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Phase field modeling and simulation of three-phase flows
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We derive a thermodynamically consistent phase-field model for flows containing three (or more)
liquid components. The model is based on a Navier–Stokes (NS) and Cahn–Hilliard system (CH)
which accounts for surface tension among the different components and three-phase contact lines. We
develop a stable conservative, second order accurate fully implicit discretization of the NS and three-
phase (ternary) CH system. We use a nonlinear multigrid method to efficiently solve the discrete
ternary CH system at the implicit time-level and then couple it to a multigrid/projection method
that is used to solve the NS equation. We demonstrate convergence of our scheme numerically and
perform numerical simulations to show the accuracy, flexibility, and robustness of this approach. In
particular, we simulate a three-interface contact angle resulting from a spreading liquid lens on an
interface, a buoyancy-driven compound drop, and the Rayleigh–Taylor instability of a flow with three
partially miscible components.

Keywords: Ternary Cahn–Hilliard system; nonlinear multigrid; ternary fluid flow; interfacial tension;
arbitrary miscibility.

1. Introduction

Many biomedical, chemical, and industrial processes involve mixtures of three or more liquid
components. In spite of the importance of three-phase flows, most studies of three-phase systems
do not consider hydrodynamical interactions (e.g. see [4–7, 10, 15, 20, 22]). There have been few
theoretical and numerical studies of flows containing three or more liquid components compared
to the large body of research for two-phase fluid flows. This is partly due to the difficulties in
dealing with hydrodynamics associated with interfaces and triple junctions. In [40], a projection
method is used for the motion of a triple junction in level set framework. In this approach, a linear
projection of the level set functions onto a reduced set of variables is used to solve problems at triple
lines and other multiple junctions (i.e., quadruple points). In [28], a compound drop consisting of
three immiscible fluids is simulated using the immersed boundary method [37]. The presence of the
interface and its effect on the flow is established via source terms in the governing equations.

There are a number of three-phase models that describe two immiscible fluids and surfactant.
In low Reynolds number flows, boundary integral methods have been used to study the effect
of surfactants on drop dynamics (e.g. [33, 35, 41]) and tip-streaming [19]. In [18, 24, 39], the
effect of insoluble surfactants on drop deformation is studied in two and three dimensions using
volume-of-fluid methods. In [25] the effect of surfactants on the dynamics of rising bubbles is
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investigated using an immersed boundary/front-tracking algorithm. In [13], a hybrid level-set/front-
tracking algorithm was used to study the effect of surfactants on capillary waves. Further, in [27],
the effect of surfactants on the evolution of the shape of an initially nonspherical drop translating in
an otherwise quiescent fluid at low Reynolds number is examined. A combination of the boundary-
integral method and a finite-difference scheme is used to solve the coupled fluid dynamics and
surfactant transport problems.

In this paper, we build upon our results for two-phase hydrodynamic systems [30] and three-
phase systems in the absence of hydrodynamic interactions [31] to model and simulate general three-
phase hydrodynamic systems. Advantages of this approach over level-set and immersed boundary
approaches described above, for immiscible three-phase systems, are: (1) we do not need to perform
any correction steps to multiple junctions; (2) it is easy to incorporate other physical properties such
as miscible and immiscible fluid components.

We derive a thermodynamically consistent system of governing equations based on a phase-field
approach. The system of equations couples the Navier–Stokes equations for the fluid motion to a
system of Cahn–Hilliard type (fourth order nonlinear advection-diffusion equations) for the phase
variables. Here the phase fields have a definite physical meaning: they are the mass ratios of the
fluid components.

We develop a conservative, second order accurate fully implicit discretization of the NS and
three-phase (ternary) CH system. It can be shown that if the time step is small enough, the
discretization has a discrete energy functional that is the natural discretization of the free energy
on the continuous level. In practice, we find that the discrete energy is always nonincreasing. We
use a nonlinear multigrid method to efficiently solve the discrete ternary CH system at the implicit
time-level and then couple it to a multigrid/projection method that is used to solve the NS equation.

We present examples of flows with miscible and immiscible components. We demonstrate the
convergence of our algorithm through a resolution study. In addition, we find good agreement with
the theory for an equilibrium liquid lens (lying atop an interface). We provide demonstrations of
liquid/liquid remediation. In the first example, a compound drop is simulated, in which a light
fluid encapsulated a heavy contaminant drop. The light fluid causes the compound drop to rise
and deposit the contaminant at an interface where it may be removed. In the second example, we
investigate the diffusional transfer of a preferentially miscible contaminant from one immiscible
phase to another. In this example, the transfer is enhanced by the flow and in particular the Rayleigh–
Taylor instability.

The contents of this paper are as follows. In Section 2, the governing equations are derived. In
Section 3, we derive the discrete scheme and numerical solution. We also present the approximate
projection method used to solve the discrete generalized NS equations. Numerical experiments are
presented in Section 4. In Section 5, conclusions are drawn.

2. Derivation of the governing equations

We begin by deriving a thermodynamically consistent system of governing equations for a general
heterogeneous, isothermal mixture ofNf fluids following the strategy developed for binary (two-
component) fluids by Lowengrub and Truskinovksy [34]. Let the mass concentrations beck =

Mk/M for k = 1, . . . , Nf , whereMk are the masses of the components in a representative material

volumeV , andM is the total mass of the mixture. SinceM =
∑Nf

k=1 Mk, we have
∑Nf

k=1 ck = 1.
Suppose that each component moves with a velocityuk and has densityρk = Mk/Vk whereVk is
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the volume of fluidk. Introducing volume fractionφk = Vk/V , we have the relationρck = ρkφk

whereρ =
∑Nf

k=1 ρkφk is the density of the mixture. Herein, we will assume that each component
is incompressible, i.e.ρk is constant. Note that this does not mean that the mixture densityρ is
constant sinceρ depends onφk or, equivalently, onck. The relation betweenρ andci is given by

1

ρ
=

Nf∑
k=1

ck

ρk

(2.1)

Such mixtures were termed quasi-incompressible by Lowengrub and Truskinovsky [34].

2.1 Balance equations

The balance of mass for each component is

∂(ρkφk)

∂t
+ ∇ · (ρkφkuk) = 0. (2.2)

Define the mass-averaged (mixture) velocity field

u =
1

ρ

Nf∑
k=1

φkρkuk =

Nf∑
k=1

ckuk; (2.3)

then summing (2.2) ink we obtain the balance of mass for the mixture

∂ρ

∂t
+ ∇ · (ρu) = 0. (2.4)

From (2.2) and (2.4), we obtain the mass concentration equation:

ρċk = ∇ · Jk, (2.5)

where˙ = ∂t + u · ∇ is the advective derivative with respect to the mixture velocity, and

Jk = −ρckwk, where wk = (uk − u) , (2.6)

is the diffusion flux.
For each component, we have the balance of linear momentum

ρck

Dkuk

Dt
= ∇ · Pk + ρckg + πk, (2.7)

whereDk/Dt = ∂t + uk · ∇ is the advective derivative with respect to the component velocity,Pk

is the stress tensor,g is the gravity force andπk are the forces per unit volume due to interactions
with other phases. Note that as yetPk andπk are unspecified. Summing overk, and requiring that∑Nf

k=1 πk = 0, which is necessary for the conservation of linear momentum of the mixture, we get
the following linear momentum equation for the mixture:

ρu̇ = ∇ · P + ρg, (2.8)

whereP =
∑Nf

k=1 (Pk − ρckwk ⊗ wk) is the stress tensor of the mixture.
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Following classical theory (e.g. see [17] and Lowengrub and Truskinovsky [34]), we focus on
the mixture equations and not on the detailed force interactions (e.g.πi). Therefore, we consider an
energy balance for the entire system and derive thermodynamically consistent constitutive relations
for P andJk as follows. LetΩ be an arbitrary domain that moves with the mixture velocityu. Then
the integral form of the energy balance for the mixture is

d

dt

∫
Ω(t)

(
ρe +

1

2
ρ|u|

2
)

dΩ =

∫
∂Ω

(
Pn · u +

Nf∑
k=1

(tk · n) ċk

)
d∂Ω +

∫
Ω

(r + ρg · u) dΩ, (2.9)

wheree is the internal energy,ρ|u|
2/2 is the kinetic energy andn is the outward normal vector

to ∂Ω. The first term on the right hand side is the rate of work done on∂Ω by the fluid stress
and the extra stresses due to concentration gradients, i.e.tk is a generalized force that is as yet
undetermined. This term is suggested by the variational analysis of Lowengrub and Truskinovsky
[34]. In the second term on the RHS,r is the density of heat sources necessary to ensure that the
temperature is constant and the remaining term is the rate of work done due to gravity.

