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We consider a standard functional in the mesoscopic theory of phase transitions, consisting of a
gradient term with a double-well potential, and we add to it a bulk term modeling the interaction with

a periodic mean zero external field. This field is amplified and dilated with a power of the transition
layer thickness leading to a nontrivial interaction of forcing and concentration when 0. We

show that the functionalE-converge after additive renormalization to an anisotropic surface energy,

if the period of the oscillation is larger than the interface thickness. Difficulties arise from the fact that
the functionals have nonconstant absolute minimizers and are not uniformly bounded from below.

1. Introduction

We briefly review some aspects of the classical theory of phase transitions. GivenR”, let

u : 2 — R be an order parameter, i.e. a function which describes to what extent the physical system
at a given poink € £2 is in the “+" or “ —" phase. Pure phases correspond to the two minimizers
(for instancet1) of a double-well potentidl, which can be derived from atomistic considerations

as a mean-field free energy, and whose main property is to be convex in a neighborddod bg
resulting free energy functional is characterized by a competition between a gradient term, modeling
interaction energy, and the potentl@l Such a functional is given by

W (u)
€

M, (1) :=/Q{e|vbt|2+ }dx, ue HY(), (1.1)

wheree > 0 is a small parameter related to the interface thickness. If the system is prevented from
staying close tet-1 or to—1 everywhere (for example by a volume constraint), then the thickness
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of the transition layer (i.e. the set separating the positive and negative regions) will be o€ order
Moreover, sequences of finite energy éor> 0 should converge te&-1 almost everywhere.

A suitable mathematical setup to make this rigorous is the notiol-@bnvergence (see
Sectior| 2 for a precise definition). In_[16.]15] the authors characteriz¢ thenvergence of the
family M, with respect to the.1(£2)-topology and they obtain a sharp interface limit, which is the
area of the interface with surface tensign (which is related to the double-well potential). More
precisely, by setting

1
cw :=/ VW@ dr and B:={ue BV(R2):ulx) € {-1, 1} a.e.in},
-1

they prove that thé”-limit of the functionals in), extended byoo to all L1(£2), is given by

cwP(E,2) ifu=xgebhb,

+00 if u e LY(2)\B. (1.2)

Mo(u) = {
This convergence could be perturbed by rapidly oscillating spatial inhomogeneities modeling for
example the interaction with a substrate. The result will depend on whether the scale on which
the inhomogeneities oscillate is of order of the interface thickness, smaller or larger. One way to
introduce spatial inhomogeneities is to considexatependent gradient term, i.e. replace the term
[Vul? in (1.1) by |A(x/e%)Vu|?, whereA(x) is a positive definite symmetric matrix, periodically
depending onr (a general version of this case is studied_in [2]). In our paper, instead, the energy in
(L.7) is perturbed by a strong, rapidly oscillating field with zero average. More precisely, we shall
consider the functional

Ge(u) = /Q{e|vbt(x)|2+ w + ig(é%)u(x)} dv, ue HY®Q),

eO{
whereg € L®(R") is a periodic function with cell domai@ := (—1/2, 1/2)". This periodic term
g has the effect of creating many local minima. Systems of this type are of relevance in materials
science, e.g. the evolution of microstructures or the motion of magnetic walls.

Whena = 0, it follows from the results in_[16, 15] (see alsd [9, Proposition 6.21]) that the
I'-limit is the sum of the functiona.2) and the volume tefrg(x)u(x) dx. Whena > 0, both
amplitude and frequency @f become large as — 0, hence the infimum of the functional over
H1(£2) can be negative or even converge-toc ase — 0 (for example whenr > 1/2, see
Propositior{ 3.9). Therefore, to fit in the framework Bfconvergence, we need to introduce an
additive renormalization. However, in order to get a nontriyidimit, we need the renormalization
to be of the same order of the perimeter and this can happen oyﬁb/giﬁx = 0. We show for
0 < a < 1 that the renormalized functional3-converge to an anisotropic surface energy (see
Theoreni 2.8).

There are similarities with the result ihl[2] but in many respects our setting requires new
techniques. The main difficulties (beyond those encountereld i [16, 15] &nd [2]) arise from this
renormalization and the (related) facts that the functionals have nonconstant global minimizers
whose energy is not uniformly bounded from below. To explain the main points, let us first note
that the Euler-Lagrange equation is

W' (u) 1 X du
Au — = —g| — on2, — =0 onoas2, 1.3
e 2¢ 26“g< ) a (13)
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i.e. the functiong appears as a forcing term. There are two solution$ of (18):close to+1,
andu_, close to—1 (see Propositio@.? and CoroII3.8), which are local minimizers of the
energy and which are nonconstantif£ 0, whereas in the unperturbed case orlin [2] one gets
ul = 1,u; = —1. As their energy is strictly negative, and typically is of ord@ie'=2*, the
aforementioned additive renormalization is necessary.

The appearance of such a renormalization is in fact quite natural for phase transition problems.
The energy associated with an interface isekeesd$ree energy due to the fact that more than one
phase is present, so it is actually a difference of energies, determined only up to adding constants.
If the pure phases, i.e. the global minimizers, are constants, then in order to ensure that the energy
of the minimizers is zero, it is enough to choose g (1) = 0. In our case the minimizers are
not constants, so we must compute their energy and show that it is proportional to the volume of the
domains2 (up to smaller order), as we want@al functional asr"-limit. Moreover (again up to
smaller order) the energy aft andu~ must be the same. Conditions #handg will ensure both
these properties.

Now we consider the different scalings, i.e. the oscillationgah relation to the interface
thickness. In this paper we treat rigorously the case of slow oscillations, i-e.® < 1, leaving
the casex > 1 to further investigation. Let : R — [—1, 1] be the unique increasing solution of

2y =W'(y) (1.4)

which converges exponentially tb1 at4+oo, and such thag (0) = 0. If we perform the change of
variablesy = xe~® and letii(y) = u(xe~*), (1.3) becomes

W) 1

el AL — i = 580)- (1.5)

Then a formal asymptotic expansion for solutiond of|(1.5) gives

d d
u(y) = V( (y)) + el_aﬁ1<o(y), el(_i)‘?” y) + o(el9),

61—ot

whered (x) is the signed distance function from the zero-level set @vhich we assume to be a
smooth hypersurface) arndy) := y — d(y)Vd(y) is the projection ofy onto{z = 0}. It follows
thatcw Ad(x) = g(x) on{z = 0}, which on the original scale becomes

cwk = %g(i) (1.6)
€

6(1

wherek is the mean curvature of the zero-level sektoHence, forw < 1 the problem is related to
singular homogenization for the prescribed mean curvature equation. Indeed, in this case there is a
splitting of the I'-limit into a more standard limit, similar to [16, 15] withgterm which does not
depend or, and a prescribed mean curvature problem (see The¢reins 2.3 and 5.9).

Equation [(1.p) shows that the chosen relation between amplitude and frequency of the forcing
term is interesting, since the interface will change its shape significantly within one unit cell. For a
stronger amplitude we expect to see small bubbles everywhere, as the minimizers on a cell are no
longer of constant sign, whereas for a weaker forcing the limit will be isotropic.

Now we are able to summarize our results. Any sequence of bounded energy has a subsequence
which converges ii.! to a BV-function, which takes its values fr-1, 1}. The I"-limit with respect
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to L1-convergence has the form
/B ; ng(vE)dHN*l, (1.7)
*EN

wherekE is a finite perimeter set on which linf = 1 andv is the unit normal t&®*E. Thanks to
the aforementioned splitting, the anisotropycan be explicitly characterized (see Theofenj 5.9),
andeo(v) = ¢(—v) ande < cw for any forcing termg satisfying certain bounds and a symmetry
condition (see Propositign 5]11).

Note that this is not a -limit result for the functionalsG. but only for the renormalized
functionals, since the functionals, typically converge to-co whena > 1/2 (see the comments
after Propositiof 2]2). Such a result is more in the spirit 6f-axpansion, as recently investigated
in [I7].

We add a few comments on the case of fast oscillationsgi.2. 1. Whena = 1, there is
no splitting of scales as before, hence this case is more difficult. However, under possibly stronger
conditions ong, we expect a similai"-convergence result to hold, and that the limit is still an
anisotropic surface energy. Fer> 1, we expect the limit functional to be isotropic, i.e. a multiple
of the usual perimeter.

The paper is organized as follows. In Secfipn 2, we briefly review the thearyafnvergence,
following [9]. Moreover, we state our assumptions @n and g, we define the renormalized
functionals and we give a precise statement of the main result. In Seftion 3, we show the existence
of the minimizersy and estimate the cost of having a transition within a cube. In Selction 4, we
show that any sequence with bounded energy has a subsequence conveigha@ jrto a BV-
function taking values only if—1, 1}. Using the estimates of Sectiph 3, we derive the so-called
“fundamental estimate”, which is a localization property. We also show that the limit energy of our
functionals concentrates on characteristic functions and is bounded from above and below by the
area functional.

