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Existence and uniqueness for dislocation dynamics with nonnegative velocity
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We study the problem of large time existence of solutions for a mathematical model describing
dislocation dynamics in crystals. The mathematical model is a geometric and nonlocal eikonal
equation which does not preserve the inclusion. Under the assumption that the dislocation line is
expanding, we prove existence and uniqueness of the solution in the framework of discontinuous
viscosity solutions. We also show that this solution satisfies some variational properties, which allows
us to prove that the energy associated to the dislocation dynamics is nonincreasing.
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1. Introduction

In this paper, we study a simple model for dislocation dynamics. Dislocations are line defects in
crystals that can be observed by electron microscopy. The typical length of these dislocation lines
in metallic alloys is of the order of 1& m.

The concept of dislocations in crystals has been introduced and developed in the XXth century,
as the main microscopic explanation of the macroscopic plastic behaviour of metallic crystals (see
for instance the physical monographs Nabatird [20], Hirth and Lathie [16], or Lardner [18] for a
mathematical presentation). Since the beginning of the 90’s, the research field of dislocations has
enjoyed a new boom based on the increasing power of computers, allowing simulations with a large
number of dislocations (see for instance Kubin et(all [17]). This simultaneously motivated new
theoretical developments for the modelling of dislocations. Recently Rodney, Le Bouar and Finel
introduced in[[21l] a new model, called tpbase field model of dislocationthat we study in this
paper.

TE-maiI: olivier.alvarez@wanadoo.fr
t I . )
E-mail: Pierre.Cardaliaguet@univ-brest.fr

§ . )
E-mail: monneau@cermics.enpc.fr

(© European Mathematical Society 2005



416 O. ALVAREZ ET AL.

In this model, the dislocation line in the crystal moves in its slip plane with a normal velocity
which is proportional to the Peach—Koehler force acting on this line. This force may have two
possible contributions: the first one is the self-force created by the elastic field generated by the
dislocation line itself; the second one is the force created by everything exterior to the dislocation
line, like the exterior stress applied on the material, or the force created by other defects.

Mathematically, a dislocation is formalized by a closed cur\) in R? moving with a normal
velocity V; . given at each time and at each point € I"(r) by the following nonlocal law:

Vix = Cox lx)(t, x) + c1(t, x). 1)

In the above equalitys (r) denotes the compact set enclosed by the ciieg, the functionco(z, x)
is a kernel associated to the equations of linearized elasticity and the fuagtion) describes
some external field. The convolution is done in spacexfar R2. Here the terntg * 1k (t, x)
corresponds to the part of the velocity created by the self-force, and the&{érm) is associated
to the exterior forces acting on the dislocation line.

If we set
1 ifxe K@),

p(t,x) = 1K(t)(x) = {0 Otherwise

then equation[(1) is equivalent to saying thatis a discontinuous viscosity solution of the
following nonlocal Hamilon—Jacobi equation (for the definition of discontinuous viscosity solution,
see[[6], [5]):

J
== (@0 p(t. )+ Dpl. (2)

Such a nonlocal equation has been poorly investigated until naw: 3 0, then the equation
satisfies the inclusion principle, and existence and (generic) uniqueness of generalized solutions
can be obtained as application bf [11]. Unfortunately, for dislocation dynamics, the kegrhas
a zero mean, which implies in particular that it changes sign.Jinl[2, 3] short time existence and
unigueness of the solution is proved under the assumption that the initial position of the dislocation
is a Lipschitz graph.

In this paper we consider the existence and uniqueness of generalized solutions for an arbitrary
time interval, provided that the initial curve is sufficiently smooth and the externaldigkllarge
with respect to the kernép, namely we assume that

t, x) = lléo(t, Vipagey V(. x) € [0, +00) x R% (3)

This condition ensures that the dislocation is expanding because it implies that, for any Borel subset
K of R?, one has

EO* 1K(tvx) + El(t9 x) > El(t7x) - ||50(f, )”L]-(Rz) 2 0 V(tv x) € [07 +OO) X RZ

As for the regularity of the initial curve, we assume that the compaatseinclosed by this curve
satisfies thenterior ball condition This means that there is some> 0 such that, for any point
x € Ko, there is some unit vectgr € R2 with B(x — rp, r) C Ko, whereB(y, r) is the closed ball
centred aty and of radius-:

3 >0, Vx € Ko, 3p eRY, |p|=1andB(x —rp,r) C Ko. (4)
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For instance, ifK( is the closure of some open bounded set wiftf @oundary, then it satisfies the
interior ball condition for some radius

Under these two assumptions, we prove (in any dimenaipthat the problem of dislocation
dynamics has a unique solutign and that this solution depends in a Lipschitz way on the initial
condition. We also show that this solutipris a variational solution, in the sense that

/ @(t’x)p(tvx)dx_\/ (p(ov-x)p(oﬂ .X)d.x
RN RN

t
=/ [/ a—(p(s,x);o(s,x)dx+/ w(s,y)c(s,y)dHNl(y)] ds
o L/r~ 01 Ap(s,)=1)

for anyg € C1([0, +00) x RV). As a consequence, we prove that when the data do not depend on
time, the energyE (¢) naturally associated to the dislocation

1
E(1) =/ (——(Eo*p)p —51p>
RV 2

d
—E@®) = —/ 2 dHN 1,
dr 3o(t.)=1)

wherec = ¢cgx p + C1.

In order to explain the role played by our two main assumptiops (3)[@nd (4), a description of the
method of proof is now in order. As inl[3] and in Alibaud [1] we use a Banach fixed point argument.
We consider the mapping which associates to amf e C°([0, T], LY(R")), with 0 < p° < 1,
the unique discontinuous viscosity solutior= @ (0°) to

is nonincreasing:

ap
5 = CpO(t,X)|Dp|,

p(os ) = 1K09

(5)

where we have set
c0(t,x) = o * p°(t, x) + 11, x).

