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Structure of Korteweg models and stability of diffuse interfaces
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The models considered are supposed to govern the motion of compressible fluids such as liquid-
vapor mixtures endowed with a variable internal capillarity. Several formulations and simplifications
are discussed, from the full multi-dimensional equations for non-isothermal motions in Eulerian
coordinates to the one-dimensional equations for isothermal motions in Lagrangian coordinates.
Hamiltonian structures are pointed out in each case, and in the one-dimensional isothermal case, they
are used to study the stability of two kinds of non-linear waves: the solitary, or homoclinic waves,
and the heteroclinic waves, which correspond to propagating phase boundaries of non-zero thickness,
also called diffuse interfaces. It is known from an earlier work by Benzoni-Gavage [Phys. D, 2001]
that the latter are (weakly) spectrally stable. Here, diffuse interfaces are shown to be orbitally stable.
The proof relies on their interpretation as critical points of the Hamiltonian under constraints, whose
justification requires some care because of the different endstates at infinity. Another difficulty
comes from higher order derivatives that are not controlled by the Hamiltonian. In the case of a
variable capillarity, our stability result unfortunately does not imply global existence. As regards the
solitary waves, which come in families parametrized by the wave speed, they are not stable from the
variational point of view. However, using a method due to Grillakis, Shatah and Strauss [J. Funct.
Anal., 1987], it is possible to show that some solitary waves, depending on their speed, are orbitally
stable. Namely, the convexity of a function of the wave speed calledmoment of instabilitydetermines
the stability of solitary waves. This approach, already used by Bona and Sachs [Comm. Math. Phys.,
1988] for the Boussinesq equation, is here adapted to solitary waves in Korteweg models, which
are first classified according to their endstate and internal structures. The corresponding moments of
instability are computed by quadrature. They exhibit both convexity and concavity regions.
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Introduction

The aim of this paper is to investigate the asymptotic behavior of Korteweg models for compressible
fluids endowed with internal capillarity and possibly exhibiting phase changes. The models we
consider are originated from the XIXth century work by van der Waals [33] and Korteweg [26] and
were actually derived in their modern form in the 1980s using the second gradient theory (see for
instance [36, 23]). We point out that special cases of these models have also arisen in other contexts,
e.g. in the water waves theory and more recently in quantum hydrodynamics. Our main motivation
comes from compressible fluids though, especially liquid-vapor mixtures with phase changes, and
we are interested in the propagation of two kinds of non-linear waves in those media: the solitary
waves, which are perturbations with a limited expanse propagating in a single stable phase, and the
propagating boundaries between two stable phases.

A feature of Korteweg models is that they allow “phase boundaries” of non-zero thickness, often
calleddiffuse interfacesby contrast with sharp interfaces in the Laplace–Young theory. The actual
width of a liquid-vapor interface is extremely small far away from the critical point, but becomes
infinite when the critical temperature is approached from below. (Recall that the “phases” of a
fluid are indistinguishable at temperatures larger than a critical temperature, whose value varies
from one fluid to another.) The relevance of diffuse interfaces is thus clear near critical point.
Furthermore, Korteweg’s theory of capillarity provides an intrinsic way—differently from Laplace–
Young’s theory—of incorporatingsurface tensionin the models. The interest for diffuse interfaces
has been renewed in the late 1990s for numerical reasons. Indeed, across the diffuse interfaces,
all the physical variables encounter possibly strong but nevertheless continuous variations. This
property allows one to solve the same system of continuous equations everywhere, this system
governing the motion of all the “interfaces” regardless of their topology. This feature avoids the
numerical difficulties associated to the resolution of moving boundaries problems associated to
multi-phase systems (see [2] for a nice review). However, the development of efficient and accurate
numerical schemes requires some mathematical knowledge of the system of PDEs to be solved. In
particular, stability issues are of special interest.

The mathematical analysis of Korteweg models is rather recent. One may quote only a few
papers [12, 15, 19], in which non-zero viscosity and its regularizing effects play a fundamental role.
Even more recently, advances have been made in the context of quantum hydrodynamics, in which
the equations involve some sort of dissipation—namely, relaxation—and a special, though non-
constant capillarity coefficient [28, 22]. In a companion paper [7] we have addressed the analysis of
purely capillary models with variable capillarities. Here we concentrate more on algebraic aspects of
these models, and in particular on their Hamiltonian structure. Using Olver’s method [30], we show
that the natural Hamiltonian formulations—those associated with total energy—are compatible with
Jacobi’s identity only in dimension one (see Section 1). Further investigations would consist in
looking for additional structures. These are known to exist for the Boussinesq equation, which may
be viewed as a special case of the models we consider, but they are far less natural than the one
associated with the total energy.

Hamiltonian Korteweg models admit several kinds of traveling wave solutions, mainly
homoclinic (or solitary) waves, heteroclinic waves, and periodic waves. This is easily shown by
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means of a phase portrait analysis of the governing ODEs, which are themselves Hamiltonian. We
concentrate here on homoclinic waves, also called solitons, and heteroclinic waves, which we call
kinks. We propose a classification of solitons according to various parameters, depending on the bulk
phase and on whether the fluid is compressed or expanded inside the “bump”. Propagating phase
boundaries belong to kinks, but there are also kinks which cannot be termed phase boundaries,
as they occur in fluids above the critical temperature. Both kinds of waves, solitons and kinks,
are characterized by a persistent shape, or profile, traveling at constant speed and which is flat
at infinity because the endstates are (generically) hyperbolic fixed points of the governing ODEs.
There is however a very important qualitative difference between those waves. Indeed, for fixed
endstates, solitons come in one-parameter families (parametrized by the mass transfer flux across
the wave, or equivalently by the speed of the wave) whereas kinks are uniquely determined by
either one of the endstates. From a spectral stability point of view, the second situation is better,
as we show in Section 3, and therefore the non-linear stability analysis is to some extent simpler.
For solitons, a more sophisticated tool is needed to circumvent the difficulty associated with an
unstable eigenvalue. Such a tool was introduced in an abstract setting by Grillakis, Shatah and
Strauss [18], and applied in [9] to the water waves governed by the Boussinesq equation. A slight
generalization makes it available in our context. After Boussinesq and Bona–Sachs [9], we call that
tool themoment of instabilityof a solitary wave. It defines a smooth function on the manifold of
solitons, and in particular along the curves made of solitons having the same endstates. Its local
convexity along such a curve determines the stability of a soliton.

In a prior work [5], Benzoni-Gavage investigated the spectral stability of heteroclinic profiles
in several space dimensions. The main result is that the spectrum of the spatial operator in the
linearized equations about a given heteroclinic profile coincides with the purely imaginary axis. This
is a rather strong result, which relies on tricky energy estimates. However, the route to non-linear
stability is far from being obvious. In particular, the techniques developed recently by Zumbrunet
al. for other kinds of heteroclinic traveling waves, in particular for viscous shocks [40, 39, 29, 21]
or diffusive-dispersive shocks [20], do not apply. Indeed, the presence of essential spectrum on the
whole imaginary axis precludes contour shiftings and steepest descent techniques (although these
techniques are likely to work for dissipative diffuse interfaces, for which we unfortunately lack
information on spectral stability).

In one space dimension however, the Hamiltonian framework helps. Indeed, traveling profiles
may be viewed as critical points of the Hamiltonian under constraints, these constraints being
linked to additional conservation laws. We use this crucial observation here to define the moment
of instability m of any soliton. Furthermore, we point out thatm can be evaluated in the phase
plane, without knowing explicitly the profile of the soliton. (In fact,m appears to coincide with
what is usually recognized as surface tension in equilibrium phase boundaries!) In other words,m

is given by a definite integral, which can be evaluated numerically with high precision. Then it is
easy to check numerically, or even graphically, whether the graph ofm over solitons with the same
endstates is convex. We provide plots ofm for the various classes of solitons we have identified.
Those which propagate in stable phases, regardless of the stability of the states inside the bump,
appear to be stable. Of course by stable we mean onlyorbitally stable, because of the translational
invariance. Moreover, in the most general, quasilinear case the stability is limited in time, because
the Hamiltonian does not control the “high norm” in which we have local-in-time existence [7]
(our stability result is to some extent similar to one known for peakons [14] in the Camassa–Holm
equation). When the capillarity coefficient is such that the PDEs are semi-linear, this difficulty can
be overcome by means of higher order energy estimates [9], and in this case the stability is global
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in time. Even in this case though, the stability is weaker than in the presence of dissipation: there is
no control of the asymptotic shift, nor a decay rate.

As regards heteroclinic profiles, the stability analysis does not require the functionm (even
though the surface tension to which it corresponds is certainly physically relevant). The important
point is that, unlike what happens for homoclinic profiles, the components of heteroclinic profiles
are monotone. This enables us to prove that the Hessian of the constrained Hamiltonian does not
have any negative eigenvalue. This is what we meant above by “better spectral stability”. On the
other hand, we have to deal with the different endstates. This requires some care in the definition of
the various functionals (the Hamiltonian and the constraints). Furthermore, the fact that the manifold
made of all translated profiles is unbounded in Sobolev spaces (or even inL2) is another obstacle to
global stability.

In several space dimensions, the non-linear stability of traveling profiles remains an open
problem, since no variational interpretation of profiles is available. As regards local-in-time
behavior, we refer to [6].

1. Hamiltonian structures for Korteweg models

1.1 A general model in Eulerian coordinates

Korteweg-type models are based on a non-local version of thermodynamics, which assumes that
the energy of the fluid not only depends on standard variables but on the gradient of the density. In
terms of the free energy for instance, this principle takes the form of a generalized Gibbs relation

dF = −S dT + g dρ + φ∗
· dw,

whereF denotes the free energy per unit volume,S the entropy per unit volume,1 T the temperature,
g the chemical potential and, in the additional term,w stands for∇ρ. The potentialφ is most often
assumed of the form

φ = Kw

whereK is called the capillarity coefficient, which may depend on bothρ andT . In this case,F
decomposes into a standard partF0 and an additional term due to gradients of density,

F(ρ, T ,∇ρ) = F0(ρ, T )+
1
2K(ρ, T )‖∇ρ‖

2,

and similar decompositions hold forS andg. We shall use this special form in our subsequent
analysis. For the moment we keep the abstract potentialφ and we define the Korteweg tensor as

K := (ρ div φ)I − φw∗.

Neglecting dissipation phenomena,2 the conservation of mass, momentum and energy read
∂tρ + div(ρu) = 0,
∂t (ρu∗)+ div(ρuu∗

+ pI) = div K ,
∂t (E +

1
2ρ‖u‖

2)+ div((E +
1
2ρ‖u‖

2
+ p)u) = div(Ku + W),

1 By convention, extensive quantities per unit volume are denoted by upper case letters, and their specific counterparts
will be denoted by the same lower case letters.

2 As regards heat conductivity, we are aware that this assumption is questionable.
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wherep = ρg − F is the (extended) pressure,E = F + T S is the internal energy per unit volume,
and

W := (∂tρ + u∗
· ∇ρ)φ = −(ρ div u)φ

is the interstitial working that was first introduced by Dunn and Serrin [16]. This supplementary
term ensures that the entropyS satisfies the conservation law

∂tS + div(Su) = 0.

(This is obtained through formal computation, for presumably smooth solutions.) There is also an
alternative form of the momentum equation (still for smooth solutions). Using the mass conservation
law and the relation

dg = −s dT + v dp + vφ∗
· dw,

with s the specific entropy andv the specific volume, we arrive at the convective equation

∂tu + (u∗
· ∇)u = ∇(div φ − g)− s∇T .

The resulting evolution system for(ρ,u, S) is ∂tρ + div(ρu) = 0,
∂tu + (u∗

· ∇)u = ∇(div φ − g)− s∇T ,

∂tS + div(Su) = 0.
(1.1)

Let us consider the total energyH := E +
1
2ρ‖u‖

2 as a Hamiltonian. Using the relation

dE = T dS + g dρ + φ∗
· dw,

the variational gradient of the (formal) Hamiltonian functional

H :=
∫
H dx

is easily found to be

δH =

 1
2‖u‖

2
+ g − div φ
ρu
T

 .

