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Lower bounds on waiting times for degenerate parabolic equations
and systems
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We extend the method in [19] to obtain quantitative estimates of waiting times for free boundary
problems associated with degenerate parabolic equations and systems. Our approach is multi-
dimensional, it applies to a large class of equations, including thin-film equations, (doubly)
degenerate equations of second and of higher order and also systems of semiconductor equations.
For these equations, we obtain lower bounds on waiting times which we expect to be optimal in
terms of scaling. This assertion is true for the porous-medium equation which seems to be the only
PDE for which two-sided quantitative estimates of the waiting time have been established so far.
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1. Introduction

It is one of the most intriguing features of free boundary problems associated with degenerate
parabolic equations and systems that solutions may exhibit so-called “waiting time phenomena”.
Generally speaking, this means that for some time the solution’s support locally does not expand, or
shrink, or both, at a pointx0 of its boundary. There are different reasons for waiting time phenomena
to occur—in most cases they come as a consequence of initial data being sufficiently flat in a
neighborhood ofx0. Here we shall be concerned with a “forward” waiting timeT ∗: this is the
time it takes before the solution’s support begins toexpandoverx0—until that time, it may either
stand still or even recede fromx0. The precise notion is given by the following definition.

DEFINITION 1.1 We say a functionw : RN
× [0, ∞) haspositive waiting timeatx0 ∈ ∂ supp(w0)

if there existsT > 0 such thatx0 ∈ RN \ supp(w(·, t)) for almost allt ∈ [0, T ). In this case, the
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waiting timeT ∗ is defined by

T ∗
= sup{T > 0 : x0 ∈ RN \ supp(w(·, t)) for a.e.t ∈ [0, T )}.

Here, the support of a functionw(·, t) is understood as the complement of the union of all open
subsets ofRN on whichw(·, t) = 0 almost everywhere with respect to the Lebesgue measure.
Though in most applicationsw is non-negative, in some of them it may change sign (cf. for instance
(3.3) below), and Definition 1.1 covers these cases, too.

In recent years, much effort has been invested to formulate sufficient conditions for the
occurrence of waiting time phenomena for various degenerate parabolic equations. For second order
equations and systems, the techniques range from comparison principles (see Knerr [31] for the
porous-medium equation) to Harnack-type inequalities (see the optimal result of Alikakos [1] on
the porous-medium equation, which in turn relies on [7] and [10]) and to various energy methods
(see Antontsev [3], Antontsev and Dı́az [4], and Antontsev, D́ıaz, and Shmarev [6] for second order
operators, and D́ıaz, Galiano, and J̈ungel [23] for a degenerate system of semiconductor equations).
To analyze also higher order equations, energy methods based on the analysis of functional
inequalities and iterative procedures have been introduced by Shishkov [35] and applied also to
waiting time phenomena by Shishkov and Shchelkov [36] for a class of quasilinear degenerate
equations not including thin-film-type equations (see also the references in [25]). Recently, in
studying waiting time phenomena for thin-film equations, Dal Passo and the authors of this paper
[19] have proposed the use of cone-shaped test functions and a simplification of these methods
through an extension of the classical Stampacchia lemma [37], which has been shown in [20] to
be applicable to the porous-medium equation, higher order doubly degenerate equations of the
form (3.3) below, and other thin-film-type equations. Cone-supported test functions were also used
in [34], independently of [19], to study the finite speed of propagation property for higher order
operators with convection.

Not as much has been achieved regarding estimates on thesizeof waiting times. With the
exception of [36], neither the aforementioned papers nor the recent monograph by Antontsev, Dı́az,
and Shmarev [5] provide any result on that problem. The only two-sided estimates established so
far pertain to the porous-medium equation

ut = ∆g(u), g(u) > Cum, m > 1.

In one space dimension, and forg(u) = um, Aronson, Caffarelli, and Kamin [8] have shown that
the waiting timeT ∗ is estimated by

KB1−m 6 T ∗ 6 KA1−m, K =
m2

− 1

2m
for N = 1, (1.1)

provided the initial data satisfy

lim
x↓x0

u0(x)

|x − x0|
2/m−1

= A and u0(x) 6 B(x − x0)
2/(m−1)
+ .

In [17], Chipot and Sideris have extended the upper bound part of (1.1) to the higher dimensional
case: in particular, their result implies that if the initial support has an “interior cone property” at
x0 ∈ ∂ supp(u0), then

u0(x) > A|x − x0|
2/(m−1)

⇒ T ∗ 6 CA1−m for N > 1. (1.2)

Looking carefully at the proof of Proposition 4.2 in Alikakos’ paper [1], it becomes evident that
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Harnack-type inequalities permit deducing a lower bound on the waiting time for the porous-
medium equation also in the multi-dimensional setting; in particular,

u0(x) 6 B|x − x0|
2/(m−1)

⇒ T ∗ > CB1−m. (1.3)

It seems, however, that this observation has never been written down. Comparing (1.3) with (1.2), we
see that the scaling with respect to the constantB is optimal. In [36], Shishkov and Shchelkov have
obtained estimates on the size of the waiting time for a class of quasilinear degenerate equations
of arbitrary order not including thin-film-type equations. For the porous-medium equation in one
space dimension, they recover the optimal lower bound in the sense of (1.3). Due to their choice of
test function, however, in the multi-dimensional case their result only applies to convexity points of
∂supp(u0), and seems not to imply (1.3) at points where this boundary is smooth.1

In the present paper, we prove new lower bounds on the size of waiting times. The strategy
extends the one in [19] and is based on energy/entropy estimates instead of Harnack-type
inequalities. It not only permits one to recover the optimal result given by (1.3) for solutions
of the porous-medium equation, but has in addition the advantage of being applicable to a wide
class of degenerate evolution operators, including the porous-medium equation, higher order doubly
degenerate equations of the form (3.3) below, other thin-film-type equations and also systems, and
to include non-convexity points of the initial support.