Using the mixture mass (2.4) and momentum balance equations (2.8), the local form of the
energy balance equation (2.9) is

ρė = P : ∇u +

Nf∑
k=1

∇ · (tk ċk) + r. (2.10)

2.2 Thermodynamics and constitutive relations

Because we are dealing with isothermal flow, it is useful to introduce the Helmholtz free energyF
rather than the internal energy. The relation between the two is

F = e − T s, (2.11)

whereT is the temperature. Thus, (2.10) becomes

ρT ṡ = −ρḞ + P : ∇u +

Nf∑
i=1

∇ · (ti ċi) + r. (2.12)

Next, we make the constitutive assumption that the free energy

F = F(c1, . . . , cNf
, ∇c1, . . . ,∇cNf

) (2.13)

is such that

Ḟ =

Nf∑
k=1

(
∂F
∂ck

ċk +
∂F

∂∇ck

(∇ck)
.
)

. (2.14)

Using the identity(∇ck)
.
= ∇ ċk − (∇u)T · ∇ck (e.g. see [34]) and plugging (2.14) in (2.12) gives

ρT ṡ =

(
P + ρ

Nf∑
k=1

∇ck ⊗
∂F

∂∇ck

)
: ∇u

+

Nf∑
k=1

(
tk − ρ

∂F
∂∇ck

)
· ∇ ċk − ρ

Nf∑
k=1

(
∂F
∂ck

−
1

ρ
∇ · tk

)
ċk + r. (2.15)
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Next observe that because the fluid components are incompressible the velocity gradient∇u and
ċk are not independent. They are related via (2.1) and (2.5). That is, there is a degeneracy in (2.15)
since

∇ · u = −

Nf∑
k=1

1

ρ

∂ρ

∂ck

ċk = −

Nf∑
k=1

1

ρ2

∂ρ

∂ck

∇ · Jk. (2.16)

Note that from (2.1) we see that

−
1

ρ2

∂ρ

∂ck

= αk ≡
1

ρk

, for k = 1, . . . Nf , (2.17)

is a constant.
To exploit the degeneracy introduce a scalar Lagrange multiplierp. This is the mixture pressure.

Then

pI : ∇u =

Nf∑
k=1

αkpρċk, (2.18)

whereI is the identity matrix. Using (2.18) in (2.15), we get

ρT ṡ =

(
P + pI + ρ

Nf∑
k=1

∇ck ⊗
∂F

∂∇ck

)
: ∇u

+

Nf∑
k=1

(
tk − ρ

∂F
∂∇ck

)
· ∇ ċk − ρ

Nf∑
k=1

(
∂F
∂ck

+ αkp −
1

ρ
∇ · tk

)
ċk + r. (2.19)

According to the second law of thermodynamics, in the form of the Clausius–Duhem inequality, we
have

ρχ > 0, where ρχ ≡ ρṡ + ∇ · J − r/T , (2.20)

whereχ is the internal dissipation andJ is the entropy flux (see Truesdell and Noll [45]). Now,
from (2.19) together with (2.5), we obtain

ρχ =
1

T

(
P + pI + ρ

Nf∑
k=1

∇ck ⊗
∂F

∂∇ck

)
: ∇u +

1

T

Nf∑
k=1

(
tk − ρ

∂F
∂∇ck

)
· ∇(ρ−1

∇ · Jk)

+
1

T

Nf∑
k=1

∇µk · Jk + ∇ ·

(
J −

Nf∑
k=1

µkJk

T

)
, (2.21)

whereµk is the generalized chemical potential given by

µk =
∂F
∂ck

+ αkp −
1

ρ
∇ · tk. (2.22)

Next, because
∑Nf

k=1 Jk = 0 this leads to additional constraints on the constitutive relations for the

stress tensorP, the forcestk and the fluxesJk. Since
∑Nf

k=1 ck = 1, the concentration fields are not
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independent. We may thus definecNf
= 1 −

∑Nf −1
k=1 ck. This leads to the equivalent entropy form

ρχ =
1

T

(
P + pI + ρ

Nf∑
k=1

∇ck ⊗

(
∂F

∂∇ck

−
∂F

∂∇cNf

))
: ∇u

+
1

T

Nf∑
k=1

(
tk − ρ

(
∂F

∂∇ck

−
∂F

∂∇cNf

))
· ∇(ρ−1

∇ · Jk)

+
1

T

Nf∑
k=1

∇
(
µk − µNf

)
· Jk + ∇ ·

(
J −

Nf∑
k=1

(µk − µNf
)Jk

T

)
. (2.23)

Taking the diffusion fluxJ =
∑Nf

k=1

(
µk − µNf

)
Jk/T we are now in a position to pose

thermodynamically consistent constitutive relations forP, tk and Jk. Following Coleman and
Noll [14] where ∇u is varied independently from the other quantities leads to the constitutive
assumptions

P = −pI − ρ

Nf∑
k=1

∇ck ⊗

(
∂F

∂∇ck

−
∂F

∂∇cNf

)
+ η

(
D −

2

3
(∇ · u) I

)
, (2.24)

tk = ρ

(
∂F

∂∇ck

−
∂F

∂∇cNf

)
, (2.25)

Jk = νk∇(µk − µNf
), for k < Nf , and JNf

= −

Nf −1∑
k=1

Jk, (2.26)

whereD = ∇u + ∇uT is the rate of strain tensor andη is the viscosity (note that the bulk viscosity
is assumed to be 0 for simplicity and thatη may be a function ofc). We thus obtain

ρχ =
η

T
D : D +

1

T

Nf∑
k=1

νk|∇(µk − µNf
)|2 > 0 (2.27)

and so the second law of thermodynamics is satisfied. Note that concentration gradients give rise
to extra fluid stresses. As will be discussed later, these mimic surface tension stresses. Finally,
although we have singled out one of the components, we demonstrate later that the evolution of
our system does not depend on the labeling of the components. We also note that other constitutive
relations may be taken (e.g. see Appendix A as well as [21]). Our choice here is consistent with that
considered previously by Morral & Cahn [36] for linearized three-phase systems.

2.3 Summary of general equations

Putting together the results from the previous section, the thermodynamically consistent system of
equations governing a mixture ofNf fluids is

∇ · u =

Nf∑
k=1

(αk − αNf
)∇ · (νk∇(µk − µNf

)), (2.28)
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ρu̇ = −∇p − ∇ ·

(
ρ

Nf∑
k=1

∇ck ⊗

(
∂F

∂∇ck

−
∂F

∂∇cNf

))
+ ∇ ·

(
η(c)

(
D −

2

3
(∇ · u) I

))
+ ρg, (2.29)

ρċk = ∇ ·
(
νk∇

(
µk − µNf

))
, (2.30)

and

µk =
∂F
∂ck

+ αkp −
1

ρ
∇ ·

(
ρ

(
∂F

∂∇ck

−
∂F

∂∇cNf

))
, αk =

1

ρk

, (2.31)

for k = 1, . . . , Nf − 1 andcNf
= 1−

∑Nf −1
k=1 ck. This system couples a generalized Navier–Stokes

equation with a nonlinear advection-diffusion equation for the concentration.