General principles allow us to derive from these estimates afilghit theorem, which is valid
up to a subsequence (see Proposifion|4.11). In Section 5, we derive further properties of the limit
functional and obtain, in particular, a representation formula (see Thg¢orgm 5.9), which implies that
the I'-limit is independent of the subsequence and of the scale parameter

2. Notation and main results

Let N > 2. We denote by the class of all bounded open subset®8fand byQ = (—1/2, 1/2)V
the open unit cube iRY centered at 0. For eadh ¢ R”, the (shifted) characteristic functign:
of E and the (signed) distance functidp from 9 E are defined respectively by:

—distx, RN\ E) ifx€eE,
dist(x, E) otherwise.

1 ifxeE,

XE(x) 1= {_1 otherwise

dp(x) = {

Moreover, ifE C 2 € Awith xg € BV (£2), we denote by (E, £2) the perimeter of in £2, and
by 9*E the reduced boundary df (see[12]). Given: € BV (£2), we denote by, |Vu| the total
variation ofu in £2, thus we have

/ IVxel = P(E, 2)
2

forall E C £2 of finite perimeter ins2. Let also briefly recall the notion df'-convergence (sekl[9]
for more details on this subject).
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DEFINITION 2.1 LetX be a metric space and 1€t : X — R, € > 0, be a family of functionals
on X. We say thatr, I'-convergeto F : X — R if the following conditions are satisfied:

1. forallx € X and for allx, — x,
liminf Fo(xe) > F
e—0

(r-liminf inequality);
2. for allx € X there exist, — x such that

lim F.(x¢) = F
e—0

(r-limsup inequality.

We recall the following fundamental property b6¥-convergence, which can be easily derived
from Definition[2.]..

PROPOSITION2.2 If F, I'-converge taF in X, also the corresponding minimal values (or infima)
converge. Moreover, if. is a minimizer ofF, andx. — x € X, thenx is a minimizer ofF.

Hence, the asymptotic behavior of minimizersf can be partly understood by considering
the I"-limit of F.. Notice also that the second assertion of Proposjtion 2.2 does not change if we
modify the functionals, by adding a constant (renormalization), possibly depending on

Given2 € A ande > 0, we consider the following functional:

W(u) 1 X .
Vul?2 + —— —g| — f HY(0
Gelu, 2) = /9{6' T }dH/ge“g(e“)“dx Tue @, o
400 otherwise.

We require thag andW satisfy the following assumptions:

(H1) g € L=®(R") is a periodic function with cell domai®, satisfyinng gdx =0;

(H2) W e Lipjpc(R), W = 0, W(s) = 0iff s € {—1, 1} andW (s) = W(—s);

(H3) There exisbp € (0, 1) andCp > 0 such thaWV is strictly convex on the intervall — §g, +00)
and

W(s

< Co(s — 12, Vs e (1—8o, 1+ o),
Wis) >

)
)= Cols — D2, Vs e (1— 8o, +00);
(H4) There exist® > 0 such that
W@d+s)— W(—1+s)=0 whenever [s| < p;
(H5) g(x1, ..., xi, ..., xN) = g(x1, ..., —x;,...,xy) foranyi € {1, ..., N} (in this case we say
thatg is symmetrig.

A typical example of a function satisfying (H2) and (H3) but not (H4) is given by the double-
well potential defined byW(s) = (1 — s2)2/2. Assumption (H4) ensures that the two local
minimizers aroundt1, i.e. the pure phases, have exactly the same energy (hence they are both
global minimizers of the energy). Without that condition, fidimit could become trivial (equal to
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0 or +00). We observe that (H4) is not necessary in order to geftHenit result whena < 2/3
(see Remark 4.10), whereas it is necessasy=# 2/3. Notice also that assumption (H3) implies

W ()| > Collx =1 forx >1- o,

2.2
IW/(x)| = Cotlx +1]  forx < —1+ 4. (2:2)

We will see that in general Ii&oianl(Q) Ge(-, 2) = —oofora > 1/2, hence we shall introduce
an additive renormalization for the functionals. 78t be the family of all sets of the forlk =
int(\U,; €{Q +z}), wherel is a finite subset aZV. Givens2 € A andu € L(£2), we define the
renormalized functionals as

sup {Ge(u,R)— inf Ge(-,R)} if{ReR:RCR}#D,
F.(u, 2) ;= { RER., RS HL(R)
0 otherwise

Note thatinf: o, Fe = 0 and since inf1z) Ge (-, R) < 0 (by comparison with constant functions),
we also haveF, > G.. Our main result is the following:

THEOREM2.3 LetO< a < 1, let W satisfy assumptions (H2) and (H3), and gesatisfy (H1)
and (H5). Ifa > 2/3 we further assume (H4). Then there exists a constast co(W) > 0 such
that for anyg satisfying|gll;» < co, the I'-limit (with respect to thel *-topology) of F. (-, £2)
exists for eachi2 € A with Lipschitz boundary. Furthermore, we have

ve)dHN Y if u = xg € BV(2),
r- IimOFe(u,.Q) = /a*Em(z #0E) KE @ (2.3)
€—

+00 otherwise
wherey : SN=1 — (0, 00), independent of, satisfies
0<C <o <cy forallvesV-1 (2.4)

for some constant > 0, and its one-homogeneous extension

0 if x =0, (25

aRN_)[O’ OO), X — {|x|(p(x/|x|) Ifx;éO,
is convex.
REMARK 2.4 The functiornp can be computed as a limit of the averaged minimum energy on large
boxes of the functional
Fl(xg) = cwP(E. A) + / g(x) xe (x) dx, (2.6)
A

defined for each Borel set C §2 and eaclyr € BV (£2) (see Theorern 5.9).

REMARK 2.5 We point out that the results of this section can be generalized to functionals with
anx-dependence in the gradient term (see also [6]), like for example

2
66(“59) 12/ {E A(%)Vu + W(M)}dx+f ig<i)udx,
ke € € o EO{ EO{

wherea € (0, 1), 8 > 0 andA(x) is a positive definite symmetric matrix, periodically depending
onx.
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3. Estimates for the minimizers

In the following, unless otherwise stated, we shall always take(0, 1). As we are interested in a
local I"-limit, we ultimately have to show that the renormalization is proportion@f2p This will
be done by comparing with minimizers on a cube. We need the following definitions.

DEFINITION 3.1 Let

Ge(u, 2) :=f <6|Vu|2+ W(”)>dx+f gudy, ue HYQ). (3.1)
2 2

€
Notice that, by the change of variables= ¢ ~“x and setting
v(y) = u(e®y), 2¢:={yeR":e% e},
for 2 € R we obtain the identity
Geu,2) ="V DN Gau(v. 2+ Q) NeR). (3.2)
2€ZN

Thanks to condition (H5), in order to study the structure of minimizer§ 0bn R, it is enough to
analyze the minimizers on the cube with Neumann boundary conditions (which, again by condition
(H5), are equivalent to periodic boundary conditions). Let us set

1
cw = / VW@)d:, B:={ueBV(Q):ukx)e{-11}a.e},
-1
and consider the functional

cwP(E, Q)+/ gxex ifu=yxgeb,
o

F2(u) =
+00 if ueL1(Q)\B.

From the result of[[15, 16] we havE-lim 56(-, 0) = FgQ. This fact gives some hint on the

asymptotic behavior of the minimizers of the functionals(-, Q). To see this, let us recall the
following isoperimetric inequalitie$ [11, Section 5.6].

PROPOSITION3.2 Let$2 € A with Lipschitz boundary. Then there exists a const&2) > 0
such that

1. P(E, 2) > [(2)(mIn{|E|, |2\ E[HDWV-Y/N foranyE C £2;
2. [o|Vul = 21(2)|lu —ulln/n-1) foranyu € BV (£2), wheren := |Q|_1f9 u.

Based on this result, we can derive:

PROPOSITION3.3 Let£2 € A with Lipschitz boundary. Ifligll,xo) < 2cwI(Q), then the
minimizers ongQ are given byu = +1.

Proof. SincngQ(l) = FgQ(—l) =0, itis enough to shovFgQ(u) > Oforallu € B. We have

ch/|Vu|>cw21u»nu—imNﬂan,
o

/guzfgm—m>—mmw—wWw4»
0 0
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Thus,
FgQ(u) Z cw2l(Q)llu —ullnyv-1) — lglinllu = ulln/N-1),
= llu —ullnyn-1 (w2l (Q) — lIglin),
and the last term is nonnegative by assumption. O

Propositior] 3.3 implies that if the minimizers 6f.(-, Q) exist and converge ii!, they must
converge tat1. We need now to quantify this information, i.e. to obtain rates in

PROPOSITION3.4 Assume (H1) to (H3). Then for amye H1(2) we have
Ge(t AuVN (—1), 2) < Ge(u, 2) VYt > 1+ €Collgloo- (3.3)
Proof. By settings2; := {|u| > 1}, from (H2) and[(Z.R), we get
G, 2) = Ge(t AuV (—1), 2) > %/Q (W(u) — W(t)) dx +/Q g(u — sgn(u)r) dx,

1
== [ (W ® —eligloo)(ul — 1) dx,
€ Jo,

1 ~1
> —/ (€54 — 1) — ellglloo) (ul — 1),
€ 2,

and the last expression is positive whenaver1 + € Co|lg |l co- O

The following definition introduces a cutting and reflection procedure, which gives a function
u' assuming values only in one of the convex regions of the poteltial

DEFINITION 3.5 Givenu € H1(£2) and: > 0, we define

: lul vt if [{u > 0} > 3821,
u =
—(ulv ) if l{u> 0} < 3|82].
We are going to use this cutting procedure to give an estimate of the energy required to have a
sign change of the functian

PROPOSITION3.6 Let$2 e A with Lipschitz boundary. Assume (H1) to (H3) amflg|l <
¢y 80. Then there exist a constagtwith max(3, 1 — 8o} < fo < 1 andwo > 0 (o, wo depending
only on W) such that

G 5o 8 llgllv (12
U, 2)—Ge(u', 2) > ©0 = @) /ZP({M < s}, £2)ds (3.4)
—t

wheneven € H1(£2) andt € (1o, 1 — 2¢Collglloo). Moreover, the inequality is strict [f|u| < r}|
> 0.

