA implies thatA(r + s)G > A(r)H, as was to
be proved.

4. By Theorel there exist v corresponding tod(r), A(r) respectively such that for every
openG, {A(t)G} is a supersolution of = v(n) and{A(r)G} is a subsolution o’ = w(n). Since
ADHy={x eR":x-n<v(n)} Cc ADHy={x € R" : x-n <v(n)}, we havev < 7. O

To finish the remaining part, we need the following lemma.
LEMMA 5.2 Suppose (F1)—(F4) hold. Then

A(t)Hn, = A(t)H,  foreachr > 0 andn € S 1.
Proof. Fixs < h < tandn € §"~1. Write

lt/hl=m < |t/s]=n, |h/s]=k, k,m,neNU({0}.
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Then (F4) andr; F, Hy, = Fj, Fs Hy imply

p(FJ" Hn, FI'Hn) < p(F" Hn, FXF" 7 Hp) + - + p(FX" =Y F Hy, FE™ Hy)
+ p(Ff™ Hy, FI' Hy)
< Clt/h)lh = h/s]s| + p(F™ Hy, F}' Hy).

Note thatkm < n. We can estimate (F*" Hy,, F!" Hy) via finite propagation speed (F3) as follows:

o(F'"Hn, FM"Hy) < p(F" Hn, F'"YHp) 4 - + p(FE" Py, FRm Hy)

<
< Cs(n—km) < C(t — skm).

Considerskm = s|h/s]|t/h]. We may assumé&m > 1 sincek = 0 orm = 0 implies
p(F"Hp, FI'Hn) < C|h — |h/s]s|. Therefore we have

skm =s|h/s||t/h] >t ass<h— 0.
Hence we have a Cauchy estimate
p(F"™M Hy, FYVHy) — 0 ash, s — 0. (5.10)

The conclusion follows fronf (5.10). O

Let us show = v under the hypothesis (F4). Suppage) # v(n) for somen € s"~1 By Lemma
, {A(t) Hn}i>0 = {A(t) Hn}/ >0 is @ weak solution o¥/ = v(n) andV = v(n). Then we have

ANOHy={xeR":x-n<v)}={x eR":x-n <)},

which is a contradiction.

REMARK 5.3 We notice that if (F4) does not hold, then we cannot guarantee the existence of a
limiting velocity v. To see this, lef.A1 ()G}, >0 and{.A>(¢) G};>0 be families satisfying (A1)—(A4),
and such that the associated velocity functiopandv, (guaranteed by Theorgm 1.1) satisfy

v1(N) < va(n)  Vne §" L

We define
A1(h)G 127U+ < h < 277 for j even,
FhG - . —(j+1 — 7 .
Ao(W)G  if27VTY < h < 27/ for j odd.
Set

o —_ o
A()G = ( U lim inf FhWhJG/> ., ADG = ( ﬂ lim suthWhJG’) .
¢ccg "0 G'>>G6 =0

Sincev1(n) < v2(n), itis formally clear that

ANG = A1()G, AWt)G = A2(H)G Yt > 0.
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