2.4 Special choice of free energy, the Navier–Stokes–Cahn–Hilliard system and
nondimensionalization

To make further progress, we need to choose the form of the Helmholtz free energy. Following Cahn
and Hilliard [12], we take

F = F(c1, . . . , cNf
) +

Nf∑
k=1

ε2
k

4
|∇ck|

2. (2.32)

This gives
∂F

∂∇ck

=
1

2
ε2
k∇ck. (2.33)

Note that this makes the concentration equation (2.30) a fourth order nonlinear advection-diffusion
equation and is a generalization of the classical Cahn–Hilliard equation used to describe phase
separation in binary mixtures [12]. Further, the extra stress in the Navier–Stokes equation (2.29)
can be written as

ρ

Nf∑
k=1

∇ck ⊗

(
∂F

∂∇ck

−
∂F

∂∇cNf

)
= ρ

Nf∑
k=1

ε2
k

2
∇ck ⊗ ∇ck, (2.34)

where we have used the fact that
∑Nf

k=1 ck = 1. Further, we have

µk − µNf
=

∂F

∂ck

−
∂F

∂cNf

+ (αk − αNf
)p −

1

2ρ
∇ ·

(
ρ∇

(
ε2
kck + ε2

Nf

Nf −1∑
j=1

cj

))
, (2.35)

where we have again used
∑Nf

k=1 ck = 1. We may therefore define, fork = 1, . . . , Nf − 1,

F̃ (c1, . . . , cNf −1) = F
(
c1, . . . , cNf −1, 1 −

Nf −1∑
k=1

ck

)
, (2.36)

α̃k = αk − αNk
, (2.37)
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so that
∂F̃

∂ck

=
∂F

∂ck

−
∂F

∂cNf

. (2.38)

Analogously, one may define

µ̃k = µk − µNf

=
∂F̃

∂ck

+ α̃kp −
1

2ρ
∇ ·

(
ρ∇

(
ε2
kck + ε2

Nf

Nf −1∑
j=1

cj

))
(2.39)

for k = 1, . . . , Nf − 1. The resulting system is a coupled Navier–Stokes and Cahn–Hilliard system
(see also [34]). We note that by equipping this system with natural boundary conditions, i.e.u = 0 =

∇ck · n and∇µ̃k · n = 0, this system (with gravityg = 0) has a discrete (free) energy functional

E(t) =

∫
Ω

(
ρ

(
F̃ (c1, . . . , cNf −1) +

Nf∑
k=1

ε2
k

4
|∇ck|

2
)

+
ρ

2
|u|

2
)

dΩ, (2.40)

whereΩ is the (fixed) physical domain. In the remainder of the paper, we drop the tilde notation for
simplicity.

We nondimensionalize the system as follows (e.g. see also [34]). LetL∗ and V∗ denote
characteristic scales of length and velocity. Then introduce the dimensionless independent variables
x̄ = x/L andt̄ = V∗t/L∗ and the natural scaling of the dependent variablesū = u/V∗, ρ̄ = ρ/ρ∗,
η̄ = η/η∗, p̄ = p/(ρ∗V

2
∗ ), µ̄k = µk/µ

∗

k , etc., where again the stars denote characteristic quantities.
We also assume that the Helmholtz free energy is given by the sum

F =

Nf∑
k=1

µ∗

kF̄k. (2.41)

The flow is then governed by the following nondimensional parameters:

Ck =
εk

L∗

√
µ∗

k

, Mk =
σk/ρ∗

L∗µ
∗

k

, Pek =
ρ∗V∗L∗

ν∗

k µ∗

k

,

Ak = ρ∗αk, Wek =
ρ∗L∗V

2
∗

σk

, Re=
ρ∗V∗L∗

η∗

, Fr =
V∗

√
L∗|g|

,

(2.42)

where the top row are the nonclassical additional parameters introduced in the model and the second
row are the classical fluid dynamics parameters. In the top row, the first parameterCk is the Cahn
number that is a nondimensional measure of the interface energy of thekth component, the second
Mk is a measure of the relative strength of the surface tension and chemical energies and the third
Pek is the diffusional Peclet number that measures the relative strengths of (chemical) diffusion
and advection. In the bottom row, the first parameterAk is a nondimensional measure of the density
differences between components, the second Wek is the Weber number whereσk is the phase specific
surface tension (see [40] and below), the third Re is the Reynolds number that measures the relative
strength of inertial and viscous forces, and finally the last Fr is the Froude number that measures the
relative strengths of the inertial and gravitational forces.
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Omitting the bar notation, the nondimensional Navier–Stokes–Cahn–Hilliard (NSCH) system
(2.28)–(2.31) is written as

∇ · u =

Nf −1∑
k=1

Ak

Pek
∇ · (νk∇µk) , (2.43)

ρu̇ = −∇p − ∇ ·

(
ρ

Nf∑
k=1

C2
k

Mk Wek

∇ck ⊗ ∇ck

)
+

1

Re
∇ ·

(
η(c)

(
D −

2

3
(∇ · u) I

))
+

ρ − 1

Fr2
G, (2.44)

ρċk =
1

Pek
∇ · (νk∇µk) , (2.45)

where we have subtracted a linear termρ∗x · g from the pressure andG = g/|g|. Further, the
chemical potential is

µk =
∂

˜̃
F

∂ck

+Ak Wek Mkp −
1

ρ
∇ · ρ

(C2
k

2
∇ck +

C2
Nf

2

Nf −1∑
i=1

∇ci

)
, (2.46)

for k = 1, . . . , Nf − 1, where

∂
˜̃
F

∂ck

=

Nf∑
j=1

µ∗

j

µ∗

k

∂F̄j

∂ck

. (2.47)

Finally, the nondimensional total free energy is

E(t) =

∫
Ω

ρ

2
|u|

2 dΩ +

3∑
k=1

1

Mk Wek

∫
Ω

ρ

(
F̄k +

C2
k

4
|∇ck|

2

)
dΩ. (2.48)

Hereafter, we drop the bar and double tilde notation.

2.5 Asymptotics and the sharp interface regime

The miscibility properties of the flow components can be described through the free energy
F(c1, c2). For example, if all the components are miscible the free energy is a convex function
of its components (i.e. the Hessian matrix is positive definite). If the components are immiscible,
the free energy is a nonconvex function of its components to reflect the coexistence of multiple
phases. Various mixtures of miscible and immiscible components can analogously be described.
When the flow components are immiscible, the NSCH system should reduce to the classical Navier–
Stokes equations together with the Laplace–Young surface tension jump conditions across interfaces
and multi-junctions. This requires assumptions on the nonclassical parametersCk, Mk and Pek.
Following the asymptotic analyses of Lowengrub and Truskinovsky [34] and others (e.g. see the
review [2]) leads to the scaling

Ck = ε2, Mk = ε/β and Pek = O(1) or O(1/ε), (2.49)
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where the parameterε is a nondimensional measure of interface thickness. Then it can be shown
that in the sharp interface limitε → 0, the classical Navier–Stokes system equations and jump
conditions are recovered. An interface separating two immiscible fluids has an equilibrium profile
ceq(z) wherez is the coordinate in the normal direction to the interface. The parameterβ is then
given by

β =

(∫
+∞

−∞

ρ(ceq)

(
∂ceq

∂z

)2

dz

)−1

. (2.50)

For example, with a free energyF(c) =
1
4c2

1c
2
2, where we assume thatc3 = 0, we have

ceq(z) = (1 − tanh(z/2ε
√

2))/2 (2.51)

and, ifρ(c) = 1, thenβ = 6
√

2.
For three-phase flows, following [40], the surface tensionσij between immiscible flow

componentsi andj is decomposed into the phase-specific surface tensionsσi andσj by

σij = σi + σj (2.52)

That is, givenσij , a linear system of equations is solved forσi andσj . The phase-specific surface
tensions are used in the definition of the Weber number (2.42). For flows containing four or more
immiscible fluids, the decomposition above is overdetermined and it is possible that no solution
exists. Nevertheless, the model system (2.43)–(2.48) is still valid although an alternate means may
need to be used to determine the individual Weber numbers Wek. This is currently under study.

2.6 The Boussinesq approximation and the ternary system

We next consider the special case of a ternary system and use the Boussinesq approximation. In
the Boussinesq approximation, the densities of the flow components are nearly matched such that
ρ ≈ 1 but the Froude number may be small enough such that(ρ − 1) /Fr2 is nonnegligible. Thus,
in (2.43)–(2.46), we takeρ = 1 except in the gravitational term and we takeAk = 0. The resulting
system is the ternary version of model H in the nomenclature of Hohenberg and Halperin [23].

The composition of a ternary mixture (A, B, and C) can be mapped onto an equilateral triangle
(the Gibbs triangle [38]) whose corners represent 100% concentration of A, B or C as shown in Fig.
2.1(a). Mixtures with components lying on lines parallel toBC contain the same percentage of A,
those with lines parallel toAC have the same percentage of B concentration, and analogously for
the C concentration. In Fig. 2.1(a), the mixture at the position marked ‘◦’ contains 60% A, 10% B,
and 30% C (the total percentage must sum to 100%).