The solution of our problem is clearly a fixed point®f In order to prove tha® is a contraction
(for a suitable norm, which here turns out to be sy llo(#, )l 1)), We are led to combine
three types of arguments.

e A representation formula Since 0 < 0 < 1, ¢ 0(t, x) is nonnegative and the set

(@ (p%(t,) = 1} can be represented as the reachable set of an associated control problem:
namely{® (p°)(r, ) = 1} is equal to the set of points € R? for which there is some initial
positionxg € Ko and some measurable map [0, 1] — R? (the control), withju| < 1 a.e. in

[0, 7], and such that the solution to

x'(s) = ¢ o(t, uls),
x(0) = xo,

satisfiesc () = z. Then, using the Grownall Lemma, one can easily showdhiaas the fqllowing
contraction property: Lep®! and p®2 belong toC°([0, T], LYX(R")) with 0 < p% < 1
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(i =1,2)and sek1(r) = (@ (pOV)(z, ) = 1} andK2(r) = {@(p*?) (¢, -) = 1}. We have

sup d"U(K1(1), K1) < CT sup [1p%1(t. ) — p%2(t, ) awe)
1€[0.7] t€[0,7T]

whered" (K1(1), K?(r)) denotes the Hausdorff distance between the K&ts) and K 2(¢), and
C is some given constant (independenp8ft andp%2 andT).
In order to prove tha® is indeed a contraction, it remains to show an inequality of the form

sup @ (0%, ) — @(p®)(t. )l 1@z < C sup dH(K ). K*(1)). (6)
t€[0,T] t€[0,T]

This amounts to estimating the volume of the symmetric difference of two sets by their Haudorff
distance. In general, such an estimate is hopeless, as simple examples show. It is here that the
interior ball condition plays a role.

e Propagation of the interior ball conditian A remarkable property of Hamilton—Jacobi
equations of the forn{ [5) is that they preserve the interior ball condition: If the initiakset
satisfies the interior ball condition with radius> 0 and if we denote by (¢, x) = 1) (x) the
solution to ), therk (¢) still satisfies the interior ball condition with some other (but controlled)
radius. This result, which has also been noticed in [19], is strongly inspiredfram [12]land [9]. Let
us also point out that [9] contains the much stronger assertion that, when the velocity is positive,
the setK (t) develops immediately an interior ball for any compact initial conditkan

e Perimeter and volume estimate of enlarged .setsrom the interior ball condition, we can get an
inequality of the form[(B). Indeed, if a s&t satisfies the interior ball condition with some radius
r > 0, then, for any sek, the volume of the differenc& \ K1 can be controlled in terms of the
Hausdorff distance betwedt and K.
This result is a consequence of the following monotonicity formula for the perimeter of a
enlarged set: IK is a compact subset &, and if we denote b + ¢ B the set of points which
are at a distance less thaof K, then the map — HY~1(3(K + tB))/t"~1is nonincreasing.

Let us now explain how this paper is organized: Section 2 is devoted to the monotonicity formula
described above and to its applications, among which the fact that the Hausdorff distance controls
the volume of the symmetric difference of sets satisfying the interior ball condition. In Section 3 we
recall some results on the propagation of the interior ball condition and derive the main estimates
needed for proving that the map has a fixed point. Statement and proof of the existence and
uniqueness forf {2) are given in Section 4. In Section 5 we give a variational formulation of the
problem and show that the energy of the dislocation decreases. We also consider the case of several
dynamics. In the appendix we prove the result on the propagation of the interior ball condition.

Let us finally underline that throughout the paper, we worlRih, for N > 2, although the
physical problem has a meaning only fér= 2.

Some notation We complete this introduction by collecting some notation used throughout the
paper. We denote by- | the euclidean norm oR”, and byB(x, r) the closed ball of radius
centred at the point. If K is a subset oR", dx (x) denotes the distance of the pointo the set
K:dg(x) = infycg |y — x|. Forr > 0, we denote byK + » B the set of points € R such that

dk (x) < randB = B(0, 1). Finally, for any functionf, we denote the gradient gfby Df.
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2. Sets with interior ball condition

We say that a closed s&t ¢ R" satisfies thénterior ball conditionwith radiusr > 0 if, for any
pointx € K, there is some unit vectgr e RV with B(x —rp, r) C K. Then we have the following
result (see alsa [8]):

LEMMA 2.1 If aclosed sek c RY satisfies the interior ball condition with radius> 0, then
there is some closed subgé of K such thatk = Ko + rB.

From this lemma, it can be easily seen that a closedkset R" satisfies the interior ball
condition with radius- > 0 if and only if there is a closed s&fy C K such thatk is the set of
pointsx € RY with dg,(x) < r. Namely,K = Ko+ rB.

Proof of Lemm@ 2]1. SetKo = {x € K | dyk(x) > r}. ThenKg + rB C K, from the definition
of Ko.

Conversely, lek € K. There is some € RY with |p| = 1 such thaB(x — rp, r) C K. Hence
x —rp € Kganddg,(x) <r. O

In this section we give some estimates of the volume and perimeter of sets satisfying the interior
ball condition.
Let us start with an elementary result.

LEMMA 2.2 LetK be a closed subset ®", and lety; and y, be points ofdK at which K
satisfies the interior ball condition with radius> 0, that is, there exist unit vectopg, p» such that
B(y; —rp;,r) C K fori =1,2. Then

1
(p1— p2,y1—y2) < ;Iyl — y2l?.

