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A discrete scheme for regularized anisotropic surface diffusion:
a 6th order geometric evolution equation
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We study anisotropic surface diffusion of curves with a small corner energy regularization. The
regularization allows the use of nonconvex free energy densities and turns the evolution law into
a 6th order geometric equation. Using a semi-implicit time discretization, we present a variational
formulation of this equation for parametric curves, leading to a discretization based on linear finite
elements. The resulting linear system is shown to be uniquely solvable. Numerical examples include
the convergence of closed curves to the Wulff shape and the evolution of a thermodynamically
unstable surface into a hill-valley structure and its subsequent coarsening.
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1. Introduction

Surface diffusion plays a crucial role in various fields of materials science. Applications include the
spinodal decomposition and subsequent coarsening of a thermodynamically unstable crystal surface
and the self-organization of nanostructures. If the crystal surface is driven by thermodynamics and is
essentially independent of the bulk, surface diffusion is the dominant mass transport mechanism and
determines the dynamics of the surface morphology. The evolution will tend to minimize the surface
free energy and approach an equilibrium shape. In the following, we will consider a two-dimensional
approximation of a crystal. The equilibrium shape (“Wulff shape®) of a crystal in two dimensions

is defined as the shape of minimum surface free enérgy /. y ds under the constraint of fixed

area [18]. The surface free energy density= y(6) depends on the local orientatienof the

surface normal, reflecting the anisotropy of the material. According to the Wulff thedrem [27], the
equilibrium shape may be constructed as follows: Draw at each point of the polar plat pf

a straight line perpendicular to the normal direction; the inner envelope of the resulting family of
lines is geometrically similar to the equilibrium shape. Depending on the detailthefequilibrium

shape may contain flat sides (“facets”) and corners. Facets occurmhas cusps. Here we will
concentrate on smooth free energy densijieeading to corners, which occurs if the stiffness

7 = y + y” becomes negative for some orientations. In this case it is energetically favourable to
exclude high energy orientiations, i.e. the Wulff shape has missing orientations. As shawn in [5],
for positive stiffness, the Wulff shape may be parametrized as

x(0) = y'(0) cog0) + y(0) sin@), y(©) = —y'(6) sin@) + y (9) cos). @)
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FiG. 1. Equilibrium crystal shape (“Wulff shape”) for a strong anisotropic surface enget@y = 1.0 + 0.5cog49);

truncating the unphysical “ears” (dashed/blue) yields the equilibrium crystal shape (solid/red); the Wulff shape has sharp
corners (missing orientiations) connected by almost flat sides. The constant chemical potential is chosen such that the area
of the Wulff shape isA = 25r.

If the stiffness becomes negative for some orientations, the above parametrization has unphysical
“ears”—see Fig.[]1. In this case, the Wulff shape is obtained simply by removing these ears, as
shown in [6]. While the equilibrium problem is well understood, modelling the dynamics can create
severe difficulties in the case of strong anisotropy. In order to construct a dynamic model, the normal
velocity v of the surface is related to the chemical potentiaWwhich is given as the variational
derivative of the surface free energy namelyu = §F/8I" = y«, with 7 = y + y” being the
surface stiffness, with the convention that the curvatuie positive for a convex curve, and the
normal is pointing outward. Depending on the dominant mass transport mechanism two models are
considered: For attachment kinetics one assumes that

V=—U= _]7’(9 (2)

i.e. the dynamics is described by anisotropic mean curvature flow. If surface diffusion is the
dominant mass transport mechanism, the evolution law feranisotropic surface diffusion

v =0;(vosu) = 35 (Vs (YK)), 3)

with v = v(6) being the mobility of atoms diffusing along the surface andenoting differentiation
with respect to arclength If the surface stiffnesg turns negative for certain angles both models
become backward parabolic and therefore ill posed.

1.1 Small corner energy regularization

One way to overcome the resulting inherently unstable behaviour of the dynamic problem is to
regularize the equation by adding a curvature dependent term to the surface free energy density.
This has already been proposed on physical grounds_ In [17], and later mathematically introduced
in [11]. In two dimensions the penalized interfacial energy density reads

Ve =y + se?. (4)

The basic idea for introducing a curvature dependent term is to penalize sharp corners. The corners
get rounded on a small length scale givend}?. Thus, minimizing the surface enerdy =

[ ve ds will be a compromise between the two competing energy terms, which determines the
rounding of the corner: a large curvature at the corner increases the regularization term, whereas a
small curvature at the corner leads to orientations wherelarge. The effect of the regularization
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on the equilibrium shape has been analysed in detailin [24]. In particular it is shown by asymptotic
analysis that the equilibrium shapes for> 0 converge to the sharp corner £ 0) equilibrium
shape ag — 0.

