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We extend the method in_[19] to obtain quantitative estimates of waiting times for free boundary
problems associated with degenerate parabolic equations and systems. Our approach is multi-
dimensional, it applies to a large class of equations, including thin-film equations, (doubly)
degenerate equations of second and of higher order and also systems of semiconductor equations.
For these equations, we obtain lower bounds on waiting times which we expect to be optimal in
terms of scaling. This assertion is true for the porous-medium equation which seems to be the only
PDE for which two-sided quantitative estimates of the waiting time have been established so far.
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1. Introduction

It is one of the most intriguing features of free boundary problems associated with degenerate
parabolic equations and systems that solutions may exhibit so-called “waiting time phenomena”.
Generally speaking, this means that for some time the solution’s support locally does not expand, or
shrink, or both, at a pointy of its boundary. There are different reasons for waiting time phenomena
to occur—in most cases they come as a consequence of initial data being sufficiently flat in a
neighborhood ofrg. Here we shall be concerned with a “forward” waiting tirfié: this is the

time it takes before the solution’s support begingtpandover xo—until that time, it may either

stand still or even recede froma. The precise notion is given by the following definition.

DEFINITION 1.1 We say a functiom : RV x [0, co) haspositive waiting timetxg € d supfwo)
if there existsT > 0 such thatqg € RN \ suppgw(-, t)) for almost allz € [0, T). In this case, the

TE-mail: giacomelli@dmmm.uniromal.it
IE-maiI: gg@iam.uni-bonn.de

© European Mathematical Society 2006



112 L. GIACOMELLI AND G. GRUN

waiting timeT* is defined by

T* =supT > 0:xg € RN\ suppw(-,t)) fora.e.r € [0, T)}.

Here, the support of a functian(-, 7) is understood as the complement of the union of all open
subsets oRY on whichw(-, 1) = 0 almost everywhere with respect to the Lebesgue measure.
Though in most applications is non-negative, in some of them it may change sign (cf. for instance
(3:3) below), and Definitiop I} 1 covers these cases, too.

In recent years, much effort has been invested to formulate sufficient conditions for the
occurrence of waiting time phenomena for various degenerate parabolic equations. For second order
equations and systems, the techniques range from comparison principles (see Knerr [31] for the
porous-medium equation) to Harnack-type inequalities (see the optimal result of Alikakos [1] on
the porous-medium equation, which in turn relieslon [7] and [10]) and to various energy methods
(see Antontsev |3], Antontsev anddx [4], and Antontsev, 1az, and ShmareV [6] for second order
operators, and 1az, Galiano, andithgel [23] for a degenerate system of semiconductor equations).
To analyze also higher order equations, energy methods based on the analysis of functional
inequalities and iterative procedures have been introduced by ShishKov [35] and applied also to
waiting time phenomena by Shishkov and Shchelkov [36] for a class of quasilinear degenerate
equations not including thin-film-type equations (see also the referencéslin [25]). Recently, in
studying waiting time phenomena for thin-film equations, Dal Passo and the authors of this paper
[19] have proposed the use of cone-shaped test functions and a simplification of these methods
through an extension of the classical Stampacchia lerhma [37], which has been shpown in [20] to
be applicable to the porous-medium equation, higher order doubly degenerate equations of the
form (3.3) below, and other thin-film-type equations. Cone-supported test functions were also used
in [34]], independently of [19], to study the finite speed of propagation property for higher order
operators with convection.

Not as much has been achieved regarding estimates ogizbef waiting times. With the
exception of[[36], neither the aforementioned papers nor the recent monograph by Antoragev, D
and Shmare\_[5] provide any result on that problem. The only two-sided estimates established so
far pertain to the porous-medium equation

u; = Agw), gu)>=Cu™, m>1

In one space dimension, and fofu) = u™, Aronson, Caffarelli, and Kamin [8] have shown that
the waiting timeT* is estimated by

m2—1

KBY™m <T* < KAY™, K= for N =1, (1.1)

provided the initial data satisfy
jim —0)__
xlx0 |x — X0|2/m_l

In [17], Chipot and Sideris have extended the upper bound pdrt df (1.1) to the higher dimensional
case: in particular, their result implies that if the initial support has an “interior cone property” at
X0 € 9 suppuo), then

uo(x) = Alx —xo/?" Y = 1 <cA¥™ forN > 1 (1.2)

=A and uo(x) < B(x —x0)7 "7V,

Looking carefully at the proof of Proposition 4.2 in Alikakos’ paper [1], it becomes evident that



LOWER BOUNDS ON WAITING TIMES 113

Harnack-type inequalities permit deducing a lower bound on the waiting time for the porous-
medium equation also in the multi-dimensional setting; in particular,

uo(x) < Blx — xo/?" Y = 1* > cB¥™". (1.3)

It seems, however, that this observation has never been written down. Compaiing (1.3) fith (1.2), we
see that the scaling with respect to the consiaig optimal. In [36], Shishkov and Shchelkov have
obtained estimates on the size of the waiting time for a class of quasilinear degenerate equations
of arbitrary order not including thin-film-type equations. For the porous-medium equation in one
space dimension, they recover the optimal lower bound in the serjse]of (1.3). Due to their choice of
test function, however, in the multi-dimensional case their result only applies to convexity points of
asupfug), and seems not to impl.3) at points where this boundary is srﬁboth.

In the present paper, we prove new lower bounds on the size of waiting times. The strategy
extends the one in_[19] and is based on energy/entropy estimates instead of Harnack-type
inequalities. It not only permits one to recover the optimal result given by (1.3) for solutions
of the porous-medium equation, but has in addition the advantage of being applicable to a wide
class of degenerate evolution operators, including the porous-medium equation, higher order doubly
degenerate equations of the fofm {3.3) below, other thin-film-type equations and also systems, and
to include non-convexity points of the initial support.