Proof. Sincey, does not belong to the interior of the b&l{y; — rp1, r), we have

ly2 — (y1 — rpD)|®> = r?,  whence |y2 — y1|? + 2r(p1, y2 — y1) > 0.

In the same way, since; does not belong to the interior &(y> — rpo, r), we havely, — y1|% +
2r(p2, y1 — y2) = 0. Putting the two inequalities together gives the desired result. O
The next lemma plays a crucial role in our study.

LEMMA 2.3 (Monotonicity formula (1)) Letk be a compact subset Bf¥. Then the function
HN-L3(K +tB))/tN~Lis nonincreasing.

Proof. We start with a preliminary result. Let & #g < 11, let y1, y» belong tod(K + #1B), and
¥1. ¥, be projections of1, y2 onto K + roB. We claim that

141
lyr — y2l < gly/l—yél- (7)

Indeed, let; andz, be projections of; andy, respectively ont, and set

-z -z
y1—z and p2=y2 2

n 1

pP1=
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Forj = 1,2 andr € [0, #1], define the maps; (t) = z; + tp;. We note tha; (t) € 3(K + ¢ B) for
anyt € [0, 1] andy;(fp) = y]/..
Let p(1) = 31y1(t) — y2(0)[%. Then

p' (1) = (y1(t) — y2(1), p1 — p2).

Sincey; (¢) belongs to (K + ¢ B) for ¢ € [0, 11] and since the se&k’ + ¢ B satisfies the interior ball
condition with radius, from Lemmd 2.P we get

1 2
Pl < S1ya() — y2() > = —p(0).

Integrating this inequality betweegandr gives our claim[([7).

Next we note that, sincég is a Lipschitz continuous function with compact level sets, the
coarea formula states that almost all level setdgohave finiteH” ~1 Hausdorff measure. Choose
alevelr € (0, t1) for which HN=1(8(K + 19B)) < +oo.

Lete > 0 andr; € (0, rpe/2t1) be such that

o0 o0
a(K +10B) c | JAi and HNH@(K +10B) > HY BN R0, 1)) Y V€
i=0 i=0

for some setg\; of diameter at most2, and whereB¥ ~1(0, 1) is the unit ball ofR¥ ~1. We denote
by K; the subset of points @f(K + ¢, B) for which a projection ont& + r9B belongs toA;. Then

o
9(K +nB) C [ K.
i=0
We now estimate diatk;). Let y1, y2 belong tok;, andy}, y, be projections 0§y, y2 ontoK 4B
which belong ta4;. Then from[(T), we have

1 n
lyr — y2l < =lyp — yol < = 2r;.
fo fo

Hence dianik;) < %Zri < €. Therefore

diam(k;)\ V!
=)

HY Y OK +uB)) <HYHBYTHO, 1) Z(
i=0

o
< (/)" TRV BN RO, 1) ) N
i=0

< (t1/10)" " HHVTHO(K + 10B)) + €).
Lettinge — O™ gives

N-1
HV LA (K +nB)) < (?) HV-L(H(K + 10B)).
0

Hence theHN—1 Hausdorff measure of(K + ¢B) is finite for any levelr > 0, and the map
HN-1B(K +tB))/t"N~1is nonincreasing. O



DISLOCATION DYNAMICS 421

Fort > 0, we always haveé(K +¢B) C {dg (x) = t}, but the inclusion is not an equality in general.
This is why we introduce the following variant of the previous monotonicity formula:

LEMMA 2.4 (Monotonicity formula (I1)) Letk be a compact subset &", anddx the distance
function to the seK . Then for any; > 79 > 0, we have

1 1
"k (@) = 1) < =YK +10B)).

1 0
Proof. The proof is similar to the proof of Lemnja 2.3. We only have to repi@é + 1, B) by
{dk (x) = t1} everywhere in the proof. O

As an application we have the following perimeter estimate for bounded sets which satisfy some
interior ball condition.

LEMMA 2.5 LetO< r < R. Then, for any compact subsktof RY such thatk ¢ B(0, R) and
K satisfies the interior ball condition with radinswe have

RN
HYY3K) < N|B|—,
r

where| B| denotes the volume of the unit ball Bf".

Proof. SinceK satisfies the interior ball condition with radiusthere is some compact s€p such
thatK = Ko + rB. SetK; = Ko + ¢ B. Note thatk, = K. From Lemm& 2]3 we have

N-1
HN_l(aK)<<§) HY-Y0K,)  VieO,r].

Fix 6 € (0, r]. We now apply the coarea formula (see for instance [4]) to the Lipschitz fundgipn
(the distance function frorky): since|Ddk,| = 1 a.e., we have

|K\K9|=/ dt/ dHN*1>/ HNLOK,) dt
2 {do ()=t} 2

r N-1 N-1 N N

_ t H OK)r™ — 0

> HN oK / - dr > .
R )9 r ' N rN-1

Next we note thalk \ Ky| < |K| < RV|B|. Hence

NRN|B|
HYN LK) < ————.
@K) r—N/pN-1

Lettingd — O gives the result. O
Finally, we show that, under the interior ball condition, it is possible to estimate the Hausdorff
distance between sets by the difference of their volumes:

LEMMA 2.6 LetK be a compact subset &" satisfying the interior ball condition with radius
o > 0. Then for any- > 0 we have

N-1 N
(K +7rB)\ K| < w«” i) _ )

o
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Proof. Let Kg be a compact subset &" such thatkg + ¢ B = K. Then, using Lemm@A, we
get

o+

(K +rB)\ K| =/ HN L ({dgy(x) =t} dr

o+r N-1 N-1 K N
<HN—1(3K)/ <§> dt<a¥<<l+§> _1>. O

3. Estimates of the reachable set of a controlled system

In this section we provide our main estimates in order to prove that thed#ndpfined in the
introduction is a contraction.