Therefore, the system (1.1) equivalently reads, for irrotational velocity fields,

∂t

ρu
S

 = J δH,

whereJ is the skewsymmetric differential operator

J =

 0 − div 0
−∇ 0 −s∇

0 − div s · 0

 .
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For the system to fall into the framework of infinite-dimensional Hamiltonian systems, the skew-
symmetry of the operatorJ , which has variable coefficients, is not sufficient. The additional
condition is thatJ be aHamiltonian operator, in the sense that the bracket defined for functionals
P andQ by

{P,Q} =

∫
δP · J δQdx

be a genuine Poisson bracket, satisfying the Jacobi identity

{{P,Q},R} + {{Q,R},P} + {{R,P},Q} = 0.

The direct verification of this identity is really tricky in general. Olver’s method [30] is a powerful
alternative way to do it. The required material and actual computations are given in Appendix A.

PROPOSITION1 The system (1.1) restricted to irrotational vector fields :

∂t

ρu
S

 =

 0 − div 0
−∇ 0 −s∇

0 − div s · 0

  1
2‖u‖

2
+ g − div φ
ρu
T


is not Hamiltonian, except in dimension 1.

Another interesting feature of the model (1.1) that was pointed out by Gavrilyuk and Gouin [17]
is its symmetrizabilitywhenH is convex. More details on the symmetrization may also be found
in [7].

We shall now concentrate on the reduced, isothermal model{
∂tρ + div(ρu) = 0,
∂tu + (u∗

· ∇)u = ∇(div φ − g).
(1.2)

The isothermal assumption, widely used in physics, facilitates the mathematical analysis of the
model. In particular, it yields a simplified Hamiltonian formulation, in which the skewsymmetric
operator defining the Poisson bracket has constant coefficients. Indeed, for irrotational velocity
fields (1.2) coincides with

∂t

(
ρ

u

)
= I δK, K =

∫
(F +

1
2ρ‖u‖

2)dx, I =

(
0 − div

−∇ 0

)
.

1.2 Eulerian capillary models

From now on, we assume that
φ = Kw.

Then we can write
g = g0 +

1
2K

′
ρ‖∇ρ‖

2,

whereg0 is independent of∇ρ. In particular, the isothermal model reduces to{
∂tρ + div(ρu) = 0,
∂tu + (u∗

· ∇)u = ∇(K∆ρ +
1
2K

′
ρ‖∇ρ‖

2
− g0),

(1.3)
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whereg0 andK are given, smooth functions ofρ (with K > 0). One may also write this system in
conservative form, noting that

p = p0 +
1
2(ρK

′
ρ −K)‖∇ρ‖

2, p0 = ρg0 − F0,

hence the (complicated) momentum equation

∂t (ρu∗)+ div(ρuu∗)+ ∇p0 = ∇(ρK∆ρ +
1
2(K + ρK ′

ρ)‖∇ρ‖
2)− div(K∇ρ ⊗ ∇ρ).

In one space dimension, the system (1.3) reduces to{
∂tρ + ∂x(ρu) = 0,
∂tu+ u∂xu = ∂x(K∂

2
xxρ +

1
2K

′
ρ(∂xρ)

2
− g0(ρ)).

(1.4)

It is interesting to note that models of this kind actually arise in various other contexts. In the
special case

K(ρ) =
1

4ρ
,

the system (1.3) is equivalent—for irrotational flows—to a non-linear Schrödinger equation known
as the Gross–Pitaevskii equation

i∂tψ +
1
2∆ψ = g0(|ψ |

2)ψ

for ψ =
√
ρeiϕ , ∇ϕ = u. See for instance [8], whereg0(ρ) =

1
4ρ

2. In [28, 22],K is also
proportional to 1/ρ, and there is almost no restriction ong0. One may also observe that, in one
dimension with

g0(ρ) =
1
4ρ, K(ρ) =

1

4ρ
,

the equations in (1.4) appear as an equivalent form of the so-called filament equation (see [3,
p. 353]).

1.3 Lagrangian capillary models

The one-dimensional isothermal model becomes even simpler in Lagrangian formulation.
Introducingy the mass Lagrangian coordinate so that1 dy = ρ dx − ρudt we obtain with a little
piece of calculus the—at least formally—equivalent system{

∂tv − ∂yu = 0,
∂tu+ ∂yp0 = −∂y(κ∂

2
yyv +

1
2κ

′
v(∂yv)

2),
(1.5)

with
κ(v) := K(1/v)(1/v)5.

In the special caseκ = constant, i.e.K = const· ρ−5, the system (1.5) is formally equivalent to the
(good) Boussinesq equation and is amenable to the theory of Kato [25] (see [9] for more details).

1 This change of variable may be justified rigorously for, say,C1 functions(ρ, u) andρ bounded away from zero.
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Our aim here is to deal with general capillarities, motivated by physical reasons—since there is no
reason forK to be proportional toρ5—as well as by the various analogies mentioned above.

Following an idea of F. Coquel [13], we rewrite the velocity equation as

∂tu+ ∂yp0 + ∂y(α∂yw) = 0, α =
√
κ, w = α∂yv,

and we easily find thatw satisfies the equation

∂tw − ∂y(α∂yu) = 0.

Consideringw as an additional unknown, we are led to the system ∂tv − ∂yu = 0,
∂tu+ ∂yp0 + ∂y(α∂yw) = 0,
∂tw − ∂y(α∂yu) = 0.

(1.6)

One may observe that (1.6) is again associated with a Hamiltonian formulation. Indeed,redefining
H as

H(v, u,w) = f0(v)+
1
2u

2
+

1
2w

2, f0 := vF0,

andH =
∫
H dx, we have

δH =

−p0(v)

u

w

 ,

and (1.6) coincides with

∂t

 v

u

w

 = A(v) δH, A(v) =

 0 ∂y 0
∂y 0 −∂yα(v)∂y
0 ∂yα(v)∂y 0

 .

The operatorA(v) is obviously skewsymmetric. Using again Olver’s method [30], we can check that
A(v) is indeed a Hamiltonian operator. This is due to the fact that the coefficientα appearing on the
second and third row does not depend on the second and third variables,u andw. See Appendix A
for the details.

2. Traveling wave solutions of Korteweg models

A traveling wave is by definition a solution that propagates the same profile at constant speed.
We are interested here in traveling waves achieving constants at infinity, which means that their
profile describes a connecting orbit of a certain system of ordinary differential equations. When the
connecting orbit ishomoclinic, that is, when the endstates are equal, the profile is usually called
a soliton. When the connecting orbit isheteroclinic, i.e. with different endstates, the profile is
sometimes called akinkand it is the term we shall use.

Both systems (1.4) and (1.5) do admit traveling wave solutions of both kinds, solitons and kinks.
This is related to the fact, proved in a general setting in [4, pp. 11–12], that the ODE systems
governing connecting orbits are themselves Hamiltonian. In fact, they reduce to planar Hamiltonian
systems, for which the phase portrait analysis is quite elementary.
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Let us consider first (1.4). A traveling wave of speedσ is a special solution of the form(ρ, u) =

(ρ(x − σ t), u(x − σ t)) with{
(ρ(u− σ))′ = 0,
(u− σ)u′

= (K(ρ)ρ′′
+

1
2K(ρ)

′ρ′
− g0(ρ))

′,
(2.7)

where′ denotes the derivative with respect toξ := x − σ t . Alternatively, the second equation may
be rewritten as

(ρ(u− σ)u+ p̃0(ρ))
′
= (ρK(ρ)ρ′′

−
1
2K(ρ)(ρ

′)2 +
1
2ρρ

′K(ρ)′)′. (2.8)

We have denoted herẽp0(ρ) = p0(1/ρ) to avoid confusion. We shall sometimes omit the tilde.
(Equation (2.8) may be obtained directly from the conservative form of the momentum equation, or
from a slight manipulation of (2.7).) The first equation in (2.7) implies thatρ(u− σ) ≡ const. This
constant must of course be equal toj := ρ±(u± − σ) if

lim
x→±∞

(ρ, u)(x) = (ρ±, u±).

In the case of a kink, the equalityρ−(u− − σ) = ρ+(u+ − σ) is consistent with the Rankine–
Hugoniot condition for the corresponding discontinuous traveling wave. In any case, the quantityj

corresponds to the mass flux of fluid across the moving boundaryx = σ t . Additionally, (2.8) shows
that for a kink attaining its limitsρ± fast enough so thatρ′ andρ′′ tend to 0 at infinity, we must have

ju− + p0(v−) = ju+ + p0(v+),

which is also part of the classical Rankine–Hugoniot condition. In particular forj = 0, that is, with
no mass flux across the moving boundary, the pressures on both sides must be equal. This is a well
known condition for the so-called static or equilibrium interfaces. In general, the elimination of the
speedsu± yields

j2
=
p0(v+)− p0(v−)

v− − v+
, (2.9)

which means that the slope of the chord between the endstates in the volume–pressure plane must
be negative. Physically, if the kink is a liquid-vapor interface, this means that the pressure must be
higher in the liquid, whatever the nature of the phase change (evaporation or condensation). Let us
now look at the second equation in (2.7). It implies

−K(ρ)ρ′′
−

1
2K(ρ)

′ρ′
+ g0(ρ)+

1
2u

2
− σu ≡ constant=: q,

and ifρ′, ρ′′ do vanish at infinity, the constantq must be equal to

g0(ρ−)+
1
2u

2
− − σu− = g0(ρ+)+

1
2u

2
+ − σu+. (2.10)

In the case of a kink, this equality isnota consequence of the Rankine–Hugoniot condition. Rather,
it is an additional relation, sometimes called the kinetic relation [1, 27]. One may observe that (2.10)
reduces tog0(ρ−) = g0(ρ+) whenj = 0. The equality of chemical potentials on both sides of an
equilibrium liquid-vapor interface is well known (see for instance [34, p. 42]). Equation (2.10) is just
a dynamical version of this relation. In order to write the profile equations as a planar Hamiltonian
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system, one may just eliminateu = j/ρ + σ and therefore obtain the second order differential
equation onρ:

−K(ρ)ρ′′
−

1

2
K(ρ)′ρ′

+ g0(ρ)+
j2

2ρ2
−

1

2
σ 2

− q = 0. (2.11)

Recalling that
dF0

dρ
= g0,

equation (2.11) admits the obvious first integral

−
1

2
K(ρ)(ρ′)2 + F0(ρ)−

j2

2ρ
−

(
1

2
σ 2

+ q

)
ρ.

The existence of homoclinic or heteroclinic orbits then depends on the parametersσ , j andq and
on the behavior of the functionF0—the functionK being only a matter of rescaling.

REMARK 1 Using the definitionj = ρ±(u± − σ) and recalling thatg0 = p0v − dp0/dv, the
equalities in (2.9) and (2.10) amount to requiring the equal area rule∫ v+

v−

{
p0(v)− p0(v±)+

p0(v+)− p0(v−)

v− − v+
(v − v±)

}
dv = 0. (2.12)

This relation is of course possible only for anon-convexfunctionp0, for instance the van der Waals
pressure law below critical temperature. In this case,p0 is also non-monotone and the corresponding
kink is a liquid-vapor interface. One may observe that equation (2.12) is a generalization to
dynamical phase boundaries of the well known Maxwell rule for equilibrium phase boundaries. In
addition, for the van der Waals pressure law there is a range of temperatures, just above the critical
temperature, for whichp0 is monotone and non-convex. Even though the corresponding kinks are
no longer interfaces our subsequent analysis applies to them.

Unsurprisingly, the purely thermodynamical equation (2.12) also arises when one looks for
traveling profiles of the Lagrangian model (1.5). We shall come back at the end of this section
to the relation between Lagrangian traveling waves and Eulerian traveling waves. For the moment,
we concentrate on the Lagrangian model (1.5), for which the discussion of traveling profiles is much
simpler and more or less standard. The profile of a traveling wave solution of “speed”τ—be careful
thatτ is nothomogeneous in a velocity—of (1.5) must satisfy the ODEs{

−τ v̇ − u̇ = 0,
−τ u̇+ ṗ0 = −(κv̈ +

1
2 κ̇ v̇)̇,

wherė denotes the derivative with respect toζ := y − τ t . Eliminatingu̇ we obtain

κv̈ +
1
2 κ̇ v̇ + p0 + τ2v ≡ constant.