Proof. Assume without loss of generality thdgl: > 0}] > |£2]/2 and, in the light of Proposition
[3.4, thatju| < 2 — . Recall thatW («) = W (—u) and compute

Getw.2) - Gt ) = | W) = W)

{—t<u<t}

{E|VM|2+ —|—g(u—t)}d.x

+2 gudx = G1 + G2 + Gg,
{us—t}
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/ (equ|2+—W(u)_ W(t))dx,
{—t<u<t} 2

{—t<u<t} {—t/2<u<t}

where

Gq:

2¢

G3:=/ g(u—t)dx—i—Z/ gudx.
{—t<u<—t/2} {u—t}

Let us first observe that (H2) and (H3) imply the existence of a vgl(@epending only o) with
max{1/2, 1 — 8o} < tg < 1 such that, for alt € (7o, 1), we have
W) > We+We(s—1t) Vs>-1/2, (3.5)

W(s)—W(@) >0 V|s| <t and ‘ ‘inlf/z{W(s) — W(tg)} > 0. (3.6)

Let us also defineyg := infj5 <12 /2{W(s) — W(t0)}.
1. By using the Schwarz inequality and co-area formula, we estiGates follows:
t/2

G1> / V2°UW(u) — W)} Vu|dx > wo/ P{u < s}, £2)ds, 3.7)
{—t<u<t}

—t/2

since infgj <12 V2{W (s) — W ()} > inf5<1/2 v/2{W (s) — W(t0)} = wo.
2. We show thaG» > 0. Using [3.5), for allp < r < 1 — 2¢ColIglloc We get

022/ <w+g(u_t)>dx
(—1/2<u<t) 2¢

—W'(1) — 2
> / M(r —u) dx
(—1/2<u<t) 2¢
cila-n-2
2/ o ( ) EHg”oo(t w0 3.9)
(—1/2<u<t) 2

andG, > O if |{u < t}| > 0.
3. In order to estimat&s, we uselu| < 2 — ¢t and the Hlder inequality to get

Gl <2r/ gldr +22—1) gl dr
{—t<u<—t/2}

{u<—t}

N

4 / gl dx < Allgl v l{u < —t/2} VDIV, (3.9)
{u<—t/2}

From the fact thal{u < s}| is a nondecreasing function ofand using Propositidn 3.2 together
with the assumption{u > 0}| > |£2]/2, we get

0
t
Sl < —1/2) VDN < f

1 0
Hu < sy V-D/Nds < —/ P({u < s}, £2) ds.
12 1(82) J_1)2
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Therefore,[(3.9) gives

_ 8ligl

|G3| <

P({u < s}, 2)ds < E iy
1 1(2) J_ip2 fo 1(£2)

4. Finally, from [3.7),[(3.B) and (3.10) we obtain

0
P({u < s}, £2) ds. (3.10)
2

8 gl f’/
G G G3 > P 2)d
1+ G2+ G3 ( wo — 0 1) ({u < s}, £2) ds.

Moreover [3.8) implies that the inequality is strictift < r}| > 0. O

In the following proposition, we show that the functior@l admits global minimizers which are
close to+1 or —1 of an ordek (see[[13] for a similar result in the case of minimizersof](1.1) with
a volume constraint).

PROPOSITION3.7 Let§2 € A with Lipschitz boundary. Assume (H1) to (H3) amdlg|lcc <
(1/2)Cy*s0. Then:

1. The functionall) admits a global minimizerin H1(£2).

2. LetH(2) :={u € HY(£2) : +u > 0 ae. in 2}. Then there exist positive constantgs2, W),
C1(82, W) andeg(£2, W) such that forl|g ||, ~» < co any global minimizeu,. must be contained
in H1 or H1. Moreover, any minimizer= € H1 has the following property:

||u2' — 1o € C1e, lug +1lloc < C1e  fore < ep.

Since the restriction ofG (-, ) to B” H°°(+1) (respectively toB” ”°°( 1)) is convex,
Propositiory 3.]7 implies

COROLLARY 3.8 Let$£2 e A with Lipschitz boundary Assume (Hl) to (H3), afig|l, v <
co(W, £2). Then for anye such thate|gllc < Cy 150, the functlonaIG (-, £2) has exactly one
absolute minimizex/ in Hl(.Q) and one absolute minimizef in H1(£2). Moreover, there exists
10 € (1 — 80, 1) such that for alk € H1(£2) we have

~ ~ ~ t0/2
Ge(u, 2) — min(GE(uj, §2),Ge(u;, 82)) 2 C/ P({u < s}, £2) ds. (3.11)
—t0/2

If W satisfies (H4), we also have =2+ u_ andG (uf, 2)= 56(@, ), anduf are the only
global minimizers oi; on H1(9).

Proof of Propositiofj 3]7. The existence of a global minimizer follows from classical results (see
for example[[9, Theorem 2.6]). From Propositjon| 3.4 we see immediately that the global minimizer
uc fulfills ue < 14 Ce oru. > —1 — Ce for someC depending only o2 andW.

Assume now without loss of generality thdti. > O} > |£2|/2. Propositior] 3J6 tells us
that for a minimizer there existsawith 1 — §o < ¢+ < 1 such that{—¢/2 < u < t}| = 0.
Moreover it implies thatP ({u. < s}, 2) = 0 for somes € (—t/2, t/2). Hence the isoperimetric
inequality implies that alsf{u. < —t/2}| = 0 is empty. Therefore.(x) € (1 — 8o, 1 + o) almost
everywhere. O
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PrROPOSITION3.9 Assume (H1) to (H3) witlg #£ 0. Then
0> min {Gc(-, )} > —2Col gl%e. (3.12)
HY(Q)

Moreover, let2 € A. Then, for any(e, @) and anyR, € R, with R, C £2, we have

0> min {Gc(-, Ro)} > —2|22|Collgll5e™ . (3.13)
HY(Re)

In particular, ag — 0,

o) ifae(0,1/2),

Hq}izerB{Gf(" Re)} = { o) ifa=1/2 (3.14)

If « > 1/2, there existR, € R, R C £2, such that

im min {Gc(-, R)} = —o0.
€~>0H1(R,)

Proof. Letv be a positive global minimizer a. on H(Q). By Proposition§ 314 ard 3.7 we know
that|lv — 1]lc0 < 2Collgllo€- This estimate, together with the assumption thit of average zero
on Q, yields

Gew, 0) > ngvdy > ~llgllocllv — Lo > —2ColglZe.
This proves[(3.7]2). Now, note that the number of cubes of stzeontained inR. is equal to
|Re|/€*N. Hence, by usind (3]2), for eache H(R.) we get

|Re| |Re|
E&’N € €

Ge(u, R > W=D min Gau(-, Q) = min G,1.(-, Q). (3.15)
H(Q) HY(Q)

Hence, from[(3:1]5)[ (3.12) and the fact th&t | < |£2], we derive[(3.IB).

Consider now the cage> 1/2. Choose a function € C}(Q) such thath gvdx < 0 (whichis

always possible if # 0) and extend it periodically oR” . ConsiderR, € R, with |R.| > |£2|/2.
Then, using[(3]2) as before, we get

R.| ~
Ge (1+61/2U<i), Re> = | 6|G51—a(1+61/21), 0)
€Y €”

2
< [ @ Ovep ¢ ot g de
Q

— —oo ase — 0. O

The previous proposition shows th&t and G, have the samé’-limit whenevere < 1/2 and so

the renormalization is not needed in this case, whereas the funct@na}pically converge te-oo
whena > 1/2. We give the following definition in order to express the additive renormalization in
a more convenient way.

DEFINITION 3.10

1. Letu®_, denote the minimizer off,1—. on H(Q) N {#u > 0}.
€ ~
2. Leth = ® infveHl(Q) Gel—a(v, Q)
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PROPOSITION3.11 Assume (H1) to (H3). If furthermore (H5) holds, i.egifs symmetric, then
the functions which minimize mig ) G.(-, Q) are periodic. Moreover, if (H4) holds then

min Ge(-, R) = IRl w*,_,,0) =|Rlc
iy T e elreMeror ¥ = €
Moreover, the functionak, is additive on disjoint sets contained®y.