Let us describe the outline of the paper. Our starting point is the following, rather general class
of integral estimates:2∫

RN

ζ lp
|w(·, T )|q + C−1

0

∫ T

0

∫
RN

ζ kp
|Dkw|

p 6
∫

RN

ζ kpF(w0) + C0

∫ T

0

∫
[ζ>0]

|w|
s . (1.4)

Estimate (1.4) applies in particular to solutions of the Cauchy problem for all the aforementioned
applications. In Section 2, we will prove an abstract result on lower bounds for waiting times,
Theorem 2.1. In contrast to theoccurrenceof the waiting time phenomenon, which purely depends
on the flatness of initial data near the free boundary point under consideration, itsduration is
estimated by a global quantity, which depends on the overall shape of the initial datum (in fact,
it may also be influenced by boundary conditions, a topic that we shall not consider here).

The proof of Theorem 2.1 can be sketched as follows. Using the ingredients of [19],
i.e. localization functions supported on cones, interpolation arguments and a new version of
Stampacchia’s iteration lemma, we identify the boundedness of

S(R) = sup
r∈(0,R)

r−γ−N

∫
C[x0+ra,θ,a]

F(w0)

asR ↓ 0 to be a sufficient criterion for the occurrence of a waiting time phenomenon in the sense of
Definition 1.1. Here,C[x0+ ra, θ, a] is a half-cone with vertex atx = x0+ ra, opening angleθ and
symmetry axis parallel toa (see Figure 1). Taking forγ the optimal coefficient for the occurrence of
a waiting time phenomenon, a closer look at the modified Stampacchia lemma reveals the waiting
time T ∗ to depend on the parameterR > 0. Optimizing with respect toR gives the desired lower
bound.

1 Note that [36] also deals with absorption terms, and that the paper of A. Shishkov in Differential Equations 29 (1993),
460–469, introduces some of the tools used there.

2 Here k, l, p, q, s are appropriate real numbers,ζ is a weight function supported on a cone, andF : W k(RN ) →

L1
loc(R

N
; R+

0 ) is a non-negative differential operator; see Theorem 2.1 for the precise formulation of the assumptions.
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� u0 > 0
C[x0 + ra; �; a℄ x0 + r a

x0

FIG. 1. The conesC[x0 + ra, θ, a] intruding the initial support atx0, and the cone-shaped test function supported there.

Section 3 is devoted to the application of Theorem 2.1 to specific examples. For the porous-
medium equation, we recover the scaling result of (1.3) in the multi-dimensional case. Similarly, we
obtain a lower bound of the waiting time for the thin-film equation

ut + div(un
∇∆u) = 0

in space dimensionsN ∈ {1, 2, 3} and forn ∈ (0, 3). Note that forn > 3 solutions are expected to
have support constant in time. In one spatial dimension, a similar result is presented for doubly
degenerate thin-film equations as they are used to model wetting of surfaces by shear-thinning
power-law fluids. Subsection 3.1 terminates with an application to doubly degenerate parabolic
equations of arbitrary order.

To demonstrate the applicability of Theorem 2.1 to systems of reaction-diffusion equations, in
Section 4 we consider a system of degenerate semiconductor equations for which the occurrence
of a waiting time phenomenon was investigated previously by Dı́az, Galiano, and J̈ungel [23].
Here, in addition to a quantitative lower bound, we obtain improvements of the conditions on the
nonlinearity, on the flatness of initial data, and on the growth rate of the recombination term (see
Section 4 for more details on comparison with [23]).

Summarizing, in this paper we present a general recipe to establish quantitative lower bounds
on waiting times; we show that it applies to problems for which no such bound has been known so
far, and that it gives the optimal bound in terms of scaling—at least in those cases for which the
upper bound is already established.

Let us conclude by pointing out a couple of open questions. The first one is of course optimality
of the lower bound—in fact, even a non-sharp upper bound would be of interest. The second one is
of a more technical nature: As we shall see in Sections 3 and 4, the application of Theorem 2.1 to
most of the aforementioned examples yields a lower bound onT ∗ which depends on anLq -norm of
the initial datum, withq greater than one (though sometimes arbitrarily close to one); it is reasonable
to expect, and worth seeking for, analogous results in terms of theL1-norm. For the porous-medium
equations, both questions have been solved by duality arguments, whose application may turn out to
be fairly difficult in more general cases due to the lack of comparison arguments. Finally, it would
be interesting to investigate the quantitative effect of boundary conditions on the size of the waiting
time.
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2. The abstract result

The abstract result requires some preliminary remarks on notation. Forx0 ∈ RN , a ∈ SN−1 and
θ ∈ (0, π/2), consider the functions

ζ [x0, θ, a](x) := 〈x0 − x, a〉+

(
1 −

|x0 − x − 〈x0 − x, a〉a|
2

〈x0 − x, a〉2 tan2 θ

)
+

. (2.1)

Here(x)+ denotes max{x, 0}. These functions are supported on half-cones

C[x0, θ, a] = supp(ζ [x0, θ, a]) ⊂ RN

with vertexx0 ∈ RN , opening angleθ , and axis parallel toa in such a way thatx0 +a /∈ C[x0, θ, a].
Similarly, we introduce the following one-parameter family of admissible test functions:

F [x0, θ, a] = {ζ [x0 + ra, θ, a](·) : r > 0}. (2.2)

Let us introduce furthermore fork ∈ N continuous functions

H : R × RN
× RN2

× · · · × RNk

→ R+

0 , H(0) = 0.