Let c = (c1, c2) be the phase variable (i.e. concentrations of component A and component B).
Sincec1 + c2 + c3 = 1 we only need to solve the equations withc1 andc2. Here, for simplicity, we
consider a constant mobility1 (νk ≡ 1). F(c) is the Helmholtz free energy which is defined on the
Gibbs triangle. For three immiscible fluids, the free energy can be modeled by

F(c) =

3∑
k=1

Fk, Fk = c2
k(c

2
rem(k,3)+1 + c2

rem(k+1,3)+1)/8 (2.53)

1 The extension to more generalνk = νk(c1, c2) is straightforward.
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(a)

(0,0,1)

(0,1,0)(1,0,0)

(b)

FIG. 2.1. (a) Gibbs triangle. (b) Contour plot of the free energyF(c)

where rem(x, y) is the remainder of the ratiox/y andc3 = 1 − c1 − c2. The contours of the free
energyF(c) projected onto the Gibbs triangle are shown in Fig. 2.1(b). Note the energy minima are
at the three vertices and the maximum is at the center.

The nondimensional Boussinesq ternary NSCH system is as follows:

∇ · u = 0, (2.54)

u̇ = −∇p +
1

Re
∇ · (η(c)(∇u + ∇uT ))

−

3∑
k=1

εβ

Wek

∇ · (∇ck ⊗ ∇ck) +
ρ − 1

Fr2
g, (2.55)

ċ =
1

Pe
∆µ, (2.56)

µ = f(c) − Γε∆c, (2.57)

wheref(c) = (f1(c), f2(c)) = (∂c1F(c), ∂c2F(c)) andΓε is the matrix

Γε ≡

(
ε2 ε2/2

ε2/2 ε2

)
.

The natural boundary and initial conditions for the ternary NSCH equation are

∂c
∂n

=
∂µ

∂n
= 0 and u = 0 on ∂Ω, c(x, 0) = c0(x), u(x, 0) = 0, (2.58)

wheren is the normal unit vector pointing out ofΩ. Finally, the nondimensional total free energy
for the Boussinesq system is

E(t) =

∫
Ω

1

2
|u|

2 dΩ +

3∑
k=1

1

Mk Wek

∫
Ω

ρ

(
Fk +

C2
k

4
|∇ck|

2
)

dΩ, (2.59)

whereF =
∑3

k=1 Fk.
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3. Numerical solution

The numerical solution of the ternary NSCH system uses a second-order accurate spatial
discretization and a Crank–Nicholson type time stepping method. For simplicity and clarity of
exposition, we will present the numerical method in 2D, but the extension to 3D is straightforward.
The computational grid consists of square cells of a uniform sizeh; these cellsΩij are centered
at (xi = (i − 0.5)h, yj = (j − 0.5)h), wherei = 1, . . . , L andj = 1, . . . ,M. Givenun−1, un,
cn−1, cn, defined at cell centers andpn−1/2 defined at cell corners, we want to findun+1, cn+1, and
pn+1/2. The outline of the algorithm is as follows:

Step 1. Initializec0 to be the locally equilibrated concentration profile andu0 to be the divergence-
free velocity field.

Step 2. Solve the CH system and update the concentration fieldcn to cn+1. We use a nonlinear
Full Approximation Storage (FAS) multigrid method to solve the nonlinear discrete system (3.1)
and (3.2) given below at implicit time level. The nonlinearity is treated using a nonlinear Gauss–
Seidel relaxation. Details of this step are presented in our recent paper [31]. Here, however, we have
an additional source term due to advection. That is, we solve the following second order accurate
discrete system:

cn+1
ij − cn

ij

∆t
=

1

Pe
∆dµ

n+1/2
ij − (u · ∇dc)n+1/2, (3.1)

µ
n+1/2
ij = φ̂(cn

ij , cn+1
ij ) −

1

2
Γε∆d(cn

ij + cn+1
ij ), (3.2)

where∆d is the standard five-point discretization of the Laplacian operator in 2D. The advection
term (u · ∇dc)n+1/2 is approximated by using a fifth order weighted essentially nonoscillatory
(WENO) scheme [26] and is described in Sec. 3.1. We haveφ̂ = (φ̂1, φ̂2) where φ̂1(. . . ) and
φ̂2(. . . ) denote Taylor series approximations tof1 andf2 up to second order, respectively:

φ̂1(cn, cn+1) = f1(cn+1) −
1

2
∂c1f1(cn+1)(cn+1

1 − cn
1)

−
1

2
∂c2f1(cn+1)(cn+1

2 − cn
2) +

1

3!
∂2
c1

f1(cn+1)(cn+1
1 − cn

1)2

+
2

3!
∂c2∂c1f1(cn+1)(cn+1

1 − cn
1)(cn+1

2 − cn
2) +

1

3!
∂2
c2

f1(cn+1)(cn+1
2 − cn

2)2

and

φ̂2(cn, cn+1) = f2(cn+1) −
1

2
∂c1f2(cn+1)(cn+1

1 − cn
1)

−
1

2
∂c2f2(cn+1)(cn+1

2 − cn
2) +

1

3!
∂2
c1

f2(cn+1)(cn+1
1 − cn

1)2

+
2

3!
∂c2∂c1f2(cn+1)(cn+1

1 − cn
1)(cn+1

2 − cn
2) +

1

3!
∂2
c2

f2(cn+1)(cn+1
2 − cn

2)2.

As described in [31], this discretization ensures that in the absence of flow, a discrete version
of equations (2.56)–(2.57) is nonincreasing in time independent of the choice of∆t . This gives
enhanced stability.
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Step 3. Update the velocityun to un+1 and the pressurepn+1/2. We use the following approximate
projection method adapted from [8]. We solve

u∗
− un

∆t
= −∇dpn−1/2

+
1

2 Re
∇d · η(cn+1)[∇du∗

+ (∇du∗)T ] +
ρ(cn+1/2) − 1

Fr2
G

+
1

2 Re
∇d · η(cn)[∇dun

+ (∇dun)T ] + Fn+1/2
st − (u · ∇du)n+1/2 (3.3)

using a multigrid method for the intermediate velocityu∗ without strictly enforcing the
incompressibility constraint. We useFst =

∑3
k=1

εβ
Wek

∇ · (|∇ck|
2I − ∇ck ⊗ ∇ck) and the pressure

field is replaced byp +
∑3

k=1
εβ

Wek
|∇ck|

2. This modification is performed for two reasons. First,
by taking into account analytic cancellation a simpler and more accurate discretization may be
obtained. Second, when the interface is flat, this term is equal to zero, which is consistent with the
fact that the interfacial force vanishes for flat interfaces.

The discretization ofFst is given in Sec. 3.2. The terms∇dp and∇d · η(c)[∇du + ∇duT ] are
defined as follows:

(∇dp)ij =

(
pi+1/2,j+1/2 + pi+1/2,j−1/2 − pi−1/2,j+1/2 − pi−1/2,j−1/2

2h
,

pi+1/2,j+1/2 − pi+1/2,j−1/2 + pi−1/2,j+1/2 − pi−1/2,j−1/2

2h

)
.

The first component of the viscous term∇d · η(c)[∇du + ∇duT ] is discretized as

(∇d · η(c)[∇du + ∇duT ])1
ij =

1

h2
(2η(ci+1/2,j )(ui+1,j − uij ) − 2η(ci−1/2,j )(uij − ui−1,j )

+ η(ci,j+1/2)(ui,j+1 − uij + 0.25(vi+1,j+1 − vi−1,j+1 + vi+1,j − vi−1,j ))

− η(ci,j−1/2)(uij − ui,j−1 + 0.25(vi+1,j − vi−1,j + vi+1,j−1 − vi−1,j−1))).

The second component of the viscous term is discretized in a similar manner. The term(u·∇du)n+1/2

is computed using a fifth order WENO scheme described in Sec. 3.1.
Then projectu∗ onto the space of approximately divergence-free vector fields and get the

velocity un+1, i.e.,u∗
= un+1

+ ∆t∇dφ, whereφ satisfies∆dφ = ∇d ·
u∗

−un

∆t
with the Neumann

boundary condition,∂φ/∂n = 0 (see [1] for more general boundary conditions). Note∇d ·un+1
≈ 0

(see [8]). Finally, update pressure bypn+1/2
= pn−1/2

+ φ. This completes one time step.

3.1 Approximation of the advection terms

In this section, we describe the discretization of the advection terms. The valuesun+1/2
ij andcn+1/2

ij

are calculated using a second order accurate extrapolation from previous values, i.e.,un+1/2
ij =

(3un
ij − un−1

ij )/2 andcn+1/2
ij = (3cn

ij − cn−1
ij )/2. From these cell centered values we obtain cell

edged values byun+1/2
i+1/2,j = (un+1/2

ij + un+1/2
i+1,j )/2 andun+1/2

i,j+1/2 = (un+1/2
ij + un+1/2

i,j+1 )/2.

