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Structure of Korteweg models and stability of diffuse interfaces
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The models considered are supposed to govern the motion of compressible fluids such as liquid-
vapor mixtures endowed with a variable internal capillarity. Several formulations and simplifications
are discussed, from the full multi-dimensional equations for non-isothermal motions in Eulerian
coordinates to the one-dimensional equations for isothermal motions in Lagrangian coordinates.
Hamiltonian structures are pointed out in each case, and in the one-dimensional isothermal case, they
are used to study the stability of two kinds of non-linear waves: the solitary, or homoclinic waves,
and the heteroclinic waves, which correspond to propagating phase boundaries of non-zero thickness,
also called diffuse interfaces. It is known from an earlier work by Benzoni-Gavage [Phys. D, 2001]
that the latter are (weakly) spectrally stable. Here, diffuse interfaces are shown to be orbitally stable.
The proof relies on their interpretation as critical points of the Hamiltonian under constraints, whose
justification requires some care because of the different endstates at infinity. Another difficulty
comes from higher order derivatives that are not controlled by the Hamiltonian. In the case of a
variable capillarity, our stability result unfortunately does not imply global existence. As regards the
solitary waves, which come in families parametrized by the wave speed, they are not stable from the
variational point of view. However, using a method due to Grillakis, Shatah and Strauss [J. Funct.
Anal., 1987], it is possible to show that some solitary waves, depending on their speed, are orbitally
stable. Namely, the convexity of a function of the wave speed cail@aent of instabilitgetermines

the stability of solitary waves. This approach, already used by Bona and Sachs [Comm. Math. Phys.,
1988] for the Boussinesq equation, is here adapted to solitary waves in Korteweg models, which
are first classified according to their endstate and internal structures. The corresponding moments of
instability are computed by quadrature. They exhibit both convexity and concavity regions.

2000 Mathematics Subject Classificatig®T10, 35B35, 35Q51, 37C29.

E-mail: benzoni@maply.univ-lyon1.fr
E-mail: danchin@univ-paris12.fr
E-mail: sdescomb@umpa.ens-lyon.fr
E-mail: didier.jamet@cea.fr

- W o+ —+

(© European Mathematical Society 2005



372 S. BENZONI-GAVAGE ET AL.

Keywords Hamiltonian structure; conservation laws; capillarity; diffuse interface; soliton; orbital
stability.

Introduction

The aim of this paper is to investigate the asymptotic behavior of Korteweg models for compressible
fluids endowed with internal capillarity and possibly exhibiting phase changes. The models we
consider are originated from the XIXth century work by van der Waals [33] and Kortéweg [26] and
were actually derived in their modern form in the 1980s using the second gradient theory (see for
instancel[38, 23]). We point out that special cases of these models have also arisen in other contexts,
e.g. in the water waves theory and more recently in quantum hydrodynamics. Our main motivation
comes from compressible fluids though, especially liquid-vapor mixtures with phase changes, and
we are interested in the propagation of two kinds of non-linear waves in those media: the solitary
waves, which are perturbations with a limited expanse propagating in a single stable phase, and the
propagating boundaries between two stable phases.

A feature of Korteweg models is that they allow “phase boundaries” of non-zero thickness, often
calleddiffuse interfacedy contrast with sharp interfaces in the Laplace—Young theory. The actual
width of a liquid-vapor interface is extremely small far away from the critical point, but becomes
infinite when the critical temperature is approached from below. (Recall that the “phases” of a
fluid are indistinguishable at temperatures larger than a critical temperature, whose value varies
from one fluid to another.) The relevance of diffuse interfaces is thus clear near critical point.
Furthermore, Korteweg’s theory of capillarity provides an intrinsic way—differently from Laplace—
Young'’s theory—of incorporatingurface tensioin the models. The interest for diffuse interfaces
has been renewed in the late 1990s for numerical reasons. Indeed, across the diffuse interfaces,
all the physical variables encounter possibly strong but nevertheless continuous variations. This
property allows one to solve the same system of continuous equations everywhere, this system
governing the motion of all the “interfaces” regardless of their topology. This feature avoids the
numerical difficulties associated to the resolution of moving boundaries problems associated to
multi-phase systems (see [2] for a nice review). However, the development of efficient and accurate
numerical schemes requires some mathematical knowledge of the system of PDEs to be solved. In
particular, stability issues are of special interest.

The mathematical analysis of Korteweg models is rather recent. One may quote only a few
papers/[12, 15, 19], in which non-zero viscosity and its regularizing effects play a fundamental role.
Even more recently, advances have been made in the context of quantum hydrodynamics, in which
the equations involve some sort of dissipation—namely, relaxation—and a special, though non-
constant capillarity coefficient [28, 22]. In a companion papger [7] we have addressed the analysis of
purely capillary models with variable capillarities. Here we concentrate more on algebraic aspects of
these models, and in particular on their Hamiltonian structure. Using Olver’s méthod [30], we show
that the natural Hamiltonian formulations—those associated with total energy—are compatible with
Jacobi’s identity only in dimension one (see Secfipn 1). Further investigations would consist in
looking for additional structures. These are known to exist for the Boussinesq equation, which may
be viewed as a special case of the models we consider, but they are far less natural than the one
associated with the total energy.

Hamiltonian Korteweg models admit several kinds of traveling wave solutions, mainly
homoclinic (or solitary) waves, heteroclinic waves, and periodic waves. This is easily shown by
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means of a phase portrait analysis of the governing ODEs, which are themselves Hamiltonian. We
concentrate here on homoclinic waves, also called solitons, and heteroclinic waves, which we call
kinks. We propose a classification of solitons according to various parameters, depending on the bulk
phase and on whether the fluid is compressed or expanded inside the “bump”. Propagating phase
boundaries belong to kinks, but there are also kinks which cannot be termed phase boundaries,
as they occur in fluids above the critical temperature. Both kinds of waves, solitons and kinks,
are characterized by a persistent shape, or profile, traveling at constant speed and which is flat
at infinity because the endstates are (generically) hyperbolic fixed points of the governing ODEs.
There is however a very important qualitative difference between those waves. Indeed, for fixed
endstates, solitons come in one-parameter families (parametrized by the mass transfer flux across
the wave, or equivalently by the speed of the wave) whereas kinks are uniquely determined by
either one of the endstates. From a spectral stability point of view, the second situation is better,
as we show in Sectidn] 3, and therefore the non-linear stability analysis is to some extent simpler.
For solitons, a more sophisticated tool is needed to circumvent the difficulty associated with an
unstable eigenvalue. Such a tool was introduced in an abstract setting by Grillakis, Shatah and
Straussl[18], and applied inl[9] to the water waves governed by the Boussinesq equation. A slight
generalization makes it available in our context. After Boussinesq and Bona—Sachs [9], we call that
tool themoment of instabilityf a solitary wave. It defines a smooth function on the manifold of
solitons, and in particular along the curves made of solitons having the same endstates. Its local
convexity along such a curve determines the stability of a soliton.

In a prior work [5], Benzoni-Gavage investigated the spectral stability of heteroclinic profiles
in several space dimensions. The main result is that the spectrum of the spatial operator in the
linearized equations about a given heteroclinic profile coincides with the purely imaginary axis. This
is a rather strong result, which relies on tricky energy estimates. However, the route to non-linear
stability is far from being obvious. In particular, the techniques developed recently by Zumibrun
al. for other kinds of heteroclinic traveling waves, in particular for viscous shaocks [40, 39, 29, 21]
or diffusive-dispersive shocks [20], do not apply. Indeed, the presence of essential spectrum on the
whole imaginary axis precludes contour shiftings and steepest descent techniques (although these
techniques are likely to work for dissipative diffuse interfaces, for which we unfortunately lack
information on spectral stability).

In one space dimension however, the Hamiltonian framework helps. Indeed, traveling profiles
may be viewed as critical points of the Hamiltonian under constraints, these constraints being
linked to additional conservation laws. We use this crucial observation here to define the moment
of instability m of any soliton. Furthermore, we point out thatcan be evaluated in the phase
plane, without knowing explicitly the profile of the soliton. (In faet,appears to coincide with
what is usually recognized as surface tension in equilibrium phase boundaries!) In othermwords,
is given by a definite integral, which can be evaluated numerically with high precision. Then it is
easy to check numerically, or even graphically, whether the graphayer solitons with the same
endstates is convex. We provide plotsmoffor the various classes of solitons we have identified.
Those which propagate in stable phases, regardless of the stability of the states inside the bump,
appear to be stable. Of course by stable we meanambliyally stable because of the translational
invariance. Moreover, in the most general, quasilinear case the stability is limited in time, because
the Hamiltonian does not control the “high norm” in which we have local-in-time existénce [7]
(our stability result is to some extent similar to one known for peakons [14] in the Camassa—Holm
equation). When the capillarity coefficient is such that the PDEs are semi-linear, this difficulty can
be overcome by means of higher order energy estimales [9], and in this case the stability is global
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in time. Even in this case though, the stability is weaker than in the presence of dissipation: there is
no control of the asymptotic shift, nor a decay rate.

As regards heteroclinic profiles, the stability analysis does not require the fumcti@ven
though the surface tension to which it corresponds is certainly physically relevant). The important
point is that, unlike what happens for homoclinic profiles, the components of heteroclinic profiles
are monotone. This enables us to prove that the Hessian of the constrained Hamiltonian does not
have any negative eigenvalue. This is what we meant above by “better spectral stability”. On the
other hand, we have to deal with the different endstates. This requires some care in the definition of
the various functionals (the Hamiltonian and the constraints). Furthermore, the fact that the manifold
made of all translated profiles is unbounded in Sobolev spaces (or eéhimanother obstacle to
global stability.

In several space dimensions, the non-linear stability of traveling profiles remains an open
problem, since no variational interpretation of profiles is available. As regards local-in-time
behavior, we refer ta [6].

1. Hamiltonian structures for Korteweg models
1.1 Ageneral model in Eulerian coordinates

Korteweg-type models are based on a non-local version of thermodynamics, which assumes that
the energy of the fluid not only depends on standard variables but on the gradient of the density. In
terms of the free energy for instance, this principle takes the form of a generalized Gibbs relation

dF = —SdT + gdp + ¢ - dw,

whereF denotes the free energy per unit volurfi¢ghe entropy per unit vqurrET the temperature,
g the chemical potential and, in the additional temmstands foV p. The potentialp is most often
assumed of the form

¢ =Kw
whereK is called the capillarity coefficient, which may depend on hethnd T. In this case F
decomposes into a standard pBgtand an additional term due to gradients of density,

F(p,T,Vp) = Folp, T) + 3K (p, T)|IVpl?,

and similar decompositions hold fér and g. We shall use this special form in our subsequent
analysis. For the moment we keep the abstract poteptéaid we define the Korteweg tensor as

K = (pdivg)l — pw*.
Neglecting dissipation phenome[ﬂme conservation of mass, momentum and energy read

dp +div(pu) = 0,
0; (pu™) + div(puu* + pl) = divK,
3 (E + 3p1ull®) + diV((E + 3pllull® + p)u) = div(Ku + W),
1 By convention, extensive quantities per unit volume are denoted by upper case letters, and their specific counterparts

will be denoted by the same lower case letters.
2 As regards heat conductivity, we are aware that this assumption is questionable.
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wherep = pg — F is the (extended) pressutg,= F + TS is the internal energy per unit volume,
and

W= (3p+U"-Vp)p =—(pdivu)¢

is the interstitial working that was first introduced by Dunn and Sefrin [16]. This supplementary
term ensures that the entropysatisfies the conservation law

9;S + div(Su) = 0.

(This is obtained through formal computation, for presumably smooth solutions.) There is also an
alternative form of the momentum equation (still for smooth solutions). Using the mass conservation
law and the relation

dg = —sdT +vdp + vo™ - dw,

with s the specific entropy andthe specific volume, we arrive at the convective equation
U+ U*-Viu=vV(divep —g) —sVT.

