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Regularity of minimizers of quasi perimeters with a volume constraint
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We study the regularity of the boundary of sets minimizing a quasi perifig€tey = P(E, $2) +
G(E) with a volume constraint. Her is any open subset &” with n > 2, andG is a lower
semicontinuous function on sets of finite perimeter satisf@i@) < G(F) + C|E A F|f for all
setsE, F of finite perimeter with equal volume. We show that under the condfgion 1 — 1/n,

any volume constrained minimizét of the quasi perimetef has both interior points and exterior
points, andE is indeed a quasi minimizer of perimeter without the volume constraint. Using a well
known regularity result for quasi minimizers of perimeter, we get the classitél regularity for

the reduced boundary @f.

1. Introduction

Let 2 c R" be any open subset with > 2. We consider the following minimization problem:
Minimize

T(E) = P(E, 2) 4+ G(E)
among all set& C £2 of finite perimeter with a fixed volume.

Here P(E, §2) denotes the perimeter &, andG is a lower semicontinuous functional on the
sets of finite perimeter it2 with the property that

G(E) < G(F)+C|EAF|?

for any setsE, F in £2 of finite perimeter with E| = |F|, for some constanf > 0 and a number
B >1—1/n.HereE A F is the symmetric differenceE \ F) U (F \ E).

The special case th&(E) = 0 corresponds to a well known problem which concerns sets
minimizing perimeter with a volume constraint. This problem is often encountered in capillarity
theory. Liquid drops, resting on or hanging from a given surface, are typical examples. The regularity
of the corresponding minimizers has been studied extensively in [2].

Another example is given by

G(E)=/ H(x)dx
E

whereH € L?(£2), for somep > n, is a given function. Without a volume constraint, this is
the problem of finding sets with prescribed mean curvafdreand has been studied for instance
in [3] by Massari. In our case, we impose an additional volume constraint on it. FromdtiderH
inequality, we seeths¢ =1—1/p > 1 — 1/n here.
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Our main motivation for considering this problem comes from the study of mud cracking and
related problems. Mud cracking represents a very typical physical phenomenon. After losing a
certain amount of moisture, a material such as a piece of mud will begin to crack. People are
interested in why, how and where the material cracks. To understand these problems, we propose
the following variational model. Lef2 represent a piece of mud. After losing a certain amount
of moisture, say |$2| for someo € (0, 1), the volume of the mud decreases, and thus a crack
E of volumeo |£2| must come out to replace the losing volume. The selection of cracking is not
totally random, but the actual physics of it might be too complicated to handle. Instead, we may
assume that it minimizes the total work of transporting the old ®R2um the new mud? \ E, with
multiplicity 1/(1 — o), under a volume preserving map. To justify this idea, let us think about a
mud in the shape of a disk. To replace the volume of losing moisture, it can either shrink evenly to a
smaller disk or dig some space out by cracking inside it. Which way is better? As we know, the mud
will possibly choose the latter way. This is because the corresponding transport costs of two ways
are different. The mud just chooses a cheaper way to reduce the total work. A reasonable way to
represent the total work is given by the Wasserstein distaifgasetween Radon measures of equal
total mass for somg > 0. We refer tol[5, Chapter 7] for the concepts of Wasserstein distances and
related topics. As a result, one would like to minimize

w/ (c” 1$2, ﬁcn [(£2\ E)> + P(E, Q)

among all set of finite perimeter in2 with volume |E| = o|$2]| for someos € (0, 1). Here,

qg = max(l, p), £L"| K denotes the Lebesgue measiferestricted to any measurable g€t and

the perimeterP (E, £2) of E is used to represent the cracking energy for breaking the mud. Using
the properties of Wasserstein distances, it is easy to see that

n 1 n . i n o
Wp(ﬁ LQ,E/L |_(.Q\E)> _Wp<1_0£ LE, 1o

Yol L.Q) = AW,(L"E, 0 L")

for some constarit > 0. Thus, the problem amounts to minimizing
P(E,2)+ AWJI(L"E, o L"|R2)
among all set& in £2 of finite perimeter and with a volume constraiit| = o |£2|. In this case,
G(E) = AW/ (L"|E, o L"£2).