In general, the normal velocitiesun+1/2
i+1/2,j andv

n+1/2
i,j+1/2 at the edges are not divergence-free. To

reduce the overall error, we apply the MAC projection [43] before construction of the convective
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derivatives. The equation

∆dφ = ∇MAC · un+1/2 (3.4)

is solved for a cell centeredφ, where

(∇MAC · un+1/2)ij =
u

n+1/2
i+1/2,j − u

n+1/2
i−1/2,j

h
+

v
n+1/2
i,j+1/2 − v

n+1/2
i,j−1/2

h

with the Neumann boundary condition,∂φ/∂n = 0. The resulting linear system (3.4) is solved
using a multigrid method with Gauss–Seidel relaxation. Then the discrete divergence-free cell-edge
velocitiesũ andṽ are defined by

ũ
n+1/2
i+1/2,j = u

n+1/2
i+1/2,j −

φi+1,j − φij

h
, ṽ

n+1/2
i,j+1/2 = v

n+1/2
i,j+1/2 −

φi,j+1 − φij

h
.

The convective terms are discretized as

(u · ∇du)
n+1/2
ij

=
ũ

n+1/2
i+1/2,j + ũ

n+1/2
i−1/2,j

2h
(ūn+1/2

i+1/2,j − ūn+1/2
i−1/2,j ) +

ṽ
n+1/2
i,j+1/2 + ṽ

n+1/2
i,j−1/2

2h
(ūn+1/2

i,j+1/2 − ūn+1/2
i,j−1/2),

(u · ∇dc)n+1/2
ij

=
ũ

n+1/2
i+1/2,j + ũ

n+1/2
i−1/2,j

2h
(c̄n+1/2

i+1/2,j − c̄n+1/2
i−1/2,j ) +

ṽ
n+1/2
i,j+1/2 + ṽ

n+1/2
i,j−1/2

2h
(c̄n+1/2

i,j+1/2 − c̄n+1/2
i,j−1/2),

where the edge values̄cn+1/2
i±1/2,j , ūn+1/2

i±1/2,j , c̄n+1/2
i,j±1/2, andūn+1/2

i,j±1/2 are computed using projected
velocity fields,ũ, ṽ, and a fifth order WENO algorithm [26].

3.2 Discretization of surface tension terms

In this section we describe the finite difference approximation to the surface tension term,Fst. Let

Fst = −

3∑
k=1

εβ

Wek

(fk, gk) =

3∑
k=1

εβ

Wek

∇ · (|∇ck|
2I − ∇ck ⊗ ∇ck)

= −

3∑
k=1

εβ

Wek

(∂xck∂yyck − ∂yck∂xyck, ∂yck∂xxck − ∂xck∂xyck).

Then the surface tension force components(f1, g1) are discretized as

(f1)ij =
1

2h3
(c1,i+1,j − c1,i−1,j )(c1,i,j+1 − 2c1ij + c1,i,j−1)

−
1

8h3
(c1,i,j+1 − c1,i,j−1)(c1,i+1,j+1 + c1,i−1,j−1 − c1,i+1,j−1 − c1,i−1,j+1), (3.5)

(g1)ij =
1

2h3
(c1,i,j+1 − c1,i,j−1)(c1,i+1,j − 2c1ij + c1,i−1,j )

−
1

8h3
(c1,i+1,j − c1,i−1,j )(c1,i+1,j+1 + c1,i−1,j−1 − c1,i+1,j−1 − c1,i−1,j+1) (3.6)
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and the other components,(f2, g2) and(f3, g3), are similarly defined by replacingc1 in (3.5) and
(3.6) by c2 and 1− c1 − c2, respectively. Further,Fn+1/2

st in (3.3) is evaluated usingcn+1/2
=

(cn
+ cn+1)/2.

3.3 The discrete energy functional

The discrete energy functional for the Boussinesq approximation is

Eh(t) =
1

2
(u, u)h +

3∑
k=1

1

Mk Wek

(
(Fk, 1)h +

ε2
k

4
|ck|

2
1

)
(3.7)

where(f, g)h = h2∑Nx

i=1

∑Ny

j=1 fijgij and|g|
2
1 =

∑Nx

i=1

∑Ny

j=1((gi+1,j − gij )
2

+ (gi,j+1 − gij )
2)

taking into account the Neumann boundary conditions to handle the boundary terms. Following the
analysis in [29], it can be shown that if the time step∆t is small enough, the discrete energyEh is
nonincreasing. In practice, we find thatEh is nonincreasing for∆t such that our multigrid methods
converge.

We note that an alternate discretization may be developed following our work on phase-field
models of two-phase flows [30]. In that work, we formulated a version of the projection method
using a special discretization of the Navier–Stokes equations such that the coupled discrete Navier–
Stokes–Cahn–Hilliard system had a nonincreasing discrete energy functional for any value of∆t .
We find that the scheme presented here results in slightly better accuracy than that used in [30].

4. Numerical experiments

In this section, we demonstrate convergence of our scheme numerically and simulate a three-
phase contact angle, a buoyancy-driven compound drop, and liquid/liquid remediation enhanced by
the Rayleigh–Taylor instability. Unless otherwise specified, we use the free energy functionF(c)
defined by (2.53). From our choice of the homogeneous free energy density (2.53) and an
equilibrium profile (2.51), the concentration field varies from 0.05 to 0.95 over a distance of about
4
√

2ε tanh−1(0.9). We have 4–8 grid points across interface in most of our simulations. Note that
since we are taking a polynomial form of the free energy,F(c), we may have nonphysical value of
concentration (i.e. less than zero and greater than one), but its deviations from the physical values
are negligible (in most of the cases, the deviations are of order 10−3). The time step is determined
by restrictions due to the CFL condition, gravity, viscosity, and surface tension [42]:

∆t < min
Ω

(
min

k=1,2,3

√
(ρ1 + ρ2 + ρ3) Wek Werem(k,3)+1

8π(Wek + Werem(k,3)+1)
h3/2,

3 Reρnh2

14ηn
,

h

|un|
,

√
2h

|Fn|

)
,

whereFn is the right hand side of (2.55) at timet = n∆t .

4.1 Convergence test

To obtain an estimate of the rate of convergence, we perform a number of simulations for a sample
initial problem on a set of increasingly finer grids. The initial data is

c1(x, y, 0) =
1

2

(
1 − tanh

(
y − 1/3

2
√

2ε

))
, (4.1)
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c2(x, y, 0) =
1

2

(
tanh

(
y − 1/3

2
√

2ε

)
− tanh

(
y − 2/3

2
√

2ε

))
. (4.2)

That is, narrow transition layers separate three immiscible fluids. The initial velocity is a swirling
flow

(u(x, y, 0), v(x, y, 0)) = (−0.25 sin2(πx) sin(2πy), 0.25 sin2(πy) sin(2πx)) (4.3)

on a domainΩ = (0, 1)× (0, 1). No-slip boundary conditions are applied to top and bottom planes,
and periodic ones to the side walls. The numerical solutions are computed on the uniform grids,
h = 1/2n for n = 5, 6, 7, 8, and 9. For each case, the calculations are run to timeT = 0.2, the
uniform time steps,∆t = 0.1h, Re= 10, We1 = We2 = We3 = 100, Pe= 2, andε = 0.005

√
2,

are used to establish the convergence rates. Figs. 4.1(a) and (b) show the initial configuration and a
snapshot of the solution at timeT = 0 andT = 0.2, respectively, withh = 1/64 and Re= 100.

(a) (b)

FIG. 4.1. Snapshots of the solutions at (a)T = 0 and (b)T = 0.2. The uppermost layer is fluid 3, the middle layer is fluid 2,
and the lower layer is fluid 1. The contour lines are fromc2 = 0.1 to c2 = 0.9 with 0.1 step size.

Since a cell centered grid is used, we define the error to be the difference between that grid and
the average of the next finer grid cells covering it:

e
h/ h

2 ij
:= chij − (c h

2 2i,2j
+ c h

2 2i−1,2j
+ c h

2 2i,2j−1
+ c h

2 2i−1,2j−1
)/4.