The resulting evolution system fgp, u, S) is
0;p +div(pu) =0,
U+ (U*-Viu=V(divep — g) —sVT, (1.2)
9;S + div(Su) = 0.

Let us consider the total energy .= E + %,o||u||2 as a Hamiltonian. Using the relation

dE =TdS+ gdp + ¢* - dw,

the variational gradient of the (formal) Hamiltonian functional

’H:=/de

$lul2+ g —dive
SH = pu
T

is easily found to be

Therefore, the systerp (3.1) equivalently reads, for irrotational velocity fields,

P
3[ u = JaH,
S

where7 is the skewsymmetric differential operator
0 —div 0

j: -V 0 —SV
0 —divs- 0
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For the system to fall into the framework of infinite-dimensional Hamiltonian systems, the skew-
symmetry of the operatof/, which has variable coefficients, is not sufficient. The additional
condition is that7 be aHamiltonian operatoyin the sense that the bracket defined for functionals
P andQ by

{P, Q}=/8P~J<Sde
be a genuine Poisson bracket, satisfying the Jacobi identity
{P, QL R} + {Q. R}L P+ {{R, PL Q) =0.

The direct verification of this identity is really tricky in general. Olver’s methiod [30] is a powerful
alternative way to do it. The required material and actual computations are given in Appendix A.

ProPOsITIONL The systen{ (1]1) restricted to irrotational vector fields :

) 0 —div 0 Flul? + g — dive
ojlul=1|-V 0 —sV pu
S 0 —divs- 0 T

is not Hamiltonian, except in dimension 1.

Another interesting feature of the model {1.1) that was pointed out by Gavrilyuk and Golin [17]
is its symmetrizabilitywhen H is convex More details on the symmetrization may also be found
in [7].

We shall now concentrate on the reduced, isothermal model

{ 9;p + div(pu) =0, (12)

U+ (U* - Vu=V(dive — g).

The isothermal assumption, widely used in physics, facilitates the mathematical analysis of the
model. In particular, it yields a simplified Hamiltonian formulation, in which the skewsymmetric
operator defining the Poisson bracket has constant coefficients. Indeed, for irrotational velocity
fields [I.2) coincides with

a,(ﬁ)ﬂm, K=/(F+%p||u||2>dx, I:(_OV ‘g'v>.

1.2 Eulerian capillary models

From now on, we assume that
¢ = Kw.
Then we can write
g =2g0+ 3K,[Vpl?

wheregg is independent oV p. In particular, the isothermal model reduces to

{ 3 p + div(pu) =0, (1.3)

B+ (U* - V)U = V(K Ap + K[V p]% - g0),
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wheregp andK are given, smooth functions pf (with K > 0). One may also write this system in
conservative form, noting that

p=po+ 30K, — K)ol po=pgo— Fo.
hence the (complicated) momentum equation
3 (pu*) + div(puu™) + Vpo = V(pK Ap + %(K + pK,’))IIVPIIZ) —div(KVp ® Vp).

In one space dimension, the syst¢m](1.3) reduces to

{ 3 p + dc(pu) =0, (1.4)

Ot + udyu = 0 (K92 p + 3K),(3:0)? — go(p)).

It is interesting to note that models of this kind actually arise in various other contexts. In the

special case

K()—1
P=g

the system[(1]3) is equivalent—for irrotational flows—to a non-linear &thger equation known
as the Gross—Pitaevskii equation

iV + 34y = go(ly Dy

for v = \/ﬁe"‘/’, Ve = u. See for instancée_[8], whergy(p) = %pz. In [28,[22], K is also
proportional to Xp, and there is almost no restriction gg. One may also observe that, in one

dimension with L
1

=1, =

go(p) = zp, K(p) 4

the equations in[(1]4) appear as an equivalent form of the so-called filament equation! (see [3,
p. 353)).

1.3 Lagrangian capillary models

The one-dimensional isothermal model becomes even simpler in Lagrangian formulation.
Introducingy the mass Lagrangian coordinate soE]mt = pdx — pu dr we obtain with a little
piece of calculus the—at least formally—equivalent system

{ v — dyu =0, (1.5)

diut + dypo = —dy (k2,0 + Fk| (Byv)?),

with
k(v) 1= K(1/v)(1/v)°.

In the special case = constant, i.eK = const p~>, the systen{(]5) is formally equivalent to the
(good) Boussinesq equation and is amenable to the theory of Kdto [25] (see [9] for more details).

1 This change of variable may be justified rigorously for, €&¥functions(p, u) andp bounded away from zero.
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Our aim here is to deal with general capillarities, motivated by physical reasons—since there is no
reason fork to be proportional tp®—as well as by the various analogies mentioned above.
Following an idea of F. Coquel [13], we rewrite the velocity equation as

Oiu + 3y po + dy(adyw) =0, o = +/k, w = adyv,
and we easily find thab satisfies the equation
dyw — dy(adyu) = 0.
Consideringw as an additional unknown, we are led to the system
v — dyu =0,
diu 4 3y po + 9y (adyw) =0, (1.6)
yw — dy(adyu) = 0.

One may observe thdt (1.6) is again associated with a Hamiltonian formulation. Imeléefihing
H as
H,u,w) = fo) + 3u®+ Juw?  fo:=vFo,

andH = [ H dx, we have

—po(v)
SH = u ,
w
and [1.6) coincides with
v 0 0y 0
W | ul=AwsH, Aw=|a, 0 —dya(v)d,
w 0 0ya(v)dy 0

The operatord(v) is obviously skewsymmetric. Using again Olver’s method [30], we can check that
A(v) is indeed a Hamiltonian operator. This is due to the fact that the coefficiappearing on the
second and third row does not depend on the second and third variabledw. See Appendix A

for the details.

2. Traveling wave solutions of Korteweg models

A traveling wave is by definition a solution that propagates the same profile at constant speed.
We are interested here in traveling waves achieving constants at infinity, which means that their
profile describes a connecting orbit of a certain system of ordinary differential equations. When the
connecting orbit ihomoclinic that is, when the endstates are equal, the profile is usually called
a soliton When the connecting orbit iseteroclini i.e. with different endstates, the profile is
sometimes called kinkand it is the term we shall use.

Both systemd (1]4) and (1.5) do admit traveling wave solutions of both kinds, solitons and kinks.
This is related to the fact, proved in a general setting In [4, pp. 11-12], that the ODE systems
governing connecting orbits are themselves Hamiltonian. In fact, they reduce to planar Hamiltonian
systems, for which the phase portrait analysis is quite elementary.
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Let us consider firs{ (1]4). A traveling wave of speei$ a special solution of the fortip, u) =
(p(x —ot), u(x —ot)) with

{ (pu—0)) =0,

-y = (K(p)p" + 3K (o) 0’ — g0(0)Y. 2.7)

where’ denotes the derivative with respectéto= x — o¢. Alternatively, the second equation may
be rewritten as

(0(u — o) + po(p)) = (pK (p)p" = 3K (0)(p)? + 300 K (p))'. (2.8)

We have denoted hergy(p) = po(1/p) to avoid confusion. We shall sometimes omit the tilde.
(Equation[(2.B) may be obtained directly from the conservative form of the momentum equation, or
from a slight manipulation of (2} 7).) The first equation[in {2.7) implies fh@t— o) = const. This
constant must of course be equaljito= p+ (u+ — o) if

xﬂrl]oo(p, u)(x) = (o, U+).

In the case of a kink, the equaliy_(u_ — o) = p4+(uy — o) is consistent with the Rankine—
Hugoniot condition for the corresponding discontinuous traveling wave. In any case, the quantity
corresponds to the mass flux of fluid across the moving boundary 7. Additionally, (2.8) shows
that for a kink attaining its limitg.. fast enough so that andp” tend to 0 at infinity, we must have

Ju—~+ po(v-) = juy + po(v+),

which is also part of the classical Rankine—Hugoniot condition. In particulaf 010, that is, with
no mass flux across the moving boundary, the pressures on both sides must be equal. This is a well
known condition for the so-called static or equilibrium interfaces. In general, the elimination of the
speeds:. yields
2 po(vy) — po(v-)
= Vo — vy ’

(2.9)

which means that the slope of the chord between the endstates in the volume—pressure plane must
be negative. Physically, if the kink is a liquid-vapor interface, this means that the pressure must be
higher in the liquid, whatever the nature of the phase change (evaporation or condensation). Let us
now look at the second equation n (2.7). It implies

—K(p)p" — %K(p)/p’ + go(p) + %uz — ou = constant=: ¢,
and if o/, p” do vanish at infinity, the constagtmust be equal to
g0(p-) + B2 — ou_ = go(ps) + 2 — . (2.10)

In the case of a kink, this equality i®ta consequence of the Rankine—Hugoniot condition. Rather,

it is an additional relation, sometimes called the kinetic relafion [1, 27]. One may obserye that (2.10)
reduces t@o(p—) = go(p+) whenj = 0. The equality of chemical potentials on both sides of an
equilibrium liquid-vapor interface is well known (see for instarice [34, p. 42]). Equéfion|(2.10) is just
a dynamical version of this relation. In order to write the profile equations as a planar Hamiltonian
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system, one may just eliminate = j/p + o and therefore obtain the second order differential

equation orp:
2

1 j 1
~K(p)p" = SK(0)p' + go(p) + ﬁ - 502—q=0, (2.11)

Recalling that
dFy

$=80,

equation[(2.11) admits the obvious first integral

Lk + o) - L~ (Lo24
> K(p)(p o(p 2 5 q|p.
The existence of homoclinic or heteroclinic orbits then depends on the parameteasdg and
on the behavior of the functiofip—the functionk being only a matter of rescaling.

REMARK 1 Using the definitionj = p+(u+ — o) and recalling thagg = pov — dpg/dv, the
equalities in[(Z.P) and (2.10) amount to requiring the equal area rule

po(vy) — po(v-)
v

/ ) {po(v) — polvs) + v - vi)} dv =0, (2.12)

This relation is of course possible only fonan-convexunction pg, for instance the van der Waals
pressure law below critical temperature. In this cagds also non-monotone and the corresponding
kink is a liquid-vapor interface. One may observe that equafion’(2.12) is a generalization to
dynamical phase boundaries of the well known Maxwell rule for equilibrium phase boundaries. In
addition, for the van der Waals pressure law there is a range of temperatures, just above the critical
temperature, for whiclpg is monotone and non-convex. Even though the corresponding kinks are
no longer interfaces our subsequent analysis applies to them.

Unsurprisingly, the purely thermodynamical equatipn (R.12) also arises when one looks for
traveling profiles of the Lagrangian modgl (1.5). We shall come back at the end of this section
to the relation between Lagrangian traveling waves and Eulerian traveling waves. For the moment,
we concentrate on the Lagrangian moflel|(1.5), for which the discussion of traveling profiles is much
simpler and more or less standard. The profile of a traveling wave solution of “speea careful
thatt is nothomogeneous in a velocity—df (1.5) must satisfy the ODEs

—10—i =0,
—Ti + po = — (kT + 3KD),

where denotes the derivative with respectito= y — t¢. Eliminatingz we obtain
K + 2k + po + v%v = constant

For a kink, we obtain the Rankine—Hugoniot conditions corresponding to discontinuous
traveling wave solutions of thg-system:

ug +tvy =u_+tv-, po(v4) — tut = po(v-) — Tu—,
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with their consequence
2 po(vy) — po(v-)
V- — V4

and the equal area rule (2]12) by multiplying the ODE

)

Kk()V + (k) = —po(v) + po(va) — T(v — V1) (2.13)
by v and integrating once. A first integral ¢f (2]13) is indeed
%K(v)i)z + I(v;ve, T)
with
1(; v, 7) == fo(vs) = fo®) = po(va) (@ — v) + 372 — v)?.