Associated withH , we consider the operator

F : W
k,1
loc (RN ) → L1

loc(R
N

; R+

0 )

defined by
F(w)(x) := H(w(x), Dw(x), . . . , Dkw(x)). (2.3)

The abstract result reads as follows.

THEOREM 2.1 (Lower bound on waiting time) Letl, p, q, s ∈ R andk ∈ N satisfy

0 < l 6 k, 0 < q < s, p > max

{
Ns

N + kq
, 1

}
, (2.4)

and letF be a given non-negative differential operator as in (2.3). Assume that a functionw satisfies
the following:

• for someT0 < ∞, ∫
RN

F(w0) < ∞,

∫ T0

0

∫
RN

|w|
s < ∞; (2.5)

• supp(w(·, 0)) = supp(w0) has the “exterior cone property” atx0 ∈ ∂ supp(w0), i.e. supp(w0) ∩

supp(ζ [x0, θ, a]) = ∅ for someθ ∈ (0, π/2) anda ∈ SN−1;
• there exists a positive constantC0 such that∫

RN

ζ lp
|w(·, T )|q + C−1

0

∫ T

0

∫
RN

ζ kp
|Dkw|

p 6
∫

RN

ζ kpF(w0) + C0

∫ T

0

∫
[ζ>0]

|w|
s (2.6)

for all T ∈ (0, T0) and allζ ∈ F [x0, θ, a].
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Let

S(R) = sup
r∈(0,R)

r−γ−N

∫
C(x0+ra,θ,a)

F(w0), γ = −kp +
l[N(p − s) + kps]

k(s − q)
. (2.7)

Then the following holds true.

(1) If
lim
R↓0

S(R) < ∞, (2.8)

thenw has positive waiting time atx0 in the sense of Definition 1.1;
(2) if in addition

S = sup
R>0

S(R) < ∞, (2.9)

then the waiting timeT ∗ atx0 is estimated from below by

T ∗ > CS
−

kp(s−q)
kpq+N(p−s) , (2.10)

whereC is a positive constant which only depends onC0, θ , N , k, l, p, q, ands.

Part (1) recovers an earlier result of Dal Passo and the authors [19, 20]. It is a qualitative result:
The occurrenceof a waiting time phenomenon only depends on the local behavior of the initial
datum at the point of interest. On the other hand, part (2) extends [20] and is a quantitative result:
Thedurationof the waiting time phenomenon is estimated by aglobal quantity, determined by the
overall shape of the initial datum.

REMARK 2.2 If the opening angleθ is chosen so that supp(w0) ∩ supp(ζ [x0, 2θ, a]) = ∅, then
Theorem 2.1 holds true withS(R) in (2.8) and (2.9) replaced by

S(R) = sup
r∈(0,R)

r−γ−N

∫
B(x0,r)

F(w0).

Indeed, in this case an elementary geometric argument (see [19, Fig. 1]) implies that

supp(w0) ∩ C[x0 + ra, θ, a] ⊂ B(x0, r),

so thatS(R) 6 S(R).

Remark 2.2 allows one to infer explicit versions of Theorem 2.1 in the case of power-type
behavior of the initial datum in a straightforward way. The following prototypical case occurs in
many applications.

COROLLARY 2.3 Letµ > 0. Assume thatw = |u|
µ−1u satisfies the assumptions of Theorem 2.1

with (l, s) = (k, p) andF(w0) = |w0|
q . Then:

(1) A critical growth exponentγ ∗
= kp/µ(p − q) is identified for the functionu, such that if

lim
x→x0

|u0(x)|

|x − x0|
γ ∗ < ∞,

thenT ∗ > 0;
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(2) a positive constantC = C(C0, θ,N, µ, k, p, q, s) exists such that if in addition

|u0(x)| 6 B|x − x0|
γ ∗

,

then
T ∗ > CB−µ(p−q).

In the applications to be presented in Sections 3 and 4, the constantC0 does not depend on initial
data, but does depend onθ . The opening angleθ plays indeed a crucial role, since both parts (1) and
(2) are sensitive to the shape of the support. For instance, the critical growth exponentγ ∗ improves
if the initial support has an outward-pointing cusp atx0.

Our strategy is based on three main ingredients. The first ingredient is a calculus lemma which
extends the classical Stampacchia lemma and gives sufficient conditions for a non-negative, non-
increasing function to become zero at a given point. Its proof is a straightforward modification of
one presented in [19]. The lemma reads as follows.

LEMMA 2.4 Assume that a non-negative, non-increasing functionG : [0, R] → [0, ∞) is such
that

G(ξ) 6
K

(ξ − η)α
{G(η) + S̃ · (R − η)α/(β−1)

}
β (2.11)

for all 0 6 η < ξ 6 R, whereK > 0, S̃ > 0, α > 0 andβ > 1 are real constants. If in addition

Rα/(β−1) > (2β(α+β−1)/(β−1)K)1/(β−1)
{G(0) + S̃ · Rα/(β−1)

},

thenG(R) = 0.

The second ingredient is the particular choice of test functions already introduced in (2.2).
Their cone-shaped positivity set allows one to handle non-convex initial supports and is such that
homogeneous interpolations hold true; furthermore, they are well-behaved with respect to nesting:

LEMMA 2.5 The functionsζ [x0 + ra, θ, a](x) given by (2.1) are such that for allr > 0:

ζ [x0 + ra, θ, a](x) > r for all x ∈ C[x0, θ, a], (2.12)

ζ [x0 + ra, θ, a](x) 6 2r for all x ∈ C[x0 + ra, θ, a] \ C[x0, θ, a]. (2.13)

The last ingredient is an interpolation argument, which—thanks to the aforementioned
properties of the test functions—transforms the integral inequality (2.6) into a pointwise inequality
of the form (2.11) for the integral function

GT ,R(r) =

∫ T

0

∫
C[x0+(R−r)a,θ,a]

|w|
s, (2.14)

to which Lemma 2.4 can then be applied. It leads to the following result.