Proof. Denote byHl}(Q) the class of periodié/ X-functions on the unit cube.
Recall that the minimizers* (resp.x~) are unique in the class of positive (resp. negati¥é)

functions. By symmetry of, u™(x1,..., —x;,...x,) iS also a minimizer and thus equal id.
The same holds faz~. In particular the traces af* on opposite facets of the cube coincide, so
ut e HY(Q). O

4. I'-convergence

In this section, we establish tie-convergence of the functionals for ¢ — 0. In order to proceed,
we need to distinguish between cubes in which a funatigmmostly positive and those in which
is mostly negative.

DEFINITION 4.1 Given(R., u) € Re x HL(R.), we define

Zh =z eZV 1 e*(Q+2) C R, [fue > 0} Ne®(Q +2)| = 31" (Q + D},
Z; ={z€Z" 1 €“(Q+2) C R, l{ue > 0} Ne*(Q +2)| < 31€*(0 + )},
R¥ = | J (@ +2).

zer

Using the notation introduced in the above definition, we show:

LEMMA 4.2 There exist€ > 0 such that for anyR., u) € R¢ x HY(R,), the following holds:

Hu < —1/23N R+ {u > 1/} N R | < Ce“Fe(u, Re), 4.1)
f {We(“) + }g(})} drv > —C{Fe(u, Ro) + |Ree*2%), 4.2)
W) G < CLF.u. R + | RS2, (4.3)

R

Proof. We first show[(4.]1). By setting(x) = u(e ~*x), we have

Fe@, RD) > €™ D 3 (G aa(v. 24+ Q) — Gao™. 2+ O)}. (4.4)

zeZf
Lemm4 3.8 and the isoperimetric inequality applied to](4.4) yield

Fe@u, RY) = CeW™D* 3" [fu < ~1/2n (z + Q)| VDIV, (4.5)

zezt
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Using, in the relation above, the inequality
m m
Al < max {|A;|1YV A;|(N-D/N
l;| | <, max {14 }; il

(holding for anym € N and anyAq, ..., A, € R), we derive

Fe(u, RF) > Ce™N ™D 3" (v < ~1/2} N (2 + Q) = Ce *|{u < —1/2} N R/ .

zezd
Hence, arguing in the same way &, we finally derive
€“Fe(u, RF) > C|{u < -1/2} N RZ|. (4.6)

Now, (4.6) together withF (u, Rc) > Fe(u, R}) + Fe(u, R_) implies [4.]).
To prove [4.2) and (4]3), we will show

/ { W 1g<i>} dr > —C{F.(u, R)) + |Rc|e*2). 4.7
Re

2¢ €2\ €2

First let us introduce the notation

BE = {x € RY : Hu.(x) < —1/2}. (4.8)
We note that by (H2) and (H3) we can find a constamtith 0 < ¢ < CO‘1 such thatW (u) >
c(u — 1) foru e [-1/2, 00). Moreover, there exist, €p > 0 such that

W (u)
2

+elo @y — l)g(%) >0 forlul > C, € < €p.

Hence
Ww) —u X _ Ww) wu-—-1 (x
JorTat s (@) [ (3
Wwu) u-1 (x / Wwu) uwu-1 (x
= — )t dx — )¢ dx
Jourd (@) o [ (5]
cu —1)? -1 /x C
>/ { i g(;)}dx——augnoomﬂ
RI\BZF € € € €

1. (€7 %gllo)? _
> —;|R:|¢—Cugnooe“Fe(u,Re)e “ (by|4.1)

4c
> —C'{Fe(u, RD) + |RT1e72). (4.9)

The corresponding estimate holds Ry as well and so we geft (4.7).
From [4.7), we derive immediately (4.2). Furthermore, since the renormalization per unit volume
ce is negative, using (4}7) we can estimate

> [ e < R ro - {W(”)+ig(i>}dx
2 Jr, € R 2e €*” \ e¥

< C{Fe(u, Re) + |Re|et2). O
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As afirst step we show that the-limit (if it exists) concentrates exactly on the class of characteristic
functions of sets of finite perimeter.

PROPOSITION4.3 Letf2 € A andu, € L1(£2) be such that lim syp, o Fe(ue) < oo. Then:

(@) Ifue, — uin L1(£2) for any subsequeneg — 0, thenu| = 1 a.e. ing2;
(b) There exists a subsequenge — 0 andu € BV (£2) with |u| = 1 a.e. in§2 such that
llue, — u||L|1 @ 0. Moreover, there exists := C(W, g) > 0 such that
oC

/ \Vu| < Climinf Fe, (uc,, 2). (4.10)
Q €, —0

Proof. Let R, € R, be such thaf, (uc, 2) = Fc(ue, Re).
(a) From Lusin’s and Egoroff’'s Theorems (seel[11]), we deduce the existence of a compact set
K C £ such that (up to a subsequence)

|[K| #0, wu|g continuous u, — uin L®(K).
Sincelu| # 1 we can further assume the existence of a congtan0 such that
||u,,(x)|—1| n>0 VxeK,neNlN.

Letting nowc := miny, 1>, W(s) > 0, forn large enough we have

W(un) X

K
> K1 ||g||oo/|H+oo

(b) By referring to Definitiof 4]1, we set

1 ifzeZt, _J1 if x € RT,
olue, 2) = {—1 ifzez, [Hu (o) = {—1 if x € R_. (4.11)
We shall show that
lue — Huell1g,) — 0 (ase — 0) and |[Hucllpv(r,) < C. (4.12)

Set
Bes ={x€Rc:|ucx)] <1-46} (6>0.

Note that for 0< § « 1,

lue = Huellpair,) < 8IRel + 3(BF |+ BT D) + 2| Be s +2f |uedr.
{lue|>146}

By applying Lemméa 4]2, we g¢B.| + |B| < Ce* and so B[ | + |BZ| — 0. By (H2), (H3) and

the bound on the energy
|Im<|BE5|+/ |u€|dx>=O
{luel>1+46}



I'-CONVERGENCE OF ALLEN-CAHN ENERGY 61

we then obtain the first statement|in (4.12). To prove the second one, we note that, by construction,
the total variation offu. can be estimated by

(N-Da
IV[Hue]l <
Re

D loezi) — oe(z)IP

|zi—zj|=1

Now consider a pair of cubeg; = €%(z; + Q) (i = 1,2) such thal(za, z2) € Z+ x z- and
|z1 — z2| = 1 (i.e. the cubes are adjacent). By setiihg= int(Q; U Q,), we claim that there exists
C > 0 such that

Fo(ue,C) = CeWN=De, (4.13)

Case 1|01 N {0 < ue < 1/2}| > |011/4 0r|Q2N{0 < —ue < 1/2}| > |Q2]/4. In such a
case, (H3) implies there exists a constastich that the union of the two cubes contributes at least
ceNe=l > ce(N=De tg the energy.

Case 2:IC N{ue > 1/2},1IC N {ue < —1/2}| > |Q1U Q2]/8. In this case, as in the proof
of Lemma[4.2, by applying (3.11) (on two adjacent culb@sand the isoperimetric inequality
(Propositiorj 3.2), we deduce the existence of a constan0 such that

1 (N=-1)/N
G(uc,C) — inf G(-,C)>c(-eN“> )
H(C) 8

Hence each such contributes at leaste*”—b to the energy. Since each cube haé Bearest
neighbors, we geyRe |V[Hue]l < CFc(ue, Re). ThereforeHu, is bounded inBV and so it

has a subsequence converging strongly.into a functionu € BV. As a consequence of the
lower semicontinuity of theB V-norm with respect td.!-convergence we obtaify- |[V[Hu.]| <
CFc(ue, £2) for any compact setl C $2. Now (4.10) follows by lettingC 7 $2. By (4.12), the
corresponding subsequence of the original sequencenverges ta as well.

The fact that the"-limit is a measure relies on the following proposition, which is the so-called
fundamental estimaf8]. Notice that in our case the proof is quite different from the usual one, due
to the fact thatG, is not positive.

PrRoPOSITION4.4 Assume (H1)—-(H3) and (H5). For aty, U', V € A, U € U’, and for any
u,v € L} (RV) there exists a functiop € C*°(RY, [0, 1]) such that

p=10nU, ¢=00nRY\U', |Vg|<Cel,
and
Folpu+ A -, UUV) < Fe(u,U)+ F(v, V) +8:(u,v, U, U, V), (4.14)
whered, has the property that lim, g 8¢ (ue, ve, U, U’, V) = 0 whenever

lue = vellrsy — 0. S=@W\U)NV,

SUA Fe(tte, U + Fe(ve, V) + llttelloo + lvelloo} < 00. (4.15)
€
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REMARK 4.5 Assumption[(4.15) is stronger than the one madélin [9], since we also reguire
andv, to be bounded ir.>°(R"). However, from hypothesis (H3) it follows that we can assume
that aI"-realizing sequence is bounded i, hence the-limit does not change if we redefine
F. = +oo outside a suitable ball dt>® (RY).

Let us define a sequence of strips as follows. &et= U and define by recurrence for each
ieN:
Zi:={ze€ZN :€%(Q +2) c U, dist(e*(Q + 2), U;) < €*/2},
U= (Je*(@+2. 8= Ui \UnnV. (4.16)

Z€Z;

The proof is split in three parts. We start with the following result whose proof is more general than
needed, so that it can easily be modified for the casel.