This implies in particular that in the phase pléfie, v)} a connecting orbit tqv, 0) lies in the
level set

{(v, 9); 3x )0 + I (v; va, T) = O},

Before going further we need some assumptiong@and fo. We avoid too much generality
and concentrate on assumptions that are met by the van der Waals pressure law.

e (Asymptotic behavigiThe functionpg = — d fp/dv is smoothly defined on the intervé, +o0)
with b > 0, and

lim po(v) = 400, lim po(v) =0, Ilim fo(v) = +oo0, lim fo(v) = —oo0.
v—=b v—>—+00 v—>b v—>+00

¢ (Monotonicity The functionpg is monotonically decaying except maybe on some interval where
it is increasing.

e (Convexity The functionpg has at most two inflection points, in between which it is concave,
and it is convex elsewhere.

These properties will be assumed without repetition in what follows. They imply in particular that
any straight line of negative slope encounters the grapiy @t most four times.
One may rewrite (2.13) as a first order system by setiing /i v, which yields

. 1
V= —w,

Ik

1 (2.14)
W = ﬁ(—po(v) + po(ve) — T2(v — v1)).

(The phase portrait of (2.114) being independent of the factQfilwe might assume here without
loss of generality that = 1.) An orbit of [2.14) necessarily lies on a level curve of the function

(v, w) — %wz + I(v; v, T).
Particular orbits are the fixed pointsg, 0) implicitly defined by

po(vo) + t2v0 = po(vs) + T2y
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A geometrical interpretation of this equality is thatis a point of intersection of the graph pf
with the so-calledRayleigh line passing througliv+, po(v+)) and of slope—t2. Because of our
assumptions, the systein (2.14) has at most four fixed points (of course includin@). Their
nature is easily determined. A fixed point, O) is a center if

%(vo) > —12
and a saddle if d

ﬂ(vo) < 12

dv

Connecting orbits can therefore only be saddle-saddle connections. Furthermare,f is a
saddle, a connecting orbit to this point must be included in

{(v,w); 3w?+ I (v;ve, 7) = O}

We thus see that(v; v+, ) necessarily vanishes at point(s) where the orbit crossasaes. Now

the existence of zeroes btv; vy, 7) can be investigated merely by the mean value theorem and the
following observation. If(vg, po(vg)) belongs to the Rayleigh line passing through, po(v+))

with slope—72 then

vo
I(v0; v, 7) = f (p(v) — 2(p(v0) + p(v4))) dv
vt

is a signed area between the graphpgfand the chord joiningg to v.. More precisely, assume
that (vo, p(vo)), (v1, p(v1)), (v2, p(v2)) are aligned on a Rayleigh line with sloper?, the graph
of p being below that line on the intervalp, v1) and above the line ofvs, v2), with vg < v1 < va.
This means in particular thdt(-; vg, t) and (-; v2, T) are monotone on the intervalsy, v1) and
(v1, v2), and thatl (vy; vo, T) < 0 and/(v1; vz, ) < 0. Additionally, from the planar dynamical
system point of view(vg, 0) and (v, 0) are saddles, where#sy, 0) is a center of[(2.]4). When
looking for connections to eitheg or v, or both, one may observe that:

(i) if the signed area between the graph pf and the Rayleigh line is negative, then
1 (v2; vo, T) < 0 and thereford (-; vg, T) does not vanish on the intervélg, v2), whereas
I (vo; v2, T) > 0, which implies thatl (-; v2, ) vanishes exactly once dwo, v2), in fact on
(vo, v1) (see Figurgll);

(ii) if the signed area between the graph pfand the Rayleigh line is equal to zero, then
I (v2; vo, ) = I (vg; v, ) and neithed (-; vg, T) nor I (-; vp, T) vanish insidgvg, v2);

(i) ifthe signed area between the graphpodind the Rayleigh line is positive, théiwg; v2, 7) < 0
and thereford (-; vy, T) does not vanish on the intervalg, vo), whereasl (vy; vg, T) > O,
which implies that/ (-; vo, ) vanishes exactly once dmng, v2), in fact on(v1, vz).

From this we infer several kinds of connections. In dade (i), there is a homoclinic connection
to v. In the framework of van der Waals fluids below critical temperature this corresponds to a
“mixed type” soliton propagating in the vapor phase. By mixed type we mean that unstable and
maybe liquid states are present inside the bump. Similarly, in [cade (iii), there is a homoclinic
connection tovg, which corresponds for a van der Waals fluids below critical temperature to a
“mixed type” soliton propagating in the liquid phase. Note that a similar connection exists in the
absence oy, sincel (-; vo, 7) is increasingly tending te-oo at infinity. The critical casg (i) means
that the equal area rule is satisfied and so there are heteroclinic connectiong tmm and from
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FiG. 1. Behavior off in casg (i).

v2 to vg. For a van der Waals fluid below critical temperature this corresponds to what is called a
diffuseliquid-vapor interface—by contrast with sharp interfaces, which correspond to discontinuous
traveling wave solutions of the pure Euler equations.

Now, if there is a fourth poinbs > v2 on the Rayleigh line, the solitons found in cafep (i)
and[(iii) are not the only ones. For van der Waals fluids below critical temperature, this situation
typically occurs wheng andu; are “close” to liquid and vapor equilibrium respectively, arfds
not too big, and more generally, for a givegy possibly far away from liquid equilibrium, there is
always a finite range for? for which the Rayleigh line intersects four times the grapip off this
is the case/ (-; vz, T) equals 0 ato, is decaying on the intervaél,, v3) and increasingly tending to
400 at infinity. This implies that it necessarily vanishes somewhere on the intes/alco) (see
Figure[2). The phase portrait then shows that this zero necessarily corresponds to the intersection
with thev-axis of a homoclinic connection t@. For a van der Waals fluid below critical temperature
this corresponds to a pure vapor soliton. The same kind of soliton occurs when the line of sfope
intersects the graph of only twice, at a saddle point, and at a center poing with v < vs.

Finally, by the same argument we find tli&t; vo, ) vanishes orvz, +00) (see again Figufe 2),
yielding a a homoclinic connection t@ provided thatl (-; vg, ) does not vanish in betwean
andvz. For a van der Waals fluid below critical temperature this corresponds to a “huge mixed
type” soliton, propagating in the liquid phase and containing both unstable states and vapor states
inside its bump. The same kind of soliton occurs when the line of slopeintersects the graph
of p only twicebut differently than above, at a saddle paipt{saddle) and at a center poirwith
Vo < V3.
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FiG. 2. Behavior off in the presence of a second center poit

The three possible phase portraits corresponding to the three[ cages](i)—(iii) are represented in
Figureq B[P respectively, where the isothermals are obtained with the van dar Waals law for water
(coefficientsa, b taken from|[[37]) atl” = 600K .

PrRoPOSITIONZ2 (Classification of saddle-saddle connections) $.be a non-positive real number
and consider the straight lineg of slopeS in the (v, p) plane and define

Cs :={v; (v, po(v)} € Ds}.
Under our main assumptions on the functigsand fo,
either Cg = {vg, v1,v2,v3} or Cs=/{vg,vi} or Cg={vg,v3} or Cs = {vp,v3},
the pointsy; being ordered increasingly and whenever they exist

d d d d

P <5, Pap>S L <S. s> S,

dv dv dv dv
with pg being convex orvs, +oo)E]Then the saddle-saddle connectiong of (R.14) belong to one of
the foIIowiné types, where we use a terminology referring to the van der Waals law below critical

temperatur

1 This makes the difference between the casgs= {vg, v1} andCs = {vg, v3}. This distinction is more for physical
reasons than mathematical ones.
2 n particular we mention in which phase the corresponding solitary waves are supposed to propagate.
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FIG. 3. Van der Waals isothermal curve, Rayleigh line and corresponding phase portrait[injcase (i).

(Temperate mixed vapor solitgn¥hey correspond to orbits homaoclinic te whose minimum is
smaller tharvy. They exist if and only if

v2
/ (p(w) — 3(p(vo) + p(v2))) dv < 0.
vo

(Kinks) They correspond to heteroclinic orbits whose endstatesyardv,. They exist if and only

if

andvo.

v2
f (p(v) — 3(p(vo) + p(v2))) dv = 0.
vo

These kinks are called diffuse interfaces whens increasing on some interval in betwegn

(Temperate mixed liquid solitopshey correspond to orbits homoclinic tg whose maximum is
greater thar1 and smaller tham,. They exist if and only if

v2
f (P(v) — 3(p(vo) + p(v2))) dv > 0.
vo
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FIG. 4. Van der Waals isothermal curve, Rayleigh line and corresponding phase portrait[in fase (ii).

(Pure vapor solitons They correspond to orbits homoclinic t9 whose maximum is greater than

v3. They exist as soon ag andvs do.

(Large mixed liquid solitons They correspond to orbits homoclinic t@ whose maximum is
greater thans. They exist, ifug andvs do, in the absence of temperate mixed liquid solitons.

Lagrangian profiles/Eulerian profiles.All these connections have their counterparts as connec-
tions of the Eulerian equatiop (2]11), even though this is far from being obvious if looking directly
at the profile equation§ (Z.11) afjd (2.13). Recall indeed that the PDE riodel (1.5) is obtained from
(T:4) by using the differential relationyd= p dx — pu dt. If (p,u) = (p(x — ot), u(x —ot))isa
bounded traveling wave solution ¢f (IL.4) with> p > 0 everywhere, the associated Lagrangian
mass coordinate reads= R — jt, whereR is a primitive of p with respect t&¢ := x — o and

Jj = p(u — o). Observing that the functior is a diffeomorphism ofR, we obtain a traveling
solution of “speedt := —j of (I.5) merely by defining its profile as

] 1
V.= ———.
poR™1
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Conversely, if(v, u) = (v(y — 1), u(y — tt)) is a bounded traveling wave solution pf ([1.5) with
v > v > 0 everywhere, we obtain a traveling solution[of {1.5) with
ji=-1, O0!=ut+— ju4,

by considering the differential equation

1
v(R)’
Since the function is bounded orR, all solutions of this differential equation are global and form
a one-parameter family of diffeomorphismsRnWe thus obtain a one-parameter family of density
profilesp := R’.

/

3. Stability of kinks and solitons

We are concerned here with the long time behavior of the isothermal mpdéls (1.4) d@nd (1.5) when
the initial data are close to either a kink or a soliton. The observability of such patterns is indeed
closely related to that stability problem.
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The stability of solitary waves has been studied for more than a century. The first ideas certainly
date back to the remarkable work of Boussinesq on the water waves in narrow channels [11], which
appeared less than thirty years after John Scott Russel reported his famous observation, and twenty
years before the work of Korteweg and de Vries. It is notable that (one of) equation(s) nowadays
known as the Boussinesq equation takes the form of the sy§iein (1.5)« witimstant andpg
convex—in the most standard framewopig(v) = v — v. The stability analysis of solitary waves
became very active in the 1970s and made a leap with the work of Grillakis, Shatah and Strauss, who
derived a sharp stability criteridi®) [18]. As regards the Boussinesq equation, a class of solitons is
known to satisfy(S)in the case of a power-type lawd(v) = v* — v, k < 5) [9]. We are basically
interested in the same question for the different kinds of solitons with non-convex van der Waals-
type laws. We shall present a reformulation8) enabling us to determine the cases in which it is
satisfied.

As regards the stability of kinks, among which diffuse interfaces are of special interest, we do
not know any work analogous tb|[9]. The spectral stability of kinks, which unlike solitons do not
come in families parametrized by the wave speed, is known to be rather strong, in fact as much
as we can hope for in a Hamiltonian framewark [5]. However, this “neutral” spectral stability is
far from being sufficient in itself to imply the non-linear stability of kinks. In this respect, we
show below how the tools previously developed for solitons can be adapted and how far they
can go in the stability analysis of kinks. Those tools crucially use the Hamiltonian structure of
Korteweg models. Because of the translation invariance of these madeitg| stability is the
best we can expect. It means that solutions stay in a given neighborhood of the one-dimensional
manifold made of all shifted profiles, provided that they are close enough initially to either
one of the profiles—this statement needs a functional framework that we shall specify later. In
particular we do not expect any kind of control of the shift, unlike what is known for dissipative
kinks [21].