Itis easy to see tha = 1 here.

Keeping all these examples in mind, we would like to study the minimizers for more g&heral
Note that the existence of minimizers for the quasi perim@&tdollows immediately from the
compactness of sets of finite perimeter. Therefore, this article is mainly focused on the regularity of
these minimizers. Further properties as well as numerical simulation will be considered elsewhere.
The special cas&(E) = 0 was studied in [2]. The approach there was to show that volume
constrained minimizers are quasi perimeter minimizing in small balls without the volume constraint.
This yields regularity results analogous to those for the unconstrained problem. A key step there is
showing the existence of interior and exterior points of the minimizer. Here we adopt the same
approach as iri[2]. That is, we show that th@sminimizers indeed have both interior points and
exterior points (see Theorgm }.3), and in fact they are quasi minimizers of perimeter without the
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volume constraint (see Theoréml4.4). Then we use the known resdulis of [4, Theorem 1] about quasi
minimizers of perimeter to get the desired regularity of tHEsainimizers.

The paper is organized as follows. After providing some basic notations about perimeters, we
provide an estimate on how fast the infimum of the metric density is approaching 0 for any set
of finite perimeter. Using this estimate and some technical lemmas, we classify the sets of finite
perimeter into two classes (see Corollary 3.4 for details). Using this classification and also properties
of T minimizers, we show that anyy minimizer will have both interior points and exterior points
in £2. By this result, we get rid of the volume constraint and prove our main theorems in Section 4.

2. Preliminaries

Here we only mention the basic notations and definitions about perimeters.

We assume tha? is an open (bounded) subsef®fwithn > 2. If E C 2, |E| is the Lebesgue
measure ofE, and xg(x) is the characteristic function af; H*(-) denotes the-dimensional
Hausdorff measure. Finall¥* is the complement of in 2.

Recall that a functiorf € L1(£2) is of bounded variation i if

IDfI($2) = Sup{ /Q fdivgdr i ¢ e C(2,R"), |¢](x) < 1} < 0.
A setE C £ is said to beof finite perimeteiin 2 if its characteristic functioryg is of bounded
variation in£2. We will use the notatio® (E, £2) for the perimeter so that
P(E, $2) = IDxell(£2).

FordE N £2 sufficiently smoothP(E, £2) = H"L(0E N 2).
Leta = 1 — 1/n. For any seft of finite perimeter in2, theisoperimetric inequalitpays that

whereC,, = n(a(n))" with «(n) being the Lebesgue measure of the unit balkih Moreover,
for eachn-dimensional open cub@ c £2, therelative isoperimetric inequalitgays that

y(m)P(E, Q) > min{|[EN Q| [E° N Q|*}

for some constant(n) > 0.

In the following, we shall frequently use some simple properties of sets of finite perimeter, which
can be found for instance ihl[1]. Here, we also mention a property that we will use lates. lhet
any open ball of radius. For every sef of finite perimeter inB, we have (see [2, (8)])

H'~YLNIB) < P(L,B)+;—Z|L0B| 2.2)

in the sense of traces.

3. Exterior points of sets of finite perimeter

Let E be a set of finite perimeter if2. In this article, a poinp € £2 is said to be amxterior (or
interior) pointof E if there exists an open ball neighborhoBdp, r) of p for somer > 0 such that

|[ENB(p,r)]=0 (or|EN B(p,r)| =|B(p, r)|, respectively).
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If |[E| = 0, then every point is an exterior point &f, while if |[E| = |§2], then every point is an
interior point of E. In general, if 0< |E| < |£2|, E may not have exterior or interior points iB.
Their existence becomes an interesting problem to study.

To study the existence of exterior points, we consider the following function. For gng, let

f)y=Inf |[ENQx, ),

where Q(x, r) denotes thei-dimensional open cube iR" centered ak and with edge length.
Note thatf (0) = 0 and f (r) is an increasing function af. Also, E has exterior points i if and
only if f(r) = 0in a small neighborhood of 0.

For any pointp in £2 with metric density 0, one may see directly that

|ENB(p,r)|=o("),

and thusf (r) = o(+") asr approaches 0. This is true ever#ifis not of finite perimeter. Whe®
is indeed a set of finite perimeter, we can get a better rggult= o(+"*1), which is demonstrated
by the following theorem.