For a kink, we obtain the Rankine–Hugoniot conditions corresponding to discontinuous
traveling wave solutions of thep-system:

u+ + τv+ = u− + τv−, p0(v+)− τu+ = p0(v−)− τu−,
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with their consequence

τ2
=
p0(v+)− p0(v−)

v− − v+
,

and the equal area rule (2.12) by multiplying the ODE

κ(v)v̈ +
1
2(κ(v))̇v̇ = −p0(v)+ p0(v±)− τ2(v − v±) (2.13)

by v̇ and integrating once. A first integral of (2.13) is indeed

1
2κ(v)v̇

2
+ I (v; v±, τ )

with
I (v; v±, τ ) := f0(v±)− f0(v)− p0(v±)(v − v±)+

1
2τ

2(v − v±)
2.

This implies in particular that in the phase plane{(v, v̇)} a connecting orbit to(v±,0) lies in the
level set

{(v, v̇); 1
2κ(v)v̇

2
+ I (v; v±, τ ) = 0}.

Before going further we need some assumptions onp0 andf0. We avoid too much generality
and concentrate on assumptions that are met by the van der Waals pressure law.

• (Asymptotic behavior) The functionp0 = − df0/dv is smoothly defined on the interval(b,+∞)

with b > 0, and

lim
v→b

p0(v) = +∞, lim
v→+∞

p0(v) = 0, lim
v→b

f0(v) = +∞, lim
v→+∞

f0(v) = −∞.

• (Monotonicity) The functionp0 is monotonically decaying except maybe on some interval where
it is increasing.

• (Convexity) The functionp0 has at most two inflection points, in between which it is concave,
and it is convex elsewhere.

These properties will be assumed without repetition in what follows. They imply in particular that
any straight line of negative slope encounters the graph ofp0 at most four times.

One may rewrite (2.13) as a first order system by settingw =
√
κv̇, which yields

v̇ =
1

√
κ
w,

ẇ =
1

√
κ
(−p0(v)+ p0(v±)− τ2(v − v±)).

(2.14)

(The phase portrait of (2.14) being independent of the factor 1/
√
κ we might assume here without

loss of generality thatκ ≡ 1.) An orbit of (2.14) necessarily lies on a level curve of the function

(v,w) 7→
1
2w

2
+ I (v; v±, τ ).

Particular orbits are the fixed points(v0,0) implicitly defined by

p0(v0)+ τ2v0 = p0(v±)+ τ2v±.
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A geometrical interpretation of this equality is thatv0 is a point of intersection of the graph ofp0
with the so-calledRayleigh line, passing through(v±, p0(v±)) and of slope−τ2. Because of our
assumptions, the system (2.14) has at most four fixed points (of course including(v±,0)). Their
nature is easily determined. A fixed point(v0,0) is a center if

dp0

dv
(v0) > −τ2

and a saddle if
dp0

dv
(v0) < −τ2.

Connecting orbits can therefore only be saddle-saddle connections. Furthermore, if(v±,0) is a
saddle, a connecting orbit to this point must be included in

{(v,w); 1
2w

2
+ I (v; v±, τ ) = 0}.

We thus see thatI (v; v±, τ ) necessarily vanishes at point(s) where the orbit crosses thev-axis. Now
the existence of zeroes ofI (v; v±, τ ) can be investigated merely by the mean value theorem and the
following observation. If(v0, p0(v0)) belongs to the Rayleigh line passing through(v±, p0(v±))

with slope−τ2 then

I (v0; v±, τ ) =

∫ v0

v±

(p(v)−
1
2(p(v0)+ p(v±)))dv

is a signed area between the graph ofp0 and the chord joiningv0 to v±. More precisely, assume
that (v0, p(v0)), (v1, p(v1)), (v2, p(v2)) are aligned on a Rayleigh line with slope−τ2, the graph
of p being below that line on the interval(v0, v1) and above the line on(v1, v2), with v0 < v1 < v2.
This means in particular thatI (·; v0, τ ) andI (·; v2, τ ) are monotone on the intervals(v0, v1) and
(v1, v2), and thatI (v1; v0, τ ) < 0 andI (v1; v2, τ ) < 0. Additionally, from the planar dynamical
system point of view,(v0,0) and(v2,0) are saddles, whereas(v1,0) is a center of (2.14). When
looking for connections to eitherv0 or v2 or both, one may observe that:

(i) if the signed area between the graph ofp and the Rayleigh line is negative, then
I (v2; v0, τ ) < 0 and thereforeI (·; v0, τ ) does not vanish on the interval(v0, v2), whereas
I (v0; v2, τ ) > 0, which implies thatI (·; v2, τ ) vanishes exactly once on(v0, v2), in fact on
(v0, v1) (see Figure 1);

(ii) if the signed area between the graph ofp and the Rayleigh line is equal to zero, then
I (v2; v0, τ ) = I (v0; v2, τ ) and neitherI (·; v0, τ ) nor I (·; v2, τ ) vanish inside(v0, v2);

(iii) if the signed area between the graph ofp and the Rayleigh line is positive, thenI (v0; v2, τ ) < 0
and thereforeI (·; v2, τ ) does not vanish on the interval(v0, v2), whereasI (v2; v0, τ ) > 0,
which implies thatI (·; v0, τ ) vanishes exactly once on(v0, v2), in fact on(v1, v2).

From this we infer several kinds of connections. In case (i), there is a homoclinic connection
to v2. In the framework of van der Waals fluids below critical temperature this corresponds to a
“mixed type” soliton propagating in the vapor phase. By mixed type we mean that unstable and
maybe liquid states are present inside the bump. Similarly, in case (iii), there is a homoclinic
connection tov0, which corresponds for a van der Waals fluids below critical temperature to a
“mixed type” soliton propagating in the liquid phase. Note that a similar connection exists in the
absence ofv2, sinceI (·; v0, τ ) is increasingly tending to+∞ at infinity. The critical case (ii) means
that the equal area rule is satisfied and so there are heteroclinic connections fromv0 to v2 and from
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FIG. 1. Behavior ofI in case (i).

v2 to v0. For a van der Waals fluid below critical temperature this corresponds to what is called a
diffuseliquid-vapor interface—by contrast with sharp interfaces, which correspond to discontinuous
traveling wave solutions of the pure Euler equations.

Now, if there is a fourth pointv3 > v2 on the Rayleigh line, the solitons found in cases (i)
and (iii) are not the only ones. For van der Waals fluids below critical temperature, this situation
typically occurs whenv0 andv2 are “close” to liquid and vapor equilibrium respectively, andτ2 is
not too big, and more generally, for a givenv0, possibly far away from liquid equilibrium, there is
always a finite range forτ2 for which the Rayleigh line intersects four times the graph ofp. If this
is the case,I (·; v2, τ ) equals 0 atv2, is decaying on the interval(v2, v3) and increasingly tending to
+∞ at infinity. This implies that it necessarily vanishes somewhere on the interval(v3,+∞) (see
Figure 2). The phase portrait then shows that this zero necessarily corresponds to the intersection
with thev-axis of a homoclinic connection tov2. For a van der Waals fluid below critical temperature
this corresponds to a pure vapor soliton. The same kind of soliton occurs when the line of slope−τ2

intersects the graph ofp only twice, at a saddle pointv2 and at a center pointv3 with v2 < v3.
Finally, by the same argument we find thatI (·; v0, τ ) vanishes on(v3,+∞) (see again Figure 2),

yielding a a homoclinic connection tov0 provided thatI (·; v0, τ ) does not vanish in betweenv0
andv3. For a van der Waals fluid below critical temperature this corresponds to a “huge mixed
type” soliton, propagating in the liquid phase and containing both unstable states and vapor states
inside its bump. The same kind of soliton occurs when the line of slope−τ2 intersects the graph
of p only twicebut differently than above, at a saddle pointv0 (saddle) and at a center pointv3 with
v0 < v3.
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FIG. 2. Behavior ofI in the presence of a second center pointv3.

The three possible phase portraits corresponding to the three cases (i)–(iii) are represented in
Figures 3–5 respectively, where the isothermals are obtained with the van dar Waals law for water
(coefficientsa, b taken from [37]) atT = 600K.

PROPOSITION2 (Classification of saddle-saddle connections) LetS be a non-positive real number
and consider the straight lineDS of slopeS in the(v, p) plane and define

CS := {v; (v, p0(v)} ∈ DS}.

Under our main assumptions on the functionsp0 andf0,

either CS = {v0, v1, v2, v3} or CS = {v0, v1} or CS = {v0, v3} or CS = {v2, v3},

the pointsvi being ordered increasingly and whenever they exist

dp0

dv
(v0) < S,

dp0

dv
(v1) > S,

dp0

dv
(v2) < S,

dp0

dv
(v3) > S,

with p0 being convex on(v3,+∞).1 Then the saddle-saddle connections of (2.14) belong to one of
the following types, where we use a terminology referring to the van der Waals law below critical
temperature.2

1 This makes the difference between the casesCS = {v0, v1} andCS = {v0, v3}. This distinction is more for physical
reasons than mathematical ones.

2 In particular we mention in which phase the corresponding solitary waves are supposed to propagate.
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FIG. 3. Van der Waals isothermal curve, Rayleigh line and corresponding phase portrait in case (i).

(Temperate mixed vapor solitons) They correspond to orbits homoclinic tov2 whose minimum is
smaller thanv1. They exist if and only if∫ v2

v0

(p(v)−
1
2(p(v0)+ p(v2)))dv < 0.

(Kinks) They correspond to heteroclinic orbits whose endstates arev0 andv2. They exist if and only
if ∫ v2

v0

(p(v)−
1
2(p(v0)+ p(v2)))dv = 0.

These kinks are called diffuse interfaces whenp0 is increasing on some interval in betweenv0
andv2.

(Temperate mixed liquid solitons) They correspond to orbits homoclinic tov0 whose maximum is
greater thanv1 and smaller thanv2. They exist if and only if∫ v2

v0

(p(v)−
1
2(p(v0)+ p(v2)))dv > 0.
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FIG. 4. Van der Waals isothermal curve, Rayleigh line and corresponding phase portrait in case (ii).

(Pure vapor solitons) They correspond to orbits homoclinic tov2 whose maximum is greater than
v3. They exist as soon asv2 andv3 do.

(Large mixed liquid solitons) They correspond to orbits homoclinic tov0 whose maximum is
greater thanv3. They exist, ifv0 andv3 do, in the absence of temperate mixed liquid solitons.

Lagrangian profiles/Eulerian profiles.All these connections have their counterparts as connec-
tions of the Eulerian equation (2.11), even though this is far from being obvious if looking directly
at the profile equations (2.11) and (2.13). Recall indeed that the PDE model (1.5) is obtained from
(1.4) by using the differential relation dy = ρ dx − ρudt . If (ρ, u) = (ρ(x − σ t), u(x − σ t)) is a
bounded traveling wave solution of (1.4) withρ > ρ > 0 everywhere, the associated Lagrangian
mass coordinate readsy = R − j t , whereR is a primitive ofρ with respect toξ := x − σ t and
j = ρ(u − σ). Observing that the functionR is a diffeomorphism onR, we obtain a traveling
solution of “speed”τ := −j of (1.5) merely by defining its profile as

v :=
1

ρ ◦ R−1
.
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FIG. 5. Van der Waals isothermal curve, Rayleigh line and corresponding phase portrait in case (iii).

Conversely, if(v, u) = (v(y − τ t), u(y − τ t)) is a bounded traveling wave solution of (1.5) with
v > v > 0 everywhere, we obtain a traveling solution of (1.5) with

j := −τ, σ := u± − jv±,

by considering the differential equation

R′
=

1

v(R)
.

Since the functionv is bounded onR, all solutions of this differential equation are global and form
a one-parameter family of diffeomorphisms onR. We thus obtain a one-parameter family of density
profilesρ := R′.

3. Stability of kinks and solitons

We are concerned here with the long time behavior of the isothermal models (1.4) and (1.5) when
the initial data are close to either a kink or a soliton. The observability of such patterns is indeed
closely related to that stability problem.
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The stability of solitary waves has been studied for more than a century. The first ideas certainly
date back to the remarkable work of Boussinesq on the water waves in narrow channels [11], which
appeared less than thirty years after John Scott Russel reported his famous observation, and twenty
years before the work of Korteweg and de Vries. It is notable that (one of) equation(s) nowadays
known as the Boussinesq equation takes the form of the system (1.5), withκ constant andp0
convex—in the most standard framework,p0(v) = v2

− v. The stability analysis of solitary waves
became very active in the 1970s and made a leap with the work of Grillakis, Shatah and Strauss, who
derived a sharp stability criterion(S) [18]. As regards the Boussinesq equation, a class of solitons is
known to satisfy(S) in the case of a power-type law (p0(v) = vk − v, k < 5) [9]. We are basically
interested in the same question for the different kinds of solitons with non-convex van der Waals-
type laws. We shall present a reformulation of(S) enabling us to determine the cases in which it is
satisfied.