For completeness, we shall deal with both systdmg (1.4)[an{ (1.5), which can be recast in a
similar Hamiltonian framework. As shown in Sectign 1, they can be rewritten in the abstract form

3 U = JsH[U] (3.15)

where is a constant coefficients skewadjoint differential operatorsafid] denotes the (formal)
variational gradient of a functional

HIU] = / H(U, 3V).

For the Eulerian systerp (1.4) stands for the derivative with respect to the space variahled we
have

0 —o
U= <’;) H(U,3U) = 30u” + Fo(p) + 3K (0)(3:p)*, T = (—8x 0 )

For the Lagrangian systern (1L.5),stands for the derivative with respect to the mass Lagrangian
coordinatey and we have
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The definition of H is only formal here becausH (U, dU) is not integrable, as far as we are
concerned. However, for functions that coincide asymptotically with a reference solutidrat
+o0,

H[U: U] := / (H(U, 9U) — H(U, 3U))

does make sense provided that the decal of U is sufficiently fast attoo. In this case the
variational gradient of{ with respect tdJ is independent of) and given as usual by

. d .
/BH[U] U= ZHU+60: Y]

zf dH (U, 9V) - (U, 3U),
6=0

for all U € D(R). Recall that for the Eulerian systefn (IL.4),

SHIU] — <%u2+go(p> — K(p)o% — %%—f(p)(amZ) Ue <p>
pou

’

while for the systen](1]5),

SH[U] = (;po(v) — k()92 — %g_';(v)(av)2> Ty

Il
7N
< <
N——

3.1 \Variational approach to traveling profiles

We are interested in traveling wave solutions of either](1.4) of (1.5), and more specifically those
which achieve finite limits attoo. Using the formalism above, these traveling waves appear to
correspond to critical points of the functiorfdlunder the three constraints

/Ul, /Uz, /Ulezconstant

whereU; andUs stand for the components tf. Again this is at first glance only formal because
Ui, Uz andU1U> area priori not integrable. These “functionals” nevertheless correspond to first
integrals of the syster (3.]15) in the sense explained below.

First integrals of (3.18) The HamiltonianH corresponds formally to a first integral ¢f (3}15).
Let us look for a suitable functional framework in which this statement makes sense. Recalling the
special form of the Hamiltonian

H(U, 3U) = Ho(U) + 3k(UD)(3U1)?,

which holds true for both (I]4) and (1.5)—with eitlie= K or k = k—we find that for a (classical)
solutionU of (3:13),

b b t pb
/ HU(z,1),0;U(z, 1)) dz = / H(U(z,0), 9,U(z, 0)) dz +/ / SH[U] - JSH[U]
a a 0 Ja

t
+/ (k(U1(b, ©))0:U1(b, ©)9, U1(b, T) — k(U1(a, 7))3.U1(a, ©)9;Ui(a, 7)) dr
0
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forallt > 0 anda < b. Now recalling the special form of the operator

0 1
J =J.0, J€:=5<1 0>, ee{-11

(with ¢ = —1 for (1.4) anck = 1 for (1.5)), we may rewrite the previous equality as
b b
/ HU(z,t),0;U(z,1))dz = / H(U(z, 0),9;U(z,0)) dz
t
+ %/ (SH[U] - I SHIUD (b, T) — (§H[U] - J.8H[U])(a, T) dT
0

t
+/ (k(U1(b, 7))3.U1(b, 7)0;U1(b, T) — k(U1(a, 7))d;Ui(a, 7)9;Ui(a, 7)) dr.
0

Finally, using the specific form dff and.7, the time derivatives, U; are easily replaced by “spatial”
derivatives. More precisely, for the Lagrangian system| (1.5) we Bave = 3,U>, and for the
Eulerian systenf (1]4) we havelU; = —d, (U1U>). This leads to the following.

LEMMA 1 Assume that andU are two smooth solutions of the abstract versjon (3.15) of either
(T3) or [T5), thal belongs taZ([0, T]; W?>) and

im U-U)z, =0 lm 8.(U-Uyzn=0  lim 82U1—-U1(z1) =0
7—> 400 z—>Fo0 z—>+o0 *°

forall r € [0, T]. Then, if the integral

“+00 -
/ (H[U] — H[OD) . 1) d

—0oQ
is convergent at time = 0O, it remains convergent and in fact is constant for all tinee[0, T'].

Proof. We just make the difference between the equality obtained abow&dod its analogue for
U, and leta go to—oo, andb go to+oo. O

Note that the asymptotic behaviors requested hold true in particular U] belongs to
C([0, T]; H® x H?). For the Lagrangian systefn (1L.5), one may relax the assumption on the first
derivative to

yﬂfl‘oo dy(U1—Up(y,1) =0.

As regards the “functionals’ U1, [ U» and [ U1Us, they are also formal first integrals of
(3:13). in the sense that integrands satisfy conservation laws, which is obvious for the first two of
them. The third conservation law has to do with the invariancg of (3.15) under spatial translations,
as explained in_[4, pp. 8-9] in connection with Olver's generalized version of Noether’s theorem.
Indeed,U1U> is what Benjamin calls aimpulse since the variational gradient gf{U] = [ U1U>
is such that7s Q[U] is—up to a harmless: sign—equal tdU. We can also compute directly the
conservation law ot/1U,. For any smooth solution df (3.1L5),

3 (U1Up) = U2, U1 + Urd,Up = £J,U - 3,U = £J,U - 8,3,8H[U] = eU - 3,6 H[U]

because of the symmetry df and the property]f = |. The fact thatU - 3,8 H[U] is an exact
derivative is then easily verified in both the Lagrangian and the Eulerian framework. For, the
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contribution of Hp to H corresponds to either the so-callpesystem—obtained fron (1.5) by
settingk = 0—or the Euler system obtained frofn (1.4) by settikig= 0, which are known to
admit U1U» as a mathematical entropy, and the contribution of capillarity is of the same form in
both frameworks. In the Lagrangian framework for instance

1 1
U.9,8H[U] = 8y<§u2 —qo(v) — vK(v)B}Z,yv + E(K(U) - vj—i(v))(ayv)Z)

where do/dv = v dpo/dv. Now, by the same argument as in Lenjma 1, we show the following.

LEMMA 2 In the framework of Lemmg 1, if the integral

+00 .
/ U -0z 1) de

—0o0

is convergent at time = 0, it remains convergent and in fact is constant for all tinee[0, 7']. And
the same is true for

+o00 PR
/ (U1U2 — U1U2)(z, 1) dz.

—00

Equation of connecting profiles.We refer to Sectiof]2 for the explicit equations governing the
connecting profiles of both systenis {1.4) gnd](1.5). Here we show how those equations read in the
abstract setting (3.15), in order to justify our claim, generalizing the result pointed out in [4, p. 11]
that traveling profiles are critical points @ under constraints. The profile of a traveling wave
solutionU = U(z — o) of (3.15) clearly satisfies the ODE

Je06H[U] + 00U = 0.
Using again the fact thal is the identity 2x 2 matrix, this is equivalent to
SH[U] + 0J.U = constant

In [4] the constant is equal to 0 because only solitons vanishingo are considered, with a
Hamiltonian satisfyingg[0] = 0. Here we are interested in connecting profiles with non-zero,
possibly different endstates, which do not cang#. So the constant is generically non-zero,
and its components can be seen as Lagrange multipliers associated with the constraiarsd
| U> respectively. Similarly to[4]—¢o can be seen as a Lagrange multiplier associated with the
constraint/ U1U», of which the variational gradient is precisely, U.

From now on, we fix a saddle-saddle connecting prafilef either [1.4) or[(1]5), which can
be either a soliton (i.e. a homoclinic connection, the endstates hking U, ) or a kink (i.e. a
heteroclinic connection, the endstatés and U being different), obtained in the framework of
Propositiorf . There are crucial qualitative differences between solitons and kinks:

(1) kinks aremonotondin the sense that both componentdére monotone, or equivalently the
components oBU have constant sign along the real line) whereas solitons are not (they are
symmetric with respect to the point where they achieve their extremum),

(2) solitons come in families parametrized by the wave speed whereas kinks are fully determined
by either one of their endstates.
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In any case, the set of profiles connecting the endstatesvith wave speed is made of all
translates o). We shall use repeatedly the simplified notatibgh= U(- + s) for these translates.
We shall refer toJ as acapillary profile By constructionU is associated with a traveling wave
solutions +> U(-, r) = U(- — o) of the corresponding Hamiltonian systdm (3.15). Our purpose is
to investigate the stability db, that is, the long time behavior of solutions pf (3.15) that are close
to U initially.

We shall begin with the spectral stability analysis, including the stability criterion of Grillakis
et al. and then turn to the non-linear stability issue. Despite the better stability of kinks from the
variational point of view—a fact related to the observatioris ih (1)[arjd (2) here above, the stability
of kinks at the non-linear level is to some extent poorer than the one of solitons.

3.2 Spectral stability of capillary profiles

As far as possible, we shall perform the stability analysis on the abstract level, which mostly avoids
technical calculations and deals simultaneously with the Eulerian nfodgl (1.4) and its Lagrangian
counterpart(1]5). Even though the stability results shaulihe be the same for physical reasons,
we think indeed interesting to study both systems, in particular because of their relationship with
other physical frameworks: water waves for {1.5) and Quantum Hydrodynami¢s Tor (1.4).
__ Thefirst, natural approach to study the stability of a traveling Viigto linearize[(3.15) about
U in a “Galilean framg® attached tdJ, in which U becomes stationary. We obtain a system of the
form

oV =LV,

whereL is a third order differential operator in the “spatial” variable. As regards kinks, it was shown
in [5] that the spectrum of. coincides with the imaginary axis. This neutral stabilitylbis the
best we can hope for in a Hamiltonian framework, and prevents us from using the refined Green'’s
function techniques that have been successfully applied to traveling waves in dissipative models
[40,20,/21[38].

In order to use Hamiltonian tools, consider the HessiaH aft U, which is the operator defined
by

. . d? . d? . .
tH = — 0= / —H —
/U essH[U]U dezH[Q-ﬁ-@U]\g_o a2 (U +6U, 90U+ 600U)p=0
for all U € D(R). Since the functional splits as
1
HIU) = HolU] + KLUl K[U]i= [ Sk@)GUP, (3.16)
we have

HessH[U] = HessHo[U] + HessC[U4],

with HessC[U ] being aSturm-Liouvilleoperator. More precisely, in the Eulerian framework, we
have

1d2K
2 dp?

M d dK
HessH[U] = <— E) . M=-03K(p)o + dipo(g) - a(ﬁ)afxﬁ_

2
© p (p)(0xp)*,

1 The term Galilean frame is in fact meaningful only for the Eulerian madde] (1.4).
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while in the Lagrangian framework

1d

M 0 Pic 2
E W ) (8)72) .

d dx
HessH[U] = < 0 1) , M=-0k@dy — %(2) — a(ﬂ)ayzyy—

In fact, since the profil&J is a critical point ofH under constraintswe also have to take into account
the Hessian of the quadratic functiorfaUle, which is the constant operated,., and study the
possible monotonicity of the operator

L :=HessH[U] 4+ o J;.

The properties ofZ of course depend on the nature of the connecting dgbiThis is where
the differences between kinks and solitons play a crucial role. WeJssymonotonef its first
componentlU; is monotone—which by the Rankine—Hugoniot relation also implies thais
monotone. We call the endstatds subsonidf both inequalities

dp

p(v4) — p(v-) ap
dv

Vy — V-

(U:I:)‘

d

are satisfied. From the dynamical systems point of view this meandUthata saddle-saddle
connection. See Sectibh 2.

LEmMMA 3 Consider the ODE governing the traveling wave solutions of eifhet (1.4) dr (1.5),
written in the abstract form:
J:08H[U] + 00U =0,

andU a saddle-saddle connection of the integrated ODE
SH[U] + 0J.U = §H[UL] + 0J.Uy.
If U is monotone then the operator
L = HessH[U] + o J;

is monotone, i.e.