The regularized surface enerdy (4) leads to the chemical potential

_OFc
- 8r
Thus, in the case of attachment kinetics as the dominant mass transport mechanism one obtains the
4th order parabolic geometric evolution law

e = 7 — (s + 36°). (5)

V= —Ue = —YK + €(Issk + %Ks)« (6)

In the case of surface diffusion being the dominant mass transport mechanism the dynamics is
described by the 6th order parabolic geometric evolution law

v =3 (vdspe) = By (V3 (& — €(Bssk + 23))). @)

Note that if we sefy = 0 ande = 1, then [(§) is known as Willmore flow. In this paper we will
present a numerical scheme fof (7) in a parametric formulation.

1.2 Small slope approximation

Before we describe our numerical approach, let us discuss a small slope approximation, which
connects equationf](6) arid (7) to the well known Cahn-Hilliard equation. Here we closely follow
[26], where the small slope approximation is derived fdr (6) with an additional driving force.
Assume the planar fromt = 0 to be thermodynamically unstable, i2(0) < 0. Moreover
assume there exists a pair of stable orientattbns +n with 0 < n « 1. In this case, a small
slope approximation can be employed by expandiig (6) ghd (7) in powersasffollows: Let
y = h(x, t) be the graph defining the surface; thish = tan(@), where—=/2 < 6 < 7/2, is the
surface slope. The projected energyié, k) := y (8)/cog0) and the second derivative &f(d, )
yields V" (3,h) = cos’(8)7 (9). If we define the rescaled ener§§j(d, 1 /n) := V (d,h) and expand
h = nh1+ n?hy + - - - it follows that
v =ndh1+ 0P,
as = 3)( + 0(772)9
K = —ndech1+ 0P,
Ossk = —N0Oxxxxh1 + 0(772),
¥ =00,
7(0) = W (d:h1) + O ().

Therefore we obtain fof [6) anf](7) in leading order

0h1 = W//(axhl)axxhl — €0xxxxh1, (8)
Orh1 = —0y (Vax(W//(axhl)axxhl — €0yxxxh1)) (9)

respectively. Differentiating {8) anf](9) with respecttand setting; = d, /1 yields
Orq = axx(W/(Q) — €0xxq), (10)

orq = _axx(‘)axx(w/(‘n — €0xxq)) (11)
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respectively. Equation[(10) is identical to the Cahn-Hilliard equation describing spinodal
decomposition in binary alloys and (11) is a higher order Cahn—Hilliard equation. The described
long-wave approximations demonstrate the close connection between the regularized free energy
Fe = [1(y(0) + 3ex?) ds and the free energy functional = Joy(W(@) + Zeldeq|?) dx from
which the Cahn—Hilliard and the higher order Cahn—Hilliard equation can be derived. The small
corner energy regul::xrizatio%1s/c2 corresponds to the gradient te%n|axq|2 and the analog to the
surface free energy densip(60) is given by the rescaled projected eneijyq).

To further demonstrate the connection we choose an example where a small slope approximation
may be employed. Consider a surface energy density of the form

y(0) =1+acog32), ie. 7)) =1+a(l—32) cog3).

Thus, choosing: > (322 — 1)1 leads to a Wulff shape with 32 corners. F@ 2 presents the
equilibrium shape and the projected eneiligyfor « = 10322 — 1)~1. The corner orientations

of the uppermost corner are determined by locating the smallest orientationgnere the curve
(x(9), y(8)) as given in Eq.[(1) crosses itself, and are taken as the stable orientatiorfSor

a = 10(322 — 1)1 one obtaing* = +0.089201. In Fig[ B (left) the equilibrium shape of the
uppermost corner is depicted for different values of the anisotropy strengthd Fig[3 (right)
shows the corresponding rescaled projected eneWgiasth = 0.089201. It clearly demonstrates
the convex structure d if 7(6) is nonnegative and the double-well structurelofif the Wulff
shape has missing orientations or equivalentfy(®) becomes negative. Note that even in this case,
the Cahn-Hilliard equations can model only a small part of the phenomena of the full geometric
evolution.
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FIG. 2. Left: upper right quarter of the Wulff shape with atéa= 257 and anisotropy = 1+ 10322 — 1)~ cog32).
Right: corresponding projected energyo, 1).
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FIG. 3. Left: uppermost corner of the Wulf fshape with area= 257 and anisotropy = 1+a(322 — 1)~ 1 cog329), with
o = 10,0 = 1, = 0.1. Right: projected energieé& (dxh/n) = V (dxh), wheren = 0.0892 is the corner orientation for
o =10.
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Equations[(I0) and (11) are intensively studied to describe the dynamics of crystal slirfaces [25,
19]. For both models thermodynamically unstable crystal surfaces undergo spinodal decomposition
into a hill-valley pattern with stable orientations. These models attracted wide attention due to
their role in self-organization of nanostructures. However, for such applications the long wave
approximations are questionable because the small slope assumption on which they are based is
not fulfilled. Therefore we will deal with the full nonlinear geometric evolution lajs (6) &hd (7).

The restriction to one-dimensional surfaces should be seen as a preliminary study to a full three-
dimensional theory. A finite element discretization fdr (6) has already been described in [16]. Here
we will concentrate on a numerical solution f (7).