TABLE 4.1
Convergence results withRe= 10: u, v, c1, andc2

Case 32–64 64–128 rate 128–256 rate 256–512 rate

u 5.4530e-4 4.4986e-5 3.5995 1.0895e-5 2.0458 2.7798e-6 1.9706

v 6.8462e-4 2.9858e-5 4.5191 7.5194e-6 1.9894 1.8850e-6 1.9961

c1 2.9211e-2 3.1969e-3 3.1918 7.5863e-4 2.0752 1.8755e-4 2.0161

c2 4.1640e-2 4.2759e-3 3.2836 1.0037e-3 2.0908 2.4801e-4 2.0169
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TABLE 4.2
Convergence results withRe= 100: u, v, c1, andc2

Case 32-64 64–128 rate 128–256 rate 256–512 rate

u 7.9061e-4 2.1666e-4 1.8675 6.3568e-5 1.7691 1.8657e-5 1.7686

v 1.8242e-4 4.4618e-5 2.0316 1.4104e-5 1.6615 4.4661e-6 1.6590

c1 1.6055e-2 3.1327e-3 2.3576 7.6571e-4 2.0325 1.9041e-4 2.0077

c2 2.5432e-2 4.4223e-3 2.5238 1.0388e-3 2.0899 2.5764e-4 2.0114

The rate of convergence is defined as the ratio of successive errors in the discretel2-norm:

log2(||eh/ h
2
||/||e h

2/ h
4
||).

The errors and rates of convergence with Re= 10 and Re= 100 are given in Tables 4.1 and
4.2, respectively. The results suggest that the scheme is indeed second order accurate when the Re
number is small. When Re= 100, the rate of convergence decreases.

0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

0.5

time

total energy
interfacial energy
kinetic energy

FIG. 4.2. The time dependent energies of the numerical solutions with the initial data (4.1)–(4.6) and with Re= 10 and
We1 = We2 = We3 = 10. Snapshots of the concentration fieldc2 are shown with filled contour atc2 = 0.5.

We also examined the time evolution of the total energy (withF andFk defined as in (3.7)
and (2.53) respectively). The results are shown in Fig. 4.2 together with the interfacial (dotted)
and kinetic energy (dot-dashed) components. The interfacial energy contains both the gradient
and Helmholtz free energy terms. The solid curve marks the total energy. The insets show the
layer morphology (c2 = 0.5 filled contour) at various times. The initial data, boundary conditions
and all the parameters are the same as considered previously except that the Weber numbers are
We1 = We2 = We3 = 10 so that surface tension plays a more important role in the evolution.
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Here the Reynolds number Re= 10. Observe that the total energy is nonincreasing throughout
the evolution. The kinetic energy also monotonically decreases due to viscous dissipation. The
interfacial energy is nonmonotone, however. At early times, the initially flat layer deforms and
the surface energy increases. Around approximatelyt = 0.4, the surface energy reaches a peak
due to the increased deformation of the layer and then decreases towards an equilibrium value
corresponding to a flat layer (two interfaces). When the layer is most deformed, the surface tension
force induces a reversal of the velocity field such that the deformed layer relaxes back to a flat
configuration at later times.

4.2 Contact angles

Following [40], we next investigate the spreading of a liquid lens consisting of an initially circular
immiscible droplet of fluid located at an interface between two other immiscible fluids. See
Fig. 4.3(a).
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(a) (b)

(c) (d)

FIG. 4.3. (a) Initial configuration: the upper fluid is phase 1, the lower fluid is phase 3, and the droplet is phase 2. (b), (c),
and (d) are evolutions of initial circular drop for We2 = 60 and We1 = We3 = 108, 60, 36, respectively. The arrow shows
the direction of the evolution, the most deformed lines in (b), (c), and (d) are corresponding steady shapes and the enclosing
box size is [0.23, 0.77] × [0.23, 0.77].
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The initial condition is a circular droplet,Ω2 (located at a free surface betweenΩ1 andΩ3) and
the initial velocity is zero, i.e.,

c1(x, y, 0) = max

[
0.5

(
1 + tanh

(
y − 0.5

2
√

2ε

))
− c2(x, y), 0

]
, (4.4)

c2(x, y, 0) = 0.5

(
1 + tanh

(
0.15−

√
(x − 0.5)2 + (y − 0.5)2

2
√

2ε

))
, (4.5)

u(x, y, 0) = v(x, y, 0) = 0. (4.6)

The computational domain isΩ = [0, 1] × [0, 1]. The fluids are density and viscosity matched
(ρ = 1, η = 1) and

Re= 60, We2 = 60, We1 = We3 = 108, 60, 36.

In Figs. 4.3(b)–(d), the evolution of thec2 = 1/2 contour line is shown for three cases with
Re = 60 and We2 = 60, We1 = We3 = 108, 60, 36, respectively. In all cases,ε = 0.005

√
2,

Pe= 100/ε, h = 1/256, and∆t = 0.25h. As the droplet spreads, it reaches an equilibrium shape.
The most deformed curve in each figure is the numerical steady state. Theoretically, the shape of
the steady state drop is controlled by the drop volume and the three surface tensions (inverse Weber
numbers). The equilibrium three-phase contact angle is determined by

sinθ1
1

We2
+

1
We3

=
sinθ2

1
We1

+
1

We3

=
sinθ3

1
We1

+
1

We2

and the relation between the lens areaA, its lengthd (the distance between triple junctions), and the
contact anglesθi of theith phase (Young’s law) is

d =

(
1

8A

(
2(π − θ1) − sin(2(π − θ1))

sin2(π − θ1)
+

2(π − θ3) − sin(2(π − θ3))

sin2(π − θ3)

))−1/2

.

Thus, the accuracy of the steady lens shape can be measured by comparing the observedd with the
analytical value.

The evolution ofd for the three cases is shown in Fig. 4.4. The numerical value ofd is obtained
from thec2 = 1/2 contour line. Note that in all cases, there is rapid increase ind at early times
followed by a slow approach to equilibrium. Note also there is an overshoot in the early evolution
of the We3 = 36 and We3 = 108 cases. In Table 4.3, the equilibrium values ofd are shown for
the three cases together with the corresponding theoretical values. There is very good agreement
between the theory and simulation.

TABLE 4.3
Equilibrium measurements

We1, We2, We3 dexact dnumerical dnumerical, ε/2

108, 60, 108 0.3746 0.3982 ·

60, 60, 60 0.4138 0.4368 ·

36, 60, 36 0.4578 0.4622 0.4502
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FIG. 4.4. Time evolution ofd, distance between triple junctions. We3 = 108 (◦), We3 = 60 (∗), and We3 = 36 (�).
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FIG. 4.5. Contour lines of concentrationc2 at the five levelsc2 = 0.1, 0.3, 0.5, 0.7, and 0.9 in the case of We1 = We3 = 36
and We2 = 60. Left column:ε = 0.005

√
2 and right column:ε = 0.0025

√
2, respectively.
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In Fig. 4.5(a) and (b), we plot the contours of the concentrationc2 at the five levelsc2 =

0.1, 0.3, 0.5, 0.7, and 0.9 for the case with We1 = We3 = 36 and We2 = 60. In the left column
ε = 0.005

√
2 while in the right columnε = 0.0025

√
2. Not only do the concentration contours

appear to converge, also note that whenε = 0.0025
√

2, we obtaindnumerical = 0.4502, which is
closer to the exact result than is the case withε = 0.005

√
2. Interestingly, thec2 = 0.1 contour

appears to be elongated near the triple junctions—a fact that seems to persist under refinement ofε.

(a1)

(b1)

(a2)

(b2)

0 0.5 1 1.5 2 2.5
0.2

0.25

0.3

0.35

0.4

0.45

0.5

time

d
, 

d
is

ta
n

c
e

 b
e

tw
e

e
n

 t
ri
p

le
 j
u

n
c
ti
o

n
s

case 1
case 2

(c)

FIG. 4.6. Initial concentration profiles; case 1: (a1)c1 and (a2)c2, case 2: (b1)c1 and (b2)c2. Time evolution ofd, distance
between triple junctions for the two cases (case 1 (∗) and case 2 (◦)) with We3 = 60.

We next show that numerical results are not sensitive to the choice of component labels. We take
the same initial configuration but change the component labels, i.e.

c1(x, y, 0) = max

[
0.5

(
1 + tanh

(
y − 0.5

2
√

2ε

))
− c3(x, y), 0

]
, (4.7)

c3(x, y, 0) = 0.5

(
1 + tanh

(
0.15−

√
(x − 0.5)2 + (y − 0.5)2

2
√

2ε

))
. (4.8)

We then solve the equations for the concentrations,c1 andc2 = 1 − c1 − c3 with We1 = We2 =

We3 = 60. In Fig. 4.6, the initial concentration profiles are shown: for the original case (hereafter
referred to as case 1) (a1)c1 and (a2)c2, and for the new case (referred to as case 2) (b1)c1 and
(b2) c2. The time evolution of the distanced between the triple junctions for the two cases (case 1
(∗) and case 2 (◦)) is shown in (c). As can be seen from this figure, the values ofd from these two
cases are essentially identical and thus the results are insensitive to label switching.