/00020
for all U e D(R). Furthermore, if( U19U; = 0 andU # 0 then
/UAU>Q
Proof. We start with the Eulerian framework—the Lagrangian one being simpler. We recall that
M u-o dgo dk ., 1d’K 2
L= "~ "), M=-03Kpd+—"—(p)— —(p)dp—=-——=(p)dp)-.
<a—0 o ) M (p)0 + 0 (p) o (p)0°p 202 (p)(3p)

So the monotonicity of2 depends upon the monotonicity of the Sturm—Liouville operator.=
M — (u— ‘7)2/8- In fact, this operatoyM was already shown to be monotonelin [5, Proposition
1, p. 243]. We briefly recall the arguments. First of all, the subsonicity of endstates implies that the



394 S. BENZONI-GAVAGE ET AL.

essential spectrum g¥1 is positive, bounded away from 0. Secondly, 0 is an eigenvalue afith
associated eigenfunctidip—this is due to the translation invariance. Indeed, we can see directly
from the ODE B

90H[U]l +0J_10U =0

that£ - 9U = 0, by definition of, using the fact thad§H[U] = HessH[U] - dU. And this readily
implies thatM - 9p = 0. Sinced p has a constant sign by assumption, the standard theory of Sturm—
Liouville operators[[32,_35] shows that 0 must be the lowest eigenvalue(pfvhich yields the
monotonicity of M. Furthermore, there exists> 0 so that for/ pdp = 0,

[ M5 clipiag,

and thus

pu+ w—o)p 2

VP

The same arguments work in the Lagrangian framework. The Sturm-Liouville operator to be
considered is

[0 0> o, + | .
L2(R)

dpo dk 1d%
_ A e _ 2= 2, -2 2
M=M-o Ik (v)d I v —o I v)9v Zdvz(y)(ay)

and it is monotone for the same reasons as before. The final estimate looks simpler:
fU&c 0> 912500, + i + 091255
for [vdv = 0. O
REMARK 2 We may improve the above estimate
[ om0z ey,
(omitting the subscript 1 for simplicity) to
/UM U N0,

for [ UdU = 0, thanks to the following classical observation.

LEMMA 4 For a Sturm-Liouville operatoit = —90K 9 + « with « bounded and > Kg > 0,

it is possible to equigi ! with a modified inner product, whose norm is equivalent to the usual one,
such that ifM - V = 0 then the orthogonal of in L2(R) coincides with the orthogonal df in
HL(R).

Proof. Fora > 0 large enough

U, V) = /(KaUav + @+ 1)UV
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defines an inner product di! as required. If\ - V = 0 then
(U,V):/U(M+A)-V=A/VU,

hence/ VU = 0'is equivalent tqU, V) = 0. O

REMARK 3 For a monotonéJ, the fact that the spectrum of the linearized operdtas purely
imaginary may be viewed as a consequence of the monotonicify dhis follows from Lemma

3.1in [31]. Another consequence of this general result is an upper bound for the number of unstable
eigenvalues for the linearized operafoabout solitons (which are not monotone). More precisely, if

U is a soliton in our contexfU; has a single zero and this implies by Sturm—Liuouville theory (see
Appendix B) that£ has a single negative eigenvalue. Hence by Lemma 3[1In [31] the linearized
operatorL aboutU hasat mostone unstable eigenvalue.

The approach developed [n |18, 9] aims at selecting orbitally stable solitons, for Wwiiakno
unstable eigenvalue. We adapt below that approach to solitons with non-zero endstates.

From now on, to simplify the writing, we denote by= U1 andu = U, the components of any
vectorU in the state spa@Let us consider a solitod = (v, u) with endstatd), = (Veo, Uxo)
and speed . It satisfies the ODE

SH[U] + 03:U = §H[Uso] + 03:Uno (3.17)

01
Js:ze(l O)’ e e {-1,1}.

(Recall thate = —1 when we consider the Eulerian model {1.4) and that 1 for the Lagrangian
one [L.}).) We define here

with

Hmw@=/ (H[U] — H[Us]) (&) ck. QMNM=f(M-%%M@®

o]

mmw@=/ (1 — voo) (6 G, %mwa=/ (U — 100 (€

—00

where all the integrals are absolutely convergent sihcenverges exponentially fastth,, at+oo
(recall thatU is a saddle-saddle connection). Furthermore, denoting @@y, Us,) the components
of §H[Us] + 0J:Ux, i = 1, 2, we see that equation (3]17) equivalently reads

(6H +808Q — 21(0; Uno)8P1 — A2(0; Uso)8P2)[U; U] =0,
the variational gradient being taken with respedttonly. This implies in particular that
(H+60Q — 21(0; Uso) P1 — A2(0; Uso) P2)[U; Usc]

is invariant under shifting the profile into U.. In other words, that quantity depends only on
(0; Us). Furthermore, this is an extension to non-zero endstates of what Bona and Sachs, after
Boussinesq, call thmoment of instabilityf the solitonU.

1 so that in the Lagrangian framework= v, and in the Eulerian framework,= p.
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DEFINITION 1 We define thenoment of instabilitypf a solitonU with endstatd), and speed
to be the quantity

m(o; Us) i= (H 4+ 60Q — A1(0; Uso) P1 — 22(0; Uso) P2)[U; Uso].

As we shall see in Sectign 3.3, it is the local convexitynodis a function o& which determines
the stability of the solitorU. It is interesting to note that the evaluationmfdoes not require the
actual resolution of the ODE (3]17).

We begin with the Lagrangian model, for which the computations are simpler.

PrROPOSITION3 The moment of instability of a solitod = (v, 1) of (T.9) is
+00 )
= [ cwenaen?d (3.18)

Alternatively, if v achieves a maximumy, > v, then

m=2 / 2@ (o) = folvee) + povac) 0 — 100) — 32w —v)) v, (3.19)

while

m=2[ " J2)(fow) ~ folse) + polvs) (v — vao) — 3720 — v2)?) v (3.20)

Um
if v achieves a minimum,, < veo.

Proof. The formula in[(3.IB) is an extension of the one usedlin [9, p. 26] for a power lapgfand
zero endstate. It follows from the elimination of the speed

U=1too+ T(Voo — V)
in the definition ofin and the use of the identity
S @D + folveo) = fo®) = Po(vo) (@ — Voo) + 3721 — ve0)® =0, (3.21)

wheret denotes the “speed” of the soliton (we usénstead ofs here for consistency with the
notation used in Sectidrj 2). As a matter of fact, by definition

Al = —po(Voo) + Tloo, A2 = Uco + TV,
hence

HI[U] — H[Uoo] + T(Wtt — Vooltoo) — A1(V — Voo) — A2(U — Uoo)
= @Y+ 3 — oo + T2~ Vo)) = k(D™
The other representation @i merely follows from [(3.2]l) and the change of variables=

v(¢), which is valid on the two half-lines separated by the point wheghieves its (unique)
extremum.
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REMARK 4 Physically, the quantityn = f/c(g)gz may be interpreted as (a non-equilibrium
analogue ofpurface tensiofi24].

REMARK 5 The advantage of the formulas [n (3.19) gnd (8.20) is that they can easily be evaluated
numerically,without solving the profile equatiq8.17), the points,, s just being characterized by
the vanishing of the integrand. More precisely; is the smallest > v, where

fo®) = foveo) + Po(veo) (v — o) — 37%(v —v4)* =0,
while v, is the greatest < v, canceling the same expression. The existence/relevance of such
points follows from the phase portrait analysis of Sedfipn 2.

REMARK 6 The equivalent expressiorjs (3.18) ahd (B.19) [(or {3.20)) @frise as soon as the
HamiltonianH satisfies[(3.16) wittH{o depending only orJ (and not on the derivatives &f).
Indeed, with the notation introduced in Section 3.3.a below, the soliton equatioh (3.17) equivalently
reads

SHIU] + e08O[U] = O,
and the counterpart df (3]16) regard'rﬁgeads
HIU] = Ho[U] + K[U,].
We infer thataU is an integrating factor of the soliton equation and that
Ho@) + ¢ 0(U) — 3k(U)(OU* =0, (3.22)

with Ho(U) and O(U) being naturally defined as the integrands in the functiofa[&)] and O[U]
respectively. Therefore . .
H[U] + eo Q[U] = 2K[U ],

and the left-hand side is exacily(o; U) (see Sectiop 3.3.a below).

3.3 Orbital stability of capillary profiles

The long time analysis of a model of course necessitates some knowledge on its local well-
posedness. As regards the Korteweg model$ (1.4)and (1.5), this question has been addréssed in [7].
Recall in particular the following.

THEOREM1 For any global smooth solutidiof (TF), for allUg = (vo, ug) € U+ (H3x H?)(R)
such thatyg takes values in a compact subsetif+o00), there existy” > 0 and a unique solution
U of (1.5) such thab|;—¢ = Ug and

U—Uec(o, T); (H® x HH®R)) NnC ([0, T]; (H* x L3 (R)).

If U is a traveling wave with profileJ, the Sobolev norms cﬁyG do not depend onand it can
be shown that the tim& of existence satisfies a lower bound

1
T>Cln<l+ )
luo — ull g2 + 19y (vo — V)|l g2

In the semi-linear case = constant, a much stronger result is known, which says thatiori
bound in(H! x L?)(R) implies that the maximal solution is global (séé [9, Theorem 4, p. 20]).
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DEFINITION 2 We say that a traveling wavé with profile U is anorbitally stable solutionof
(3:I3) if there exists1 > O such that for alk € (0, 1], there existsy > 0 such that for any
U e U+c(0, T); H® x H') which is a solution of (3.15),

[U0) — Ullg1,,2 <n implies inﬂ{ (U@ — Usllgiyge < €
NS

forallz € [0, T).

REMARK 7 If Uis a soliton, theU — U, || 41,2 is uniformly bounded in. Therefore, the orbital
stability of a soliton implies a@ priori boundfor ||U(t) — Ul y1,.,2. AS mentioned above, this is
sufficient to have global existence in the special egaseconstant in[(1}5) but not in general.

3.3.a Solitons

THEOREM2 A solitary wave solutiot of (3.18) with endstatel, and speed is orbitally stable
if its moment of instability (Definitiof 1) satisfies

3%m

Proof. It is a direct modification of Theorem 5 inl[9], which is itself an application of Theorem 2
in [18]. Indeed, we can force our model to enter the framework df [18] by: 1) shifting the dependent
variabledJ by U, so that in the new variables the soliton becomes homoclinic to 0 and 2) modifying
the Hamiltonian to make its gradient vanish at infinity. More precisely, setting

Ui=U-Uy, and H[U]:=H[U; Us] — / §H[Uso] - (U — Usp),

we have o
SH[U] = §H[U] — §H[Ux],

and the abstract equatidn (3.15) equivalently reads
3,U = J8H[U]. (3.23)

This is becausg/ vanishes at constants. Furtherm@e,: U — Uy is a critical point ofH under
the single constraint
310] = / ot

in that it satisfies the ODE N N
SH[U] + e08Q[U] = 0.

Finally, our definition of
m(0; Us) = H[U] + £0(Q — oo P1 — 1o P2)[U. U] = H[U] + 0 O[U]

coincides with the moment of instability 6f|[9. 18] for the solitorof B:23). O
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REMARK 8 Theorem 2 in[[1B] is actually an “if and only if” result. But the “only if” part requires
that the operataf7 be ont(ﬂwhich is obviously not the case here (norlin [9]). This problem is fixed
in [10] for Korteweg—de Vries type equations. Up to our knowledge, there is no equivalent work on
the Boussinesq equation.