For this, we investigate the propagation of the interior ball for the reachable set of the control
system

Y'(t) = ct, y)u(t), u() e B(O,1). (8)

For any initial positionxg € R and any measurable contnol: [0, +00) — B(0, 1), we denote
by y[yo, u] the solution to[(B) with initial positiony[yo, u](0) = yo. We denote byR (K, r) the
reachable set at timewhen starting from some closed gét

R(K,t) ={z e RY | 3yg € K, Ju : [0, +00) — B(0, 1) measurable y[yo, u](r) = z}.
From now on, we assume that the velocitigas the following regularity properties:

(i) ¢ is nonnegative, continuous,
differentiable with respect to the second variable,
(i) let, I <M ¥(1,y) e RxRY, 9)
(iii) [c(t, y1) — c(t, y2)| < Lolyr — y2|  V(t, y1, y2) € R x RN x RV,
(V) |Dxc(t, y1) — Dxe(t, y2)| < Lilyr — y2|  ¥(t, y1, y2) € R x RN x RV,

whereM, Lg, L1 > 0 are fixed constants.

Fix also some closed sé&t. When there is no ambiguity, we simply drdp in the notation
of the reachable seR(r) := R(K,t). If a point z belongs to the boundary of the se(T) for
someT > 0, then there exists a measurable control0, +00) — B(0, 1) and an initial position
yo € K such thaty[yo, b](T) = z. It follows from this property thaR(T") is closed. We call
such a trajectory[yo, b] an extremal trajectoryon the time interval [0T]. It is well known that
y[yo, b](t) € R (¢) forallz € [0, T].

LEMMA 3.1 Assume that the sé& c R" is compact and satisfies the interior ball condition with
radiusr € (0, 1]. Then the sefk(r) satisfies the interior ball condition with radiuga=*’ for any
t > 0, wherex = 3Lg+ L1.

Proof. If zo € R(¢), then there is a time measurable contsgl: [0,7] — B(0,1) and some
yo € K such thaty[yo, bo](r) = zo. We now apply Lemmpa 6|1 of the appendix to the differential
equation with dynamicg (¢, y) = c(¢, y)bo(z): the reachable set for this dynami¢sstarting from

K satisfies the interior ball condition with radius™**. But this reachable set is containedRriz).
HenceR (¢) itself satisfies the interior ball condition with radive*". O
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In particular, we have:
COROLLARY 3.2 Under the assumption of Lemina|3.1, the map
t— p(t) = 1R(t) vVt >0

is continuous intd.1(RY).

Proof. From Lemmd 3]1R(r) satisfies the interior ball condition for amy> 0. So the boundary
dR(t) has a zero Lebesgue measure. Since moreoves R(t) is increasing and Hausdorff
continuous, the desired result follows. O

LetR;(r) (fori = 1, 2) be the reachable set at timéor the controlled system with dynamics

V() =ci(t,y()b(t), |b()| <1 aer>=0,
y(0) € K;.

We assume that th&; are closed subsets Bf¥, with K1, K» c B(0, R), and satisfy the interior
ball condition with radius: > 0. We also assume that thesatisfy assumptiorj [9) far= 1, 2. We
fix someT > 0 and we suppose that

llc2 = c1lloo = llc2 = c1ll oo, 7] xRN) < +00.

Let yo > 0 be the Hausdorff distance betwekn and K». Recall thatyg > 0 is the smallest real
number such that

Ko C Ki+yB and Kji C K2+ yoB.
Our aim is estimate the volume of the symmetric differeRaér) A Ra(z).
PrROPOSITION3.3 Under the previous assumptions, for ary [0, T] we have
[R1(t) A Ra(t)] < C[yo + llex — c2lloof]
wheneveng and||c1 — ¢2||« are so small that
[v0+ llex = callooT] < re” o+, (10)
whereC = C(N, T, M, Lo, L1,r, R) andx = 3Lg + L1.
To prove the proposition we need a preliminary lemma:

LEMMA 3.4 Under the previous assumptions,
Ra(t) C Ra(t) + y (1) B,

where
elot — 1

y(®) = yoet® + Jle1 — c2llo
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Proof. Letz € Ro(¢). There is a time-measurable contbal [0, r] — B(0, 1) and a solutiory to

Z'(s) = ca(s, z(s))b(s), aes >0,
z(0) € Ko,

such that(r) = z. Letyg € K1 be such thalyg — z(0)| < yo and lety be the solution to

{ y'(s) = c1(s, y(5))b(s),
v(0) = yo.
Then }

[y(s) —z(s)| < |yo — z(0)] +f0 lea(z, y(7)) — c2(t, z(7))| dt

N
<yo+ller — c2lloos + Lo/ ly(r) —z(7)|dt
0
sincecs is Lo-Lipschitz continuous. From the Gronwall Lemma we get
ly@) —z@®)| <y (@),

which implies the desired inclusion. O

Proof of Propositiofi 3J3. It is enough to estimate the differeng@x(r) \ R1(r)|. From Lemmé& 34
we have
[R2(t) \ R1(®)| < [(Ra(®) +y @) B) \ R1(1)|.