LEMMA 4.6 LetU,U’, V,u. andv. be asin Propositi.4. Assume there exist sGfpdefined
by (4.16),5 C S, (Sio, S # ) andg € C®(RY, [0, 1]) such that

Fe(ue, Sig) + Fe(ve, Siy) — 0, (4.17)
/ lue = vel § +/ lue =vel 4 L o, (4.18)
Sio e 5 €

w w

/ W) + W) g, (4.19)
Sig\S €

/ €|Vue — Vo2 dx — 0, / e{|Vuel® + |V |2 dx < C, (4.20)

Si Si

SUPHVe) C 5, g=10nU;, ¢ =00nRY\Up41, [Vo|<Ce™h,  (4.20)

whereC is independent of. Then lim._.o Fe (pue + (1 — @)ve, Siy) = 0.
Proof. In order to simplify notation, we shall write, v instead of:, v. and set := pu+(1—¢)v.
We have

Fe(Z,Sio) = Fe(u, SiO) + {GG(Z, SiO) — G(u, Sio)}
RS+ [ fevet - v« XOZWW | (1)emul

o o
SiO € €

=Fe(u, Sip) + 11+ 1> + Is.

By (4.17), Fe (u, Si;) — O while (4.18) implies/s — 0 (ase — 0).
For I> we use the fact tha¥/ € Lipy., i-e. (H2), together with the inequalitiitc [|oo + [|velloo
< C and the definition of to get the estimate

/ W(Z)_W(M)dx<C/|u_v|dx+/ W(M)+W(U)dx
Sig € h S Sig\S ’

€ €

Assumptions[(4.118) anf (4]19) imply that this vanishes as O.
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In order to estimaté;, note thatVz — Vu = Vo(u —v) + (1 — ¢)[V(v —u)]andVz + Vu =
Vo —v) + Vu + Vv — ¢[V(v — u)], SO we estimate

/S eIV — [Vul®)| < Cllle ™2 ju = vllIZ 5 5, + 3le™ Y2 — vl 25,

N eY2AVul + VDl 25, + 16721V = Volll s, €2 Vul + VDl 25, ))- (4.22)

The bound|uc|loo + llvelloo < C allows us to estimate the?-norm by theL1-norm, therefore the
first term in [4.2R) vanishes as— 0 by (4.18), the second bl (4]18) afd (4.20), and the third by

@.20). O

LEMMA 4.7 Under the assumptions of Proposition| 4.4 we can find $gts and a functiony
which fulfill the assumptions of Lemnjia 4.6.

Proof. SinceU € U’, we can assumé, U’ € R.. Consider then the family of; defined by|[(4.16).
Denote byk, the largest integer for whick; # ¢ and note thak. = O (e ™).

As the functional is increasing on sets Ry, the bound on the energfy (4]15) allows us to
assume thaf, (uc, S) + Fe(ve, S) < C. Since the functional is additive on disjoint setsin (see
Propositiol) anujf.‘;o S; C S, we get

ke
D {Felue, $) + Fe(ve, $)} < Felue, $) + Fe(ve, ) < C.
i=0
As all terms in the sum are nonnegative, we find that f& @f the indices,
3C ) o
Fe(ue, $i) + Fe(ve, Si) < iZCG . (4.23)
€

Such strips satisfy (4.17). The argument used above will be referredatceasging argumentThis
averaging argument shows in addition that f¢8 &f the indices,

/ lue — ve| < Ce“/ e — vel. (4.24)
S; N

Hence we can find at least one stsfg which fulfills both ) and (4.24). There exists a constant
C1 such that this strip is the disjoint union of at ledst*~" strips of the form5) below. So
another averaging argument yields a sf§ig S;, of the form

S={xeU':(j—De < distx, Uj,) < je}NV forsomej €N, (4.25)

in which we have

/~|u€ — ve| < Crer™@ <Ce°‘/ e — v€|> = C/G/ ltte — Vel. (4.26)
5 s s

As |lue — vell 115y — O, estimates (4.24) an@%) imp 18).
Furthermore[(4]3)[ (4.23) and;,[ < Ce” imply . Moreover using the fact that the
renormalization is negativg, (4.2) together with (4.23) gives

/ e{|Vie? + [Vve 2} — 0,
Si
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which implies ). Finally, from the definition &fgiven in ), itis also possible to construct
a functiong satisfying [(4.2]L). O
Proof of Propositiorj 44. Let o, S;, andy be as in Lemmgs 4.6 apd #.7. Since the functiofals
are additive, setting. := ¢ou + (1 — ¢)v we have
Fe(ze, UUV) = Fe(ze, (U U V) NTjy) + Fe(ze, (U U V) N RY \ Uig42))
+ Fe(ze, (U U V)N (Uig+1 \ Uip))
= Fe(u, (UUV)NTj) + Fe(v, (UUV)N RN\ Uig11))
+ Fe(ze, (U U V)N Uig+1 \ Uip))
< Fe(u, U') + Fe(v, V) + Fe(ze, Sig)-

By Lemmd 4.6 F (ze, Si,) — 0 ase — 0, whenever (4.15) holds. O

In the following, we provide some estimates from above and from below foF thimit, which are
useful in order to represent the limit as an integral functional.

PrROPOSITION4.8 Assume that (H1) to (H5) hold and thats as in Propositiop 3}7. Then there
exists a constanfs > 0 such that

r-liminf F.(xg, 2) > C3P(E, 2) V2 € A, VE C 8. (4.27)

Proof. Lete, — 0 and letu, — xz in L1(£2). Without loss of generality, we may assume that
liminf,_, « Fe, (un, £2) < 00, hence there exists a subsequemceuch that

Fe, (up,, $2) =liminf Fe (un, 2) <oo, and |ue, — xelg1— O.
n—od k

lim F,
k—oo 'k

Now, (4.10) implies that there existsCa> 0 such that
/ IVxel < C lim Fe, (un, $2)
Q k— 00 k

for a further subsequence (still denotedyy. However, by construction,

C lim F., (un,. )= Climinf F., (uy, 22),
k—o00 n—00

Mk

which proves the claim. |
PrROPOSITION4.9 Assume that (H1) to (H5) hold. Then there exists a congiant 0 such that
for any 2 € A with Lipschitz boundary and for ang C £2, we have

I-limsupFc(xg, 2) < CoP(E, £2). (4.28)

Proof. By approximatingE with regular setsf;, such thatP (Ey, £2) converges taP (E, £2), we
can assume thatk N §2 is a smooth hypersurface. To proye (4.28) it is enough to chgpse 0
and construct a sequence of functiense H1(£2) such that

u, — xpin LY(2) and limsupF,, (u,, 2) < C2P(E, 2).

n—o0
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Let R, € Re, be such thaF, (v, 2) = F, (v, R,) for all v € H1(£2). By Propositior} 3.111, this is
the maximalR € R., which is contained if2. The renormalization is given bR, |c.. Define

A% = (7€ ZN : €2(Q +2) C Ry, dist(e?(Q +2), IE) < 2¢%},
={z€ZN : +dp(ez) > 0, dist(e*(Q + z), IE) > 2¢},
Zo= e+, Ri=[]Ec+0.

z€A9 zeAF

b S
= H
]

Consider the positive, periodic minimizejl,a of 561_a(-, Q) on the unit cube. Assumption (H4)
implies that the positive and the negative global minimizers differ by the constant 2. We extend
ujl,a periodically toR" and denote the extended functiombj,a as well. Consider an even cut-
off function® € C*(R), increasing on [Poo) and such tha® (r) = 0if |r| < 1, and®(r) = 1 if
|r] > 2.

We denote byy the unique strictly increasing function, asymptoticdato to the two stable
zeroest1 of W, and satisfying[(1]4) witly (0) = 0. Let§ > 3 be a fixed natural number such that,
if we let x, := §|logel, theny (£x.) = £1+ 0 (%) andy’(£x.) = O ().

Following [3], we consider a functiop, € CY1(R) N C®(R \ {#x., £2x.}) which coincides
with y on [—x., x.] and assumes the asymptotic valdek outside the interval—2x,, 2x¢). Then

the sequence
n(x) = Ve, <—dE(x)) +o <dE(x))<u 1(%) - ) (4.29)
€y én €n €,

satisfiest, = u™, - . (x/€2) on R, if (H4) holds. SincedE is regular, there exists a constaht=
C(N) such that

. b))
Ilmsup| o’;'

n—oco €y

< CP(E, £2).