To help the reader understand the significance ofe recall from[10, 18] an important result
concerning instability. For a clear statement, we use a notation in which the dependence on the wave
speeds is more explicit. We choose to addas a superscript, in such a way thft stands for a
traveling profile with speed. We omit the dependence ah,,, which is fixed in what follows. For
consistency of notation, the moment of instability is now denetéd

PrRopPOsSITION4 If the moment of instability of a solitob® satisfies
32m°

302

<0

O=T

there exists a smooth curee—~ V? € Uy, + D(L) (the domain ofZ) such thalv®™ = U and for
all o close tor,

O[V® — Ux] = O[UT —Us] and H[V® — Uso] < H[UT — U]
foro # 1.

Proof. We follow the second proof of Theorem 3.1 [n [10] (see also Theorem 4[1 in [18], for a
different parametrization). We first observe that

om°

R LR ) (3.24)
32m° v’ ou’
o2 T 8/ <(E(7 - Moo)j + (17 = Voo) 3_0 ) (3.25)

As a matter of fact, by definition
m® = (H+¢e00)[U° — Uy]

and the soliton equation is

(6H + £08D)[U7 — U] = 0. (3.26)
Therefore am®
e—— = O[U” - Uq],
do
which is [3.24), and
3°m° ~ au°
o = [ 38 - U S0
which is [3.25). Additionally, by differentiation of (3.26), we get
Lo 889 +Je - (U7 —Uy) =0, (3.27)
o

1 Infact, it requires only thdt)” andW? (an eigenvector of? defined in the proof of Propositi@ 4) belong to the range
of J: this is not the case fdd°, whose integral ofR is non-zero.
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where the operator
L7 1= HessH + e0 Q)[U” — Uy] = HesgH + 0 Q)[U%]
enjoys the same definition as in Lemfja 3. Note indeed that
HessH[U — Uso] = HessH[U], HessO[U — Uy = &J;,
Je - (U= Uy) = 80U — Ug].
Thanks to[(3.27) we see that (31 25) equivalently reads

0m” _ _/(au">*ga e
o2 do do
This formula is valid independently of the convexity or concavityroflit shows in particular that
whenm is strictly convex (a stable case, according to Thedrgm 2), the opetétdioes have a
negative space. In fact, this is always the case: unlike the situation considered in [pmma 3, here the
profile U? is not monotone. As already mentioned, this meansdhaidmits a negative eigenvalue.

A more detailed analysis using the theory of Sturm-Liouville operators, postponed to Appendix B,
shows that£? admits a single eigenvalue of negative real part, which is simple and associated
with an eigenfunction, say?, of which the first component® does not vanish and the second
componentw?’ has a simple expression in termsaff, o (andU? in the Eulerian framework): in

the Lagrangian framework for instance, we have

A =Duw® =ow?

if A denotes the negative eigenvalue, hence in particalefw® < 0 (regarding dimensional
questions, see Remdrk]13 in Appendix B). Now we look for

Ve =U7 4+ ¢p(0)W"*

with ¢ a smooth function vanishing at= . We have

=8Q[U" — Uso] - WT
(0,0)=(7,0)

= /((Rr — Voo)@" + (Uf — us)w").

0 ~
—O[U7 + pW™ — Ux]
0p

In the Lagrangian framework in particular, this integral reduces to
/(y’ — Vo) (@" — Tw")

and is therefore non-zero because of the propetti€sn® < 0, w® # 0 andv® — v # 0. Similar
arguments work in the Eulerian framework. Therefore, the existence of a furctionp (o) such
that

QU7 + ¢(0)W" — Us] = Q[U" — U]

follows from the implicit function theorem. Hencé? = U% + ¢(o)W? is such that

HIVT — Uso] 4+ 0 O[V? — Uso] = H[V — Use] + 0 O[UT — U]



KORTEWEG MODELS AND STABILITY OF INTERFACES 401
Differentiating once with respect o and evaluating at = t we get, using[(3.26),

o ~
0= —H[V? — Uyl
do

oO=T
Differentiating twice we obtain

Vo * E\VAd 92 ~
/( ) Lo - —H[V° — Us]

do 3o 902

ato = t, with
EAVAd aue? do
= — 4+ —
Lo do do

~ Ve Vo *
0=/$QW“—UM-5;«:/(&T>%-wa—umx

T

and

which implies
d Iu°
affMﬁﬁyQF—%d+f@“4%f%-— 0
o Jdo

ato = t. We thus have, using (327),

9% ~ AV \* do [/dVo\*
_ VO’ _ N . T _ _r T . Wl’
AV~ Ual 8/<8a>% U U + <30)£

o 2
v _ —ad—(p/(wf)*Js U U+ (% /(Wf)*cf WT
do do do

o 2
=e<w—quVMJ+<%Qbﬁw3%VWf
(o2

d(p TNk T
= [y

do

ato = 7, where we have used the self-adjointnessCaf(in L2(R)) andJ, (in R?). In the last
right-hand side we recognize the second derivative:®f which is non-positive by assumption.
SinceW? is a negative eigenfunction @, [(W*)*L" - W® is negative and therefore the second
derivative ofH is negative. This proves the proposition by Taylor expansion. O

Propositiorﬂl means that, for poirtsvherem? is concaveF{ is not locally minimized al® — U,

under the constraint associated wihWe suspect that this implies the instability of the profile but

we have no proof. Additionally, the numerical plotsmeffor the four types of solitons exhibited

in Proposition] P suggest that many of them are stable, depending on their “speed” (in fact, the
mass transfer flux across the wave) and orsthility of the endstate. Recall that states inside the
spinodal region, whergg increases withy, are considered unstable, both from the physical and
from the mathematical point of view. To go further, it is important to have in mind the notion of
metastable states

DerINITION 3 Under our main assumptions @ and fo, in the case whempyg is increasing in
some intervalv,, v*) C (b, +00), the corresponding thermodynamical states are cajpaubdal
Moreover, theMaxwellor equilibrium statesre uniquely defined by

po(vm) = po(@™) =: p", / (po(v) — p™")dv =0, vy <ve <V <™.

m
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The thermodynamical states withe (v, v) Orv € (v*, v™) are calledmetastableStates with
v e (b, vy) Orv e (V™, 400) are calledstable

We provide and comment below several results that hopefully give some insight, even though
they cannot be exhaustive. The graphs on the left of figures show the moment of instability
as a function ofr (arbitrarily chosen positive; of course there are symmetric counterparts for
negativer, which have the same convexity properties). The graphs on the right are intended to
show Amplitude B of the solitons. They show, also as a function, aither the maximum or the
minimum of the soliton (depending on its type), which is obtained naturally in the computation of
m as the endpoiniy, of the integral in[(3.19) op,, in (3:20), characterized b¥(vys; voo, 7) = 0
or I(vy; veo, T) = 0. There are at least 50 computed points in all plots. The numerical values of
Maxwell states with the pressure law we use (the van der Waals law for watea800K ) are

vy, =587 and "™ = 1826.

REMARK 9 The pure vapor solitons considered in Fig@e 6 existrfoin some finite interval

(0, S), their amplitude going to infinity (respectively 0) whertends to O (respectively, which
corresponds to the coincidence of the points deneotednd vz before). In contrast to the usual
feature of solitons in the water waves theory for instance, the “fastest” are the “smallest”. We did
not compute on the whole intervéd, S) but on a rather large subinterval, on which the moment

of instability m looks convex. This might be confusing because of the large range Bbwever,
zooms on smaller intervals have shown no failure of convexity. This suggests that all pure vapor
solitons are stable.

x10° x10*

05F

0 I I I L 0 I I I I L L
0.02 0.04 0.06 0.08 0.1 012 0.14 016  0.02 0.04 0.06 0.08 01 0.12 0.14 0.16

FIG. 6. Moment of instability (left) and maximum (right) of solitons with the endstate equal to the vapor saddle point of
Figure§ 3 anflj4ue = 201179).

REMARK 10 The temperate mixed liquid solitons considered in Figlire 7, where the endstate is in
the stable liquid phase, exist fof in some finite intervals,,, Si;). Whent? tends to the minimal
values,,, the maximum of the soliton tends to the vapor saddle point of the hereteroclinic connection
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FIG. 7. Moment of instability (left) and maximum (right) of solitons with the endstate equal to the liquid saddle point of
Figure§ % anfij5uc = 50.018).
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FiG. 8. Moment of instability (left) and maximum (right) of solitons with the endstate equal to the liquid Maxwell point
(voo = 58.678).

in Figure[4 (and the width of the soliton tends to infinity, as the orbit stays longer and longer in the
neighborhood of the vapor saddle point). Whentends to the maximal valugy,, the amplitude

of the soliton tends to 0 (which corresponds to the coincidence of the points daposed vy
before). As far as we have approached the integSal Si/), we have obtained a convex graph of
the moment of instabilityz. Now, when the endstate is taken closer and closer to the Maxwell
liquid point, the minimal values,, approaches 0. Figufé 8 shows that for the endstate equal to the
Maxwell liquid point, the graph of the moment of instabilityexhibits a lack of convexity near 0.
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FIG. 9. Moment of instability (left) and minimum (right) of solitons with the endstate equal to the vapor saddle point of
Figure§3 anflj4io = 201179).
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FIG. 10. Moment of instability (left) and minimum (right) of solitons with the endstate equal to a vapor metastable point
(voo = 180).

Computations with really metastable states instead of the limiting Maxwell point have given similar
results. This suggests that the temperate mixed liquid solitons of low “speed” (in fact, physically
of low mass transfer) are unstable. A similar result is known for solitons in the Boussinesq water
waves theory([9].

REMARK 11 Figurg 9 concerns temperate mixed vapor solitons, where the endstate is in the stable
vapor phase. They exist again fof in some finite intervalS,,, Sy), and whenc? tends to the
minimal values,,, the minimum of the soliton tends to the liquid saddle point of the hereteroclinic
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FiG. 11. Moment of instability (left) and maximum (right) of solitons with the endstate equal to the liquid saddle point of
Figure§% anfij5uc = 50.018).

connection in Figurg]4. The graph of the moment of instability looks more complex, being convex

for either low or large “speed”, but concave in between. The region of concavity seems to correspond
to when the minimum of the soliton lies in the metastable or unstable region. However, this rough
observation is not confirmed in FigJre] 10, which concerns also temperate mixed vapor solitons but
with a metastable endstate. Indeed, if the graph displays a concave part neae= 0, it also has

a convex part for large enougl, even though the minimum of the soliton is always metastable.

REMARK 12 Figur shows what happens for large mixed liquid solitons. They exist fior

some interval So, S,,), the maximum valuss,, corresponding to a break down of the homoclinic
orbit into a set composed of the hereteroclinic connections in Figure 4 and a pure vapor homoclinic
connection. The graph of the moment of instability of those rather unusual solitons has shown no
failure of convexity, suggesting that they are all stable.

3.3.b Kinks. We now turn to the stability analysis of a kitk = (v, ) with endstated)_ =
(v—,u_),U; = (v4, us) and speed. We consider the functionals

+00
HU: U] :=/ (H(U, 3U) — H(U, 3U)) d&,

+00
Q[U] 3=/ (vu —vu) dé,

—00

+00 +0
A= [ Co-nd Pl [ w-wds
—c0 —00
They are well defined on the dense subset of the affine dpace H! x L2) made of functions
U such thatU — U belongs toL! x L1. (Note that this property is useful not only f& but also
for H because of the non-linear term in which is asymptotically linear, unlike what happens
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for solitons.) We call,g the Lagrange multiplier associated with the quadratic functighathat
is, Ao = o in the Eulerian framework okg = —o in the Lagrangian framework. The other two
Lagrange multipliers).1, A2, associated wittP; and P, respectively, are defined by

Ai = BH[UL] + 0J.Uy);, i=12,

the choice of thet sign being indifferent due to the jump conditions (necessary for the profile to
exist). Then we define a compound functional

Fi=H— 29 — A1P1— A2Po.

It will be crucial in the following thatF does not change when the profile is translated, which
amounts to requiring that

HU4+,0) — Aovpuy — Avy — douy = HU_,0) — Aov_u— — A1v— — Apu_.
But this is an easy consequence of the equation defining the profile
(8H — 208 Q — A18P1 — 228P2)[U] = 0.