By Lemmd 3.1 we know that the reachable Betr) satisfies the interior ball condition with radius
o(t) > 0 foranyr > 0, whereo (1) = re™*' andx = 3Lo + L1. Then Lemma 216 states that

N-1 N
|((R1(t) + y()B) \ R1(1)| < AL L ((H W)) - 1).
N o (1)

From assumptior (10) we know that

20
o(t)

Hence((1+ y (1) /o )N — 1) < N2V~1y (1) /o (1) and we get
IR2(t) \ R1()| < CyHN L@R1(1)y (1)

<L

Lot _ Kt o(Lo+)T
}— <[yvo+ller — 2o T]
Lo r

L
= [Voe o 4 |le1 — e2lloo

for some constant’y which only depends ofv.
We now note thak1(r) C B(0, R+ M) becaus& C B(0, R) and||c1|lcc < M. Then Lemma
[2.5 together with the interior ball estimate gives

_ R+ Mt)Ne<!
MY oRa) < N1 B

from which one gets

elor — 1]

L
voe ¥ + llc1 — c2lloo

R M N kt
[Ra(t) \ Ra(0)] < mmm%[

yielding the result for a suitable constant= C(N, T, M, Lo, L1, r, R). O



DISLOCATION DYNAMICS 425

4. Application to dislocation dynamics
We are now ready to investigate the nonlocal equation arising in dislocation dynamics:

ap _ _
E—(01+Co*p)|Dp|, (11)
p(0, x) = po(x),
wherepg(x) = 1k, (x).
We assume thai andcy are such that
a1t, x) = lIcot, Y gy V@, x) € [0, +00) x RY (12)
and satisfy foi =0, 1,
(i) ¢; is uniformly continuous with respect to all the variables
and differentiable with respect to the second variable,
(i) ci(t, I <M V@, y) e RxRY, (13)
(i) |¢i (1, y1) — Ci(1, y2)| < Lolys — y2| V{1, y1,y2) € R x RN x R¥,
(V) |DxCi(t, y1) — DxGi(t, y2)| < Lilyr — y2|  V(1, y1,y2) € R x RV x RV,
whereM, Lo, L1 > 0 are fixed constants. Recall that assumpfiof (12) implies that
c1(t,x)+cox1lg(t,x) >0

forany(z, x) € R x RN and any Borel measurable sét
In order to explain what we mean by a solution[to](11), we have to recall some existence and
unigueness results for the (discontinuous) solutions to Hamilton—Jacobi equations of the form

dp

p(0, x) = 1g,(x),
and the link with the reachable set of the control sysfgm (8). In the following, we dengtethg
lower semicontinuous envelope of some functipand byp* its upper semicontinuous envelope.

We recall that uniqueness fdr (14) means that all discontinuous solutions have the same lower
semicontinuous envelope and the same upper semicontinuous envelope.

LEMMA 4.1 Asume that is continuous with respect to all variables and satisfips (9), andkiat
is equal to the closure of its interior. Thgn {14) has a unique discontinuous viscosity sgiution
Moreover, for any time > O,

{p*(t,") =1} = R(Ko,t) Vt>0,
where, as in Section (Ko, t) is the reachable set at timérom K for the controlled systemi|(8).

Proof. The uniqueness result for the geometric evolution equéftion (14) comes from ([7, Theorem
4.1]). In order to show the link between the level &€t(z, -) = 1} and the reachable s&(Kj, t),
let us introduce a new control problem: The value functiog u(¢, x) is defined by

u(t, x) = maxl,(y(0)

wherey is the solution to the backward differential equation

{ Y'(s) = c(s, y(s))b(s) a.e.in[Q1],
() =x,
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and where the maximum is taken over the measurable mag6, :] — B(0, 1). By [5] or [6], a
routine verification shows thatis a discontinuous viscosity solution {o {14), hence it is the unique
discontinuous viscosity solution. To complete the proof of the assertion, it suffices to notiee that
is upper semicontinuous and that, by definiti®(Ko, 1) = {x € RV | u(z, x) = 1}. O

Let us now explain what we mean by a viscosity solutiorj t¢ (11) (see also the discussion in [3]).

DEFINITION 4.2 We say thap : [0, +00) x RN — R is aviscosity solutiorto ) if p €
CO([0, +o00), LL(RN)) andp is the unique discontinuous viscosity solution to

9 _ ¢t )\ Dpl
— =c,(t,x ,
ot L P

p(0, x) = po(x),
wherec, (¢, x) 1= (c1(t, x) + (Co * p) (¢, x)).

REMARK. Sincep € (90, +o0), LY(RY)) and from assumptioB), the functian, is
continuous with respect to all variables and satisfigs (9), with new constants

(15)

M = M min(1+ ||’0||LOO((0,T);L1(RN))’ 1+ ”p“LOO((O,T)xRN))’
Lo = Lo(X+ lIpll g0,y .t@yy)s  Lh = L1+ lIpll 0.7y 22®NY))-
In the proof of Theorerp 4]3, we will have

lollLooo.my:Lr@yy <L lollpeo.mxryy < [Kol + 1,

which gives the following choiceM’ = 2M, Ly = Lo(2 + |Ko|), L} = L1(2 + |Kol). From the
uniform boundM’ = 2M on the velocity, we see in particular that if suipg) C B(0, R — 8), the
minimal time for the solution to exit the baB(0, R) is bounded from below by/(2M), which
explains why there will be no blow-up difo(z, -) Il .1z, in finite time for this equation.

In the proof of Theore3, up to redefining Lo, L1 by M’, Lj, L), we will keep the notation
M, Lo, L1.

THEOREM4.3 Assume that the compact & satisfies the interior ball condition with radius
r > 0. Then, under assumptidn (12), the Cauchy probfern (11) has a unique discontinuous viscosity
solutionp defined on [0+00).