In Fig. 4.7, the time evolution of total energy (withF andFk defined as in (3.7) and (2.53)
respectively) is shown together with the corresponding interfacial and kinetic energy components of
the numerical solutions. In addition, the filled contourc2 = 0.5 is shown at various times indicating
the corresponding morphology of the drop. The initial data are (4.4)–(4.6) and the parameters
correspond to the case in which We1 = We3 = 36 and We2 = 60. In the figure, the solid line
is the total energy, the dotted line is interfacial energy, and the dash-dotted line is the kinetic energy.
The inset shows a blow-up of the kinetic energy. Since the initial velocity is zero and the evolution



456 J. S. KIM AND J . LOWENGRUB

0 1 2 3 4 5

0

0.02

0.04

0.06

0.08

0.1

time

total energy
interfacial energy
kinetic energy

0 1 2 3
0

1

2
x 10

−4

FIG. 4.7. The time dependent energies of the numerical solutions with the initial data (4.4)–(4.6) and the case with We1 =

We3 = 36 and We2 = 60. Snapshots of the concentration fieldc2 are shown with filled contour atc2 = 0.5.

is primarily surface energy driven, the kinetic energy is very small. At early times, a small amount
of surface energy is transferred to kinetic energy as the drop begins to elongate. At later times, the
kinetic energy rapidly decays as the drop approaches its equilibrium configuration. As expected,
the total energy monotonically decreases to its equilibrium value. Correspondingly, the interfacial
energy also decreases.

Next, we consider a similar problem in three dimensions. We place a periodic array of spheres
on an interface between two immiscible fluids analogously to that shown in Fig. 4.3(a) in two
dimensions. The computational domain isΩ = [0, 1] × [0, 1] × [0, 1] and the mesh size is 64×
64× 64 with time step∆t = 0.001,ε = 0.008

√
2, and Pe= 100/ε. No-slip boundary conditions

for the top and bottom planes and periodic boundary conditions for the side walls are applied.
Specifically, the initial data in a single period box are

c1(x, y, z) = max

[
0.5

(
1 + tanh

(
z − 0.5

2
√

2ε

))
− c2(x, y), 0

]
,

c2(x, y, z) = 0.5

(
1 + tanh

(
0.35−

√
(x − 0.5)2 + (y − 0.5)2 + (z − 0.5)2

2
√

2ε

))
,

u(x, y, z) = v(x, y, z) = w(x, y, z) = 0.

We take the viscosities and densities of the components to be matched(η1 = η2 = η3 = 1) and
(ρ1 = ρ2 = ρ3 = 1) with the following parameters:

Re= 60, We1 = We3 = 36, We2 = 60.

In Fig. 4.8, evolution is shown and only the spheres are visualized with a reference plane passing
through the equators of the spheres. The actual interface deforms. As the drops spread out and
flatten due to surface tension forces, the drops interact with their periodic neighbors. In this case,
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t=0.0 t=0.2 t=0.6

t=1.8 t=2.6 t=3.2

FIG. 4.8. Evolution of spheres under surface tension forces; the nondimensional times are shown below each figure.

the distance between the neighbors is less than the equilibrium length of an isolated drop. As seen
in Fig. 4.8, this leads to merger with the periodic images and results in a lattice-like microstructure
of the second fluid on the interface between the two other immiscible fluids.

4.3 Numerical simulation of a buoyancy-driven compound drop

In this section, a buoyancy-driven evolution of a 3D compound drop is investigated. In Fig. 4.9, a
schematic diagram of the initial configuration is shown. The three fluids are immiscible where a
heavy droplet of fluid I is encapsulated by a light fluid II. Fluid I is the heaviest component. This
models a flow in which a heavy fluid contains a dispersed contaminant. Releasing drops of the
light fluid II from the bottom of the container provides the means to encapsulate the contaminants.
Restricting this to a single drop yields the initial condition we consider.

I

II

III

II ρ2, η2

ρ3, η3

ρ1, η1

σ23

σ23

σ12

FIG. 4.9. Scheme of a compound drop.
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Specifically, the initial data are

c1(x, y, z) = 0.5

(
1 + tanh

(
0.3 − r

2
√

2ε

))
,

c2(x, y, z) = 0.5

(
2 + tanh

(
0.5 − r

2
√

2ε

)
+ tanh

(
z − 2.5

2
√

2ε

))
− c1(x, y, z),

u(x, y, z) = v(x, y, z) = w(x, y, z) = 0,

wherer =

√
(x − 1)2 + (y − 1)2 + (z − 1.5)2. We take the viscosities and surface tensions of the

components to be matched(η1 = η2 = η3 = 1) and (σ1 = σ2 = σ3 = 1) with the following
parameters:

ρ1 = 1.044, ρ2 = 0.957, ρ3 = 1, Re= 36, We1 = We2 = We3 = 1127, Fr = 1.

The computational domain isΩ = [0, 2] × [0, 2] × [0, 4] and the mesh size is 32× 32× 64 with
time step∆t = 0.002,ε = 0.01

√
2, and Pe= 10/ε. No-slip boundary conditions for the top and

bottom planes and periodic boundary conditions for the side walls are applied.

t=0.0 t=6.0 t=8.0 t=12.0

t=14.0 t=17.0 t=20.0 t=44.0

FIG. 4.10. Evolution of a compound drop; the nondimensional times are shown below each figure.

The evolution is presented in Fig. 4.10. An upper (flat) interface separates the heavy ambient
from same fluid that encapsulates the heavy drop. The compound drop is lighter than the heavy
ambient and so it rises and deforms. The encapsulating fluid rises faster than the heavy inner drop
but nevertheless the compound drop remains intact until it penetrates the upper interface. The heavy
inner drop is carried upwards as the encapsulated fluid is released. The drop then falls back on
the interface remaining trapped there by surface tension forces even though it is heavier than the
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lower ambient. At this point, the drop could be removed from the system by “sucking” it off the
interface. Imagining that the heavy inner drop is a contaminant in the lower ambient, this provides
a mechanism of liquid/liquid extraction by which fluid III may be cleansed.

4.4 Rayleigh–Taylor instability of ternary fluid flows

In this section, we exploit the fact that our ternary NSCH system is capable of describing
multicomponent fluid flows containing immiscible, miscible and partially miscible components.
The miscibility of the components is modeled through the properties of the free energyF(c1, c2).
It is nontrivial to construct free energies capable of describing partially miscible systems where, for
example, two components are immiscible and the third component is preferentially miscible in one
of the immiscible components. Nevertheless, we have been able to construct a class of such free
energies, and one example is given below:

F(c1, c2) = 2c2
1(1 − c1 − c2)

2
+ (c1 + 0.2)(c2 − 0.2)2

+ (1.2 − c1 − c2)(c2 − 0.4)2.

A contour plot of the free energyF(c1, c2) on the Gibbs triangle is shown in Fig. 4.11. The
two minima ofF(c1, c2) are at(0.7779, 0.2330, −0.0109) and(−0.0151, 0.3651, 0.6499). These
minima lie very slightly outside the Gibbs triangle. As a demonstration of the evolution possible
in partially miscible liquid systems, we present an example in which there is a gravity-driven
(Rayleigh–Taylor) instability that enhances the transfer of a preferentially miscible contaminant
from one immiscible fluid to another in 2D. The initial configuration is shown in Fig. 4.12. The
top half of the domain consists of a mixture of fluid I and fluid II, and the bottom half consists of
fluid III, which is immiscible with fluid I. Fluid II is preferentially miscible with fluid III. Fluid I is
assumed to be the lightest and fluid II the heaviest. The density of the I/II mixture is heavier than
that of fluid III, so the density gradient induces Rayleigh–Taylor instability.

C
1
 C

3
 

C
2

FIG. 4.11. Contour plot of the free energyF(c1, c2) on the
Gibbs triangle.

FIG. 4.12. Scheme of initial configuration.