1.3 Numerical approaches to surface diffusion

Algorithms for surface diffusion are already discussed in the literature but are mainly restricted
to the isotropic case. A level set method for isotropic surface diffusion was introduced in [8]. A
semi-implicit discretization for the isotropic case is considered ih [23] and for the anisotropic case
in [9]. A graph formulation of[(J) has been addressed recentlylin [4]. Starting with the analytic
work of [7], which shows the formal convergence for vanishing interfacial thickness of a Cahn—
Hillard equatioE]with an increased mobility to the equation for motion by surface diffusion, several
phase field approximations have been applied to study surface diffusion. The isotropic case is
considered in[3, 20] and an anisotropic version is addressedlin [13]. This approach also allows for a
nonconvex surface free energy. Instead of the above described regularization here nonconvex angle
intervals are simply excluded, which does not allow describing the formation of corners nor can it
describe the nucleation of facets. A graph formulation for isotropic surface diffusion is addressed
by finite elements inJ1]. Weakly anisotropic surface diffusion in this context has been considered
in [10]. In the parametric case finite element discretizations are introduced in [2] for the isotropic
case and extended to the weakly anisotropic situation_in [15]. Furthermore, several explicit finite
difference schemes are applied to study surface diffusion, in the isotropic and anisotropic setting. A
discretization of[([7) in the parametric case has not been addressed with either method.

2. Variational formulation and finite element discretization

Following the ideas of[2], we start by writing the 6th order equatidn (7) as a system of 2nd order
equations as follows: we introduce the position vegtdhe curvature vectoi = « 1, the weighted
curvaturek, the variablel and the velocity vectob = vz, and use the geometric expression

ik = —dsx; then equatior (7) becomes equivalent to the following system of equatiois#ork,

{, v, andv:

K = —0gX, 12)
K=K-n, (13)
K =7k -1, (14)
I = dgek + 363, (15)
v = 0, (Va5 (K — €l)), (16)
U = vn. a7)

1 Instead of describing the slope of the phase boundary, as in Son 1.2, in this case the phase variable models the two
bulk phases and the phase boundary is given by the zero level set.
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Let I'(¢+) denote the interface at time Now split the time interval by discrete time instants
0 =1 < n < --- and define time steps, := f,+1 — tn. We represent the next interface
'+ = I (t,41) interms of '™ = I'(1,,) by updating the position vector

3y, 0. (18)
In the time discretization, all geometric quantities suchzand 3, are evaluated on the current
interface I'"™. In contrast to the geometric quantities, the unknownsc, «, [, v, and v are
treated implicitly, with the exception of the nonlinear testhwhich is treated semi-implicitly, i.e.
3 = K™+ 1(k™)2. In particular, in view of[(ZB), we define

fém+l — _ass()—ém + _L,ml—)~m+1). (19)

2.1 Variational formulation

To derive a weak formulation, we proceed similarly(tol[12, 2]: multiply (13)] (14), (I5), (L6), (17),
and .) by test functiong € Hl(F) andy € H(I"), and use integration by parts. For simplicity,
we have hereafter dropped the supersaript 1 for the unknowng ”+1, etc. Furthermore, using
the notation(-, -) for the L2 inner product over the current interfaf#’, we arrive at the following
set of semi-implicit equations:

PROBLEM1 Form = 1,2,...findk € HYX(I'™), x € HX(I'™), i € Hl(rm) [ e HXI™),
ve HY ™), andv Hl(rm) such that for ally € HY(I™) and allyy € HX(r™),

(@, W) — T (350, 8,9) = (3™, 3,9),
(KK, Y) — (& -7, ) =0,
(R, Y) — (P -ii, ) =0,
(L) + (35K, ds¥) — 2{(™P, ¥) =0,
(v, ¥) + (vosk, I ) — €{vd,l, OsYr) = O,
) =

(1_5? l/f) - <Uﬁ, W

Now the discretization in space is straightforward: Consider a polygonal difvapproximat-
ing I'". The polygonal segments are thought of as finite elements. Also for the polygonal curve,
we denote byi the outer unit normal td””, which may be discontinuous across inter-element
boundaries. Denote by)' < Hl(Fh’”) the finite element space of globally continuous, piecewise
linear functions with corresponding nodal basis functi(nmsle, whereL is the number of degrees
of freedom. ByW’” C ﬁl(l“’”) we denote the finite element space of vector-valued functions with
nodal basis functlonswl ) L, wherewl = ¢, with y; the scalar basis function defined
above andeq, é») the standard basis R?. Problenﬂl is discretized by expanding the functions
K, k,l, v, vinterms of the basis functions and testing against all discrete test functions, i.e. solving
Probleer. in the finite-dimensional spad&g’, W

To arrive at an algorithm in a block matrix form, we introduce an auxiliary varialileing
identically 0, i.ei = 0, and expand the unknowns

L L
=Y Kiyi, k= Kiyn,
=1 =1
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At
=
Il

I
M- M- I

L
Ky, I = ZLII/U,
=1

(=1

h

L
Wi, v = Z Vv,
=1

ip =

Iy

!