LEMMA 2.6 Under the assumptions of Theorem 2.1, there exists a constantC1 =

C1(C0, θ,N, p, q, s, k, l) such that

GT ,R(ξ) 6
(C1T )1−ϑ

(ξ − η)α
{GT ,R(η) + S(R)(R − η)α/(β−1)

}
β (2.15)
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for all T ∈ (0, T0) and all 06 η < ξ 6 R, with S(R) given by (2.7) and with parameters

ϑ =
N(s − q)

kpq + N(p − q)
, β = ϑ + (s − ϑp)

1

q
, α = lpβ + (k − l)pϑ.

The combination of Lemma 2.4 and Lemma 2.6 yields Theorem 2.1, as we now show.

Proof of Theorem 2.1. In order to apply Lemma 2.4 withG = GT ,R andS̃ = S(R), we only need
to ensure that

Rα/(β−1) > (C2T )(1−ϑ)/(β−1)
{GT ,R(0) + S(R)Rα/(β−1)

} (2.16)

for someT ∈ (0, T0) and R > 0 (hereC2 = 2β(α+β−1)/(1−ϑ)(β−1)C1). Then it follows from
Lemmas 2.4 and 2.6 thatGT ,R(R) = 0, which means that we have a waiting time phenomenon
of durationT at x0. To establish part (1), we just observe that (2.16) is satisfied by allR andT

sufficiently small provided (2.8) holds. To establish part (2), we proceed as follows. Writing (2.16)
equivalently as

T 6 C−1
2 (R−α/(β−1)GT ,R(0) + S(R))−(β−1)/(1−ϑ).

we see that we have a waiting time phenomenon of durationT atx0 in particular if

T 6 C−1
2 (R−α/(β−1)GT ,R(0) + sup

ρ>0
S(ρ))−(β−1)/(1−ϑ)

for someR > 0. Taking the supremum on the right-hand side with respect toR and using (2.5)
yields

T ∗ > C−1
2 S−(β−1)/(1−ϑ)

as the desired lower bound for waiting time. Finally, we notice that

β − 1

1 − ϑ
=

kp(s − q)

kpq + N(p − s)
,

which entails (2.10) and proves Theorem 2.1. 2

The rest of the section is concerned with the proofs of Lemmas 2.5 and 2.6.

Proof of Lemma 2.5. Without loss of generality we may letx0 = 0 anda = eN . We introduce for
notational convenience the projectionxN = x − 〈x, eN 〉eN , the sets

C(r) = C[reN , θ, eN ] (2.17)

and the functions

ζr = ζ [reN , θ, eN ], (2.18)

so that

ζr(x) = (r − xN )+

(
1 −

|xN |
2

(r − xN )2 tan2 θ

)
+

.

Sinceζr is decreasing with respect to|xN |, in order to estimate it from below onC(0), respectively
from above inC(r) \ C(0), we only need to evaluate it at∂C(0) = {−xN = |xN | tanθ}. There, we
have

ζr |∂C(0) = r

(
r − 2xN

r − xN

)
,

which is decreasing forxN ∈ (−∞, 0). Hence the bounds. 2
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Before giving the proof of Lemma 2.6, let us state a version of Gagliardo–Nirenberg’s inequality
[24, 32, 33] which will be needed in the sequel.

THEOREM 2.7 (Gagliardo–Nirenberg) Let 0< q < p, 1 6 r 6 ∞, m ∈ N, m > 0. LetC ⊂ RN

be a half-cone with opening angleθ ∈ (0, π/2). Then there exists a positive constantC1 (depending
onN, θ,m, p, q, r) such that(∫

C
|u|

p

)1/p

6 C1

(∫
C

|Dmu|
r

)ϑ/r(∫
C

|u|
q

)(1−ϑ)/q

(2.19)

where
1

p
= ϑ

(
1

r
−

m

N

)
+ (1 − ϑ)

1

q

with ϑ in the interval [0, 1).

Note that the summability exponentsp, q are allowed to be less than one; for a proof of
the corresponding inhomogeneous version valid on cubes (and via linear transformation also on
parallelepipeds), see [21]. From the inhomogeneous inequality, the homogeneous one follows as
usual by a simple scaling argument.

Proof of Lemma 2.6. As in the proof of Lemma 2.5, we let without loss of generalityx0 = 0 and
a = eN . We use the abbreviations (2.17)–(2.18) and denote byC a generic constant which depends
on C0, θ , and on the parametersN , p, q, s, k, l. The starting point is estimate (2.6), written for
0 6 η < ξ 6 R andζ = ζR−η in the form

sup
t∈(0,T )

∫
C(R−η)

ζ
lp
R−η|w(·, t)|q +

∫ T

0

∫
C(R−η)

ζ
kp
R−η|D

kw|
p

6 C

{∫
C(R−η)

ζ
kp
R−ηF(w0) +

∫ T

0

∫
C(R−η)

|w|
s

}
. (2.20)

If we observe that, by (2.12),

ζR−η|C(R−ξ) > (ξ − η) for 0 6 η < ξ 6 R,

(2.20) simplifies to

sup
t∈(0,T )

∫
C(R−ξ)

|w(·, t)|q + (ξ − η)(k−l)p

∫ T

0

∫
C(R−ξ)

|Dkw|
p

6
C

(ξ − η)lp

{∫
C(R−η)