THEOREM 3.1 Suppose is a set of finite perimeter i®2 with |E| < |£2]. Then there exists an
n > 0 such that for any € [0, n),
0< f(r) < /Y

for some constant > 0, depending oIE.

Proof. Let p € £2 \ E be any point with metric density O, that is,

. ENB(p,r
im [ENB(. NI _
r—0 o

0.

Thus, there exists ay > 0 such that

|Q(p,n) NE| < nj/4

Now, for anyr < 1, one can subdivide) = Q(p, n1) into [n1/r]" disjoint smaller cube$Q;}
with edge lengthr, where[x] denotes the integer part of Let

1 1
A:{Qj:|EﬂQj|>§rn}’ BZ{QJ:|EHQ]'|§§}’”},
Then|A| + |B| = [51/r]" and

1 1
SIAIT < YD IEN QIS IENQI< Jilf,
QjeA

where|A| denotes the number of elements in theAseThus,|A| < %(nl/r)” and

n n 1 n 1 n
|B|=[ﬂ} _|A|>[ﬂ] __(ﬂ> >_<ﬂ)
r r 2\ r 4\ r

if r < (11— +0.75n;.
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By the relative isoperimetric inequality, for ay; € B,
|EN Qi " <y(m)P(E, Qi)
for some constant(n). Therefore,

BIf ()Y =" fe) < Y IEN Qi

0;€B Q,eB
< Y ymP(E, Q) <ymP(E, Q) < 0o
0;eB

because: has finite perimeter i. Thus,

y(m)P(E, Q))"”"l> B (4y<n)P<E, Q))”“"”rnz/(n_n
B h (71)"

whenever < n = (1— v0.75n;. O

PROPOSITION3.2 Supposet is a set of finite perimeter i2 with |[E| < |£2], andt is any
positive real number. LeP be anyr-dimensional open cube 2 with edge lengthr satisfying

r \" 1! 1
“(z2) @ G

|EN Q| <201/, (3.2)

Then there exists ane [r/2, r] such that

£ < (

and

IEN Q(p, 5)| < 2015/

and

H'HEN3Q(p, ) <TIEN Q(p, )%,
whereQ(p, s) is the cube having the same cengenf O and with edge length.
Proof. We consider the functiop : [0, ] — [0, co) defined by

g(s)=|ENQ(p,s)| forsel0,r].

Theng(0) = 0 and
¢)=H"YENIQ(p,s)) foralmostalls.

From [31) and[(3]2), we have

/0 (g™ ds = g(nY" — gV < @epMnn/m=D < Iy

S

Therefore, there exists are [0, r] such thai(g(s)Y/") < t/n. That s,

g'(s) < tgls)”.
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Let
so=maxs €[0,7] : g'(s) <tg®)¥} < r

We claim that )
g(s0) < 2Cusp /7Y,

In fact, if so = r, then this follows from our assumptidn (B.2)s#f < r, then for any € (so, ), we
haveg’(s) > tg(s)%, which yields(g(s)Y/")" > t/n. Integrating it fromsg to r yields

)V = (60" = (= s0). (3.3)
Therefore,
860" < g = =(r = s0) < 2C)M" O — (r —50)
< (zcl)l/nsg/(n—l)_
The last inequality follows from the fact that the function

h(x) = (ch)l/nxn/(n—l) _ :_lx

is decreasing ofD, r] becausé’(x) = (2C1)Y" -2 xY/"=Y — z/n <0, by ).
Moreover, sincg(so) > 0, by [3.3) and[(3]1), we have

r—s0< gg(r)l/” < §<2C1)1/"r”/<"‘1> <l

2
Therefore, we havey > r/2. Thissg is the desired. O
From now on, we leé be a number such that
0<6< 4*”2/(”*1).
Let 1
O0<1< Z(Z_ 2C,8%; (3.4)
it is easy to check that
1
T < ch. (35)

Let A, (E) be the family of allz-dimensional open cubes i@ satisfying
EN Q| <2cy™ /Y, W'Y ENBQ) < t|ENQF, (3.6)

wherer is the edge length of satisfying [3.1).