Letv(x) := ut, - . (x/€%). Then the renormalization is given lgy., (v;", R,).
Recalling @) it follows that there exists a const@gw) > 0 such that

1Ge, (U, Z)| < CP(E, 2)6r™ + wy,

wherew, is such that lim w,e?™ = 0. As the periodic mlnlmlzeu _, IS bounded inL*°, we
may assume thdltz, || < 2. Then we get

Fen (un, 2) = Gen (un, Rp) — Gen (Vn, Ry) = Gen (Un, Xn) — Gen (Vs Xn)

w 1
o ) (s
€n w o \€n

</ (en|wn| + i”))dx+C||g||ooP<E,sz),
I n

where(C is a constant depending only @h Therefore, recallind [1%, 16] we get

lim SUpFe, (un) < (cw + Cliglloc) P(E, 2). O

n—oo
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REMARK 4.10 Notice that if we drop (H4), we can still show that Propositiof 4.9 holds whenever
a < 2/3. Indeed, thanks to (H2), (H3) and Proposifion 3.7 we get

Gaa@?y, @) = Gaalus,, Q) < Ce#

for someC > 0, which implies that there exists a constant> 0 with lim supe®|cc| < oo such
that
[R|

min Gc(-, R) = — G 1’ ,, Q) = |R|(cc + Ce?> %) = |R|cc + 0(D). (4.30)
HL(R) e“ €

Hence we can conclude as above. On the other hand~if2/3 we cannot in general drop (H4)
in order to avoid al-limit which is always in{0, +oc0}. Indeed, ifW e C3(R), the asymptotic
expansion fou* shows that

2(1—0{))

u(x) —ut(x) = 2170 il (1)382(X)+0(6

(W (1))
hence estimat¢ (4.B0) is sharp for a general smooth potential.

Once we have both the fundamental estimate and the estimates from above and below, we can
reason as ir |2, Theorem 3.3] to get the following result.

PROPOSITION4.11 Assume (H1) to (H5). Then there exists a local functidfal L%C(RN) x A
— [0, co] and a subsequence of functionﬂg(., £2) which I'-converge taFp (-, £2) forany$2 € A
with Lipschitz boundary. Moreover, for any € BVioc(RY: {—1, 1}), Fo(u, -) is the restriction to

A of a regular Borel measure.

5. Representation theorem and properties of the™-limit

In this section we derive further properties of thelimit. Throughout this section we shall always
assume that (H1)—(H5) hold, and thigt| ; v < co with co as in Propositiop 3]7. Let us first introduce
the following notation.

DEFINITION 5.1 Letu;IE be the periodic extensions of the minimizers@f(-, Q), let ® andy,
be as in the proof of Propositipn 4.9, and &t be a unit cube centered at the origin with two of its
faces orthogonal to. We set

Hwx)={yeRY: (y —x,v) <O,  x" =xupn. OV =x+pQ"

_ dio, _ _
we (y) = y(%) + Pl D, T =, (})

Observe thay ¥* is the characteristic function of a half-space orthogonaldad centered at, and
u.*(y) is an interpolation between the two absolute minimizers across the hyperplane orthogonal
tov.

Recalling [4, Theorem 3] (see alsd [2, Theorem 3.5]), we obtain a representation result for the
functional Fy.
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THEOREM5.2 There exists a functiop : RY x S¥~1 — (0, c0) such that

(x, ve@) dHN Y if xp € BV(2),
Fo(xE, B) = /a*EmB v E £

+o0 otherwise
forany$2 € A with Lipschitz boundary and any Borel sRtC £2. Moreover the functiop satisfies

C3<o(x,v) < Cz,
o(x,v) = limsupp*™Nm(p, x, v), (5.1)
p—0t
whereCs, C3 > 0 are as in Propositiofis 4.9 gnd]4.8, whilép, x, v) is defined by
m(p, x,v) i=min{Fo(u, Qp™) u = x"* inRY\ Q). (5.2)

Relation [(5.1) looks slightly different from the formula [n [4], but, because of the choice of closed
cubes, [(5]1) is implied by the result inl [4]. More information gncan be extracted from the
representation formul@ (3.1), likeindependence, convexity and a more explicit representation. To
this end, we need two lemmas which allow us to neglect boundary effects. Let us choose a function
u,* which solves the minimizing problem defined 5.2), namely

Fo(u’*, 05™) = m(p. x, v). (5.3)

LEMMA 5.3 Givenx € RV there exists a countable s&t ¢ R such that, for any > 0 with
o ¢ &, there exists a sequengg — p, n, < p, such that

Fo(uy™. Qp") = lim_Fo(uy, int(Q};™)).

Proof. Fix (v,x) € S¥1 x RY and fix R > 0. To simplify notation, we sep, := Q’* and

up == upy* forall p > 0. Letggr : (O, R) — [0, 00), n — Fo(u,, Qr). Thengg is a decreasing
function on the interval0, R), hence it has a countable set of discontinuitégs, Notice that for
R1 < Rz the two functiong g, andgg, differ by a constant o0, R1). Hencefg, < Eg, whenever

R1 < R2. S0&, = [ Jg-o&r is countable, and the claim follows. O

LEMMA 5.4 Letuy* be as in ). Foralt € RY andp > 0, p ¢ &,, there exist a sequence
n; — p,Withn; < p, and a sequence of functiomjs—> uy™in Ll(Q;*") such thais; € ngc(RN),
uj = ﬂ‘e’]xa onRN \ Qz;’)in_,')/Z’ and

Fo(u,", 0y = /[)moo Fe,(uj, Q). (5.4)
Proof. As in the proof of the previous lemma, we simplify the notation by dropping the dependence

of sets and functions anandv.
By Lemmg5.B we can find a sequenge— p, nx < p, such that

Foup, Q,) = lim Fo(uy,, Qp),
k— 00
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whereu,, = x"* on RN\ Oy, - For anyk, we consider d"-realizing sequence, ; — uy, such
that

FO(an Qp) = Ilm Ffj (wk,j9 Qp)

By Propositio , applied Wit/ = Q,,, U = Q42 V = Qp \@m andue_,. = Wg,j,
Ve, = uE “w» there eX|sts a cut-off functiop between andU’. Lettinguy ; = = gue; + (1—@)ve;,
from the energy estimatg (4]14) and Proposifiof 4.9 we obtain

Ii;n Fe;(ug,j, Qp) < I|m Fe; (wi,j, Qotn/2) + I|m Fe (g, Qp \ Oy
< I|;n Fe; (wg,j, Qp) + Ca(p"~ l m]{V l)

= Folity,, Q) + C2(p" 1 =™ H.
Then a diagonalization argument proves the claim. O
REMARK 5.5 Notice that, in Lemmp 5.4, we can chooge— p independently o; — O; in
particular we can assume that for any N there exists gp € N such that); < p — ke]‘?‘ for any
J = Jo
In the following proposition, we want to show that thelimit is homogeneous, i.e. the integrand
functiony does not depend one RY.

PrRoOPOSsITION5.6 The functionp given by Theorerp 5|2 does not dependwpmoreover its one-
homogeneous extensighnas defined in(2]5) is convex.

Proof. Letus fixv € SN "1 andx, y e RV, x # y. We have to show that

px,v) =y, v). (5.5)

Letuy" be as m.) For simplicity we writej, := u’".
Lemm 5.4 asserts the existence of a sequepwhlch equals?” -* on atubular neighborhood
of the boundary oD, and satlsfle@4) To simplify notation, we drop the dependence of functions
and cubes on the direction which is fixed throughout this proof.
Lett; € Z" be defined as
(zj)i = [y’ il }
€j

andv; (z) := u;(z —€;1;). Here ] denotes the largest integer smaller than or equalliwtice that
i — y —x andy; (1) = v(-) = uy (- —y +x). Foranyr > 1, we have

Fo(v, 03) < Fo(v, Q) < < fiminf £, (v, 05,
= ”m‘inf(Fej(vj, €1 + 03) + Fe; (v, 0y \ (€7 + 7))
= lim inf (F (u;, 0p) + Fe, (@, (- — €;7)), Q7 \ (€7 + Q)
= Il;n Fe;(uj, Q) + Ilgn Fe (I, (- = €7), Q7p \ (7 + Q7))

< Fo(uh, Q%) + Cop™rorN 1 — 1),
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Lettingr — 1, we then get
Fo(v, Q) < Fo(u}, O%).

The choice ofu}, then impliesm(p, y, v) < m(p, x, v), wherem(p, x, v) is defined in). By
exchanging: andy, we obtain the equality for any ¢ £, U&,. Then, observing that we can rewrite
(5:7) in the form

p(x,v) = limsup o Nm(p, x,v),
p—0t, pg&UE,

we finally get[(5.5).
Oncex-independence is established, the fact that the extensipisat convex function follows
by standard semicontinuity results (see for exarigle [1]). O

REMARK 5.7 Note that ifp is independent of, then by dilating the variable we see that
m(p,v) = pVN"Im(L,v) = p¥lp(). In particular the set, of discontinuities is empty for
anyx € RN. Moreover, by the convexity ap, the minimizersu, of m are always characteristic
functions of a half-space.

We want to prove that thé'-limit is independent of the subsequence. In order to do so, it is
convenient to work with blow-up sequences and the functiGhads in Definitio. We begin by
showing that we can choose a suitable minimizing sequence which coincides, far from the interface,
with the absolute minimizers on the cube.

_First let us introduce some notatlorgt denotes the periodic extensionRd of the minimizers
of Ge(-, Q). Letr > 0,v € S¥-1, and se® := 0" and

nol=  |J c+0.