In particular, the initial data are

c1(x, y) = c2(x, y) = 0.25

(
1 + tanh

(
y − 0.5 − 0.1 cos(2πx)

2
√

2ε

))
,

u(x, y) = v(x, y) = 0,
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FIG. 4.13. Evolution of concentration of fluid I (top row), II (middle row), and III (bottom row). The contours of
c1, c2, andc3 are visualized in gray-scale where darker regions denote larger values ofc1, c2, andc3, respectively.
Nondimensional times are t = 0, 3.91, 7.81, 15.63, and 195.31.

and the simulation parameters are

ρ1 = 1, ρ2 = 4, ρ3 = 2, Fr = 1, Re= 313, We1 = We2 = We3 = 9.8 × 106.

The computational domain isΩ = [0, 1] × [0, 1] and the mesh size is 128× 128 with time step
∆t = 0.5h, ε = 0.01

√
2 and Pe= 10/ε. Here, we assume that the surface tension is small so that

the interface undergoes the Rayleigh–Taylor instability (e.g. see paper [16] for the effect of surface
tension on the instability).

The evolution of the three phases is shown in Fig. 4.13. The top row shows the evolution
of fluid I, middle and bottom correspond to fluid II and fluid III, respectively. That is, the
contours ofc1, c2, andc3 are visualized in gray-scale where darker regions denote larger values
of c1, c2, andc3, respectively. As the simulation begins, the I/II mixture falls and fluid II diffuses
into fluid III. A characteristic Rayleigh–Taylor (inverted) mushroom forms, the surface area of the
I/III interface increases, and vorticity is generated and shed into the bulk. As fluid II is diffused
from fluid I, the pure fluid I rises to the top as shown in Fig. 4.13. Imagining that fluid II is a
contaminant in fluid I, this configuration provides an efficient means of cleansing fluid I since the
buoyancy-driven flow enhances the diffusional transfer of fluid II from fluid I to fluid III.

4.5 Example of Adaptive Mesh Refinement—binary spinodal decomposition

In the typical setting, solutions to the Cahn–Hilliard equation are nearly constant in the so-called
“bulk” regions. Between the bulk regions, solutions exhibit thin transition layers, through which
the solution takes on values intermediate to those in the bulk regions. Typically, the bulk regions
comprise the largest portion, by far, of the computational domain. Since in most of the applications
it is sufficient to finely resolve only the transition layers, fixed grid meshing represents a waste of
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computational resources. Thus, efficient, adaptive-mesh solvers for the CH equation, able to finely
resolve only the diffuse interface, are highly desirable.

In preliminary work [32], we are currently adapting block-structured adaptive methods
originally designed by Berger and Oliger [9] for conservation laws and general hyperbolic equations.
The block-structured framework was adopted in the CHOMBO package [3], which we utilize.
However, we do not use the multi-level multigrid algorithm from CHOMBO (see [3]), but rather we
employ a nonlinear adaptive multigrid solver [44] following our work here and in [30, 31].

To illustrate the potential of this approach, we present preliminary results on adaptive mesh
refinement for the binary CH equation from [32]. The governing equations are

∂c

∂t
= ∆µ, (4.9)

µ = c3
− 1.5c2

+ 0.5c − ε2∆c. (4.10)

(a) t=2 (b) t=5

(c) t=20 (d) t=25

FIG. 4.14. Evolution of the concentrationc(x, y, t) with an average concentrationcave = 0.3. The times are shown below
each figure.
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For the following test, we consider spinodal decomposition using the off-critical average
compositionc = 0.3. The results are shown in Fig. 4.14. The interface parameter isε = 0.0025. The
initial condition has the composition being nearly uniform with random perturbations of maximum
magnitude 1× 10−3. The spatial domain is 1× 1 and periodic boundary conditions are applied
to both directions. The overall coarse computational grid is 64× 64 and there are two levels of
adaptivity. The AMR libraries automatically generate a grid structure that adapts to the locations
of the phase interfaces. The effective fine grid resolution is 256× 256. As we would expect from
Cahn’s theory [11], in Fig. 4.14 isolated particles form relatively quickly as the two-phase regions
form, associated withc = 1 andc = 0, respectively. Over a much longer time scale the system
coarsens, and the mesh adapts around the isolated particles. More detailed studies will be presented
in a forthcoming work [32].

5. Conclusion

In this paper we have presented a general model of three-phase flows and developed an associated
efficient, second order accurate finite difference method to solve the model equations numerically.
The three-liquid phases may be fully miscible, partially miscible or immiscible. The miscibility
of the phases is modeled thermodynamically through the Helmholtz free energy. An additional
advantage of the model is that triple interfaces are handled without resorting to ad-hoc procedures.

We presented examples of flow with miscible and immiscible components. We demonstrated the
convergence of our algorithm through a resolution study. In addition, we found good agreement with
the theory for an equilibrium liquid lens (lying atop an interface). We provided demonstrations of
liquid/liquid remediation. In the first example, a compound drop was simulated, in which a light fluid
encapsulated a heavy contaminant drop. The light fluid causes the compound drop to rise and deposit
the contaminant at an interface where it may be removed. In the second example, we investigated the
diffusional transfer of a preferentially miscible contaminant from one immiscible phase to another.
The transfer is enhanced by the flow and in particular the Rayleigh–Taylor instability.

In future work, we will perform more extensive studies of liquid/liquid remediation. In addition,
we will investigate the complex morphologies generated from the application of chaotic mixing flow
to three-phase dispersion. Under appropriate conditions, a coalescence cascade ensues and the three
phases may become interpenetrating and continuous. We will also investigate the limit in which one
of the phases lies on the boundary between the other phases, thus mimicking a surfactant. To perform
these studies, we will incorporate adaptive block-structured mesh refinement techniques [32].
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6. Appendix

In this appendix, we present an alternative set of constitutive assumptions based on an equivalent
form of the entropy expression in (2.21) different from that in (2.23). Rather than taking quantities
relative to the contributions from theNf component, as done in (2.23), we instead may consider
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quantities relative to the mean of the components. Accordingly, using the equality
∑Nf

k=1 Jk = 0,
rewrite (2.21) as

ρχ =
1

T

(
P + pI + ρ

Nf∑
k=1

∇ck ⊗

(
∂F

∂∇ck

−
1

Nf

Nf∑
j=1

∂F
∂∇cj

))
: ∇u

+
1

T

Nf∑
k=1

(
tk − ρ

(
∂F

∂∇ck

−
1

Nf

Nf∑
j=1

∂F
∂∇cj

))
· ∇

(
ρ−1

∇ · Jk

)

+
1

T

Nf∑
k=1

∇

(
µk −

1

Nf

Nf∑
j=1

µj

)
· Jk + ∇ ·

(
J −

Nf∑
k=1

(µk −
1

Nf

∑Nf

j=1 µj )Jk

T

)
. (6.1)

Taking the diffusion flux

J =

Nf∑
k=1

(
µk −

1

Nf

Nf∑
j=1

µj

)
Jk/T

we are now in a position to pose thermodynamically consistent constitutive relations forP, tk andJk.
Arguing as in Section 2.1, we obtain the constitutive assumptions

P = −pI − ρ

Nf∑
k=1

∇ck ⊗

(
∂F

∂∇ck

−
1

Nf

Nf∑
j=1

∂F
∂∇cj

)
+ η

(
D −

2

3
(∇ · u) I

)
, (6.2)

tk = ρ

(
∂F

∂∇ck

−
1

Nf

Nf∑
j=1

∂F
∂∇cj

)
, (6.3)

Jk = νk∇

(
µk −

1

Nf

Nf∑
j=1

µj

)
for k, . . . , Nf . (6.4)

Using the form of the free energy from Section 2.4, we obtain

1

Nf

Nf∑
j=1

∂F
∂∇cj

=
1

Nf

2Nf∑
j=1

ε2
j ∇cj . (6.5)

Note that if εj = ε, then the sum in (6.5) vanishes. Therefore the extra fluid stress induced by
concentration gradients is the same as obtained in Section 2.4. However, the chemical potential

µ̃k = µk −
1

Nf

Nf∑
j=1

µj =
∂F

∂ck

−
1

Nf

Nf∑
j=1

∂F

∂cj
+

(
αk −

1

Nf

Nf∑
j=1

αNf

)
p

−
1

2ρ
∇ ·

(
ρ∇

(
ε2
kck −

1

Nf

Nf∑
j=1

ε2
j cj

))
(6.6)

is slightly different than that obtained in Section 2.4. Thus, even though (6.1) is equivalent to (2.21)
and (2.23), somewhat different constitutive relations may be taken.
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