Il
AN

for some R .
Ki,....K;) e R¥>L K =(Ky,...,Kp)" € RE,

Ki,...,Kp)!' € RE, L=(Ly,...,Lp)" € RE,
V=W, V) eR>¥L vV =(V,....,V.) eRE,
I:(Il,...,IL)ZGRL,

and define the mass, stiffness, and normal matrices:

M = (M), My = (Y, Y1),

M= My), My =(M})= (M),
M, = Mcx),  Mcw = (™Y, 1),
A= (An), Akr = (05 Yk, dsY1),

A = (Ap), Ay = (A1) = (Bgr A,

Ay =(Avr), A = (s, I,
N = (Ny), Ny = (N{) = (Y, yun),
Ny =WNyw)s Ny = (N;,k,) = (Y, yyunt),

where the index ranges arelk,! < L and 1< ¢, r < 2,84 = ¢4 - ¢, is the Kronecker symbol,
andn? = n - ¢, is theq-th spatial component of the normal.

The matrix form of the discretized Probldth 1 reads: FidV € R2L, K K, L, 1,V € RE
such thatfZI\ = n with

-

A=WV,K,L,1,K,K,V)', 1=(0,00000AX,0,

roa
I=|era
EXT
with
MO 0 0 o0 -Nt 00A—3M,
r=|\omo|, A=l o o -N?%|, e=]o00 0 ,
0 0 M -N1_N2 o 00 0
0 0 0 —1,A 0 O 0 00
A=| o 0 o, == 0 —1,A0], =] o0 0o
—N; —N§0 0 0 O —€A, 0 A,



360 F. HAUSSER AND A VOIGT

A simple Gaul} elimination now leads to

-

(r _ErlA-3ria+ ZJF‘l@F‘lA) (I‘f ) _ <AX ) ,

which is equivalent to

( M —t, AM N

AM NG +eAM YA - IMOM N M

and gives rise to the final Schur complement equatiorvfor

(tn (A M N + €A, M NA - IMOM*N)YM "AM N + M)V

= —(AM NS +eA,M A - IMOMIN )M TTAX". (20)

Once the scalar velocity is obtained by solving (20), the unknowhis easily computed by solving

MV = NV, and thenX is updated through
)? <~ )? + rm\7

2.2 Solvability of the linear system

In order to show uniqueness of the discrete system it is

(Kn, ki, Kn, ln, U, vp) satisfies

(©n Vn) — T (05T D) =

(Kn, Yn) — (Kp - 71, Yp) =

(Rn, Yn) — (VK -1, Yn) =

(Ins W) + (Dskn. Dsvm) — 3 (e ) kns ¥n) =
(Vs Yn) + (VOsikn, Os¥n) — €(vosly, dsn) =
(s Yn) — (wpii, Y) =

E]

El

sufficient to show that

(21)
(22)
(23)
(24)
(25)
(26)

if

then(iy, k., &n, In, Un, vp) = 0. This is shown by subsequently testing the above identities with the

unknowns and using the inverse inequality

195 full L2crmy < CHH full L2y

(27)

wherer is a lower bound on the lengths of the segmentg6fandC is a generic constant. In the
following || - || denotes the?(I") norm. First insert);, = i, into (27) to get

20> -
1RR 117 < T 05 Tn | 105kR1 < CTmh ™2 (1T 1]l

(28)

Next, choosingl;, = v, in (28) yields|| v, || < llvn|l. Plugging this identity intd (48) leads to

IRnll < CTmh™?[lvall-

(29)
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Now we choosel;, = vy, in (25) to get
loall? < Cllasknll 13svall + Celldslnll 135l < Ch™2[1&n 1 vall + Ceh ™2l llvall.
where we assumie| < C. Dividing by ||v; | yields
lonll < Ch™2 @l + Ch~2€lliyl. (30)
Choosingy, = I, in (24) gives

12112 < N18sknll 1sLa 1l + Cllica |l 141 < Ch™2icn |l 1| + Cllicn |l 1
< CA+h72)|knll Nl

where we assum@]")? < C. This implies
Il < €L+ A2 knll. (31)

Finally, settingy, = «; in (29) yields |l«,|| < ||&x]l and choosingy, = &, in (23) implies
l&nll < Clikn|l, where we assumig| < C. These inequalities together wifh {30) ahd](31) imply

loall < Ch™2A+ €L+ h™2) [l ll. (32)
Inserting the last inequality intd (R9) finally leadsiip= 0, provided that
Ctnh *1+el+h7?) <1, (33)

with C depending om, ;" andy. Now, equationg (30, 3L, B2) may be used to show that also the

other unknowns are identically zero.
The time step restrictior (B3) indicates that the parameters, and 2 may not be chosen

independently of each other and the way in which they are related will certainly influence the

stability of the scheme. In our modelis a small parameter ang’e is setting the length scale

of the rounded corners (see Section 3 for a numerical verification). In order to resolve this length

scale we therefore neéd ~ €. This means that in practice we have a time step restriefior 74,

instead ofk® for an explicit scheme. Such a restriction on the time step is also observed in the

numerical results (see Sectjon 3).