(z€ZN : 0Cz+1.0)

LEMMA 5.8 There exist constants9 § < 1/3, ¢g > 0, Ao >0 andy; > 0 such that for any
sequence, with boundary values(x) = u?’ O(x) onRMN \ [AQ] which is uniformly bounded in
L*° and satisfies the energy bound

CAVL > (Gelue, [LO)) — Ge(uE, [10])), (5.6)

there exists a sequenge with 7. (x) = uc(x) onRY \ [A@], and setsS,, which are unions of unit
cubes, such that for ary< e¢g andi > Ag the following holds:

(@) ﬁg = u orﬁE =u_ on RO]\ S :
(b) G (ue,[?»Q]) Ge(ue, [M0]) + CANLe
© 1Se N[10]] < eCaMN~L,

Proof. In the following we will considet. as a function oiR", extended byz: OonRN \ [A@].
Given a constant & y < 1/3, we set

=zeZV :Gelue.2+ Q) -Gt z+ Q) =€), V= |+ 0.

zez!

From the upper boun.6) we ha\ N [A§]| < CAN=Lemr,
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Fix now a constang; < y/[N(N — 1)] and let

Ze:={zeZV distc+Q.5V) <27}, S.:= ]+ 0.

7€Z¢

From the boundary conditions we know tH&t N [1Q]| > 0. Possibly reducing:, we can also
choose 0< § < 1/3 such thay + Ny, < 8. Since we do not have any information &’ ~1(3.57),
the best available upper bound | is

1Se N[A0]] < CAN LV (e )N = AN Le=r+Nr) - o) N-15, (5.7)

and condition (c) is satisfied.
We call a cubgositiveif [{x € Q+z:uc(x) > 0} > 1/2,i.e.if [Huc(-/€%)] = 1 on the cube,
where [Hu] is defined in|(4.1[1), andegativeotherwise. For € RV \ S, we definev, (x) by

2ve(x) 1= ([Hue(-/€)](€*x) + Duf (x) + (Hue(-/€)](€x) — Dug (x).

We want to give an estimate @fic — vell 115, o1\ s7)-

First we show that there cannot be positive cubegSinn [k@]) \ §¥ which touch negative
cubes on one facet. Indeed, assume that we can find two adjacent cub@s,aayQ», contained
in Sc \ SY, such that.. is mostly positive inQ; and mostly negative i,. Note that the energy
scales wiAtheN—la under the change of variablegs= ¢ *x, so E) implies that there exists a
constaniC(W, g) > 0 such that

Ge(ue,int(Q1 U Qy)) > C.

Therefore at least one of the cubes must b&inandv, is a well-defined4 -function on PL/Q\] \SY.
From [4.5) we get, foQ1, 0> as above,

e <1/2)0 Q1 < CMND 1 fue > —1/2yn Qo < CN/ D (5.8)
By assumptions (H2) and (H3) there is a constastich that

cu—12 ifu>-1/2

W) > {c(u + 12 ifu<1/2

Recall thatGe (u}, Q) < 0 ande|Vue|? + €W (ue) > 0. Using [5.8), we have for sufficiently
small on a positive cube, which we call for simplici,

€’ > Ge(ue, Q) — 56('4:_, 0)

> / e LW ue) + egue — D] dx — lg(ue — 1)| dx
lue—1/<3/2 ue<—1/2
> —2||gllpoe? N/ V=D +/ {e7telue — 1 — €llglloolue — 1/} dx
lue—1|<3/2
> —2||gllpoe?™/ VD / {11/ lue — 12 dx — 2|0l gl|F e,
2|gllooe <lue—1<3/2
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hence

f lu —12dx < Cet7. (5.9)
O0N{2||gllooe Ku(x)—1]<3/2}

From [5.8),[(5.P), the.>°-bound oru. andv. and sincey < 1/3 we get
e = vell 110y = lle — 1= (e — Dl 1(g) < Cle + VN 4 @2 ¢ cerN/IV-D,

and the same holds for negative cubes as well. Since y /[N (N — 1)] we haver :=y /(N — 1)
— Ny1 > 0, so summing over the cubes (spe5.7)) we get

lue — vG”Ll((Seﬂ[)LQ])\SZ) < caV—tet, (5.10)

In what follows we mimic the proof of the fundamental estimate, with the important difference
that the sets are not given, but depend:on
Fori e N,i < dist([10] \ Se, S7), we define the sets; as follows:

Up:=S8!, U1:= U @+ 0.
{zeZN :z+QCS., dist(z+0,U;)=0}

Let alsoS; := U1\ U,. By the previousLl—estimateO) we get

+ ‘/ . 8Ve
(SN2 OD\S?

(Note that[, g - 1 = 0 if A is a union of cubes.) This allows us to estimate the nonnegative
parts of the functional separately. The idea is to use the upper boufd (5.6) and follow the proof of
Propositiorf 4.4.

Indeed,[(5.1}1) and (5.6) imply

Qe < CaAV"tet, (5.11)

V(Smué])\sz

/(S [AOD\S? {e(Vuel? + Ve ?) + € (W (ue) + W)} dx < CAN~L
«N[A €

Since there are at least”! stripsS; contained inS, \ S/, by an averaging argument we can find
Jjo = 1 such that

f {e(Vue P+ 1Voed) + e LW ue) + Wwe))yde < CaN~ten, (5.12)
S,’OF\[AQ]

Notice thatjo > 1, i.e. the chosen strip does not touch the §getAveraging again, we can also
assume
e = vellxsnpugy < €Yl (5.13)

Let us now divide the strif$j, into smaller stripsX; of width €, and lety; (x) be a smooth
cut-off function such that &< ¢; < 1, ¢; = 10onV;, ¢; = 0on LQ] \ V; 41, whereVp = U;,
Viyr:={x € Ujy1 - dist(x, V;) < (j+ De}andX; = Vj+1\Vj. Since the boundary of the cubic
setS? is uniformly Lipschitz, we can also assumeéyp; | < Ce~1 for someC independent of. We
want to choose an indeiksuch that the function

e = (1— @j)ue + @jve
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satisfies condition (b). Notice first that
G (i, [L0]) — G (ue, [L0]) < Gie, Sjg) — Guc, Sjy)

~ W) — W ~
-/ {e<|we|2—|we|2>+—(“f) (o) —i—g(ue—ug)}d.x
Ner¥s) €

< / A {euvw Ve +
§,,N0-0]

since using[(5.13) we have

W) = W) } de + AVl (5.14)
€

/ - g(ﬁe —ue)dx < [gllpeellue — ve”Ll(sj N 0D < CaN=temin,
SN[ 0] 0
Hence, it remains to prove

/ ) {euvwz CVue?) +
54 0]

Since the number of the smaller stripsSp is of ordere~1, by a further averaging argument and
using [5.1B), we can find an indgxsuch that

M} dv < CaNlen, (5.15)
€

/ lue = Vel 4 < caN-1etn, (5.16)
ol €

Recalling [5.1R) and reasoning as in Proposition 4.4 (estifhate (4.22)), we obtain

/ A {euvw V) +
54 0]

< / ) {e(|we|2+ Vuel?) +
S/oﬁ[)‘Q]

+/ i {|ue — ve|? N W@)—W(ve)}dx
2N[x0] € €

W(ﬁe) — W(ue) } dx
€

W(ue) + W(ve) } dx
€

lue — vel

< caN-len 4 C/ de < CAN"Len,

N[x0] €
where we denote bg a general positive constant. By (5 14), this implies
G e, [20D) < Glue, [1Q]) + CAV e,

which is condition (b). R
It remains to prove thai. coincides withu, outside of j.Q]. Note that by construction aof,
and the fact thate = u° onRY \ [1Q], any cube inR" \ [4Q] such thatu. # v, must be

contained inSp U Up. As jo > 1, we obtaini, = u. onRY \ [1Q]. |
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We show now that thd -limit does not depend on the particular subsequencand on the
parametet. In order to do this, we characterize the limit functip(v).
For any Borel set ¢ R", we define

F;(E) ‘=cwP(E, A)+/ g(x) xE(x) dx.
A

THEOREM5.9 We have the following representation for the funcigan):

NE): ECRY,
xe=x"?onRY\[10"]}. (5.17)

o) =

In particular, the"-limit does not depend on the subsequegcand on the parameter< (0, 1)E]

Proof. Fix v e SN, set@ = 0"0 and let PLQ] be asin Lemm8. We divide the proof into
two steps.

Step 1. Let us provep > y. We recall from Lemmp 5]4, applied with= 0 andp = 1, that
Fo(x"°, Q) = f p(v) dHV Tt = Jfim Fe; ;. Q).
JH (v, O)OQ

whereu; € Hg (RV) are such that; = #.% onRY \ Q{;, | . for somee; — 0 andn; — 1,
n; < 1. Notice that we can assume < 1 — 46“ (see Remal 5), which implies thQ’{lM )2 S
(x € 0 :disttx, RY \ [20]) > 1} € [0,

Let now); be the greatest integer less than or equa}'fd and seb_1-«(x) 1= u;(x/4;). Since
R J
Fe(uj, Q) < C for someC > 0, it follows that

(N=Dya
J

C > Foyw;, 0) > 6" (G aaaa, 10D = Gauli,, [0, (5.18)

Sincex; < Aj+1, from ) it follows that
ej;_m(uejl_a, [1;O]) — Géjl_a (uel,a, 4 0] < o
J

possibly for a larger constant.
SetE, = ]l“" Then the conditions of Lem .8 are satisfied, and we may assume that

Vg, = u~ outsideSz;, for some sefz, such that Sz, N[A; Q]| < ~‘5CAN 1 for some 0< § < 1/3.