As regards the stability of kinks, among which diffuse interfaces are of special interest, we do
not know any work analogous to [9]. The spectral stability of kinks, which unlike solitons do not
come in families parametrized by the wave speed, is known to be rather strong, in fact as much
as we can hope for in a Hamiltonian framework [5]. However, this “neutral” spectral stability is
far from being sufficient in itself to imply the non-linear stability of kinks. In this respect, we
show below how the tools previously developed for solitons can be adapted and how far they
can go in the stability analysis of kinks. Those tools crucially use the Hamiltonian structure of
Korteweg models. Because of the translation invariance of these models,orbital stability is the
best we can expect. It means that solutions stay in a given neighborhood of the one-dimensional
manifold made of all shifted profiles, provided that they are close enough initially to either
one of the profiles—this statement needs a functional framework that we shall specify later. In
particular we do not expect any kind of control of the shift, unlike what is known for dissipative
kinks [21].

For completeness, we shall deal with both systems (1.4) and (1.5), which can be recast in a
similar Hamiltonian framework. As shown in Section 1, they can be rewritten in the abstract form

∂tU = J δH[U] (3.15)

whereJ is a constant coefficients skewadjoint differential operator, andδH[U] denotes the (formal)
variational gradient of a functional

H[U] =

∫
H(U, ∂U).

For the Eulerian system (1.4),∂ stands for the derivative with respect to the space variablex and we
have

U =

(
ρ

u

)
, H(U, ∂U) =

1
2ρu

2
+ F0(ρ)+

1
2K(ρ)(∂xρ)

2, J =

(
0 −∂x

−∂x 0

)
.

For the Lagrangian system (1.5),∂ stands for the derivative with respect to the mass Lagrangian
coordinatey and we have

U =

(
v

u

)
, H(U, ∂U) =

1
2u

2
+ f0(v)+

1
2κ(v)(∂yv)

2, J =

(
0 ∂y
∂y 0

)
.
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The definition ofH is only formal here becauseH(U, ∂U) is not integrable, as far as we are
concerned. However, for functionsU that coincide asymptotically with a reference solutionU at
±∞,

H[U; U] :=
∫
(H(U, ∂U)−H(U, ∂U))

does make sense provided that the decay ofU − U is sufficiently fast at±∞. In this case the
variational gradient ofH with respect toU is independent ofU and given as usual by∫

δH[U] · U̇ =
d

dθ
H[U + θU̇; U]

∣∣∣∣
θ=0

=

∫
dH(U, ∂U) · (U̇, ∂U̇),

for all U̇ ∈ D(R). Recall that for the Eulerian system (1.4),

δH[U] =

( 1
2u

2
+ g0(ρ)−K(ρ)∂2ρ −

1
2

dK
dρ (ρ)(∂ρ)

2

ρu

)
, U =

(
ρ

u

)
,

while for the system (1.5),

δH[U] =

(
−p0(v)− κ(v)∂2v −

1
2

dκ
dv (v)(∂v)

2

u

)
, U =

(
v

u

)
.

3.1 Variational approach to traveling profiles

We are interested in traveling wave solutions of either (1.4) or (1.5), and more specifically those
which achieve finite limits at±∞. Using the formalism above, these traveling waves appear to
correspond to critical points of the functionalH under the three constraints∫

U1,

∫
U2,

∫
U1U2 = constant,

whereU1 andU2 stand for the components ofU. Again this is at first glance only formal because
U1, U2 andU1U2 area priori not integrable. These “functionals” nevertheless correspond to first
integrals of the system (3.15) in the sense explained below.

First integrals of (3.15). The HamiltonianH corresponds formally to a first integral of (3.15).
Let us look for a suitable functional framework in which this statement makes sense. Recalling the
special form of the Hamiltonian

H(U, ∂U) = H0(U)+
1
2k(U1)(∂U1)

2,

which holds true for both (1.4) and (1.5)—with eitherk = K or k = κ—we find that for a (classical)
solutionU of (3.15),∫ b

a

H(U(z, t), ∂zU(z, t))dz =

∫ b

a

H(U(z,0), ∂zU(z,0))dz+

∫ t

0

∫ b

a

δH[U ] · J δH[U ]

+

∫ t

0
(k(U1(b, τ ))∂zU1(b, τ )∂tU1(b, τ )− k(U1(a, τ ))∂zU1(a, τ )∂tU1(a, τ )) dτ
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for all t > 0 anda < b. Now recalling the special form of the operator

J = Jε∂, Jε := ε

(
0 1
1 0

)
, ε ∈ {−1,1}

(with ε = −1 for (1.4) andε = 1 for (1.5)), we may rewrite the previous equality as∫ b

a

H(U(z, t), ∂zU(z, t))dz =

∫ b

a

H(U(z,0), ∂zU(z,0))dz

+
1

2

∫ t

0
(δH[U ] · JεδH[U ])(b, τ )− (δH[U ] · JεδH[U ])(a, τ )dτ

+

∫ t

0
(k(U1(b, τ ))∂zU1(b, τ )∂tU1(b, τ )− k(U1(a, τ ))∂zU1(a, τ )∂tU1(a, τ )) dτ.

Finally, using the specific form ofH andJ , the time derivatives∂tU1 are easily replaced by “spatial”
derivatives. More precisely, for the Lagrangian system (1.5) we have∂tU1 = ∂yU2, and for the
Eulerian system (1.4) we have∂tU1 = −∂x(U1U2). This leads to the following.

LEMMA 1 Assume thatU andÛ are two smooth solutions of the abstract version (3.15) of either
(1.4) or (1.5), that̂U belongs toC([0, T ];W2,∞) and

lim
z→±∞

(U − Û)(z, t) = 0, lim
z→±∞

∂z(U − Û)(z, t) = 0, lim
z→±∞

∂2
zz(U1 − Û1)(z, t) = 0

for all t ∈ [0, T ]. Then, if the integral∫
+∞

−∞

(H [U] −H [Û])(z, t)dz

is convergent at timet = 0, it remains convergent and in fact is constant for all timet ∈ [0, T ].

Proof. We just make the difference between the equality obtained above forU and its analogue for
Û, and leta go to−∞, andb go to+∞. 2

Note that the asymptotic behaviors requested hold true in particular ifU − Û belongs to
C([0, T ];H 3

× H 2). For the Lagrangian system (1.5), one may relax the assumption on the first
derivative to

lim
y→±∞

∂y(U1 − Û1)(y, t) = 0.

As regards the “functionals”
∫
U1,

∫
U2 and

∫
U1U2, they are also formal first integrals of

(3.15), in the sense that integrands satisfy conservation laws, which is obvious for the first two of
them. The third conservation law has to do with the invariance of (3.15) under spatial translations,
as explained in [4, pp. 8–9] in connection with Olver’s generalized version of Noether’s theorem.
Indeed,U1U2 is what Benjamin calls animpulse, since the variational gradient ofQ[U] =

∫
U1U2

is such thatJ δQ[U] is—up to a harmless± sign—equal to∂U. We can also compute directly the
conservation law ofU1U2. For any smooth solution of (3.15),

∂t (U1U2) = U2∂tU1 + U1∂tU2 = εJεU · ∂tU = εJεU · ∂zJεδH[U] = εU · ∂zδH[U]

because of the symmetry ofJε and the propertyJ2
ε = I . The fact thatU · ∂zδH[U] is an exact

derivative is then easily verified in both the Lagrangian and the Eulerian framework. For, the
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contribution ofH0 to H corresponds to either the so-calledp-system—obtained from (1.5) by
settingκ ≡ 0—or the Euler system obtained from (1.4) by settingK ≡ 0, which are known to
admitU1U2 as a mathematical entropy, and the contribution of capillarity is of the same form in
both frameworks. In the Lagrangian framework for instance

U · ∂yδH[U] = ∂y

(
1

2
u2

− q0(v)− vκ(v)∂2
yyv +

1

2

(
κ(v)− v

dκ

dv
(v)

)
(∂yv)

2
)
,

where dq0/dv = v dp0/dv. Now, by the same argument as in Lemma 1, we show the following.

LEMMA 2 In the framework of Lemma 1, if the integral∫
+∞

−∞

(U − Û)(z, t)dz

is convergent at timet = 0, it remains convergent and in fact is constant for all timet ∈ [0, T ]. And
the same is true for ∫

+∞

−∞

(U1U2 − Û1Û2)(z, t)dz.

Equation of connecting profiles.We refer to Section 2 for the explicit equations governing the
connecting profiles of both systems (1.4) and (1.5). Here we show how those equations read in the
abstract setting (3.15), in order to justify our claim, generalizing the result pointed out in [4, p. 11]
that traveling profiles are critical points ofH under constraints. The profile of a traveling wave
solutionU = U(z− σ t) of (3.15) clearly satisfies the ODE

Jε∂δH[U] + σ∂U = 0.

Using again the fact thatJ2
ε is the identity 2× 2 matrix, this is equivalent to

δH[U] + σJεU ≡ constant.

In [4] the constant is equal to 0 because only solitons vanishing at∞ are considered, with a
Hamiltonian satisfyingδH[0] = 0. Here we are interested in connecting profiles with non-zero,
possibly different endstates, which do not cancelδH. So the constant is generically non-zero,
and its components can be seen as Lagrange multipliers associated with the constraints

∫
U1 and∫

U2 respectively. Similarly to [4],−εσ can be seen as a Lagrange multiplier associated with the
constraint

∫
U1U2, of which the variational gradient is preciselyεJεU.

From now on, we fix a saddle-saddle connecting profileU of either (1.4) or (1.5), which can
be either a soliton (i.e. a homoclinic connection, the endstates beingU− = U+) or a kink (i.e. a
heteroclinic connection, the endstatesU− andU+ being different), obtained in the framework of
Proposition 2. There are crucial qualitative differences between solitons and kinks:

(1) kinks aremonotone(in the sense that both components ofU are monotone, or equivalently the
components of∂U have constant sign along the real line) whereas solitons are not (they are
symmetric with respect to the point where they achieve their extremum),

(2) solitons come in families parametrized by the wave speed whereas kinks are fully determined
by either one of their endstates.
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In any case, the set of profiles connecting the endstatesU± with wave speedσ is made of all
translates ofU. We shall use repeatedly the simplified notationUs = U(· + s) for these translates.
We shall refer toU as acapillary profile. By construction,U is associated with a traveling wave
solutiont 7→ Û(·, t) = U(· − σ t) of the corresponding Hamiltonian system (3.15). Our purpose is
to investigate the stability of̂U, that is, the long time behavior of solutions of (3.15) that are close
to U initially.

We shall begin with the spectral stability analysis, including the stability criterion of Grillakis
et al. and then turn to the non-linear stability issue. Despite the better stability of kinks from the
variational point of view—a fact related to the observations in (1) and (2) here above, the stability
of kinks at the non-linear level is to some extent poorer than the one of solitons.

3.2 Spectral stability of capillary profiles

As far as possible, we shall perform the stability analysis on the abstract level, which mostly avoids
technical calculations and deals simultaneously with the Eulerian model (1.4) and its Lagrangian
counterpart (1.5). Even though the stability results shouldin finebe the same for physical reasons,
we think indeed interesting to study both systems, in particular because of their relationship with
other physical frameworks: water waves for (1.5) and Quantum Hydrodynamics for (1.4).

The first, natural approach to study the stability of a traveling waveÛ is to linearize (3.15) about
Û in a “Galilean frame”1 attached tôU, in which Û becomes stationary. We obtain a system of the
form

∂tV = LV,

whereL is a third order differential operator in the “spatial” variable. As regards kinks, it was shown
in [5] that the spectrum ofL coincides with the imaginary axis. This neutral stability ofÛ is the
best we can hope for in a Hamiltonian framework, and prevents us from using the refined Green’s
function techniques that have been successfully applied to traveling waves in dissipative models
[40, 20, 21, 38].