ζ
kp
R−ηF(w0) +

∫ T

0

∫
C(R−η)

|w|
s

}
. (2.21)

Using the homogeneous Gagliardo–Nirenberg inequality (2.19) together with the lower bound onp

expressed in (2.4), we may estimate∫ T

0

∫
C(R−ξ)

|w|
s 6 CT 1−ϑ

(
sup

t∈(0,T )

∫
C(R−ξ)

|w(·, t)|q
)(s−ϑp)/q(∫ T

0

∫
C(R−ξ)

|Dkw|
p

)ϑ

(2.22)
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with ϑ =
N(s−q)

kpq+N(p−q)
. Observe that (2.21) implies the estimate∫ T

0

∫
C(R−ξ)

|Dkw|
p 6

C

(ξ − η)kp

{∫
C(R−η)

ζ
kp
R−ηF(w0) +

∫ T

0

∫
C(R−η)

|w|
s

}
.

Together with (2.22) and (2.21), this entails∫ T

0

∫
C(R−ξ)

|w|
s 6 C

T 1−ϑ

(ξ − η)
lp(s−ϑp)+kpqϑ

q

{∫
C(R−η)

ζ
kp
R−ηF(w0)+

∫ T

0

∫
C(R−η)

|w|
s

}(s−ϑp)/q+ϑ

.

Introducing

β :=
s − ϑp

q
+ ϑ,

α :=
lp(s − ϑp) + kpqϑ

q
= lpβ + (k − l)pϑ,

and recalling the definition (2.14) ofGT ,R, we find

GT ,R(ξ) 6
CT 1−ϑ

(ξ − η)α

{∫
C(R−η)

ζ
kp
R−ηF(w0) + GT ,R(η)

}β

. (2.23)

Using the exterior cone property ofw0 and (2.13), we see that

ζR−ηχC(R−η)∩supp(w0) 6 ζR−ηχC(R−η)\C(0) 6 2(R − η).

Therefore, inequality (2.23) implies that

GT ,R(ξ) 6
CT 1−ϑ

(ξ − η)α

{
(R − η)kp

∫
C(R−η)

F(w0) + GT ,R(η)

}β

.

Introducing

S̃(R) = sup
r∈(0,R)

rkp−α/(β−1)

∫
C(r)

F(w0),

we obtain

GT ,R(ξ) 6
CT 1−ϑ

(ξ − η)α
{GT ,R(η) + (R − η)α/(β−1)S̃(R)}β

for all T > 0 and 06 η < ξ 6 R. A tedious, but straightforward calculation shows that

kp −
α

β − 1
= −γ − N,

which means that̃S(R) = S(R). Therefore (2.15) holds, and the proof is complete. 2

3. Applications to degenerate parabolic equations

In this section, we will establish lower bounds on waiting times for various degenerate parabolic
equations, including doubly degenerate parabolic equations of second and higher order as well as
thin-film equations. Without loss of generality, we shall assume throughout this section thatx0 = 0
is an element of∂ supp(w0) and that supp(w0) satisfies the “exterior cone property” atx0 with
opening angle 2θ and symmetry axisa = eN , and letC(r) = C[reN , θ, eN ].
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3.1 The porous-medium and related equations

Let us first study the propagation of the free boundary for non-negative, mass-conserving solutions
to the porous-medium equation

ut = ∆um (3.1)

in the slow-diffusion regimem > 1. Equation (3.1) is not only the simplest degenerate parabolic
equation to which our result applies. To the best of our knowledge, it is also the only equation
for which two-sided bounds on the waiting time could be established so far, as discussed in the
introduction. In order to apply Theorem 2.1, we only have to establish an inequality in the spirit of
(2.6). Using, for positiveα andζ ∈ F [0, θ, eN ], the functionζ 2uα as the test function in the weak
formulation of (3.1), it is straightforward that

sup
t∈(0,T )

∫
RN

ζ 2uα+1(·, t) + C−1
∫ T

0

∫
RN

ζ 2
|Du(α+m)/2

| 6
∫

RN

ζ 2uα+1
0 + C

∫ T

0

∫
[ζ>0]

uα+m

for all α > 0 and allζ ∈ F [0, θ, eN ], with a constantC depending onα andm. Therefore (2.6)
holds true for the choices

w = u(α+m)/2, p = s = 2, q =
2(α + 1)

α + m
, k = l = 1, F (w0) = w

q

0 .

For the functionS, we obtain

S(R) = sup
r∈(0,R)

r−(2(α+1))/(m−1)−N

∫
C(r)

uα+1
0 .

Thus, part (1) of Theorem 2.1 recovers the optimal growth exponentγ ∗
= 2/(m − 1) obtained by

Alikakos [1], whereas part (2) yields the lower bound

T ∗ > C(sup
R>0

S(R))(1−m)/(α+1).

In particular, if the growth of the initial data is bounded asu0(x) 6 B|x|
2/(m−1), Corollary 2.3 (with

µ = (α + m)/2) translates as the lower bound

T ∗ > CB1−m. (3.2)

Note that (3.2) is independent of the spatial dimension. Moreover, the scaling inB coincides with
that of the upper bound obtained by Chipot and Sideris [17] (see (1.2)) and therefore it is optimal.