3. Numerical results

In this section we present numerical results for the anisotropic regularized surface diffusion as
defined in (7). The numerical method is implemented using ALBERT, an adaptive finite element
software for scientific computation [22]. We use an area preserving local mesh regularization as
described in[[?] to keep the mesh size approximately constant during the simulation. If not stated

otherwise, we use the nonconvex anisotropy function

y(0) =10+ 0.5co849), i.e. p(@®)=10-75c0940), (34)

which exibits a four-fold symmetry (see F[g. 1). We investigate the convergence of a circle to the

WuIff shape and also the influence of the value of the regularization parameferthermore,

the evolution of a thermodynamically unstable crystal surface into a hill-valley structure and its

subsequent coarsening are analysed.
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3.1 Convergence to the equilibrium shape

Since the chemical potential is constant along the equilibrium shape, the equilibrium shape is
a stationary solution of {7). Therefore it is assumed that a closed curve which is close to the
equilibrium shape will converge to this shape under (regularized) anisotropic surface diffusion. To
verify this assumption, the evolution of a circle of radius= 5 is simulated (see Fif] 4). The
parametek takes the values.@, 0.25 and 01. Fore = 1.0, 0.25, the number of grid points is

n = 256 and the time step is= 10°. Fore = 0.1,n = 512 and the time step is chosen adaptively
depending on the maximal normal velocity, where the maximal time step=sL0~°. In all three
cases, the closed curve converges to a stationary shape. Note that fod a hill-valley structure
emerges at the early stage at the four unstable orientatien®, = /2, =, 37 /2. The resulting hill-

valley patterns coarsen, which finally leads to a stationary shape. This behaviour will be analysed in
more detail in Section 3.2.

S A NV o N A~ oo

d A N o N~ O
.

S A N o N M~ oo
5 .

FiG. 4. Time evolution of a closed curve for different parametetsitial curve is a circle with radius = 5.

7
=01 ——

6.5 €=10 — |
t=10.0
6

5

-1 -05 0 0.5 1

FIG. 5. Upper corner of the solutionssat 10 for different values of.

For the stationary shape, we expect the length scale of the rounded corner td-fewhich is
in agreement with the numerical results (see [Fjig. 5). A fundamental property of motion by surface
diffusion is conservation of area of the enclosed region, which is also satisfied by the regularized
anisotropic surface diffusion, since

d
— 21| = / V= / 05 (Vs he) = / Vs e 951 = 0.
dt r@ r ra

Also, starting from a circular shape, the curve length is expected to increase while approaching
the stationary shape. Figyrg 6 shows the enclosed area and the length of the curve over time. The
simulation results clearly show the approach of a stationary solution. The area is conserved within
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FIG. 6. Simulations of equatiofif7) with different valueseof(left) area conservation, (right) curve length over time and
curve length of the Wulff shape fer= 0.

0.05% and the length of the curve approaches the length of the equilibrium shape with sharp corners
(i.e.e = 0) ase decreases.

In order to analyse the resulting stationary shapes in more detail, we compare the numerical
solutions with the asymptotic solutions for the equilibrium shapes as givenlin [24]. Here the idea is to
take the sharp corner equilibrium shape< 0) as the outer solution and to derive an inner solution
for the equlibrium shape near the corner as an expansiet/ fnwhich rounds the corner. Let us
briefly review the derivation of the inner solution as givenlinl [24]: First recall that an equilibrium
shape is a solution df|(5) with constant chemical poteptialNow lets be the arclength with = 0
at the corner of the outer solution asd S) := 6(s/e1/?) the rescaled local orientation. Expanding
A(S) = Oo(S) +€/261(S) + - - - and using the identity = dd/ds one obtains fron] {5) in leading
order

3 3
d°®g deg 1(d@0) -0 (35)

_~@ - _ ———=
TR A TR 1 T

Moreover, to match the outer solution, the following boundary conditions have to be fulfilled:

Op — 65  asS — oo, (36)

whereeg‘E are the corner orientations of the outer solution. Passing to the new vafidblg) :=
%(d@o/dS)z, one obtains fron{ (35) the linear problem

o 3
0+ G2 =700, (37)
with boundary conditions
d
0(6F) =0, d—(i(eci) =0. (38)

Thus, recalling thaf = y + y”, a particular solution is jusP = y and the general solution is
0(09) = y(Op) + A cogBo) + B sin(Op). (39)
Sticking to the symmetric case, i®.:= 6;f = —6, one obtains8 = 0 and

A= —y(0.)cod0.) + V/(ec) Sin(.). (40)



364 F. HAUSSER AND A VOIGT

Finally, S(®p) is obtained by integration as

®o 1
———d¢.
V20(9)

Inverting S(®o) yields®q(S). As shown in[[24], if the outer solution has a corner, the inner solution
exists and is uniquely determined by the corner orientatigiisThe composite solution in the
neighborhood of a corner with inner solutiépner is then given by

S(Og) = (41)

0(s) = Bouteds) + Oinner(s) — Omatch (42)

where (assuming = 0 at the cornerPmatch= 0. (resp.Omatch = 6;") for s > 0 (resp.s < 0).