Indeed, taking the inner product of this equation akband integrating ofR we get the equality
above using the fact that

[ou-smur = [acw.0w) = .0 - HU-.0,

and similarly

/8Q-8Q[Q] =vius —v_u_, /8Q'5731[Q] =vy —v_, /aga%[g] =up —U_.
As a conseqguence of this invariance property, we have
FIOW] = FlU =0

for all r. Therefore, by Lemmag|1 ar{d % is well defined—the integral being at least
semiconvergent—and remains equal to 0 along any solutiop of](3.15) sucbl thell belongs
to C([0, T]; H® x H?®)—or equivalentlyy — U € C([0, T]; H® x H2)—andU(0) — U(0) belongs
toLl x L.

In the framework of Lemmf|3, we have the following properties.

(P1) The endstated.. are hyperbolic fixed points of the ODE
(6H — 208 Q — A18P1 — A28P2)[U] = 0.
(P2) The set of solutions of the “boundary value problem”

(6H — 208Q — A18P1 — A28P2)[U] =0,
U(do0) = Uy

is the one-dimensional manifoldl := {U = U

U; s € R} whereU is a fixed profile and
U§) =UE + ).
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(P3) The functional
FlU] = f(H(U, oU) — H(U, 0U) — Ao(vu — yu) — A1(v — v) — A2(u — u))

is independent of for U = U(r) any (classical) solution of (3:15) such that- U belongs to
C([0, T]; H® x H? andU(0) — U(0) belongs taL! x L1. Furthermore, it equals 0 along the
manifoldM, as does its variational gradient.

(P4) The Hessian ofF is a monotone operator at all pointsidf. Furthermore, there exists> 0
such that for alk € R andU € D(R) with [ vy, =0,

f O HessFIU,] - U > c(l911 + il 220z

(The fact that is independent of trivially follows from the fact thatd* norms are invariant under
translation.)

Assuming[[P1}(P4), we now investigate therbital stability of the traveling wave solution
(x,1) > U(x, 1) = U(x — o) of 3.15).

Our method is very much inspired from the solitary waves stability analysis. In particular, we
first show a lemma that will enable us to “factor out” the translation alhdt is analogous to
Lemma 3.2 p. 169 ir [18] (or Lemma 4.1 p. 405(in[10]), the main difference being that we have to
work in an affine spactl + H*(R) instead of merelyZ* (R).

LEMMA 5 For any non-constant functidii tending exponentially fast t&/1 at +oo, for k > 0,
there existg > 0 and a smooth function

St U, ={U € U + H*(R); inﬂf{ IU = Ugllgrwy < €} — R
NS

such that

e [(Us,w)—U)dU =0forallU € Uy,
o S (Uy) =8(U) —rforallr e R.

Proof. We recall that the notatiotl for any functionU stands for the function translated bythat
is, Us;(§) = U (£ + s). Applying the implicit function theorem to the mapping

(5, U) > / Uy — U)o

about(s, U) = (0, U), we finde > 0, a neighborhoodV, of 0 in R, a neighborhood, of 0 in
H¥(R) and a functionS; defined onV, such that

(/(US—Q)8Q=Oands ewg,UngrVg) & 5 =8(U).

Now, by the invariance of théf* norm under translatiori/ e U, + V, is equivalent toU_; €
U + V.. Consequently, we have

</(US_, —U)aU =0ands e W,,U_, € U +Vg) & 5 =SU_y).
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So we may define
Sk(U) =S (U-) —1t,

with values in—t + W;. This extends smoothlg; to

Ue ={U €U+ H'®); inf U = Ul <e),
as claimed—provided that the ball of center 0 and radiissincluded inV,. Moreover, the setl,
is by construction invariant under translation, and fotalk U, andr € R,

Sk(Ur) = Sk (Up—y) —t
if U- € U, +V,, which is equivalent t&/ € U,_, + V, and thus implies
Sk(U) = Sk (Ur—y) — (t — ).
Taking the difference between these two equalities, we get the expected formula
Se(Uy) = S (U) — . O

The next step is to expand the functioal Brutal Taylor expansion is not valia priori because
F is not defined on the whole spadec U + (H?(R) x L2(R)). However, we may expand each of
the integrands separately. In this way, we find that fordny U + (H2(R) x L2(R)), as soon as
the integral inF[U] is convergent,

FIU] = f (BFIU]- (U - U) + (U — U)HessF[U] (U — U)

+a, M =)+ BV, MO = )2V — 1) + ¥y, V)V — )@ — Iv)?)

where theL*> norms of the coefficienta, g andy depend continuously offw — v| =), and
on ||v|lze (), Which is fixed. SinceF[U,] = 0 the same expansion holds true willreplaced by
U, for anys. And by[(P2},  F[U,] = 0, so the first term is null. Therefore, [f?4), the Sobolev
embeddingd! < L and Lemmﬂs, foM > 0 small enough, there existy, so that

FIUL = elb = vl + 10 = ull2om) — CullV = il g,

v

||Tj — H”LOQ(R) <M, with U = <I/t> = US;L(U)-

In particular, if
IV — vl grwy < min(c/(2Cy), M),

then .
~ 2 ~ 2

THEOREM3 Assume thadfPTH{P4] hold true. There exists; > 0 such that for alk € (0, &1]
there exists) > 0 so thatifU e U + C([0, T); H® x H?) is a solution of[(3.15) with

max(U0) — Ul g1y 2, VO) = Ullz1, 1) <

then
inf U@ — U llgiyge <¢
seR

forallz € [0, T).
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Proof. By[(P3)and the inequality obtained just before the statement of the theorem, we have
C i~ ~
FIUO] = FIUO] > ST = 2l + 170 — 7))

as long as

15t = vl gy < £1:= min(e/(2C1), 1).
Note that by continuity of the map

vev+ V. V=g €v+ H(R),
we have initially

IV0) — vlpw) < e1

provided that
v(0) = viigiw) < Mo

with 5o (less than the of Lemmd%) small enough.
Takess € (0, £1]. SinceF is continuous oi{H! x L?) N (L1 x LY), there exists; € (0, 5]
such that
max([[U(0) — Ull g1, 2, IUO) —Ull1, 1) <7

implies
FIUO)] < %8%
Therefore, for alk € [0, T), _
IU@) — Ullgiy 2 < €2

Recalling thaﬁ(t) is a translate obJ(¢), this completes the proof. O

Appendix A. Selection of Hamiltonian operators by Olver’'s method

We first consider a one-dimensional differential operafioracting on functionals of dependent
variables(v, u, w) and taking the form

0 a(u)D, 0
A =] Dya(u) 0 D.b(w)D, |,

0  —D.b(u)D, 0

where D, stands for the total derivative with respect to the single independent variadnhela and
b are arbitrary scalar functions af = (v, u, w). The operatord is obviously skewsymmetric for
the L2 inner product.

Recall from [30, p. 444] the following

THEOREM4 The bracket., -} acting on functional® : u +— [ P[u]dx, Q :u+ [ Q[u]dx as

{P,Q}:umr— fSP[u] - AsQ[u] dx
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satisfies Jacobi’s identity if and only if
/pr V9@ AAB)dx =0,

where® = (n,0,¢),n = dv, & = du, ¢ = dw being “canonical” 1-forms,40 has three
components.A0)*, (40)2, (A0)3 defined by letting4 act oné through the formulae

Dy,n=n,:=dvy,, D,0=0,:=du,, D,¢=¢ :=dw,, etc,
the wedge produd@ A A6 stands for the extended 2-form
O AAO =1 A (A +6 A (A0)% + ¢ A (A0)3,
andv 4 ¢ is the vector field
ViAo = (Ae)laa—v + (AO)Z% + (Ao)S%,

prolongated to

0 0 0
+ Dy ((A0)%) — + Dy ((A8)>) — + - -,
Bvx aux awx

Pr Ve =V.ag + Di((A0)
which acts on extended 2-forms as an exterior differentiation.

Using this theorem, it is rather easy to discriminate among skewsymmetric operators those
which satisfy Jacobi’s identity. In fact, it can be cumbersome to write dbwn v 4 (0 A A0) dx.
Instead, as suggested by Olver, one may observe that

/pr Va0 AAB)Dx =2pr Vyue®, 6O :=%/(0/\A9)dx,

whose expression can be greatly simplified through integrations by parts.
In our case, we have

(A = a(W)by,  (A0)% = Dy(a(U)n) + Dx(b(U)Ey),  (A8)3 = —D,(b(U)6y),
d d d
Ve = (@(WO) 5= + Dx(@(Wi + bWed) o = D (W) 7,
and® reduces to
O = /(a(u)n A By + b, A 6y) dr.

Therefore,
pr V490 =V400,

where there are still many termsdfandb do depend on the three variables. Howeves, #ndb
depend only on the first dependent variableve find that

pr v 40 = /a(v)a’(v)@x ANABy +a@)b' (V)0 ALy AB)dx =0



KORTEWEG MODELS AND STABILITY OF INTERFACES 411

because of, appearing twice in the wedge products. This applies in particular to the opgrator
SectiorLB.
We now consider the multidimensional operator of Sedtioh 1.1 (save for the minus sign)

0 div 0
J=1V 0 sV
0 divs- O

with dependent variable®, u, S), ands = S/p. Of course there is a multidimensional version of
Theorenj #, which is actually the one given(in|[30]. To apply it, we need notations. We denote here
by ul, 2, u® the components of the velocity field andy = dp, 6' = du’, ¢ = dS,

Dyn=nj = dvy, Dyb =6 = du;j, D¢ =&y == dSy, etc

And hered stands for(n, 61, 62, 63, ¢). We have
L2 9 1 2 3., 0
V7 = (0] +05+ 93)% + /221(77]‘ +S§j)ﬁ + (Dx; (5607) + Dy, (s6° + Dyy(s6 ))ﬁ

and

3
ONTO=nAO+65+63) + Y 67 A +55) +¢ A Dy (s6Y) + Dy (6% + Dig (56%)).
j=1

Therefore® reduces to
e =/s(91A§1+92A§2+93A{3)dx,
and

pr V.7 eO = /((%)(911 +62463) + <§—;>(Dxl(s91) + D, (s6% + st(se3))))

AOYA L+ 0% A Lo+ 03 A £3) dr.

Since
0 0 0
S S 0 S

— ﬁz

s =
oo oS v

’

the only remaining terms ipr vz ,® are of the form

/U(Qi /\QJ A\ (Sx,-{j _sxjé‘i))dx'

Sopr v74® is zero in dimension one only.
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Appendix B. Application of the Sturm—Liouville theory to £

We do the computation in the Lagrangian framework, in which

M o
(7 1)
and the Sturm-Liouville operatovi = M — o2 is known to have the following properties: 1) since
the endstate of the solitdd is subsonic the essential spectrumidfis positive and bounded away
from zero; 2) the first derivative of the profile which has only one zero, is in the kernel/of. From
the Sturm—Liouville theory [32], this implies thatl admits exactly one negative eigenvalugand
that the eigenvalues different fropp and O are positive. Furthermore, the eigenspace associated

with o is spanned by a positive eigenfunction. Assume now thHata negative eigenvalue df,
with eigenvectoKw, w)’, that is,

<% i) ($>=A<$) (B.28)

M —1-0?)
N r—1
which means that the negative numhéx — 1 — 02) /(A — 1) must be an eigenvalue g#{. Hence

Eliminatingw we obtain

M-w

)

AL —1—02)

P

Conversely, there exists a unique negative numbsatisfying the equality above, since the second
order polynomial
A2 — AL+ 0%+ wo) + 1o

has a unique negative root.

REMARK 13 From the dimensional point of view, this computation looks incorrect. In fact, we can
restore the physical homogeneity of equations by inserting a scaling factor (homogene8Listo
the first row of the right-hand side if (B]28). The vector solutibnobtained this way will not
exactly be an eigenvector df, but it will satisfy

/W*ﬁW < 0,

which is precisely what we need in the proof of Proposifipn 4.