Similarly, Theorem 2.1 can be applied to doubly non-linear coercive parabolic equations of any
order of the form

(|u|
q−2u)t + (−1)k

∑
|λ|=k

Dλ(|Dku|
p−2Dλu) = 0, (3.3)

with k > 1 and 1< q < p. We refer e.g. to [12] for the existence theory, to [13, 9] for the finite
speed of propagation property, and to [20, 36] for results on waiting time. In particular (see [20]), it
is possible to show that forζ ∈ F [0, eN , θ ],∫

RN

ζ kp
|u(·, t)|q + C−1

∫ t

0

∫
RN

ζ kp
|Dku|

p 6
∫

RN

ζ kp
|u0|

q
+ C

∫ t

0

∫
[ζ>0]

|u|
p,

which coincides with (2.6) withw = u, s = p and l = k. Theorem 2.1 can then be applied; in
particular, Corollary 2.3 holds withµ = 1.
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3.2 Thin-film equations

The thin-film equation
ut + div(|u|

n
∇∆u) = 0 (3.4)

with real parametersn > 0 is probably the most prominent example of a higher order degenerate
parabolic equation that implicitly defines a free boundary problem. With a grain of salt, (3.4) models
the purely surface tension driven evolution of the height of a thin film of viscous liquid that spreads
on a plane surface. In recent years, much effort has been invested to study its well-posedness and
qualitative properties. The analysis mostly concentrated onzero-contact-anglesolutions. These are
non-negative, mass-conserving solutions characterized by additional regularity properties, which
imply a zero slope at the free boundary∂ supp(u). Surprisingly, thosezero-contact-angle solutions
only exist forn ∈ (0, 3). For n > 3, the solution’s support is expected to be constant in time.
Another interesting and unexpected analytical feature is ann-dependent change in the structure of
the operator which requires different methods in the parameter regimesn ∈ (0, 2) andn ∈ [2, 3).
Forn ∈ (0, 2), zero-contact-angle solutions are characterized by the so called entropy estimate (see
[11, 15] in one space dimension, and [18, 16] forN 6 3)

sup
t∈(0,T )

∫
RN

ζ 4u(·, t)α+1
+ C−1

∫ T

0

∫
RN

ζ 4
|D2u(α+n+1)/2

|
2

6
∫

RN

ζ 4uα+1
0 + C

∫ T

0

∫
RN

uα+n+1(|∇ζ |
4
+ ζ 2

|∆ζ |
2), (3.5)

which holds for allα ∈ (max(0, 1/2 − n), 2 − n) and allζ ∈ C2(RN
; R+

0 ). This estimate is also
the starting point for results on waiting time. Indeed, if we takeζ ∈ F [0, θ, eN ] (which can easily
be justified by an appropriate approximation argument) and choose

w = u(α+n+1)/2, p = s = 2, q =
2(α + 1)

α + n + 1
, k = l = 2, F (w0) = w

q

0,

Theorem 2.1 applies with

S(R) = sup
r∈(0,R)

r−4(α+1)/n−N

∫
C(r)

uα+1
0 .

Thus, part (1) recovers the critical growth exponentγ ∗
= 4/n which has already been obtained in

[19], and part (2) yields the lower bound

T ∗ > C(sup
R>0

S(R))−n/(α+1).

For initial data such thatu0(x) 6 B|x|
4/n, Corollary 2.3 (withµ = (α + n + 1)/2) translates as

T ∗ > CB−n. (3.6)

In the parameter regimen ∈ [2, 3), entropies defined similarly to (3.5) are no longer globally
decreasing. Therefore, we take advantage of the weighted energy estimate

sup
t∈(0,T )

∫
RN

ζ 6
|∇u(·, t)|2 + C−1

∫ T

0

∫
RN

ζ 6
|∇u(n+2)/6

|
6 6

∫
RN

ζ 6
|∇u0|

2
+ C

∫ T

0

∫
[ζ>0]

un+2
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for ζ ∈ F [0, θ, eN ], as derived in [27]. Together with a Hardy-type inequality valid on cones (see
[28, Section 3]), we infer the inequality

sup
t∈(0,T )

∫
RN

ζ 4u2(·, t)+C−1
∫ T

0

∫
RN

ζ 6
|∇u(n+2)/6

|
6 6

∫
RN

ζ 6
|∇u0|

2
+C

∫ T

0

∫
[ζ>0]

un+2. (3.7)

Note that the presence of a generic parameterl in (2.6) is essential for Theorem 2.1 to apply in this
case. Choosing

w = u(n+2)/6, p = s = 6, q =
12

n + 2
, k = 1, l =

2

3
, F (w0) = |∇w6/(n+2)

|
2,

we obtain

S(R) = sup
r∈(0,R)

r−2(4/n−1)−N

∫
C(r)

|∇u0|
2.

Note that in this case the condition is stronger than in the previous one as it involves the gradient
of initial data. Nevertheless, Theorem 2.1 still recovers the critical growth exponent 4/n obtained
already in [19, 28] and yields

T ∗ > C(sup
R>0

S(R))−n/2 (3.8)

as the lower bound for the waiting time. For initial data satisfying the critical growth condition in
the sense of

|∇u0(x)| 6 B|x|
4/n−1,

inequality (3.8) translates again into the lower bound (3.6).
Theorem 2.1 also applies to doubly non-linear thin-film equations in one space dimension:

ut + (un
|uxxx |

p−2uxxx)x = 0.

Existence and qualitative properties of zero-contact-angle solutions have been worked out in [2] for
p > 2,n ∈ ((p − 1)/2, 2p−1). In particular, the following counterpart of (3.7) can be found there:

sup
t∈(0,T )

∫
R

ζ 3p−2u2(·, t) + C−1
∫ T

0

∫
R

ζ 3p
|(u(n+p)/p)xxx |

p 6
∫

R
ζ 3pu2

0x + C

∫ T

0

∫
[ζ>0]

un+p

for all ζ ∈ F [0, eN , θ ]. Applying Theorem 2.1 with

w = u(n+p)/p, s = p, q =
2p

n + p
, k = 3, l =

3p − 2

p
,

we get

S(R) = sup
r∈(0,R)

r
−2(

3p−2
n+p−2−1)−1

∫
C(r)

u2
0x .