In order to use Hamiltonian tools, consider the Hessian ofH atU, which is the operator defined
by ∫

U̇t HessH[U]U̇ =
d2

dθ2
H[U + θU̇]|θ=0 =

∫
d2

dθ2
H(U + θU̇, ∂U + θ∂U̇)|θ=0

for all U̇ ∈ D(R). Since the functionalH splits as

H[U] = H0[U] +K[U1], K[U ] :=
∫

1

2
k(U)(∂U)2, (3.16)

we have
HessH[U] = HessH0[U] + HessK[U1],

with HessK[U1] being aSturm–Liouvilleoperator. More precisely, in the Eulerian framework, we
have

HessH[U] =

(
M u

u ρ

)
, M = −∂xK(ρ)∂x +

dg0

dρ
(ρ)−

dK

dρ
(ρ)∂2

xxρ −
1

2

d2K

dρ2
(ρ)(∂xρ)

2,

1 The term Galilean frame is in fact meaningful only for the Eulerian model (1.4).



KORTEWEG MODELS AND STABILITY OF INTERFACES 393

while in the Lagrangian framework

HessH[U] =

(
M 0
0 1

)
, M = −∂yκ(v)∂y −

dp0

dv
(v)−

dκ

dv
(v)∂2

yyv −
1

2

d2κ

dv2
(v)(∂yv)

2.

In fact, since the profileU is a critical point ofH under constraints, we also have to take into account
the Hessian of the quadratic functional

∫
U1U2, which is the constant operatorεJε, and study the

possible monotonicity of the operator

L := HessH[U] + σJε.

The properties ofL of course depend on the nature of the connecting orbitU. This is where
the differences between kinks and solitons play a crucial role. We sayU is monotoneif its first
componentU1 is monotone—which by the Rankine–Hugoniot relation also implies thatU2 is
monotone. We call the endstatesU± subsonicif both inequalities∣∣∣∣p(v+)− p(v−)

v+ − v−

∣∣∣∣ < ∣∣∣∣dp

dv
(v±)

∣∣∣∣
are satisfied. From the dynamical systems point of view this means thatU is a saddle-saddle
connection. See Section 2.

LEMMA 3 Consider the ODE governing the traveling wave solutions of either (1.4) or (1.5),
written in the abstract form:

Jε∂δH[U] + σ∂U = 0,

andU a saddle-saddle connection of the integrated ODE

δH[U] + σJεU ≡ δH[U±] + σJεU±.

If U is monotone then the operator

L := HessH[U] + σJε

is monotone, i.e. ∫
U̇tL · U̇ > 0

for all U̇ ∈ D(R). Furthermore, if
∫
U̇1∂U1 = 0 andU̇ 6= 0 then∫

U̇tL · U̇ > 0.

Proof. We start with the Eulerian framework—the Lagrangian one being simpler. We recall that

L =

(
M u− σ

u− σ ρ

)
, M = −∂K(ρ)∂ +

dg0

dρ
(ρ)−

dK

dρ
(ρ)∂2ρ −

1

2

d2K

dρ2
(ρ)(∂ρ)2.

So the monotonicity ofL depends upon the monotonicity of the Sturm–Liouville operatorM :=
M − (u− σ)2/ρ. In fact, this operatorM was already shown to be monotone in [5, Proposition
1, p. 243]. We briefly recall the arguments. First of all, the subsonicity of endstates implies that the
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essential spectrum ofM is positive, bounded away from 0. Secondly, 0 is an eigenvalue ofM with
associated eigenfunction∂ρ—this is due to the translation invariance. Indeed, we can see directly
from the ODE

∂δH[U] + σJ−1∂U = 0

thatL · ∂U = 0, by definition ofL, using the fact that∂δH[U] = HessH[U] · ∂U. And this readily
implies thatM ·∂ρ = 0. Since∂ρ has a constant sign by assumption, the standard theory of Sturm–
Liouville operators [32, 35] shows that 0 must be the lowest eigenvalue ofM, which yields the
monotonicity ofM. Furthermore, there existsc > 0 so that for

∫
ρ̇∂ρ = 0,∫

ρ̇M · ρ̇ > c‖ρ̇‖
2
L2(R)

and thus ∫
U̇tL · U̇ > c‖ρ̇‖

2
L2(R) +

∥∥∥∥ρu̇+ (u− σ)ρ̇
√
ρ

∥∥∥∥2

L2(R)
.

The same arguments work in the Lagrangian framework. The Sturm–Liouville operator to be
considered is

M = M− σ 2
= −∂κ(v)∂ −

dp0

dv
(v)− σ 2

−
dκ

dv
(v)∂2v −

1

2

d2κ

dv2
(v)(∂v)2

and it is monotone for the same reasons as before. The final estimate looks simpler:∫
U̇tL · U̇ > c‖v̇‖2

L2(R) + ‖u̇+ σ v̇‖2
L2(R)

for
∫
v̇∂v = 0. 2

REMARK 2 We may improve the above estimate∫
U̇M · U̇ > c‖U̇‖

2
L2(R)

(omitting the subscript 1 for simplicity) to∫
U̇M · U̇ > c′‖U̇‖

2
H1(R)

for
∫
U̇∂U = 0, thanks to the following classical observation.

LEMMA 4 For a Sturm–Liouville operatorM = −∂K∂ + α with α bounded andK > K0 > 0,
it is possible to equipH 1 with a modified inner product, whose norm is equivalent to the usual one,
such that ifM · V = 0 then the orthogonal ofV in L2(R) coincides with the orthogonal ofV in
H 1(R).

Proof. Forλ > 0 large enough

〈U,V 〉 =

∫
(K∂U∂V + (α + λ)UV )
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defines an inner product onH 1 as required. IfM · V = 0 then

〈U,V 〉 =

∫
U(M+ λ) · V = λ

∫
VU,

hence
∫
VU = 0 is equivalent to〈U,V 〉 = 0. 2

REMARK 3 For a monotoneU, the fact that the spectrum of the linearized operatorL is purely
imaginary may be viewed as a consequence of the monotonicity ofL. This follows from Lemma
3.1 in [31]. Another consequence of this general result is an upper bound for the number of unstable
eigenvalues for the linearized operatorL about solitons (which are not monotone). More precisely, if
U is a soliton in our context,∂U1 has a single zero and this implies by Sturm–Liuouville theory (see
Appendix B) thatL has a single negative eigenvalue. Hence by Lemma 3.1 in [31] the linearized
operatorL aboutU hasat mostone unstable eigenvalue.

The approach developed in [18, 9] aims at selecting orbitally stable solitons, for whichL hasno
unstable eigenvalue. We adapt below that approach to solitons with non-zero endstates.

From now on, to simplify the writing, we denote byν = U1 andu = U2 the components of any
vectorU in the state space.1 Let us consider a solitonU = (ν, u) with endstateU∞ = (ν∞, u∞)

and speedσ . It satisfies the ODE

δH[U] + σJεU ≡ δH[U∞] + σJεU∞ (3.17)

with

Jε := ε

(
0 1
1 0

)
, ε ∈ {−1,1}.

(Recall thatε = −1 when we consider the Eulerian model (1.4) and thatε = 1 for the Lagrangian
one (1.5).) We define here

H[U; U∞] =

∫
∞

−∞

(H [U] −H [U∞])(ξ)dξ, Q[U; U∞] =

∫
∞

−∞

(νu− ν∞u∞)(ξ)dξ,

P1[U; U∞] =

∫
∞

−∞

(ν − ν∞)(ξ)dξ, P2[U; U∞] =

∫
∞

−∞

(u− u∞)(ξ)dξ,

where all the integrals are absolutely convergent sinceU converges exponentially fast toU∞ at±∞

(recall thatU is a saddle-saddle connection). Furthermore, denoting byλi(σ ; U∞) the components
of δH[U∞] + σJεU∞, i = 1,2, we see that equation (3.17) equivalently reads

(δH+ εσδQ− λ1(σ ; U∞)δP1 − λ2(σ ; U∞)δP2)[U; U∞] ≡ 0,

the variational gradient being taken with respect toU only. This implies in particular that

(H+ εσQ− λ1(σ ; U∞)P1 − λ2(σ ; U∞)P2)[U; U∞]

is invariant under shifting the profileU into Us . In other words, that quantity depends only on
(σ ; U∞). Furthermore, this is an extension to non-zero endstates of what Bona and Sachs, after
Boussinesq, call themoment of instabilityof the solitonU.

1 So that in the Lagrangian framework,ν = v, and in the Eulerian framework,ν = ρ.
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DEFINITION 1 We define themoment of instabilityof a solitonU with endstateU∞ and speedσ
to be the quantity

m(σ ; U∞) := (H+ εσQ− λ1(σ ; U∞)P1 − λ2(σ ; U∞)P2)[U; U∞].

As we shall see in Section 3.3, it is the local convexity ofm as a function ofσ which determines
the stability of the solitonU. It is interesting to note that the evaluation ofm does not require the
actual resolution of the ODE (3.17).

We begin with the Lagrangian model, for which the computations are simpler.

PROPOSITION3 The moment of instability of a solitonU = (v, u) of (1.5) is

m =

∫
+∞

−∞

κ(v(ζ ))(v̇(ζ ))2 dζ. (3.18)

Alternatively, if v achieves a maximumvM > v∞, then

m = 2
∫ vM

v∞

√
2κ(v)(f0(v)− f0(v∞)+ p0(v∞)(v − v∞)−

1
2τ

2(v − v±)
2)dv, (3.19)

while

m = 2
∫ v∞

vm

√
2κ(v)(f0(v)− f0(v∞)+ p0(v∞)(v − v∞)−

1
2τ

2(v − v±)
2)dv (3.20)

if v achieves a minimumvm < v∞.

Proof. The formula in (3.18) is an extension of the one used in [9, p. 26] for a power law forp0 and
zero endstate. It follows from the elimination of the speed

u = u∞ + τ(v∞ − v)

in the definition ofm and the use of the identity

1
2κ(v)v̇

2
+ f0(v∞)− f0(v)− p0(v∞)(v − v∞)+

1
2τ

2(v − v∞)
2

≡ 0, (3.21)

whereτ denotes the “speed” of the soliton (we useτ instead ofσ here for consistency with the
notation used in Section 2). As a matter of fact, by definition

λ1 = −p0(v∞)+ τu∞, λ2 = u∞ + τv∞,

hence

H [U] −H [U∞] + τ(v u− v∞u∞)− λ1(v − v∞)− λ2(u− u∞)

= κ(v)v̇2
+

1
2(u− u∞ + τ(v − v∞))

2
= κ(v)v̇2.

The other representation ofm merely follows from (3.21) and the change of variablesv =

v(ζ ), which is valid on the two half-lines separated by the point wherev achieves its (unique)
extremum. 2
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REMARK 4 Physically, the quantitym =
∫
κ(v)v̇2 may be interpreted as (a non-equilibrium

analogue of)surface tension[24].

REMARK 5 The advantage of the formulas in (3.19) and (3.20) is that they can easily be evaluated
numerically,without solving the profile equation(3.17), the pointsvm,M just being characterized by
the vanishing of the integrand. More precisely,vM is the smallestv > v∞ where

f0(v)− f0(v∞)+ p0(v∞)(v − v∞)−
1
2τ

2(v − v±)
2

= 0,

while vm is the greatestv < v∞ canceling the same expression. The existence/relevance of such
points follows from the phase portrait analysis of Section 2.

REMARK 6 The equivalent expressions (3.18) and (3.19) (or (3.20)) ofm arise as soon as the
HamiltonianH satisfies (3.16) withH0 depending only onU (and not on the derivatives ofU).
Indeed, with the notation introduced in Section 3.3.a below, the soliton equation (3.17) equivalently
reads

δH̃[Ũ] + εσδQ̃[Ũ] ≡ 0,

and the counterpart of (3.16) regarding̃H reads

H̃[Ũ] = H̃0[Ũ] +K[U1].

We infer that∂U is an integrating factor of the soliton equation and that

H̃0(Ũ)+ εσQ̃(Ũ)−
1
2k(U1)(∂U1)

2
≡ 0, (3.22)

with H̃0(Ũ) andQ̃(Ũ) being naturally defined as the integrands in the functionalsH̃0[Ũ] andQ̃[Ũ]
respectively. Therefore

H̃[Ũ] + εσ Q̃[Ũ] = 2K[U1],

and the left-hand side is exactlym(σ ; U∞) (see Section 3.3.a below).