Moreover, the solutiop depends in a Lipschitz way on the initial g€ in the following sense:
For anyT > 0 andR > 0, there are constanés> 0 andC > 0 such that, for any compact sd{’%
which satisfy the interior ball condition with radiusand such thaK{) C B(O, R) (fori =1, 2), if
we denote by’ the unique solution tl) with initial condﬂmﬂ’ké, then

d"(K§ KE) <e = sup ptt, ) — %t )l reyy < CdTHKE, KD,
t€[0,T]
whered™ (K}, k2) denotes the Hausdorff distance between the Sgtand K 3.

REMARK. With slight modifications of the proofs, it is possible to prove a similar result wtgn
is the closure of the exterior of a compact set, wiifstill satisfying the interior sphere condition.

Proof of Theorem 4]3. We first prove the local existence and uniqueness of the solution. Up to
reducingr, we can assume thate (0, 1]. Let R > 0 be such thako C B(0, R), letT > 0 and set

&r=1{p €C%(0.T). L"R")) | p(0) = po. 0< p < 1, -‘DE(l)Jp] le@ll1 < Kol + 1}.
tel0, T
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We fix T € (0, 1) such that

) ) e(Lo+T
[||Cl||oo+2||00||oo(|K0|+1)]Tf <1 (16)

wherex = 3Lg + L1, and
Cllicalloo + licollo(IKol + D] T < 1 (17)

whereC = C(N,1, M, Lo, L1, r, R) is the constant given in Propositipn 3.3 for= 1, and
0 := C|lcolloeT < 1. (18)

Note thatT only depends—besides the data—on the raditss 0 and on the volumégKy| of Kp,
and is bounded from below by some positive constant as longis®ounded from below by a
positive constant anp| remains bounded.
Let & be the map which associates to arfye £ the unique viscosity solutiop to
ap _ _
5 = @ +Zox 2Dyl
p(0, x) = po(x).

(19)

We first claim that®(Er) C &r. Indeed, from assumption$ (12) and |(13), the velocity
c1(t,x) = ¢1(t,x) + (Go » pO)(, x) satisfies assumptiong] (9). Corollgry [3.2 then states that
p € CO[0, T], L*RM)).

We want to apply Propositign 3.3 to the velocitigsandc, = 0 (for which pa (1) = 1k, for all
t > 0). For this we first check thdt (ILO) holds: Indeed

llex — c2llooT < (é1lloe + 0l SUP [12°()11D)T
t€[0,T]

< (Ie1llos + €0lloc (1Kol + )T < re~FotoT

from the choice of" in (16). Proposition 3]3 then states that (recall it) = 1x,)

le@lL = llp(®) — p2(0)ll1 + | Kol

< Cllicalloe + llcolloo S[Up] 1p°t. 1117 + Kol < |Kol + 1
te[0,T

from (17). Hencep € &7.
Finally, we prove that? is a contraction. Lebf and ,og belong to€7, c1 = ¢1 + co * pf and

c2 = ¢+ Coxpd, p1 = D(pY) andp, = P (p3). We first check thaty andc; satisfy condition
(Z0). Indeed,

ller — e2lloeT < llCollos SUP 11022, -) — pa(t, YT
t€[0,T]

< 2|éolloo (| Kol + DT < re= o+l

from the definition o7 and the choice of in (16). Then using Propositign 3.3 again, we get

lo1(®) — p2(t)ll1 < Cllcr — c2lloo ¢,
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which finally gives, from the choice df in (18),

lpa() = p2()ll1 < (CllGolloaT) SUP [Ip7(1, ) = p3(t, 1 <6 sup (o2, ) — P3¢, )lla
t€[0,T] t€[0,T]
witho < 1.

Since® is a contraction o7, it has a unique fixed point. So we have proved that the problem
has a unique solutiop(z, -) = 1k at least on the time interval [0'], whereT depends on the
volume of Ko, on R (whereKqg C B(0, R)) and on the radius of the interior ballifor Kg. Using
Lemmd 3.1, we know that the s&t(r) satisfies the interior ball condition with radius™*, where
« depends only oo and L1. Moreover, the volume oK (¢) and the radius’ such thatk (1) C
B(0, R") are bounded for bounded times because of the finite speed of propagation. Therefore we
can extend the solution in a unique way ontp{@o).

The proof of the Lipschitz continuity of the solution with respect to the initial set is based on
arguments similar to those for the local existence and uniqueness, and the use of Prdpokition 3.3
with yo = d" (K3, K2). O

5. More on dislocation dynamics
5.1 The notion of variational solution

Our aim is to investigate a notion of weak solution which implies that the natural energy associated
to dislocation dynamics is nonincreasing in time. For this reason, these weak solutions will be called
variational solutions. In particular, this allows one to prove energy estimates for the generalized
evolution. Towards this aim, we first need the following:

LEMMA 5.1 Assume that = ¢(z, x) satisfies[(P) and moreover that
c(t,x) >0 V(,x) €[0,+00) x RV. (20)

Let R(r) be the reachable set (defined in Secfipn 3) at tirstarting from some fixed compact set
K c RN which satisfies the interior ball condition. Then, for any ngap C1([0, +00) x RV), the
mapz +— me @(t, x) dx is absolutely continuous and

d 0
—f (t, x)dx = —w(f,x)dx +/ o, y)e(t, y) dHN "L(y). (21)
dt Jra R() Ot IR()

Proof. Let us introduce the minimal time: RY — R,
t(x) =min{r > 0| x € R(t)} VxeR".
Under assumption§}(9) ar{d {20), the mais locally Lipschitz continuous and satisfies
c(t(x),x)|Dt(x) =1 foralmostallx € RV \ K. (22)