In Fig.[7, the outer and the composite solution for the equilibrium shape with surface energy
given in [34) is depicted for the uppermost corner. The outer solution, i.e., the sharp corner solution,
has a discontinuity at the corner and the composite solution smoothes the jump over a transition
layer of thicknes® (¢1/2). One should note that the shape defined by the composite solution has a
slightly smaller area then the sharp corner equlibrium shape.

0.8 -
€=01 ——
=025 ——
0.4 £=05 ——
@ 0
o J
08—

FIG. 7. Asymptotic solution of([24] for corner with regularization. Shown is the orientalimersus arclength for the
anisotropic surface energy given [n[34). The outer solution is the equilibrium solutionewithO and the composite
solution is depicted for different values @f The area of the sharp corner equilibrium shape is chosen #0-b&5r .
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FIG. 8. Approaching the asymptotic solution. Leftis) of the stationary shape (numerical solution[df (7) a¢ 10) at a
rounded corner for different numbers of grid pointsSimulations fore = 1.0. Right: zooming in.

We now compare our stationary solution (numerical solution[ f (7) at 10) with these
asymptotic solutions. As presented in Fif$. 8 @hd 9, the numerical solution approaches the
asymptotic solution for decreasing grid size
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FIG. 9. Approaching the asymptotic solution. Lefiis) of the stationary shape (numerical solution[df (7) at 10) at a
rounded corner for different numbers of grid pointsSimulations fore = 0.25. Right: zooming in.

To investigate how the regularization affects the equilibrium shape if the stiffhésstrictly
positive, we have performed simulations with a convex surface energyl + 0.03* cog49) and
for different values ok. Starting from a circle of radius = 5, the curves evolve to a stationary
shape. Plots of the local angle versus arclength of the solutions=al0 for 0 < 6 < 7/4 are
depicted in Fig[ T0. Comparing with the equilibrium solution é& 0, it can be seen that the
curvature dependent higher order term in equafion (7) has a very small effect on the equilibrium
shape ife is small, as long as there are no corners in the Wulff shape, which justifies neglecting
higher order terms if weak anisotropies are considered.

0.8

- circle
~~a=0.03,e=01 ——
/

/" a=003e=00 ——

0 2 4
s

FiG. 10. Influence of regularization in the case of positive stiffngss>( 0): 6(s) of the stationary solution (numerical
solution of [T) atr = 10) for 0 < & < =/4. The initial curve is a circle with radius = 5. Surface energy iy =
1+ 0.03 % cog49).

3.2 Spinodal decomposition of a thermodynamically unstable surface

As a second example we analyse the unstable behaviour observed in [Rigure 4=fdd.1 in

more detail. The observed structure for= 0.1 and 10 results from the unstable orientations

0 =0, /2, 7 and 3r/2. We concentrate on the unstable orientatiea 0 and perform simulations

on an interval [0 L] with periodic boundary conditions. Fig. L1 shows the evolution of a randomly
perturbed plane surface, which undergoes spinodal decomposition into a hill-valley structure. At the
first stage a hill-valley structure with rapidly growing amplitudes emerges. At a second stage, the
evolution of the surface is governed by the nonlinear interaction of the hills and valleys. The average
distance to neighbouring hill increases due to the annihilation of hills and valleys. This coarsening
dynamics is similar to the one-dimensional coarsening observed in the higher order Cahn—Hilliard
equation[(TjL)[[19, 21].
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FiG. 11. Spinodal decomposition and coarsening: time evolution of a randomly perturbed straight line on a periodic domain
of lengthL = 20. The solution is shown at= 0.005 0.5, 50.

Let us analyse the emerging of the hill-valley pattern in more detail. Setting 1 and
linearizing [9) around the unstable plane solutios 0 one obtains

orh = 8xx(W”(0)8xxh — €0xxxxh). (43)
This equation has plane wave solutidnsx, t) given by
hi = cexplw(k)r) coskx),  w(k) = —W"(0)k* — ek®. (44)

Unstable modes obeyingw (k) > 0 are given by < /|W”(0)|/e. The maximal growth rate is
obtained for

kmax = v/2|W”(0)|/3¢ vyielding wmax= 4/W"(0)|3/27€2. (45)
Thus, the most unstable wave length is givenAaax = 27.,/3¢/2|W”(0)|. Fig. shows the

dependence of the most unstable wave length and the maximal growth rate on the regularization
parametet.
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FiG. 12. Left: most unstable wave length depending on the regularization paramBight: maximal growth rate versus
(log-log plot). In both cases;(9) = 1.0 + 0.5 cog46), which yieldsW” (0) = —6.5.
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FiG. 13. Time evolution of the surface on a periodic domain of length 2 witis in [34) and = 0.1: at the early stage
a periodic solution according to the most unstable wave length develops rapidly. The initial surface is a straight line with
random perturbation with amplitudele‘G.
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FiG. 14. Numerically computed growth rate over time for the simulation shown iff Fjg. 13.