PROPOSITION3.3 LetE be a set of finite perimeter wiflE | < |£2|, andQ be any cube id; (E).
Then either
P(E, Q) > (Ch + 21)|E N Q|

or there exists a smaller culgg c Q such thatQ € A, (E) and the edge lengthof Q satisfies

r e (r/8,3r/4).
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Proof. Without losing generality, we may assume tigais centered at the origi®. Let

Z = {se <—g,%>:;H"_l(Eﬂ{x:(xl,...,xn) €Q:xi=s}) > %IEHQV"}.

Then, since
n r/2
n|EﬂQ|>Z/ H"_l(Eﬂ{er:x,-zs})ds
i=17/-r/2

n
> [y wiEne 0y =snd = SIEN 0FHYD)
Zi=1
by applying [(3.1) and (3]2), we have
H'(2) < ZEN QY < Zacytnen oD < >
T T

Therefore, there existgy € (—r/4, r/4) such that
Y HTMEN (x = (x1,- .o %) € Q1 x; = so)) < £|E no. 3.7)
i=1

Using the hyperplanels: : x; = so}, we decompos@ into the union of 2 smallern-dimensional
rectangledQ1, 02, ..., Ox}. EachQ; is located in one corner @@, and two of these rectangles
are in factz-dimensional cubes with edge length? + sg. Sincesg € (—r/4, r/4), we have

r/4 <r/2+s9 < 3r/4 (3.8)

Now, if
max|E N Q;| < (1-8§EN Q|
1

then we can rearrand@;} into two groups
VlZU{Qils QiZ""aéik} and VZZQ\VJ-

such that
SIENQISIENV| < (1=-8)IEN Q]

for eachi = 1, 2. A well known inequality says
(2—2%(min(a, b))* <a* +b* — (a+b)* foranya,b > 0.
Therefore,

IENVA* + [EN Vo[ — [EN QI > (2— 2) min{|E N V4|, |E N Va|*}
4
> (228 EN Q" > C—T|E nop.

n
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Hence, by the isoperimetric inequality, (B.7), and](3.6),

P(E,Q) =2 P(E, V1) + P(E, V?)

> CulENVA|® + CulEN Vol — H'" YWE NIV — H*" Y (E N V)
> ColEN VA + Col EN Va|* — 2£|E nor —H"YENQ)
=

CiENQI*+4|ENQI* —t|[ENQ|* —T|EN Q"
= (Ca+20)|EN Q.

This gives the first case. If
max|E N Qi| > (1—-8)|EN Q]

then at least one a@;’s, sayQ1, satisfies

2
[EN Q1 < 81E N Q] < 8CHM "™ < §2C) ()" /™Y < 2cyry /7Y,

wherer; = r/2 + so is the edge length 001. By Propositior{ 3.2, there exists a smaller cube
O C Qi1 suchthatQ € A;(E) with edge lengtlf € (r1/2,r1) C (r/8, 3r/4), due to ). This
completes the second part. O

COROLLARY 3.4 LetE C £ be a set of finite perimeter withE| < |£2|. Then one of the
following two cases must be true:

(1) either for anyh > 0, there exists a cub@ € A, (E) with edge lengthr < 1 and
P(E, Q) > (C, +2D)|EN Q[%;

(2) or there exists a sequenf@, } of cubes inA; (E) such thatQ; 1 C Q; and their edge lengths

satisfy

1 3 .
éri <rip1 < Zri for eachi.

Proof. Follows from Propositiop 3]3. a

REMARK 3.5 Inthe second case of Corollary[3.4, we may define a family of open cubes as follows.
Let Qo be any given cube i. By picking the first cube?; inside Qo, we get a sequend®; }>° ;

of cubes as in the second case of Corolfary 3.4, and all these smaller cubes are cont@ineslyin
rescaling and translation, each cupgis the image of—1, 1]" under some affine mapj for each

i =0,1,.... Using these affine maps, we define a continuous mag—1, 1]" x (0, o) — R”
by setting

S .