In particular assumption (20) implies that, for aRy> 0, there is a constamt = «(R) > 0 such
that

|Dt(x)| > for almost allx € B(0, R) \ K. (23)

o
Moreover,{t < t} = R(¢) foranyt > 0.
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Step 1. Let us first prove thal) holds far = ¢(x) € C*(RY). From the coarea formula,
which we can apply under this form thanks [f0](23) and the factghas a compact support, we

have N
o° o(y) N—1
dx = —— dH ds. 24
/{m}g"(x) [ /{m} DT (y)] ) G @4)

In order to proceed we need to show that
HY({r =5} \ 9R(s)) =0 for aimostalls > 0. (25)

To get this we first note that
9*{t > s} COAR(s) C {t = s},

whered*{tr > s} denotes the reduced boundary of the{set- s}. SetU = {r < t}. Using the
coarea formula for Lipschitz continuous functions on the one hand and for BV functions (see [14])
on the other hand gives

t t
/ |Dr(x)|dx=f HN_l({rzs})zf HY L@t > s)).
U 0 0

Hence
HY (=5} \ 8*{r > s}) =0 foralmostalls > 0,

and therefore[ (35) holds. Coming back[to]|(24), using first (22) and fhén (25) now gives

400
/ o(x)dx = f / o(y)e(s, y) dHY1(y) ds.
(r>1} t AR(s)

In particular, the map

t— p(x)dx = / @ (x) dx —/ o(x) dx
R(1) RN {t>t}

is absolutely continuous and
d _
& / p(x) dx = / o(yet, y) dHV ().
t R() IR(r)
Step 2. We now prove thal) holds for any mape Cf([O, +00) x RN). For this fixn > 1 and
define the partitiorgr;) of [0, z] by tx = kt/nfork =0, ..., n. Then
n—1

/ o(t,x)dx — f 00, x)dx = Z([ @ (tgy1, x) dx — o(ty, x) dx)
R(t) R(0) =0 \Y R(tk+1) R(tx)

We have

/ @ (try1, x) dx — @(t, x) dx
R(try1) R(te)

t ap
/ @ (tet1, x) dx + — / 8—(% x)dx + €(n)
R D\R () nJR) Of
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()] < /
R(ty)

and where, from the first step of the proof,

where

2p

() 151.

IR

NI =

t do
trt1, X) — (g, x) — ——(f, x) | dx <
@(trt1, X) — (g, x) . at(k x) 572

Tl
f o(tky1, x)dx = f / @(tet1, Y)es, y) dHN 71(y) ds.
R4\ R (1) tk AR(s)

Therefore

/ w(t,x)dx—/ (0, x) dx
R(t)

Tk+1
( f / o(ter. y)els, y) dHN "1y ds + / a—(rk,x>dx+e<tk>>.
AR(s) R(tx)

Our aimistolets — +occ in the above formula. For this, we note tfRags) is bounded for bounded
times and satisfies the interior ball condition with a locally uniform radius (Lemnja 3.1). Therefore
Lemmd 2.5 states thatV ~1(3R(s)) is locally uniformly bounded. Thus

Te1 Vo1 -
I|m / fR( @(trr1, Y)e(s, y) dH™ "= (y) ds —/ / o (s, y)e(s, y) dHNL(y) ds
Tk s)

by the Lebesgue Theorem. We also have

n—1

t
lim - / —(t ,x)dx —/ / (s x) dx
n—+o0o n kZO Rt ot k R(s) Jat

because it is a Riemann sum and the map fR(S) aa—‘f(s, x) dx is continuous since — 1z IS
continuous inta.*(RY) from Lemmg 3.2. So we have proved that

f (p(t’x)dx_f go(ov-x)d-x
R(1) R(0)

t
= f (/ (s, y)c(s, y) dHN_l(y) ds + / —(s X) dx)
o \Jor) R(s) 0f

which is the desired result far CCZ([O, +00) x RY). We complete the proof of the lemma by
density arguments. O

A straightforward application of Lemnja%.1 gives:

COROLLARY 5.2 Assume thako c RY is compact and satisfies the interior ball condition.
Assume thafo andc; satisfy [13) and that

¢t x) > llcoll iy,  Vx € RN, vt > 0.
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Let p be the unique solution to the dislocation dynamic problem (11). Thefso satisfies the
following: for anyp € C([0, +00) x RY),

/ @(t,x)p(l,x)dx—/ (p(ov-x)p(oﬂ .X)d.x
RN RN

t
=/ U a—(p(s,x);O(s,X)dx+/ w(s,y)C(s,y)dHNl(y)} ds, (26)
o L/r alp(s,)=1)

N Ot
wherec = ¢cgx p + C1.

REMARKS. 1. This equation allows one to define a notion of variational solution for the problem
of dislocation dynamics.
2. Equation[(Zp) also holds ¢f is continuous and such that its time derivativg/d: in the sense of
distributions is inLi; ([0, +00) x RY).
When the data do not depend on time, nandgly= co(x) andcy = ¢1(x), and when the kernel
co is symmetric, the energy naturally associated to the dislocation is

1
E(1) =/ (—5(50*0)0—51/9)
RN

This energy is nonincreasing:

PrRoPOSITION5.3 Under the assumptions and notations of Coroflary 5.2, suppos# thaiy(x)
andé¢y = ¢1(x), and thattg(—x) = éo(x) for anyx € RV. Then the energy — E(z) is locally

Lipschitz continuous and
d
—E@t) = —/ 2 dHN L,
dr do(t,)=1)

wherec = ¢cgx p + C1.