For a periodic domain of length = 2 and a regularization parameter= 0.1, the dominant
unstable wave length is, = 1. Fig.[I3 presents the numerical solution [of (7) starting from a
randomly perturbed straight line. As theoretically predicted a periodic solution according to the
most unstable wave lengit» = 1 develops rapidly. We numerically compute the growth rate from
the amplitudeA (¢) of the numerical solution as

w() = %(In A(t) —INA( + 1)).

The result is shown in Fi§. 14. The maximal growth rate obtained is 3971 and coincides very well
with the valuew (27) = 3978 predicted by (44).

4. Conclusion

We studied anisotropic surface diffusion with a small corner energy regularization. The introduced
regularization rounds corners in the corresponding Wulff shape and sets a new length scale
describing the width of the corner. The regularization is the next higher order term in an expansion
of the surface free energy densityyit= y (6, 9,;0) is assumed to depend not only on the arighbeit

also on its derivativéd;0. A connection to a higher order Cahn—Hilliard equation is drawn, which
can be derived from a long wave approximation of the full geometric problem.

A discrete scheme for the nonlinear 6th order evolution law is derived for one-dimensional
parametric surfaces. The discretization allows the use of linear finite elements.

The convergence of a circle to the Wulff shape of the regularized problem is demonstrated and
the evolution of a thermodynamically unstable surface into a hill-valley pattern and its subsequent
coarsening is analysed.

In order for the model to be applicable to describe surface modulations of solid films, two-
dimensional surfaces need to be considered. The theory for the small corner energy regularization
in this situation is described ih [14]. A numerical algorithm which can deal with parametric surfaces
still has to be developed.

Note added in proof. A different parametric discretization of (6) was introduced by M. Siegel, M. J. Miksis and
P. W. Voorhees, “Evolution of material voids for highly anisotropic surface energy”, J. Mech. Phys. Solids 52 (2004), 1319—
1353.



368 F. HAUSSER AND A VOIGT

Acknowledgments

We would like to thank Stephen J. Watson for bringing the regularization_in [11] to our attention
and Brain J. Spencer for explaining the asymptotic analysis in [24]. The work has been supported
by BMBF through grant 03VGNKVB.

REFERENCES

1. BANSCH, E., MORIN, P., & NOCHETTO, R. H. Surface diffusion of graphs: Variational formulation, error
analysis and simulatiorSIAM J. Numer. Ana#2 (2004), 773—-799.| Zbl pre02139€99 MR 2084235

2. BANSCH, E., MORIN, P., & NOCHETTO, R. H. A finite element method for surface diffusion: the
parametric casel. Comput. Phy203(2005), 321-343.| Zbl pre02132615 MR 2104399

3. BARRETT, J. W., B®ARCKE, H., & NURNBERG, R. Finite element approximations of a phase-field model
for surface diffusion of voids in a stressed solid. Tech. rep., Department of Mathematics, Imperial College
(2004).

4. BURGER, M. Numerical simulation of anisotropic surface diffusion with curvature-dependent energy.
J. Comput. Phy203(2005), 602-625.] Zbl pre02167956 MR 2122887

5. BURTON, W. K., CABRERA, N., & FRANK, F. C. The growth of crystals and the equilibrium of their
surfacesPhilos. Trans. R. Soc. London SerrA3(1951), 299-358.| Zbl 0043.23402 MR 0043005

6. CABRERA, N. The equilibrium of crystal surfaceSurf. Sci2 (1964), 320.

7. CAHN, J. W., B LIOTT, C. M., & Novick-COHEN, A. The Cahn-Hilliard equation with a concentration
dependent mobility: motion by minus the Laplacian of the mean curvatiweopean J. Appl. Math7
(1996), 287-301.] Zbl 0861.35039 MR 1401172

8. CHoPR D. L. & SETHIAN, J. A. Motion by intrinsic Laplacian of curvaturénterfaces Free Bound.
(1999), 107-123.  Zbl 0938.65144 MR 1865108

9. CLARENZ, U., HAUSSER F., RUMPF, M., VOIGT, A., & WEIKARD, U. On level set formulations
for anisotropic mean curvature flow and surface diffusidviultiscale Modeling of Epitaxial Growth
Birkhauser (2005), 227-238.