3.3 Orbital stability of capillary profiles

The long time analysis of a model of course necessitates some knowledge on its local well-
posedness. As regards the Korteweg models (1.4) and (1.5), this question has been addressed in [7].
Recall in particular the following.

THEOREM 1 For any global smooth solution̂U of (1.5), for allU0 = (v0, u0) ∈ Û+(H 3
×H 2)(R)

such thatv0 takes values in a compact subset of(b,+∞), there existsT > 0 and a unique solution
U of (1.5) such thatU|t=0 = U0 and

U − Û ∈ C([0, T ]; (H 3
×H 2)(R)) ∩ C1([0, T ]; (H 1

× L2)(R)).

If Û is a traveling wave with profileU, the Sobolev norms of∂yÛ do not depend ont and it can
be shown that the timeT of existence satisfies a lower bound

T > C ln

(
1 +

1

‖u0 − u‖H2 + ‖∂y(v0 − v)‖H2

)
.

In the semi-linear caseκ ≡ constant, a much stronger result is known, which says that ana priori
bound in(H 1

× L2)(R) implies that the maximal solution is global (see [9, Theorem 4, p. 20]).
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DEFINITION 2 We say that a traveling wavêU with profile U is anorbitally stable solutionof
(3.15) if there existsε1 > 0 such that for allε ∈ (0, ε1], there existsη > 0 such that for any
U ∈ U + C([0, T );H 3

×H 1) which is a solution of (3.15),

‖U(0)− U‖H1×L2 < η implies inf
s∈R

‖U(t)− Us‖H1×L2 < ε

for all t ∈ [0, T ).

REMARK 7 If U is a soliton, then‖U−Us‖H1×L2 is uniformly bounded ins. Therefore, the orbital
stability of a soliton implies ana priori bound for ‖U(t) − U‖H1×L2. As mentioned above, this is
sufficient to have global existence in the special caseκ ≡ constant in (1.5) but not in general.

3.3.a Solitons

THEOREM 2 A solitary wave solution̂U of (3.15) with endstateU∞ and speedσ is orbitally stable
if its moment of instability (Definition 1) satisfies

∂2m

∂σ 2
(σ ; U∞) > 0.

Proof. It is a direct modification of Theorem 5 in [9], which is itself an application of Theorem 2
in [18]. Indeed, we can force our model to enter the framework of [18] by: 1) shifting the dependent
variablesU byU∞ so that in the new variables the soliton becomes homoclinic to 0 and 2) modifying
the Hamiltonian to make its gradient vanish at infinity. More precisely, setting

Ũ := U − U∞ and H̃[Ũ] := H[U; U∞] −

∫
δH[U∞] · (U − U∞),

we have
δH̃[Ũ] = δH[U] − δH[U∞],

and the abstract equation (3.15) equivalently reads

∂t Ũ = J δH̃[Ũ]. (3.23)

This is becauseJ vanishes at constants. Furthermore,Ũ := U − U∞ is a critical point ofH̃ under
the single constraint

Q̃[Ũ] :=
∫
ν̃ũ

in that it satisfies the ODE
δH̃[Ũ] + εσδQ̃[Ũ] ≡ 0.

Finally, our definition of

m(σ ; U∞) = H̃[Ũ] + εσ (Q− u∞P1 − ν∞P2)[U,U∞] = H̃[Ũ] + εσ Q̃[Ũ]

coincides with the moment of instability of [9, 18] for the solitoñU of (3.23). 2
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REMARK 8 Theorem 2 in [18] is actually an “if and only if” result. But the “only if” part requires
that the operatorJ be onto,1 which is obviously not the case here (nor in [9]). This problem is fixed
in [10] for Korteweg–de Vries type equations. Up to our knowledge, there is no equivalent work on
the Boussinesq equation.

To help the reader understand the significance ofm we recall from [10, 18] an important result
concerning instability. For a clear statement, we use a notation in which the dependence on the wave
speedσ is more explicit. We choose to addσ as a superscript, in such a way thatUσ stands for a
traveling profile with speedσ . We omit the dependence onU∞, which is fixed in what follows. For
consistency of notation, the moment of instability is now denotedmσ .

PROPOSITION4 If the moment of instability of a solitonUτ satisfies

∂2mσ

∂σ 2

∣∣∣∣
σ=τ

6 0

there exists a smooth curveσ 7→ Vσ ∈ U∞ + D(L) (the domain ofL) such thatVτ = Uτ and for
all σ close toτ ,

Q̃[Vσ − U∞] = Q̃[Uτ − U∞] and H̃[Vσ − U∞] < H̃[Uτ − U∞]

for σ 6= τ .

Proof. We follow the second proof of Theorem 3.1 in [10] (see also Theorem 4.1 in [18], for a
different parametrization). We first observe that

∂mσ

∂σ
= ε

∫
(νσ − ν∞)(u

σ
− u∞), (3.24)

∂2mσ

∂σ 2
= ε

∫ (
(uσ − u∞)

∂νσ

∂σ
+ (νσ − ν∞)

∂uσ

∂σ

)
. (3.25)

As a matter of fact, by definition

mσ = (H̃+ εσ Q̃)[Uσ − U∞]

and the soliton equation is
(δH̃+ εσδQ̃)[Uσ − U∞] = 0. (3.26)

Therefore

ε
∂mσ

∂σ
= Q̃[Uσ − U∞],

which is (3.24), and

ε
∂2mσ

∂σ 2
=

∫
δQ̃[Uσ − U∞] ·

∂Uσ

∂σ
,

which is (3.25). Additionally, by differentiation of (3.26), we get

Lσ ·
∂Uσ

∂σ
+ Jε · (Uσ − U∞) = 0, (3.27)

1 In fact, it requires only thatUσ andWσ (an eigenvector ofLσ defined in the proof of Proposition 4) belong to the range
of J : this is not the case forUσ , whose integral onR is non-zero.
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where the operator

Lσ := Hess(H̃+ εσ Q̃)[Uσ − U∞] = Hess(H+ εσQ)[Uσ ]

enjoys the same definition as in Lemma 3. Note indeed that

HessH̃[U − U∞] = HessH[U], HessQ̃[U − U∞] = εJε,

Jε · (U − U∞) = εδQ̃[U − U∞].

Thanks to (3.27) we see that (3.25) equivalently reads

∂2mσ

∂σ 2
= −

∫ (
∂Uσ

∂σ

)∗

Lσ ·
∂Uσ

∂σ
.

This formula is valid independently of the convexity or concavity ofm. It shows in particular that
whenm is strictly convex (a stable case, according to Theorem 2), the operatorLσ does have a
negative space. In fact, this is always the case: unlike the situation considered in Lemma 3, here the
profileUσ is not monotone. As already mentioned, this means thatLσ admits a negative eigenvalue.
A more detailed analysis using the theory of Sturm–Liouville operators, postponed to Appendix B,
shows thatLσ admits a single eigenvalue of negative real part, which is simple and associated
with an eigenfunction, sayWσ , of which the first componentωσ does not vanish and the second
componentwσ has a simple expression in terms ofωσ , σ (andUσ in the Eulerian framework): in
the Lagrangian framework for instance, we have

(λ− 1)wσ = σωσ

if λ denotes the negative eigenvalue, hence in particularσωσwσ 6 0 (regarding dimensional
questions, see Remark 13 in Appendix B). Now we look for

Vσ = Uσ + ϕ(σ)Wτ

with ϕ a smooth function vanishing atσ = τ . We have

∂

∂ϕ
Q̃[Uσ + ϕWτ

− U∞]

∣∣∣∣
(σ,ϕ)=(τ,0)

= δQ̃[Uτ − U∞] · Wτ

=

∫
((ντ − ν∞)ω

τ
+ (uτ − u∞)w

τ ).

In the Lagrangian framework in particular, this integral reduces to∫
(vτ − v∞)(ω

τ
− τwτ )

and is therefore non-zero because of the propertiesτωτwτ 6 0,ωτ 6= 0 andvτ − v∞ 6= 0. Similar
arguments work in the Eulerian framework. Therefore, the existence of a functionσ 7→ ϕ(σ) such
that

Q̃[Uσ + ϕ(σ)Wτ
− U∞] = Q̃[Uτ − U∞]

follows from the implicit function theorem. Hence,Vσ = Uσ + ϕ(σ)Wτ is such that

H̃[Vσ − U∞] + εσ Q̃[Vσ − U∞] = H̃[Vσ − U∞] + εσ Q̃[Uτ − U∞].
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Differentiating once with respect toσ and evaluating atσ = τ we get, using (3.26),

0 =
∂

∂σ
H̃[Vσ − U∞]

∣∣∣∣
σ=τ

.

Differentiating twice we obtain∫ (
∂Vσ

∂σ

)∗

Lσ ·
∂Vσ

∂σ
=

∂2

∂σ 2
H̃[Vσ − U∞]

atσ = τ , with
∂Vσ

∂σ
=
∂Uσ

∂σ
+

dϕ

dσ
Wτ

and

0 =

∫
δQ̃[Vσ − U∞] ·

∂Vσ

∂σ
=

∫ (
∂Vσ

∂σ

)∗

Jε · (Vσ − U∞),

which implies

dϕ

dσ

∫
(Wτ )∗Jε · (Uτ − U∞)+

∫
(Uτ − U∞)

∗Jε ·
∂Uσ

∂σ
= 0

atσ = τ . We thus have, using (3.27),

∂2

∂σ 2
H̃[Vσ − U∞] = −ε

∫ (
∂Vσ

∂σ

)∗

Jε · (Uτ − U∞)+
dϕ

dσ

∫ (
∂Vσ

∂σ

)∗

Lτ · Wτ

=
dϕ

dσ

∫
(Wτ )∗Lτ ·

∂Vσ

∂σ
= −ε

dϕ

dσ

∫
(Wτ )∗Jε · (Uτ − U∞)+

(
dϕ

dσ

)2 ∫
(Wτ )∗Lτ · Wτ

= ε

∫
(Uτ − U∞)

∗Jε ·
∂Uσ

∂σ
+

(
dϕ

dσ

)2 ∫
(Wτ )∗Lτ · Wτ

at σ = τ , where we have used the self-adjointness ofLτ (in L2(R)) andJε (in R2). In the last
right-hand side we recognize the second derivative ofmσ , which is non-positive by assumption.
SinceWτ is a negative eigenfunction ofLτ ,

∫
(Wτ )∗Lτ · Wτ is negative and therefore the second

derivative ofH̃ is negative. This proves the proposition by Taylor expansion. 2

Proposition 4 means that, for pointsσ wheremσ is concave,̃H is not locally minimized atUσ −U∞

under the constraint associated with̃Q. We suspect that this implies the instability of the profile but
we have no proof. Additionally, the numerical plots ofm for the four types of solitons exhibited
in Proposition 2 suggest that many of them are stable, depending on their “speed” (in fact, the
mass transfer flux across the wave) and on thestability of the endstate. Recall that states inside the
spinodal region, wherep0 increases withv, are considered unstable, both from the physical and
from the mathematical point of view. To go further, it is important to have in mind the notion of
metastable states.

DEFINITION 3 Under our main assumptions onp0 andf0, in the case whenp0 is increasing in
some interval(v∗, v∗) ⊂ (b,+∞), the corresponding thermodynamical states are calledspinodal.
Moreover, theMaxwellor equilibrium statesare uniquely defined by

p0(vm) = p0(v
m) =: pm,

∫ vm

vm

(p0(v)− pm)dv = 0, vm < v∗ < v∗ < vm.
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The thermodynamical states withv ∈ (vm, v∗) or v ∈ (v∗, vm) are calledmetastable. States with
v ∈ (b, vm) or v ∈ (vm,+∞) are calledstable.

We provide and comment below several results that hopefully give some insight, even though
they cannot be exhaustive. The graphs on the left of figures show the moment of instabilitym

as a function ofτ (arbitrarily chosen positive; of course there are symmetric counterparts for
negativeτ , which have the same convexity properties). The graphs on the right are intended to
show Amplitude B of the solitons. They show, also as a function ofτ , either the maximum or the
minimum of the soliton (depending on its type), which is obtained naturally in the computation of
m as the endpointvM of the integral in (3.19) orvm in (3.20), characterized byI (vM ; v∞, τ ) = 0
or I (vm; v∞, τ ) = 0. There are at least 50 computed points in all plots. The numerical values of
Maxwell states with the pressure law we use (the van der Waals law for water atT = 600K) are

vm = 58.7 and vm = 182.6.