Proof. Leto(z, x) = %Eo * p + ¢1. We note thap is continuous and that— ¢(¢, x) is absolutely
continuous thanks to Corollafy 5.2, with

d

_ 1 _ _
d—w(t, X) coly —x)p(t, y)dy = —/ o(x — y)e(t, y) dHY 1(y).
1 Ap(t.)=1}

~2dr RN 2

Recall (see the proof of Lemnja b.1) tt&t'~1(a{p(z, ) = 1}) is locally bounded. Therefore
t — ¢(t, x) is locally Lipschitz continuous as alsofis—> E(t). So, using Corollary 5|2 again, we

have q 5
% N-1
—E([):—/ —pdx—/ pcdHY ™,
dr RN Of p(t.)=1}
where
17 1 _ N-1
—~pdy == co(x — y)p(t, x)c(t, y) dx dH™ "~(y)
RN Ot 2 3lp(t,)=1) JRN
1
== / (Go* p)edHN L.
2 Jotp(,)=1)
Therefore

d 1
—E(t):—/ ((p—l——(Eo*p))cdHN_l: —/ 2 drN L O
dr 3(p(r,)=1) 2 a(p(t,)=1)
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5.2 Dynamics with several dislocations
Let M > 0 be an integer. We will assume
c1(t, x) = Ml|co(r, )l pawny  V(t, x) € [0, +00) x RY. (27)

When we consider the dynamics &f dislocations of the same type (same Burgers vector, and in
the same slip plane), it is possible to state a result similar to Thgorém 4.3.

THEOREM5.4 Considen compact setk, m = 1,..., M, suchthatk} > K2 > --- D K.
Assume that each compakty' satisfies the interior ball condition with radius> 0. Then, under
assumption(27), the Cauchy problgm](11) with initial condition

M
po(x) = Z 1gm
m=1

has a unique discontinuous viscosity solutiodefined on [0+00).
The proof is an adaptation of the proof of Theolfenj 4.3 and is left to the reader.

REMARK. If K3 DD K{)"*l, then for every timg > 0, we have{p > m} DD {p > m + 1}.
(This is an easy consequence of the representation of eagh et} as the reachable set for the
controlled systend {8) with(z, x) = ¢o * p + ¢1.)

6. Appendix: Propagation of the interior ball condition
In this section, we consider a differential equation

Yi(0) = f(t, y(1). (28)

The reachable set fof when starting from an initial closed sg&t is defined in the usual way and
denotedR(¢) as before. Our aim is to show that this reachable set satisfies the interior ball condition
provided the initial set does. The computations below are strongly inspired by those of [9].

For this we assume thgt enjoys the following regularity:

(i) f is Borel measurable, differentiable with respect to the second variable
for almost every,
(i) | £z, y1) = f(t, y2)| < Lolyr — y2l  ¥(t,y1, y2) € R x RV x RV,
(iiit) |Dx f(t, y1) — Dx f(t, y2)| < Laly1 — y2|  V(t,y1,y2) € R x RV x RV,

whereLg, L1 > 0 are fixed constants.

(29)

LEmMMA 6.1 (Propagation of the interior ball condition) Assume that the closeff sttisfies the
interior ball condition with radius € (0, 1]. Then the seRR(¢) satisfies the interior ball condition
with radiusre™ for anyr > 0, wherex = 3Lg + L1. More precisely, ify is a solution of)
with y(0) € K, if pgis a unit vector such tha(y(0) — rpo, r) C K,andifp : [0, T] — RV isan
absolutely continuous map satisfying

—p'(t) = Dy f(t, y()* p(1),
{ r(0) = po (30)

(where D, f(¢, y(¢))* denotes the transpose of the matr®, f (¢, y(¢))), then the ball
B(y(@) —re * p(t)/|p®)|, re ") is contained ik (¢) for anyt € [0, T].

Proof. Lety andp as in the lemma. Note that(r) O for anyr € [0, T].
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For anyd € B(0, |p(T)|) we consider the solutiopy of the (backward) differential equation

{yg(r) = f(t, yo (1)),
yo(T) = y(T) —re *T(p(T) — 0),

where
k=2Lo+ L1.

We first prove thayy (0) € K. For this, consider the function
¢(1) = %lyg (1) = YOI+ re ™ (yg (1) — y(1), p(@)).
Note for later use that
¢(T) = %rze—z”mm — 017 = 2”2 (p(T) — 0, p(1)) <0, (31)
sinced € B(0, |p(T)]). Then
¢'(1) = (yo(t) — y(0), f(t, yo(1)) — f(t, y(1)))

+re Mt o) — £t y(®). p(1))

—re M (yo(t) = (1), Dx f (1, y())* p()

—rke™ " (yo(1) = y(®), p(1)).
From [29(ii)),

(o (1) — y(®)., f(t.9(1)) — f(t,¥(®)) = —Lolys () — y(®)I°.

Since
7300 = fayo) = [ Dy f s34 L= )Y O)O8(0) — 3(0)) G
we have
Ft 30@) — £t ), p@) — (a(®) — (1), Dy f 2, ¥ p(0)
-/ (De £ 5350 + L= )y(0) = Dy £t yONG8(0) = ¥(0)), plo))

L
> —71|ye(r> —yOPIp@)]

thanks to[(2D(iii)). Sincep(r)| < e, k = 2L+ L1 andr € (0, 1], we have Zo+re % L1|p(1)|
< k for anyr € [0, T]. Hence we get

P'(t) = —kp (1),
which givesy (0) < ek ¢(T) < 0 from (31). Therefore

- 1
$(0) = S130(0) — y(O) +rpol® — 5r* <0,

which proves thaty (0) € K becauseB(yo — rpo,r) C K.

Since y4(0) € K, we also haveyy(T) = y(T) — re *T(p(T) — 0) € R(T) for any
6 € B(O, |p(T)|). HenceR(T) satisfies the interior ball condition with radius=*7 | p(T)|. Since
|p(T)| > e Lol we have finally proved our claim with = k + Lo = 3Lo + L. O
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