r—l(fo(X) — f0(0)) + fo(0) if s > ro,

F(x,s) = 1

————((s —riy) fi(x) + (ri — 8) fir1(x)) if s € [riya, ril,

ri —Tri+1
for somei. Note that, for each > 0, the imageF; = F(Qy, s) is also a cube with edge lengith
Also, F,, = Q; foreachi =0,1,2,..., andFy; C F; whenevers < t. Moreover, ifs € [ri41, ri]
forsomei =1, 2,..., we have

Qi1 S F,C0;CQo



MINIMIZERS OF QUASI PERIMETERS 347
and ) ,
|ENF| <|ENQi| <20y /"™ < 20y(8s)"/ Y,

Therefore|E N Fy| is continuous i and
|ENF| < Cps™/0D

for anys e (0, 1), whereCg = 2C18"°/@=1_ Similarly, for any open balB in £2, we may pick
the first cubeQ1 inside B, and then construct a familyF;} of cubes as above. If we s&f; to be
the largest open ball of diameteinscribed in the cubé&y, then we get a familyK} of open balls
such that Ky N E| is also continuous im with

|ENK,| < Cps" /0D,

4. Minimizers of quasi perimeters

Let 2 be any bounded open subsef®dfwith n > 2. For anyo € (0, 1), let
Fo={ECR:P(E,R2) <oo, |[E| =0c|R|}.
For anyE € F,, aquasi perimetepof E is of the form
T(E) = P(E, 2)+ G(E),
whereG is a lower semicontinuous functional gty with the property that
G(A) < G(B)+C|A A B|P (4.1)

foranyA, B € F,, for some constar@ > 0 and a numbeg > 1— 1/n. Some examples @ may
be found in the introduction.

4.1 Existence of interior and exterior points

Note that for anyG, by the compactness of sets of finite perimeter, the quasi perinieter
automatically has a minimizer. The following lemma says that fbmainimizer E, only the second
case of Corollary 3]4 can happen.

LEMMA 4.1 LetE be anyT minimizer in F,. Then there exists a sequenig@;} of cubes in
A;(E) suchthatQ;,1 C Q; and their edge lengths satisfy

1
8"
Proof. This is trivial if E has exterior points. Therefore, we may assume fhaias no exterior
points in 2. Under this assumption, we will prove the result by showing that the first case in
Corollary[3.4 will not happen.

Assume that there exists a cufen A; (E) such that

N

3 .
riv1 < Zri for eachi.

P(E, Q) > (Ch +20)|EN QI (4.2)
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and its edge length satisfies

n—=1

T n2(B—a)
A= —0—""-—"—— . 4.3
e <2ﬁC<2cl>ﬁ—a> *-3)

Then we consider another set y
E=(E\QUB,

whereB is the ball having the same center@sand with

1
Bl = |E N Q| < 2C1"/0=D < 3"

Note thatB is strictly contained irQ. SinceQ is in A; (E) andE has no exterior points, we have
0 < |EN Q| < 2Cy"/ =D,
Therefore, by[(4]3),

CIEAEP<CRENQN =2°ClEn QIF*EN Q*

26C@Cy™ /=Dy~ E N Q1Y < t|EN Q.

NN

Now, |E| = |E| and
T(E) = P(E, 2) + G(E)
= P(E,2)— P(E,Q) +H""HENJQ) + C4|EN Q" + G(E)
<PE,2)—tENQI*+G(E) by ({@#2)
< P(E,2) — C|E A E|P + G(E)
< P(E, 2) + G(E) = T(E).

This contradicts the minimality of. Therefore, by Corollary 3}4, only the second case of the
corollary can happen here. O

SupposeE is aT minimizer in F,. We may consider another operator
T(F) = P(F, 2) + G(F)
forany F € Fi_,, whereG(F) = G(F°).

LEMMA 4.2 EisaT minimizerinF, if and only if E€ is aT minimizer in Fi_,. Moreover, ifG
satisfiesl), then so do€swith the sames.

Proof. This is because

TE)YST(F) & GE)+PE, 2) <GF)+ P(F,2)
& G(ES) 4 P(ES, 2) < G(FC) + P(F, 2)
& T(E) <T(FO),
forany F € F,. Moreover, ifG satisfiesl), then so do€swith the sames, becausel A B =
A€ A BC. (Il
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From now on, letE be anyT minimizer in F,. To find the regularity of, we adopt the approach
given in [2], which corresponds to the caSe= 0. A crucial step is to show the existence of both
exterior and interior points of the minimizer:

THEOREM4.3 LetE be anyT minimizer in F,. Then E has both interior points and exterior
points in$2.