10. DECKELNICK, K., DzIuK, G., & ELLIOTT, C. M. Fully discrete semi-implicit second order splitting for
anisotropic surface diffusion of graphSIAM J. Numer. Analto be published).

11. Di CARLO, A., GURTIN, M. E., & PoDIO-GUIDUGLI, P. A regularized equation for anisotropic motion-
by-curvature. SIAM J. Appl. Math52(1992), 1111.| Zbl 0800.73021 MR 1174049

12. Dziuk, G. An algorithm for evolutionary surfaceslumer. Math58 (1991), 603-611., Zbl 0714.65092
MR 1083523

13. BEGGLESTON J. J. & VOORHEES P. W. Ordered growth of nanocrystals via a morphological instability.
Appl. Phys. Lett80(2002), 306—308.

14. GURTIN, M. E. & JABBOUR, M. E. Interface evolution in three dimensions with curvature-dependent
energy and surface diffusion: Interface-controlled evolution, phase transition, epitaxial growth of elastic
films. Arch. Rat. Mech. Anall63(2002), 171-208.  Zbl 1053.74005 MR 1912105

15. Hausser F. & VoIGT, A. Weakly anisotropic surface diffusion, a numerical approach by parametric
finite elements. Tech. rep., SFB 611, Univ. Bonn (2003).

16. HAusSER F. & VOIGT, A. A numerical scheme for regularized anisotropic curve shortening fqpl.
Math. Lett.(2004), to appear.

17. HERRING, C. Some theorems on the free energies of crystal surfaPldys. Rev82 (1951), 87-93.

Zbl 0042.23201

18. HERRING, C. Structure and Properties of Solid Surfacémiv. of Chicago Press (1963), 5-81.

19. Ly, F. & METIU, H. Dynamics of phase separation of crystal surfaéds/s. Rev. B8 (1993), 5808—
5817.


http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=02139899&format=complete
http://www.ams.org/mathscinet-getitem?mr=2084235
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=02132615&format=complete
http://www.ams.org/mathscinet-getitem?mr=2104399
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=02167956&format=complete
http://www.ams.org/mathscinet-getitem?mr=2122887
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0043.23402&format=complete
http://www.ams.org/mathscinet-getitem?mr=0043005
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0861.35039&format=complete
http://www.ams.org/mathscinet-getitem?mr=1401172
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0938.65144&format=complete
http://www.ams.org/mathscinet-getitem?mr=1865108
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0800.73021&format=complete
http://www.ams.org/mathscinet-getitem?mr=1174049
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0714.65092&format=complete
http://www.ams.org/mathscinet-getitem?mr=1083523
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1053.74005&format=complete
http://www.ams.org/mathscinet-getitem?mr=1912105
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0042.23201&format=complete

20.

21.

22.

23.

24.

25.

26.

27.

REGULARIZED ANISOTROPIC SURFACE DIFFUSION 369

RATZ, A., RIBALTA, A., & VOIGT, A. Surface evolution of elastically stressed films under deposition
by a diffuse interface mode). Comput. Phygto be published).

SAVINA, T. V., GOLOVIN, A. A., DAvIS, S. H., NEPOMNYASHCHY, A. A., AND VOORHEES P. W.
Faceting of a growing crystal surface by surface diffusiehys. Rev. 67 (2003), 021606.

SCHMIDT, A. & SIEBERT, K. G. ALBERT—software for scientific computations and applicatiohsta
Math. Univ. Comen70(2001), 105-122., Zbl 0993.65134 MR 1865363

SMEREKA, P. Semi-implicit level-set methods for curvature and surface diffusion mati&ci. Comput.
19(2003), 439-455. Zbl 1035.65098 MR 2028353

SPENCER B. J. Asymptotic solutions for the equilibrium crystal shape with small corner energy
regularization Phys. Rev. 9 (2004), 011603.

STEWARD, J. & GOLDENFELD, N. Spinodal decomposition of a crystal surfabélys. Rev. 46 (1992),
6505-6511.

WATSON, S. J. Crystal growth, coarsening and the convective Cahn—Hilliard equation. P. Colli et al. (eds.),
Free Boundary Problem@Trento, 2002), Birkhuser (2004), 329-341. Zbl 1040.35078 MR 2044584
WULFF, G. Zur Frage der Geschwindigkeit des Wachstums und debsurfly der Kristallichen.Z. F.
Kristallog. 34 (1901), 449-530.


http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0993.65134&format=complete
http://www.ams.org/mathscinet-getitem?mr=1865363
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1035.65098&format=complete
http://www.ams.org/mathscinet-getitem?mr=2028853
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1040.35078&format=complete
http://www.ams.org/mathscinet-getitem?mr=2044584

	Introduction
	Small corner energy regularization
	Small slope approximation
	Numerical approaches to surface diffusion

	Variational formulation and finite element discretization
	Variational formulation
	Solvability of the linear system

	Numerical results
	Convergence to the equilibrium shape
	Spinodal decomposition of a thermodynamically unstable surface

	Conclusion