REMARK 9 The pure vapor solitons considered in Figure 6 exist forτ2 in some finite interval
(0, S), their amplitude going to infinity (respectively 0) whenτ tends to 0 (respectivelyS, which
corresponds to the coincidence of the points denotedv2 andv3 before). In contrast to the usual
feature of solitons in the water waves theory for instance, the “fastest” are the “smallest”. We did
not compute on the whole interval(0, S) but on a rather large subinterval, on which the moment
of instabilitym looks convex. This might be confusing because of the large range ofm. However,
zooms on smaller intervals have shown no failure of convexity. This suggests that all pure vapor
solitons are stable.
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FIG. 6. Moment of instability (left) and maximum (right) of solitons with the endstate equal to the vapor saddle point of
Figures 3 and 4 (v∞ = 201.179).

REMARK 10 The temperate mixed liquid solitons considered in Figure 7, where the endstate is in
the stable liquid phase, exist forτ2 in some finite interval(Sm, SM). Whenτ2 tends to the minimal
valueSm, the maximum of the soliton tends to the vapor saddle point of the hereteroclinic connection
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FIG. 7. Moment of instability (left) and maximum (right) of solitons with the endstate equal to the liquid saddle point of
Figures 4 and 5 (v∞ = 50.018).
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FIG. 8. Moment of instability (left) and maximum (right) of solitons with the endstate equal to the liquid Maxwell point
(v∞ = 58.678).

in Figure 4 (and the width of the soliton tends to infinity, as the orbit stays longer and longer in the
neighborhood of the vapor saddle point). Whenτ2 tends to the maximal valueSM , the amplitude
of the soliton tends to 0 (which corresponds to the coincidence of the points denotedv0 andv1

before). As far as we have approached the interval(Sm, SM), we have obtained a convex graph of
the moment of instabilitym. Now, when the endstate is taken closer and closer to the Maxwell
liquid point, the minimal valueSm approaches 0. Figure 8 shows that for the endstate equal to the
Maxwell liquid point, the graph of the moment of instabilitym exhibits a lack of convexity near 0.
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FIG. 9. Moment of instability (left) and minimum (right) of solitons with the endstate equal to the vapor saddle point of
Figures 3 and 4 (v∞ = 201.179).
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FIG. 10. Moment of instability (left) and minimum (right) of solitons with the endstate equal to a vapor metastable point
(v∞ = 180).

Computations with really metastable states instead of the limiting Maxwell point have given similar
results. This suggests that the temperate mixed liquid solitons of low “speed” (in fact, physically
of low mass transfer) are unstable. A similar result is known for solitons in the Boussinesq water
waves theory [9].

REMARK 11 Figure 9 concerns temperate mixed vapor solitons, where the endstate is in the stable
vapor phase. They exist again forτ2 in some finite interval(Sm, SM), and whenτ2 tends to the
minimal valueSm, the minimum of the soliton tends to the liquid saddle point of the hereteroclinic
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FIG. 11. Moment of instability (left) and maximum (right) of solitons with the endstate equal to the liquid saddle point of
Figures 4 and 5 (v∞ = 50.018).

connection in Figure 4. The graph of the moment of instability looks more complex, being convex
for either low or large “speed”, but concave in between. The region of concavity seems to correspond
to when the minimum of the soliton lies in the metastable or unstable region. However, this rough
observation is not confirmed in Figure 10, which concerns also temperate mixed vapor solitons but
with a metastable endstate. Indeed, if the graph ofm displays a concave part nearτ = 0, it also has
a convex part for large enoughτ2, even though the minimum of the soliton is always metastable.

REMARK 12 Figure 11 shows what happens for large mixed liquid solitons. They exist forτ2 in
some interval(S0, Sm), the maximum valueSm corresponding to a break down of the homoclinic
orbit into a set composed of the hereteroclinic connections in Figure 4 and a pure vapor homoclinic
connection. The graph of the moment of instability of those rather unusual solitons has shown no
failure of convexity, suggesting that they are all stable.

3.3.b Kinks. We now turn to the stability analysis of a kinkU = (ν, u) with endstatesU− =

(ν−, u−), U+ = (ν+, u+) and speedσ . We consider the functionals

H[U; U] :=
∫

+∞

−∞

(H(U, ∂U)−H(U, ∂U))dξ,

Q[U] :=
∫

+∞

−∞

(νu− νu)dξ,

P1[U] :=
∫

+∞

−∞

(ν − ν)dξ, P2[U] :=
∫

+∞

−∞

(u− u)dξ.

They are well defined on the dense subset of the affine spaceU + (H 1
× L2) made of functions

U such thatU − U belongs toL1
× L1. (Note that this property is useful not only forPi but also

for H because of the non-linear term inν, which is asymptotically linear, unlike what happens
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for solitons.) We callλ0 the Lagrange multiplier associated with the quadratic functionalQ, that
is, λ0 = σ in the Eulerian framework orλ0 = −σ in the Lagrangian framework. The other two
Lagrange multipliers,λ1, λ2, associated withP1 andP2 respectively, are defined by

λi = (δH[U±] + σJεU±)i, i = 1,2,

the choice of the± sign being indifferent due to the jump conditions (necessary for the profile to
exist). Then we define a compound functional

F := H− λ0Q− λ1P1 − λ2P2.

It will be crucial in the following thatF does not change when the profile is translated, which
amounts to requiring that

H(U+,0)− λ0ν+u+ − λ1ν+ − λ2u+ = H(U−,0)− λ0ν−u− − λ1ν− − λ2u−.

But this is an easy consequence of the equation defining the profile

(δH− λ0δQ− λ1δP1 − λ2δP2)[U] ≡ 0.

Indeed, taking the inner product of this equation and∂U and integrating onR we get the equality
above using the fact that∫

∂U · δH[U] =

∫
∂(H(U, ∂U)) = H(U+,0)−H(U−,0),

and similarly∫
∂U · δQ[U] = ν+u+ − ν−u−,

∫
∂U · δP1[U] = ν+ − ν−,

∫
∂U · δP2[U] = u+ − u−.

As a consequence of this invariance property, we have

F [Û(t)] = F [U] = 0

for all t . Therefore, by Lemmas 1 and 2,F is well defined—the integral being at least
semiconvergent—and remains equal to 0 along any solution of (3.15) such thatU − U belongs
to C([0, T ];H 3

×H 2)—or equivalentlyU − Û ∈ C([0, T ];H 3
×H 2)—andU(0)− U(0) belongs

toL1
× L1.

In the framework of Lemma 3, we have the following properties.

(P1) The endstatesU± are hyperbolic fixed points of the ODE

(δH− λ0δQ− λ1δP1 − λ2δP2)[U] = 0.

(P2) The set of solutions of the “boundary value problem”{
(δH− λ0δQ− λ1δP1 − λ2δP2)[U] = 0,
U(±∞) = U±

is the one-dimensional manifoldM := {U = Us; s ∈ R} whereU is a fixed profile and
Us(ξ) = U(ξ + s).
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(P3) The functional

F [U] =

∫
(H(U, ∂U)−H(U, ∂U)− λ0(νu− νu)− λ1(ν − ν)− λ2(u− u))

is independent oft for U = U(t) any (classical) solution of (3.15) such thatU − U belongs to
C([0, T ];H 3

×H 2) andU(0)− U(0) belongs toL1
× L1. Furthermore, it equals 0 along the

manifoldM, as does its variational gradient.
(P4) The Hessian ofF is a monotone operator at all points ofM. Furthermore, there existsc > 0

such that for alls ∈ R andU̇ ∈ D(R) with
∫
ν̇∂νs = 0,∫

U̇ HessF [Us ] · U̇ > c(‖ν̇‖2
H1(R) + ‖u̇‖2

L2(R)).

(The fact thatc is independent ofs trivially follows from the fact thatH k norms are invariant under
translation.)

Assuming(P1)–(P4), we now investigate theorbital stability of the traveling wave solution
(x, t) 7→ Û(x, t) = U(x − σ t) of (3.15).

Our method is very much inspired from the solitary waves stability analysis. In particular, we
first show a lemma that will enable us to “factor out” the translation alongM. It is analogous to
Lemma 3.2 p. 169 in [18] (or Lemma 4.1 p. 405 in [10]), the main difference being that we have to
work in an affine spaceU +H k(R) instead of merelyH k(R).

LEMMA 5 For any non-constant functionU tending exponentially fast toU± at ±∞, for k > 0,
there existsε > 0 and a smooth function

Sk : Uε = {U ∈ U +H k(R); inf
s∈R

‖U − Us‖H k(R) < ε} → R

such that

•
∫
(USk(U) − U)∂U = 0 for allU ∈ Uε,

• Sk(Ur) = Sk(U)− r for all r ∈ R.

Proof. We recall that the notationUs for any functionU stands for the function translated bys, that
is,Us(ξ) = U(ξ + s). Applying the implicit function theorem to the mapping

(s, U) 7→

∫
(Us − U)∂U

about(s, U) = (0, U), we findε > 0, a neighborhoodWε of 0 in R, a neighborhoodVε of 0 in
H k(R) and a functionSk defined onVε such that(∫

(Us − U)∂U = 0 ands ∈ Wε, U ∈ U + Vε
)

⇔ s = Sk(U).

Now, by the invariance of theH k norm under translation,U ∈ U t + Vε is equivalent toU−t ∈

U + Vε. Consequently, we have(∫
(Us−t − U)∂U = 0 ands ∈ Wε, U−t ∈ U + Vε

)
⇔ s = Sk(U−t ).
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So we may define
Sk(U) = Sk(U−t )− t,

with values in−t +Wε. This extends smoothlySk to

Uε = {U ∈ U +H k(R); inf
s∈R

‖U − Us‖H k(R) < ε},

as claimed—provided that the ball of center 0 and radiusε is included inVε. Moreover, the setUε
is by construction invariant under translation, and for allU ∈ Uε andr ∈ R,

Sk(Ur) = Sk(Ur−t )− t

if Ur ∈ U t + Vε, which is equivalent toU ∈ U t−r + Vε and thus implies

Sk(U) = Sk(Ur−t )− (t − r).

Taking the difference between these two equalities, we get the expected formula

Sk(Ur) = Sk(U)− r. 2

The next step is to expand the functionalF . Brutal Taylor expansion is not valida priori because
F is not defined on the whole spaceU ∈ U + (H 2(R)×L2(R)). However, we may expand each of
the integrands separately. In this way, we find that for anyU ∈ U + (H 2(R) × L2(R)), as soon as
the integral inF [U] is convergent,

F [U] =

∫
(δF [U] · (U − U)+

1
2(U − U)tHessF [U](U − U)

+ α(ν, ν)(ν − ν)3 + β(ν, ν)(ν − ν)2∂(ν − ν)+ γ (ν, ν)(ν − ν)(∂ν − ∂ν)2)

where theL∞ norms of the coefficientsα, β andγ depend continuously on‖ν − ν‖L∞(R), and
on ‖ν‖L∞(R), which is fixed. SinceF [Us ] = 0 the same expansion holds true withU replaced by
Us for any s. And by (P2), δF [Us ] = 0, so the first term is null. Therefore, by(P4), the Sobolev
embeddingH 1 ↪→ L∞ and Lemma 5, forM > 0 small enough, there existsCM so that

F [U] > c(‖̃ν − ν‖2
H1(R) + ‖ũ− u‖2

L2(R))− CM ‖̃ν − ν‖3
H1(R)

if

‖̃ν − ν‖L∞(R) 6 M, with Ũ =

(
ν̃

ũ

)
:= US1(ν).

In particular, if
‖̃ν − ν‖H1(R) 6 min(c/(2CM),M),

then
F [U] >

c

2
(‖̃ν − ν‖2

H1(R) + ‖ũ− u‖2
L2(R)).

THEOREM 3 Assume that(P1)–(P4) hold true. There existsε1 > 0 such that for allε ∈ (0, ε1]
there existsη > 0 so that ifU ∈ U + C([0, T );H 3

×H 2) is a solution of (3.15) with

max(‖U(0)− U‖H1×L2, ‖U(0)− U‖L1×L1) < η

then
inf
s∈R

‖U(t)− Us‖H1×L2 < ε

for all t ∈ [0, T ).
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Proof. By (P3)and the inequality obtained just before the statement of the theorem, we have

F [U(0)] = F [U(t)] >
c

2
(‖̃ν(t)− ν‖2

H1(R) + ‖ũ(t)− u‖2
L2(R))

as long as
‖̃ν(t)− ν‖H1(R) < ε1 := min(c/(2C1),1).