Proof. AssumeE has no exterior points. Since9 |E| = o|$2| < |£2], there exists at least one
open cube) in 2 such that E N Q| > 0, and also an open ball in £2 such that E“ N B| > 0.

We may also require tha and B are disjoint. Now, by Lemmia 4.1, Lemrha 4.2 and Renfiark 3.5,
there exist a family{ Fy} of n-dimensional open cubes f@ and a family{K;} of n-dimensional
open balls forE€ such that

(1) for eachs > 0, both the edge length d&f; and the diameter ok are equal to;

(2) if so is the edge length of andz is the diameter oB, thenF,, = Q andK,, = B;

(3) wheneves < ¢, we haveF; C F, andK; C K;;

(4) there exists a decreasing sequefg>, of positive numbers with limit O such thdt;, <
AL (E)foreachi =12, ...;

(5) both|F; N E| and|K; N E€| are nondecreasing continuous functions &f (0, co);

(6) for anys < s1, we have

0 < |F, NE| < Cps"™/®=D (4.4)
for some constarfz > 0. Also, there exists a positive number< 7o such that for any < 1,
we have )

0 < |K; N EC| < Cpet" /0D (4.5)

for some constanf gc > 0.

Now, we pick a positive numbeg < min {s1, #1} small enough so that
anC e " P <t (4.6)
and
|Feo N E| < |B N EC|.
For anys € (0, ¢p), since
|Fs NE| < |F, NE| < |BNE| = |K,,NE°|,
by the mean value theorem, there exists at least ae such that
|K; NE°| = |F;NE|. 4.7)

SinceE has no exterior points, we hayg; N E| > 0. By the fact that lim_o |K; N E¢| = 0, the
set of allr satisfying [[4.F) must have a minimum @, 7o), and we denote this minimum ky(s).
Thus,g(s) € (0, tp) and

|Fy NE| = [Kg(s) N E|. (4.8)

Note that sinceF; € Q andK,) € K;, = B, we know thatF; and K, are still disjoint.
Now, we fix ans € (0, €g) small enough so thaf; € A (E),

Z—nC}E/"s"/(”_l) <z (4.9)
€0
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and
C(Cps™/=DyB=241/n _ o (4.10)

For this particulas, we consider the set
E = (E \ Fv) U Kg(s)~
Then, by[(4.B), we havgZ| = |E| = o|£2| and

P(E,2) = P(E,2) — P(E, Fy,) + H" M(E N 3F))
— P(E, Kg(s)) + H'HEC N 0K y(s)).- (4.11)

By the isoperimetric inequality (3.1),
P(E, Fy) + H" " YENJF,) > Ch|E N Fy|°.

Also, by (2.2),

— C C 2n C
H'" Y EC N 3Ky(s) — P(ES, Kg(s) < g(—s)uz N Kyl by (@8

2n .
so/E" F|9C"g(s)" ™™D if g(s) < eo, by
<
SolEn F*Cy"s" =D if g(s) > €o, by
|[E N Fs|°‘2nC‘19/cneé/("7l) if g(s) < eo
< 2n
IEN Fs|“€—oc,§/”s"/<"—1> if g(s) > o

< T|ENFg|* by (4.9) and[(4)6).
Therefore, by[(4.7]1), the fact th&} € A, (E), and [3.4), we have

P(E,2) < P(E,2) — ColENFy|* + 2H" " NEN3F,) + |EN Fy|*
S P(E,2) - GENF|* +3|ENF|* < P(E, 2) — T|ENFyl*,

due to[[3.5). Hence,

T(E) = P(E, 2) + G(E)
< P(E,R2)—T|ENF{|* +G(E)+ C|E N Fy|P
=T(E) +|ENF|“(CIE N [P~ — 1) < T(E).