The critical growth exponent(3p − 2)/(n + p − 2) coincides with the one obtained in [2], and for
initial data of the form

|u0x(x)| 6 B|x|
3p−2

n+p−2−1

part (2) yields the lower bound
T ∗ > CB−(n+p−2).
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4. Applications to degenerate parabolic systems

This section is devoted to the analysis of waiting time phenomena for the following drift-diffusion
model for semiconductors (see [30] and the references therein):nt = div(∇nα

− n∇V ) − R(n, p) in Ω × (0, T ),

pt = div(∇pα
+ p∇V ) − R(n, p) in Ω × (0, T ),

∆V = n − p − D(x) in Ω × (0, T ).

(4.1)

The unknownsn andp describe electron and hole density, respectively,V is the electric potential
andR serves as a recombination term. We assumeΩ ⊂ RN to be a bounded domain representing
the semiconductor, the doping profileD(·) to be essentially bounded, andα > 1 (a typical example
for α is α = 5/3 which corresponds to a high-injection regime, see [23] and the references therein).
The problem is complemented by mixed Dirichlet / homogeneous Neumann boundary conditions
and non-negative, bounded initial data:n = nD, p = pD, V = VD on (∂Ω)D × (0, T ),

∇n · ν = ∇p · ν = ∇V · ν = 0 on(∂Ω)N × (0, T ),

n(x, 0) = n0(x), p(x, 0) = p0(x) for x ∈ Ω.

(4.2)

We assume the Dirichlet boundary data to be also bounded. For this system, subjected to mild
assumptions onR(·, ·), Dı́az, Galiano, and J̈ungel established global existence of weak solutions in
[22]. In addition, they proved the following result on the occurrence of a waiting time phenomenon.

LEMMA (Dı́az, Galiano, J̈ungel) Assume that

R(n, p) > bnβ for all n, p > 0, (4.3)

with b > 0 andβ ∈ (0, 1) satisfyingα + β < 2. Then the solution(n, p, V ) of (4.1) satisfies the
following. Let x0 ∈ Ω, ε > 0 be sufficiently small and 0< ρ0 < ρ1 < dist(x0, ∂Ω). If n0 ≡ 0 in
B(x0, ρ0) and if

sup
ρ∈(ρ0,ρ1)

(ρ − ρ0)
−γ−N

∫
B(x0,r)

nα+1
0 dx 6 ε, γ =

2(α + 1)

α − 1
, (4.4)

then there existsT ∗ > 0 such thatn(·, t) = 0 in B(x0, ρ0) for all 0 < t < T ∗.

In what follows, we will show that it is also possible to derive a lower bound on the waiting
time. As a by-product, our result shows that

• the conditionα+β < 2 may be relaxed toβ < 1, removing the constraints onα (α < 2−β < 2)
andβ (β < 2 − α);

• it is not necessary to impose any smallness condition onε,
• the occurrence of a waiting time phenomenon may be establishedat each pointof ∂B(x0, ρ0)

rather than only globally onB(x0, ρ0).

It turns out that local results on finite speed of propagation only depend on global quantities like
‖n‖∞, ‖p − n − D‖∞, and the distance from the boundary of the initial support. This fact allows
us to apply Theorem 2.1 to the more general situation of mixed Dirichlet/homogeneous Neumann
boundary conditions. Our result holds for connected componentsA of supp(n0) which are compact
subsets ofΩ, and reads as follows.
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PROPOSITION4.1 Assume (4.3) holds for someβ ∈ (0, 1). Let (n, p, V ) be a solution of (4.1)–
(4.2) as obtained in [22], and letA be a connected component of supp(n0) such that

A ⊂ B(x0, R0) ⊂ B(x0, R0 + 5d) ⊂ Ω,

A = supp(n0) ∩ B(x0, R0 + 5d)
(4.5)

for somex0 ⊂ RN , R0 > 0 andd > 0. Let

T0 = sup{t ∈ (0, T ) : t‖n − p − D‖L∞(Ω×(0,T )) 6 1/4}, (4.6)

α̃ = min{α, 2 − β} > 1. (4.7)

Then:

(a) T1 = sup{t 6 T0 : n(·, t) ≡ 0 in B(x0, R0 + 3d) \ B(x0, R0 + d)} > 0;
(b) if furthermoreA has the “exterior cone property” atz0 ∈ ∂A, i.e.A ∩ supp(ζ [z0, θ, a]) = ∅ for

someθ ∈ (0, π/2), a ∈ Sn−1, and if for someδ ∈ (1, 3] we have

lim
r↓0

r−γ−N

∫
C[z0+ra,θ,a]∩A

nδ
0 < ∞, γ =

2δ + N(α − α̃)

α̃ − 1
, (4.8)

thenn has positive waiting time atz0;
(c) if furthermore

S = sup
r>0

r−γ−N

∫
C[z0+ra,θ,a]∩A

nδ
0 < ∞,

then the waiting timeT ∗ is estimated from below as

T ∗ > min{T1, (C1S)
−

2(α̃−1)
2δ+N(α−α̃) },

whereC1 depends onθ , N , α, β, b, δ, ‖n‖L∞(Ω×(0,T )), ‖n − p − D‖L∞(Ω×(0,T )), andd.

Here, the rangeδ ∈ (1, 3] has been chosen such that, under the assumptionα + β < 2 of
the D́ıaz–Galiano–J̈ungel Lemma,δ = α + 1 is always admissible in (4.8). In that case the two
critical exponentsγ in (4.4), resp. (4.8), coincide—whereas the results do not, since (4.8) is a local
condition atz0.