Note that by continuity of the map

ν ∈ ν + Vε 7→ ν̃ = νS1(ν) ∈ ν +H 1(R),

we have initially
‖̃ν(0)− ν‖H1(R) < ε1

provided that
‖ν(0)− ν‖H1(R) 6 η0

with η0 (less than theε of Lemma 5) small enough.
Takeε2 ∈ (0, ε1]. SinceF is continuous on(H 1

× L2) ∩ (L1
× L1), there existsη ∈ (0, η0]

such that
max(‖U(0)− U‖H1×L2, ‖U(0)− U‖L1×L1) < η

implies

F [U(0)] <
c

2
ε2

2.

Therefore, for allt ∈ [0, T ),
‖Ũ(t)− U‖H1×L2 < ε2.

Recalling that̃U(t) is a translate ofU(t), this completes the proof. 2

Appendix A. Selection of Hamiltonian operators by Olver’s method

We first consider a one-dimensional differential operatorA, acting on functionals of dependent
variables(v, u,w) and taking the form

A =

 0 a(u)Dx 0
Dxa(u) 0 Dxb(u)Dx

0 −Dxb(u)Dx 0

 ,

where Dx stands for the total derivative with respect to the single independent variablex, anda and
b are arbitrary scalar functions ofu = (v, u,w). The operatorA is obviously skewsymmetric for
theL2 inner product.

Recall from [30, p. 444] the following

THEOREM 4 The bracket{·, ·} acting on functionalsP : u 7→
∫
P [u] dx,Q : u 7→

∫
Q[u] dx as

{P,Q} : u 7→

∫
δP[u] ·AδQ[u] dx
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satisfies Jacobi’s identity if and only if∫
pr vAθ(θ ∧Aθ)dx = 0,

whereθ = (η, θ, ζ ), η = dv, θ = du, ζ = dw being “canonical” 1-forms,Aθ has three
components(Aθ)1, (Aθ)2, (Aθ)3 defined by lettingA act onθ through the formulae

Dxη = ηx := dvx, Dxθ = θx := dux, Dxζ = ζx := dwx, etc.,

the wedge productθ ∧Aθ stands for the extended 2-form

θ ∧Aθ = η ∧ (Aθ)1 + θ ∧ (Aθ)2 + ζ ∧ (Aθ)3,

andvAθ is the vector field

vAθ = (Aθ)1
∂

∂v
+ (Aθ)2

∂

∂u
+ (Aθ)3

∂

∂w
,

prolongated to

pr vAθ = vAθ + Dx((Aθ)1)
∂

∂vx
+ Dx((Aθ)2)

∂

∂ux
+ Dx((Aθ)3)

∂

∂wx
+ · · · ,

which acts on extended 2-forms as an exterior differentiation.

Using this theorem, it is rather easy to discriminate among skewsymmetric operators those
which satisfy Jacobi’s identity. In fact, it can be cumbersome to write down

∫
pr vAθ(θ ∧Aθ)dx.

Instead, as suggested by Olver, one may observe that∫
pr vAθ(θ ∧Aθ)dx = 2pr vAθΘ, Θ :=

1

2

∫
(θ ∧Aθ)dx,

whose expression can be greatly simplified through integrations by parts.
In our case, we have

(Aθ)1 = a(u)θx, (Aθ)2 = Dx(a(u)η)+ Dx(b(u)ζx), (Aθ)3 = −Dx(b(u)θx),

vAθ = (a(u)θx)
∂

∂v
+ Dx(a(u)η + b(u)ζx)

∂

∂u
− Dx(b(u)θx)

∂

∂w
,

andΘ reduces to

Θ =

∫
(a(u)η ∧ θx + b(u)ζx ∧ θx)dx.

Therefore,
pr vAθΘ = vAθΘ,

where there are still many terms ifa andb do depend on the three variables. However, ifa andb
depend only on the first dependent variablev, we find that

pr vAθΘ =

∫
a(v)a′(v)θx ∧ η ∧ θx + a(v)b′(v)θx ∧ ζx ∧ θx)dx = 0
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because ofθx appearing twice in the wedge products. This applies in particular to the operatorA of
Section 1.3.

We now consider the multidimensional operator of Section 1.1 (save for the minus sign)

J =

 0 div 0
∇ 0 s∇

0 divs · 0


with dependent variables(ρ,u, S), ands = S/ρ. Of course there is a multidimensional version of
Theorem 4, which is actually the one given in [30]. To apply it, we need notations. We denote here
by u1, u2, u3 the components of the velocity fieldu, andη = dρ, θ i = dui , ζ = dS,

Dxj η = ηj := dvxj , Dxj θ
i
= θ ij := duixj , Dxj ζ = ζxj := dSxj , etc.

And hereθ stands for(η, θ1, θ2, θ3, ζ ). We have

vJ θ = (θ1
1 + θ2

2 + θ3
3)
∂

∂ρ
+

3∑
j=1

(ηj + sζj )
∂

∂uj
+ (Dx1(sθ

1)+ Dx2(sθ
2
+ Dx3(sθ

3))
∂

∂S

and

θ ∧ J θ = η ∧ (θ1
1 + θ2

2 + θ3
3)+

3∑
j=1

θ j ∧ (ηj + sζj )+ ζ ∧ (Dx1(sθ
1)+ Dx2(sθ

2
+ Dx3(sθ

3)).

Therefore,Θ reduces to

Θ =

∫
s(θ1

∧ ζ1 + θ2
∧ ζ2 + θ3

∧ ζ3)dx,

and

pr vJ θΘ =

∫ ((
∂s

∂ρ

)
(θ1

1 + θ2
2 + θ3

3)+

(
∂s

∂S

)
(Dx1(sθ

1)+ Dx2(sθ
2
+ Dx3(sθ

3)))

)
∧ (θ1

∧ ζ1 + θ2
∧ ζ2 + θ3

∧ ζ3)dx.

Since
∂s

∂ρ
+ s

∂s

∂S
= 0,

∂s

∂S
= v

the only remaining terms inpr vJ θΘ are of the form∫
v(θ i ∧ θ j ∧ (sxi ζj − sxj ζi))dx.

Sopr vJ θΘ is zero in dimension one only.
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Appendix B. Application of the Sturm–Liouville theory to L

We do the computation in the Lagrangian framework, in which

L =

(
M σ

σ 1

)
,

and the Sturm–Liouville operatorM = M−σ 2 is known to have the following properties: 1) since
the endstate of the solitonU is subsonic the essential spectrum ofM is positive and bounded away
from zero; 2) the first derivative of the profilev, which has only one zero, is in the kernel ofM. From
the Sturm–Liouville theory [32], this implies thatM admits exactly one negative eigenvalueµ0 and
that the eigenvalues different fromµ0 and 0 are positive. Furthermore, the eigenspace associated
with µ0 is spanned by a positive eigenfunction. Assume now thatλ is a negative eigenvalue ofL,
with eigenvector(ω,w)t , that is, (

M σ

σ 1

) (
ω

w

)
= λ

(
ω

w

)
. (B.28)

Eliminatingw we obtain

M · ω =
λ(λ− 1 − σ 2)

λ− 1
ω,

which means that the negative numberλ(λ− 1 − σ 2)/(λ− 1) must be an eigenvalue ofM. Hence

λ(λ− 1 − σ 2)

λ− 1
= µ0.

Conversely, there exists a unique negative numberλ satisfying the equality above, since the second
order polynomial

λ2
− λ(1 + σ 2

+ µ0)+ µ0

has a unique negative root.

REMARK 13 From the dimensional point of view, this computation looks incorrect. In fact, we can
restore the physical homogeneity of equations by inserting a scaling factor (homogeneous toσ 2) in
the first row of the right-hand side in (B.28). The vector solutionW obtained this way will not
exactly be an eigenvector ofL, but it will satisfy∫

W∗LW < 0,

which is precisely what we need in the proof of Proposition 4.
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Ann. Inst. H. Poincaŕe Anal. Non Lińeaire18 (2001), 97–133. Zbl 1010.76075 MR 1810272

16. DUNN, J. E. & SERRIN, J. On the thermomechanics of interstitial working.Arch. Rat. Mech. Anal.88
(1985), 95–133. Zbl 0582.73004 MR 0775366

17. GAVRILYUK , S. & GOUIN, H. Symmetric form of governing equations for capillary fluids.Trends in
Applications of Mathematics to Mechanics(Nice, 1998), Chapman & Hall/CRC Monogr. Surv. Pure Appl.
Math. 106, Chapman & Hall/CRC, Boca Raton, FL (2000), 306–311. Zbl 0973.35152 MR 1734893

18. GRILLAKIS , M., SHATAH , J., & STRAUSS, W. Stability theory of solitary waves in the presence of
symmetry. I.J. Funct. Anal.74 (1987), 160–197. Zbl 0656.35122 MR 0901236

19. HATTORI, H. & L I , D. Global solutions of a high-dimensional system for Korteweg materials.J. Math.
Anal. Appl.198(1996), 84–97. Zbl 0858.35124 MR 1373528

20. HOWARD, P. & ZUMBRUN, K. Pointwise estimates and stability for dispersive-diffusive shock waves.
Arch. Rat. Mech. Anal.155(2000), 85–169.

21. HOWARD, P. & ZUMBRUN, K. Stability of undercompressive shock profiles.Arch. Rat. Mech. Anal., to
appear.

22. HUANG, F., LI , H., MATSUMURA, A., & ODANAKA , S. Well-posedness and stability of multi-
dimensional quantum hydrodynamics for semiconductors inR3. Preprint (2003).

23. JAMET, D., LEBAIGUE, O., COUTRIS, N., & DELHAYE , J. M. The second gradient method for the direct
numerical simulation of liquid-vapor flows with phase change.J. Comput. Phys.169 (2001), 624–651.
Zbl 1047.76098 MR 1836527

http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0902.76001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1612569
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0584.76001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0740456
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=02075133&format=complete
http://www.ams.org/mathscinet-getitem?mr=2041006
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0654.35018&format=complete
http://www.ams.org/mathscinet-getitem?mr=0954673
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0648.76005&format=complete
http://www.ams.org/mathscinet-getitem?mr=0897729
http://www.emis.de/cgi-bin/jfmen/MATH/JFM/quick.html?first=1&maxdocs=20&type=html&an=JFM%2004.0493.04&format=complete
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=01912722&format=complete
http://www.ams.org/mathscinet-getitem?mr=1978317
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1049.35149&format=complete
http://www.ams.org/mathscinet-getitem?mr=1737505
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1010.76075&format=complete
http://www.ams.org/mathscinet-getitem?mr=1810272
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0582.73004&format=complete
http://www.ams.org/mathscinet-getitem?mr=0775366
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0973.35152&format=complete
http://www.ams.org/mathscinet-getitem?mr=1734893
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0656.35122&format=complete
http://www.ams.org/mathscinet-getitem?mr=0901236
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=0858.35124&format=complete
http://www.ams.org/mathscinet-getitem?mr=1373528
http://www.emis.de:80/cgi-bin/zmen/ZMATH/en/quick.html?first=1&maxdocs=20&type=html&an=1047.76098&format=complete
http://www.ams.org/mathscinet-getitem?mr=1836527


414 S. BENZONI-GAVAGE ET AL .

24. JAMET, D., TORRES, D., & BRACKBILL , J. U. On the theory and computation of surface tension: the
elimination of parasitic currents through energy conservation in the second-gradient method.J. Comput.
Phys.182(2002), 262–276. Zbl 1058.76597

25. KATO, T. Quasi-linear equations of evolution, with applications to partial differential equations.Spectral
Theory and Differential Equations(Dundee, 1974), dedicated to Konrad Jörgens, Lecture Notes in Math.
448, Springer, Berlin (1975), 25–70. Zbl 0315.35077 MR 0407477

26. KORTEWEG, D. J. Sur la forme que prennent leséquations des mouvements des fluides si l’on tient
compte des forces capillaires causées par des variations de densité consid́erables mais continues et sur la
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