The last inequality follows fronf (4}4) and (4]10). This contradictsTthmeinimality of E. Therefore,
E must have exterior points. Since, by Lemmag £2,is aT minimizer, we see thak¢ also has
some exterior points. Thereforg,has both interior points and exterior points. |
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4.2 Regularity results

Now, we may discuss the regularity of tieminimizer E. By Theoren{ 4BE has both interior
points and exterior points. Therefore, there exists a nurRber0 and two open ball81, B in £2
of the same radiusR such that

[ENB1 =0 and |E°N By =0.

Our main theorem is stated as follows.

THEOREM4.4 SupposeE is a minimizer of the quasi perimetdr in F,. Then E is a quasi
minimizer of perimeter (without the volume constraint) in the sense that

P(E,2) < P(F, ) + c|E A F|MNLA (4.12)

for all subsetd” of §2 with E A F contained in any open bali, with radiusp < R, and for some
constant > 0.

Proof. By Theorenj 4.8, there exist two open ballsand B, in §2 of the same radiusR such that
|[ENB1 =0 and |ESN By =0.

Let p € (0, R) be any fixed number anH be any set of finite perimeter with A F contained in
some open balB, of radiusp.

Suppose thatE N B,| > |F N B,|. We can move a baB in By \ B, of radiusR, while keeping
it strictly in £2 \ B(p), until it reaches a new positioB3 such that

[B3NE°| =|ENB,| —|FN B,
Let F, = F U Bz. Then|F,| = |E|. SinceE is aT minimizer, we get
T(E) < T(Fp).

That is,
G(E)+ P(E, 2) < G(F,) + P(F,, £2).

Therefore, by[(Z]2),

(Fp) — G(E) + P(Fp, £2)

P(E,2)<G

< CIE AFylP + P(F, 2) — P(B3N E, B3) + H" 1(dB3 N E°)
P
P

N

(F.2)+C|E A F,|f + %|Bsﬂ E°|
< P(F, 2) +c|E & FI™MA),

wherec = C +n/R.
We arrive at the same relation

P(E, 2) < P(F, 2) + c|E A F|™n@A)

if we supposeE N B,| < |F N B,|. O
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By the theorem and a well known result about quasi minimizers of perimeter satigfyinyy (4.12) (see
for instancel[4, Theorem 1]), we get the desired classical regularity result for the boundaasof
follows:

THEOREM4.5 Supposef is a minimizer of the quasi perimetdr in F,. Then the reduced
boundaryd*E is an(n — 1)-dimensionalctMn(/2.8/2 hypersurface in2, and moreover we have
dim((0E\ 9*E) N £2) <n — 8.

REFERENCES

1. Bvans, L. C. & GARIEPY, R. Measure Theory and Fine Properties of FunctioB8tud. Adv. Math., CRC
Press (1992). Zbl 0804.28001 MR 1158560

2. GONzALEZ, E., MASSARI, U., & TAMANINI, |. On the regularity of boundaries of sets minimizing
perimeter with a volume constraintndiana Univ. Math. J.32 (1983), 25-37. | Zbl 0486.49024
MR 0684753

3. MAssARI, U. Frontiere orientate di curvatura media assegnaf@’inRend. Sem. Mat. Univ. Pado%3
(1975), 37-52.| Zbl 0358.49019 MR 0417905

4. TAMANINI, |. Boundaries of Caccioppoli sets withdldler-continuous normal vectal. Reine Angew.
Math.334(1982), 27-39.| Zbl 0479.49028 MR 0667448

5. ViLLANI, C. Topics in Optimal TransportationGrad. Stud. Math. 58, Amer. Math. Soc. (2003).
Zbl pre0190949¢ MR 1964433


http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0804.28001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1158660
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0486.49024&format=complete
http://www.ams.org/mathscinet-getitem?mr=0684753
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0358.49019&format=complete
http://www.ams.org/mathscinet-getitem?mr=0417905
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0479.49028&format=complete
http://www.ams.org/mathscinet-getitem?mr=0667448
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=pre01909499&format=complete
http://www.ams.org/mathscinet-getitem?mr=1964483

	Introduction
	Preliminaries
	Exterior points of sets of finite perimeter
	Minimizers of quasi perimeters
	Existence of interior and exterior points
	Regularity results