Proof. For notational convenience, we introduce the sets

B(R) = B(x0, R).

Let us start by taking a generic cut-offζ compactly supported inB(R0 + 4d). A few integrations by
parts show that forδ > 1,∫

Ω

ζ 2nδ(·, T ) =

∫
Ω

ζ 2nδ
0 − αδ

∫ T

0

∫
Ω

nα+δ−2
∇(ζ 2)∇n

+

∫ T

0

∫
Ω

nδ
∇(ζ 2)∇V − (δ − 1)

∫ T

0

∫
Ω

ζ 2nδ∆V

− αδ(δ − 1)

∫ T

0

∫
Ω

ζ 2nα+δ−3
|∇n|

2
− δ

∫ T

0

∫
Ω

ζ 2nδ−1R(n, p).
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In view of (4.5), dist(B(R0 + 4d), ∂Ω) > d. Hence, by standard results of elliptic regularity theory
we infer the existence of a constantC, depending on‖n − p − D‖L∞(Ω×(0,T0)) andd, such that

‖∇V ‖L∞(B(R0+4d)×(0,T0))
6 C. (4.9)

Combining (4.3) and (4.9) with standard absorption methods entails, forT 6 T0,

sup
t∈(0,T )

∫
Ω

ζ 2nδ(·, t) + C−1
∫ T

0

∫
Ω

ζ 2nα+δ−3
|∇n|

2
+ C−1

∫ T

0

∫
Ω

ζ 2nδ+β−1

6
∫

Ω

ζ 2nδ
0 + (δ − 1)T0‖n − p − D‖L∞(Ω×(0,T0)) sup

t∈(0,T )

∫
Ω

ζ 2nδ(·, t)

+ C

∫ T

0

∫
Ω

|∇ζ |
2(nα+δ−1

+ nδ+1−β).

Using the definition (4.6) ofT0 andδ ∈ (1, 3], we thus obtain in particular

sup
t∈(0,T )

∫
Ω

ζ 2nδ(·, t) + C−1
∫ T

0

∫
Ω

ζ 2nα+δ−3
|∇n|

2

6 2
∫

Ω

ζ 2nδ
0 + C

∫ T

0

∫
Ω

|∇ζ |
2(nα+δ−1

+ nδ+1−β).

We may further simplify the right-hand side provided we also allowC to depend on
‖n‖L∞(Ω×(0,T0)). Then, withα̃ as in (4.7), we conclude that

sup
t∈(0,T )

∫
Ω

ζ 2nδ(·, t) + C−1
∫ T

0

∫
Ω

ζ 2nα+δ−3
|∇n|

2 6
∫

Ω

ζ 2nδ
0 + C

∫ T

0

∫
Ω

|∇ζ |
2nα̃+δ−1. (4.10)

As is well known (see e.g. [16], [21]), using arguments similar to those of Theorem 1—with test
functionsζr supported on nested balls rather than on nested cones—(4.10) yields the following local
result on finite speed of propagation:

LEMMA 4.2 Assume thatn0 ≡ 0 on B(x1, r1) ⊂ B(R0 + 4d). Then there exists a continuous,
decreasing functionr(t), independent ofx1, such thatr(0) = r1 and

n(·, t) ≡ 0 onB(x1, r(t)).

Combining Lemma 4.2 with (4.5) shows that there is a positive timeT1 such that

n(·, t) ≡ 0 in B(R0 + 3d) \ B(R0 + d) for all t ∈ (0, T1). (4.11)

Indeed, it is sufficient to coverB(R0 + 4d) \ B(R0) by balls of radius 2d centered on∂B(R0 + 2d)

and to apply the lemma above. As long ast < T1, we may thus extendn(·, t)|B(R0+3d) by zero to
the whole ofRN for eacht ∈ (0, T1). If we introduce, fort < T1,

w(x, t) =

{
n(α+δ−1)/2(x, t), x ∈ B(R0 + 3d),

0, elsewhere,
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(4.10) may be reformulated as

sup
t∈(0,T )

∫
RN

ζ 2wq(·, t) + C−1
∫ T

0

∫
RN

ζ 2
|∇w|

2 6
∫

RN

ζ 2w
q

0dx + C

∫ T

0

∫
[ζ>0]

|∇ζ |
2ws (4.12)

for all ζ supported inB(R0 + 3d), with

q =
2δ

α + δ − 1
, s =

2(α̃ + δ − 1)

α + δ − 1
.

But in view of (4.11),w(·, t) ≡ 0 on RN
\ B(R0 + d) for all 0 < t < T1. Hence the restriction

supp(ζ ) ⊂ B(R0+3d) is not necessary any longer and (4.12) holds for test functions inF [z0, θ, a].
If we observe that|∇ζ | 6 C(θ) and thatq < s (sinceα̃ > 1), an application of Theorem 2.1 (with
p = 2, k = l = 1) now completes the proof of Proposition 4.1. Note that the presence of a generic
s in (2.6) is essential for Theorem 2.1 to apply to this case. 2
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18. DAL PASSO, R., GARCKE, H., & GRÜN, G. On a fourth order degenerate parabolic equation: global
entropy estimates and qualitative behavior of solutions.SIAM J. Math. Anal.29 (1998), 321–342.
Zbl 0929.35061 MR 1616558
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22. D́IAZ , J. I., GALIANO , G., & JÜNGEL, A. On a quasilinear degenerate system arising in semiconductor
theory. Part I: Existence and uniqueness of solutions.Nonlinear Anal. Real World Appl.2 (2001), 305–336.
Zbl 0994.35072 MR 1835610
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