REFERENCES

1. ABEYARATNE, R. & KNOWLES, J. K. Kinetic relations and the propagation of phase boundaries in
solids. Arch. Rat. Mech. Anafl14(1991), 119-154. Zbl 0745.73001 MR 1094433

2. ANDERSON D. M., McFADDEN, G. B., & WHEELER, A. A. Diffuse-interface methods in fluid
mechanicsAnnual Review of Fluid Mechanicgol. 30, Annual Reviews, Palo Alto, CA (1998), 139-165.
MR 1609626


http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0745.73001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1094433
http://www.ams.org/mathscinet-getitem?mr=1609626

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

KORTEWEG MODELS AND STABILITY OF INTERFACES 413

. ARNOLD, V. |. & KHESIN, B. A. Topological Methods in Hydrodynamicéppl. Math. Sci. 125,

Springer, New York (1998). Zbl 0902.76C001 MR 1612569

. BENJAMIN, T. B. Impulse, flow force and variational principleBMA J. Appl. Math.32 (1984), 3—68.

Zbl 0584.76001 MR 0740456

. BENZONI-GAVAGE, S. Linear stability of propagating phase boundaries in capillary fluthys. D155

(2001), 235-273.

. BENZONI-GAVAGE, S., DANCHIN, R., & DEScOMBES S. Well-posedness of multi-dimensional

Korteweg models. In preparation (2004).

. BENZONI-GAVAGE, S., DANCHIN, R., & DESCOMBES S. Well-posedness of one-dimensional Korteweg

models. Preprint (2004).

. BETHUEL, F., ORLANDI, G., & SMETS, D. Vortex rings for the Gross—Pitaevskii equatidnEur. Math.

S0c.6 (2004), 17-94.[ Zbl pre02075123 MR 2041006

. BONA, J. L. & SACHS, R. L. Global existence of smooth solutions and stability of solitary waves for a

generalized Boussinesq equati@@mm. Math. Phy4.18(1988), 15-29.| Zbl 0654.35018 MR 0954673
BoNA, J. L., SOUGANIDIS, P. E., & STrRAUSS, W. A. Stability and instability of solitary waves
of Korteweg—de Vries type.Proc. Roy. Soc. London Ser. 441 (1987), 395-412. | Zbl 0648.76005
MR 0897729

BoussINESQ J. Theorie des ondes et des remous qui se propagent le long d’'un canal rectangulaire
horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la
surface au fondJ. Math. Pures Appll7 (1872), 55-109.] JFM 04.0493.04

BRESCH D., DESJARDINS B., & LIN, C.-K. On some compressible fluid models: Korteweg,
lubrication, and shallow water systemsComm. Partial Differential Equation28 (2003), 843-868.
Zbl pre01912722Z MR 1978317

CHALONS, C., COQUEL, F., DEHAIS, G., AMET, D., & LEBAIGUE, O. Extended formulations for van
der Waals models. Application to finite volume methods. In preparation.

CONSTANTIN, A. & STRAUSS, W. A. Stability of peakonsComm. Pure Appl. Matts3(2000), 603—610.
Zbl 1049.35149 MR 1737505

DaNCHIN, R. & DESJARDINS B. Existence of solutions for compressible fluid models of Korteweg type.
Ann. Inst. H. Poinca& Anal. Non Ligaire 18 (2001), 97-133.| Zbl 1010.76075 MR 1810272

DunN, J. E. & SERRIN, J. On the thermomechanics of interstitial workimgych. Rat. Mech. AnaB8
(1985), 95-133.| Zbl 0582.73004 MR 0775366

GAVRILYUK , S. & GouIN, H. Symmetric form of governing equations for capillary fluid&ends in
Applications of Mathematics to Mechanid¢ice, 1998), Chapman & Hall/CRC Monogr. Surv. Pure Appl.
Math. 106, Chapman & Hall/lCRC, Boca Raton, FL (2000), 306—-311. Zbl 0973.35152 MR 1734893
GRILLAKIS, M., SHATAH, J., & STRAUSS, W. Stability theory of solitary waves in the presence of
symmetry. .J. Funct. Anal74(1987), 160-197., Zbl 0656.35122 MR 0901236

HaTTORI, H. & L1, D. Global solutions of a high-dimensional system for Korteweg materialslath.
Anal. Appl.198(1996), 84—97.| Zbl 0858.35124 MR 1373528

HowaRD, P. & ZUMBRUN, K. Pointwise estimates and stability for dispersive-diffusive shock waves.
Arch. Rat. Mech. Anall55(2000), 85-169.

HowARD, P. & ZUMBRUN, K. Stability of undercompressive shock profilésch. Rat. Mech. Analto
appear.

HuanGg, F., LI, H., MATSUMURA, A., & ODANAKA, S. Well-posedness and stability of multi-
dimensional quantum hydrodynamics for semiconductoRSinPreprint (2003).

JAMET, D., LEBAIGUE, O., CouTRIS, N., & DELHAYE, J. M. The second gradient method for the direct
numerical simulation of liquid-vapor flows with phase change Comput. Physl69 (2001), 624-651.
Zbl'1047.76098 MR 1836527


http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0902.76001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1612569
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0584.76001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0740456
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=02075133&format=complete
http://www.ams.org/mathscinet-getitem?mr=2041006
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0654.35018&format=complete
http://www.ams.org/mathscinet-getitem?mr=0954673
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0648.76005&format=complete
http://www.ams.org/mathscinet-getitem?mr=0897729
http://www.emis.de/cgi-bin/jfmen/MATH/JFM/quick.html?first=1&maxdocs=20&type=html&an=JFM%2004.0493.04&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=01912722&format=complete
http://www.ams.org/mathscinet-getitem?mr=1978317
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1049.35149&format=complete
http://www.ams.org/mathscinet-getitem?mr=1737505
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1010.76075&format=complete
http://www.ams.org/mathscinet-getitem?mr=1810272
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0582.73004&format=complete
http://www.ams.org/mathscinet-getitem?mr=0775366
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0973.35152&format=complete
http://www.ams.org/mathscinet-getitem?mr=1734893
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0656.35122&format=complete
http://www.ams.org/mathscinet-getitem?mr=0901236
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0858.35124&format=complete
http://www.ams.org/mathscinet-getitem?mr=1373528
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1047.76098&format=complete
http://www.ams.org/mathscinet-getitem?mr=1836527

414 S. BENZONI-GAVAGE ET AL.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

39.

40.

JAMET, D., TORRES D., & BRACKBILL, J. U. On the theory and computation of surface tension: the
elimination of parasitic currents through energy conservation in the second-gradient mktGaanput.
Phys.182(2002), 262—-276. Zbl 1058.76597

KaTo, T. Quasi-linear equations of evolution, with applications to partial differential equat8pestral
Theory and Differential Equation®undee, 1974), dedicated to Konrattgens, Lecture Notes in Math.
448, Springer, Berlin (1975), 25-70. Zbl 0315.35077 MR 0407477

KORTEWEG, D. J. Sur la forme que prennent leguations des mouvements des fluides si I'on tient
compte des forces capillaires cées par des variations de deésibnsi@rables mais continues et sur la
théorie de la capillaré& dans I'hypotkse d’une variation continue de la deaésif\rch. Neer. Sci. Exactes
Sér. 11 6 (1901), 1-24.| JFM 32.0756.02

LEFLOCH, P. G. Hyperbolic Systems of Conservation Laws. The Theory of Classical and Nonclassical
Shock Waved.ectures in Math. ETH drich, Birkhauser, Basel (2002). Zbl 1019.35001 MR 1927887
Li, H. & MARCATI, P. Existence and asymptotic behavior of multi-dimensional quantum hydrodynamic
model for semiconductor€€omm. Math. Phy45(2004), 215-247. Zbl pre02048127 MR 2039696
Mascia, C. & ZUMBRUN, K. Pointwise Green function bounds for shock profiles of systems with real
viscosity. Arch. Rat. Mech. Anall69(2003), 177-263./ Zbl 1035.35074 MR 2004135

OLVER, P. J. Applications of Lie Groups to Differential Equatiarand ed., Grad. Texts in Math. 107,
Springer, New York (1993). Zbl 0785.58003 MR 1240056

PEGo, R. L. & WEINSTEIN, M. |. Eigenvalues, and instabilities of solitary wavédzhilos. Trans. Roy.
Soc. London Ser. 840(1992), 47-94.] Zbl 0776.35065 MR 1177566

PROTTER, M. H. & WEINBERGER H. F. Maximum Principles in Differential EquationSpringer, New
York (1984). Corrected reprint of the 1967 originel. Zbl 0549.35002 MR 0762825

ROWLINSON, J. S. Translation of J. D. van der Waals’ “The thermodynamic theory of capillarity under
the hypothesis of a continuous variation of density"Statist. Phys20 (1979), 197-244.] MR 0523642
RowLINSON, J. S. & WiDoM, B. Molecular Theory of Capillarity Oxford Univ. Press (1982).

Snol/, E. Behavior of eigenfunctions and the spectrum of Sturm-Liouville operdtersekhi Mat. Nauk
(N.S.)9 (1954), no. 4, 113-132 (in Russian). Zbl 0056.34401 MR 0068077

TRUESDELL, C. & NoLL, W. The Nonlinear Field Theories of Mechani@nd ed., Springer, Berlin
(1992). | Zbl 0779.73004 MR 1215940

WEAST, R. C., & ASTLE, M. J. (eds.) CRC Handbook of Chemistry and PhysidS8RC Press, Boca
Raton, FL (1980).

ZUMBRUN, K. Dynamical stability of phase transitions in thesystem with viscosity-capillaritySIAM

J. Appl. Math.60(2000), 1913-1924/ Zbl 0973.35183 MR 1763309

ZUMBRUN, K. Multidimensional stability of planar viscous shock wavesdvances in the Theory of
Shock WavedProgr. Nonlinear Differential Equations Appl. 47, Bigiser Boston, Boston, MA (2001),
307-516. | Zbl 0989.35089 MR 1842778

ZUMBRUN, K. & HowARD, P. Pointwise semigroup methods and stability of viscous shock waves.
Indiana Univ. Math. J47 (1998), 741-871.] Zbl 0977.35060 MR 1800304


http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1058.76597&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0315.35077&format=complete
http://www.ams.org/mathscinet-getitem?mr=0407477
http://www.emis.de/cgi-bin/jfmen/MATH/JFM/quick.html?first=1&maxdocs=20&type=html&an=JFM%2032.0756.02&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1019.35001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1927887
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=02048127&format=complete
http://www.ams.org/mathscinet-getitem?mr=2039696
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1035.35074&format=complete
http://www.ams.org/mathscinet-getitem?mr=2004135
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0785.58003&format=complete
http://www.ams.org/mathscinet-getitem?mr=1240056
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0776.35065&format=complete
http://www.ams.org/mathscinet-getitem?mr=1177566
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0549.35002&format=complete
http://www.ams.org/mathscinet-getitem?mr=0762825
http://www.ams.org/mathscinet-getitem?mr=0523642
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0056.34401&format=complete
http://www.ams.org/mathscinet-getitem?mr=0068077
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0779.73004&format=complete
http://www.ams.org/mathscinet-getitem?mr=1215940
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0973.35183&format=complete
http://www.ams.org/mathscinet-getitem?mr=1763309
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0989.35089&format=complete
http://www.ams.org/mathscinet-getitem?mr=1842778
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0977.35080&format=complete
http://www.ams.org/mathscinet-getitem?mr=1800804

	Hamiltonian structures for Korteweg models
	A general model in Eulerian coordinates
	Eulerian capillary models
	Lagrangian capillary models

	Traveling wave solutions of Korteweg models
	Stability of kinks and solitons
	Variational approach to traveling profiles
	Spectral stability of capillary profiles
	Orbital stability of capillary profiles
	Solitons
	Kinks


	Selection of Hamiltonian operators by Olver's method
	Application of the Sturm--Liouville theory to L