Fix p > 0 such thaB < p < 1/3. As the renormalization is nonnegatlve from the co-area formula
we obtain

N> (ve,,se, [%; 0D — Gz (u, Sz N [2; QD)

/ LW )P({vz, > s}, Sz, N[ 0] ds +/ _gug dx
1+Ce

S2,N2; 0]

1— Ce
f VW) P({vg, > s}, Sz, N [4;0D) ds — 28l °AN 1 (5.19)

1+Ce

1 In fact, one can show that the liminf in (5.17) may be replaced by lim.
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Again from Lemm' we know that'{vz, > s} C int(Sz)) for anys € [-14 Ce/,1 - Ce7],
henceP ({vg; > s}, Sg N[A; Q]) = P({ve; > s} [ Q]) Let now

t]?“ = arg min P({vej > s}, [2; Q])
—1+Cep<5<l Ce
and let _
E;" = (fvg, > t;‘} N[ 0D.
Then

1—c2"
/ VWS P((z, > 51, [ 0D ds > (ew — C&)P(EL, [3; 0)).

l+C

From ) we also know tth(E]’.‘, [A; @]) < C/\]N_le“s, hence

Gz (v, Sz, N[%;0)) — G, (uif Sz N [1;0))

> cw P(EF. [ 0]) + / gug dx — C& N1 (5.20)
€j
Let us now analyze the terfy. %0 &Y% dx. Fors e [-1+ C ,1-— Ce"] we haveW (s) >
€j
¢p? by assumption (H3). This implies that for ame [—1 + CZ;’, 1- Cef],

(g, > s} & Ef| < Ca i7"

since we have the estimate

W (v,
l{ve, > s} A Ef|Co e lgf W) g
{ve, >s}AE* €
< Gz (v, Sz, N [%;0)) —Gg,»(ué'j,Szj N[ 0D —/S - ]gve dx
€ i Q

<ot ce Tt <o

Notice that Proposmo.4 allows us to assufeg || < 1+ C¢;. Sinces < p < 1/3, we always
have 1- 2p > §. It follows that

1- Ce
/ gve; dx / / g(x)dxds — CEPIS€,|
1+Ce {ve >s}ﬁSE
>2 f g(x)dx — 2|glloeCAN 1T — cer TN (5.21)
Ef‘ﬂSS

Notice that

/ glx)dx = _g(x)dx,
EfnSg Efnl2; 0]
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hence fromO) anl), observing thatjlim, €2; = 1, we obtain

S (N f A N—-1_(1-a)(p—9)
Fq(”j»Q))T CWP(E]'»[)\/'Q])"'Z/ ~ g(x)dx—C)»j 6]- .
)»j EFN[3; 0]

We now modify the setE;‘ in such a way thaj(E;« = x"%0onRN \ [A; @]. Let
910;0) = {x € [1; 0] : dist(x, RV \ [1; 0]) < 1}.
Sincev, = ﬁ;jﬁo ondy(A; 0), we have

max _ dist(x, dH(»,0)) <2, jeN.
X€IEFN31 0 0)

Hence, we can find a séi}" which coincides WithE; on [A; Q] \ 91(%; @) and with H (v, 0) on
RV \ [%; 0], such that

|E; A EF|+|P(E}. [ 0] — P(E}. [3,0D] < CAN 72,
We can finally conclude

¢(v) = Fo(xg. 0) = lim Fe; u;, 0)

> liminf
A——+00
reN

1 ~
N1 min{cWP(E, [)LQ])-G—Z/ _glx)dx:
EN[2Q]

ECRY, xp=x"%0onRV\ [?@]} =y@v). (522

Step 2. Let us provep < . Since finite perimeter sets can be approximated by smooth sets in
L' and in perimeter (see e.g. |12, Theorem 1.24]), we can choose a sedyeneeco and sets
E; C RV of classC™ andE; = H (v, 0) outside }; 0] such that

. 1 P
v (v) =j|l)moow<CWP(Ej’[)\jQ])+/ _ 80)xg dx)

7

Notice that, without requiring further regularity gn we do not have estimates on the second
fundamental form ob E;.

From [8, Section 11] (which can be adapted to the gasel. ™) it follows that there exist a set
E c RY and a constark = k(g) > 0 such that

supdist(x, 9H"®) <k, jeN, (5.23)
xedE

and for any compact sé& < RY,

Fo(E,K) < Fo(E,K) if E=EonRY\K.
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Moreover, ifv has rational coordinates, théhis periodic under translation by any vectoe ZV
with k - v = 0. From Propositiof 5]6 we know thatis convex, hence continuous in Therefore
we may assume without loss of generality thdttas rational coordinates.

In this case, we can use the periodic sEtérom [8, Section 11] to construct a minimizing
sequencé; for E), which is made up aif(v)kf"l copies of a fixed surface. Note that the error

introduced by the slightly different boundary conditions (in a strip around a plane) is of)quér

As a consequence, we can approximate this minimizing sequence by a seE}:erﬁsets such
thatd E; is of classC? and

|P(Ej, [AQ]) — P(Ej, [LQD| + | Fe (Ej, [AQ]) — Fy(Ej, [2ODI < 82 7,

and the second fundamental form@f is bounded by a constagt(s;).
We now reason as in the proof of Proposition| 4.9 and we construct a sequence of fungtions
—1/a

defined as in[{4.29) wittE replaced byE;, ; = A; /% andR; = [1;0]/A; < Q. Notice that;

coincides withy - outsideQ and that from[(5.23) it follows that; — x“©in LY(RN). We let

Zj={zeZ:Q+zC[x0] distQ+z.0E) <2}, Xj:=|]0Q+2.

ZEZj

-1 . .
By (5.23), we know thats;| < 4(k + 1))»5.\’ . Notice that, letting

. 1—
vj = ysilm (d’E‘j/Gj a)’

and recalling [[16/_16], there exists a const&nht depending only on the norm of the second
fundamental form ob E;, such that

W (v; PO
/ ~ <e.1—“|wj|2 + l(v’)> dx < (14 CeX*)ew P(E;, [ O)).
o\ ejf"‘ J

Following the computations in the proof of Proposition| 4.9, we thus obtain

. ~ L 1 ~ ~
liminf(Ge; (uj, Q) — c¢;) < liminf ﬁ(CWP(Ej, [%; 0D +/ g(x)uj(ij)dx) +4;
j—o0 : j—o0o )Lj E_,‘

j=oo )

L 1 l-«a 0O
= liminf m<CW(1+ C(3j)e; ") P(E;j, [% Q)
J

+ /E_g(x)dx-f-/xg(x)(uj()»jx)—ng(x))dx> s

Define
gj ={xe[x 0] : dist(x, 82?}) < 26/.1_0‘ |0g(e/1_“)}.

Notice that|§j| < CP(E}, [+ Q\])ejl_"‘ log(e;) and, similarly,| ;| < CP(E}, [A; o).
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By definition ofu; we have
VZ g (uj(hjx) — xgj(X))dX' < /g lg()uj(hjx) — xg, (x))] dx

[ el = g, 01
Z\Zj
< CIZj+ ClZjlef ™ < CAY el log(e)).

It follows that

Ej

o) < liminf £, (u;, 0) < liminf %(cWP(Ej,[K/@]) +/A g(X)dX> =y
j—o0 j—o0 )“j ’ .

for an appropriate choice éf — O. O

REMARK 5.10 We point out that, itV = 2, the results from[[8] are not needed, since any
minimizer of [5.17) has boundary of cla€$-%, with curvature bounded bijg | oo

We conclude this section by showing that the presence of the fungtias always the effect of
decreasing the energy of the limit functional.

ProrPOSITION5.11 We have
p() =p(—v) <cw WwesVL (5.24)

Proof. Let § > 0. Note that—x "% = 50, so the representation formula (5.17) asserts the
existence of a5 > 0 such that fon. > As,

o) e + 33V [0 vt
1l
p(—v) <cw — kl‘Nf _ x"Pg(x)dx +.
1l
Adding these equations and lettiig~ 0 we see that the symmetric paxt of ¢ satisfies

1
¢s(v) = S (@) +o(=v) < cw. (5.25)

The symmetry condition og yields, in particularg (x) = g(—x), hence
/A g xe(x) dx = / _ g(=x)xep(x)dx = / _ 8)xe(—x)dx. (5.26)
[»0] [»0] [»0]

Notice thaty"O(—x) = —x"0(x) = x "%(x), thereforexs(x) = x"%(x) onRM \ [»Q] implies
xe(—=x) = x7"%x) onRY \ [AQ]. From [5.17) and[(5.26) it then follows tha(v) = ¢(—v),
which gives the assertion together with (§.25). O
Notice that Theorerh 2,3 follows directly from Proposition 4.11, Thedreh 5.2, Propogitipn 5.6,
Theorenj 5.9 and Propositipn 5]11.
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