Let us describe the outline of the paper. Our starting point is the following, rather general class
of integral estimate§;

T T
f ;1P|w(-,T)|‘f+cglf / ;"P|D"w|f’</ ;"PF(wo)+co// Wi, (L1.4)
RN o JrvN RN 0 J[¢>0]

Estimate [(1.4) applies in particular to solutions of the Cauchy problem for all the aforementioned
applications. In Sectiop]2, we will prove an abstract result on lower bounds for waiting times,
Theorem 2.]L. In contrast to thecurrenceof the waiting time phenomenon, which purely depends
on the flatness of initial data near the free boundary point under consideratiahyrétson is
estimated by a global quantity, which depends on the overall shape of the initial datum (in fact,
it may also be influenced by boundary conditions, a topic that we shall not consider here).

The proof of Theorenf 2|1 can be sketched as follows. Using the ingredients lof [19],
i.e. localization functions supported on cones, interpolation arguments and a new version of
Stampacchia’s iteration lemma, we identify the boundedness of

S(R)= sup r 77N / F(wo)
re(0,R) Clxo+ra,0,d]

asR | 0to be a sufficient criterion for the occurrence of a waiting time phenomenon in the sense of

Definition[1.]. HereC[xg+ra, 6, a] is a half-cone with vertex at = xo+ra, opening anglé and

symmetry axis parallel to (see Figurg]l). Taking for the optimal coefficient for the occurrence of

a waiting time phenomenon, a closer look at the modified Stampacchia lemma reveals the waiting

time T* to depend on the parametRr> 0. Optimizing with respect t® gives the desired lower

bound.

1 Note that[[36] also deals with absorption terms, and that the paper of A. Shishkov in Differential Equations 29 (1993),
460-469, introduces some of the tools used there.

2 Herek, I, p,q,s are appropriate real numbers,is a weight function supported on a cone, afd: wk®RYN) —
Llloc(RN; Rg) is a non-negative differential operator; see The 2.1 for the precise formulation of the assumptions.
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FIG. 1. The cone€[xg + ra, 0, a] intruding the initial support atg, and the cone-shaped test function supported there.

Sectior B is devoted to the application of Theofen)j 2.1 to specific examples. For the porous-
medium equation, we recover the scaling result of (1.3) in the multi-dimensional case. Similarly, we
obtain a lower bound of the waiting time for the thin-film equation

u; +diviu"vVAau) =0

in space dimension§ € {1, 2, 3} and forn € (0, 3). Note that fom > 3 solutions are expected to

have support constant in time. In one spatial dimension, a similar result is presented for doubly
degenerate thin-film equations as they are used to model wetting of surfaces by shear-thinning
power-law fluids. Subsectidn 3.1 terminates with an application to doubly degenerate parabolic
equations of arbitrary order.

To demonstrate the applicability of Theorgm|2.1 to systems of reaction-diffusion equations, in
Sectior{ # we consider a system of degenerate semiconductor equations for which the occurrence
of a waiting time phenomenon was investigated previously gzDGaliano, andithgel [23].

Here, in addition to a quantitative lower bound, we obtain improvements of the conditions on the
nonlinearity, on the flatness of initial data, and on the growth rate of the recombination term (see
Sectior] 4 for more details on comparison with|[23]).

Summarizing, in this paper we present a general recipe to establish quantitative lower bounds
on waiting times; we show that it applies to problems for which no such bound has been known so
far, and that it gives the optimal bound in terms of scaling—at least in those cases for which the
upper bound is already established.

Let us conclude by pointing out a couple of open questions. The first one is of course optimality
of the lower bound—in fact, even a non-sharp upper bound would be of interest. The second one is
of a more technical nature: As we shall see in Sec{igns 3 hnd 4, the application of Thedrem 2.1 to
most of the aforementioned examples yields a lower bouriifomhich depends on ah?-norm of
the initial datum, withy greater than one (though sometimes arbitrarily close to one); it is reasonable
to expect, and worth seeking for, analogous results in terms df'throrm. For the porous-medium
equations, both questions have been solved by duality arguments, whose application may turn out to
be fairly difficult in more general cases due to the lack of comparison arguments. Finally, it would
be interesting to investigate the quantitative effect of boundary conditions on the size of the waiting
time.
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2. The abstract result

The abstract result requires some preliminary remarks on notationgFerRY, ¢ € S¥-1 and
0 € (0, /2), consider the functions

2.1)

—x — (xg— 2
C[x0, 0, al(x) = (xo —x,a)+<1_ |xo — x — {xo — x, a)al )
+

(xg — x, a)2tar? 6
Here(x) denotes maj, 0}. These functions are supported on half-cones
C[xo, 6, a] = supp¢[xo, 0, a]) c RN

with vertexxg € RY, opening anglé, and axis parallel ta in such a way thatg+a ¢ C[xo, 6, a].
Similarly, we introduce the following one-parameter family of admissible test functions:

Flxo,6,a] ={¢[x0o+ra,b,a](-): r > 0}. (2.2)
Let us introduce furthermore fére N continuous functions
H:RXRNXRNzxn-XRNk—)Rg, H(O) =0.
Associated withH, we consider the operator
F:Wor®RY) — LE RV RE)

defined by
F(w)(x) = Hw(x), Dw(x), ..., D*wx)). (2.3)
The abstract result reads as follows.

THEOREM 2.1 (Lower bound on waiting time) Lét p, g, s € R andk € N satisfy

O<I<k, O<g<sy, p>max{ (2.4)

71 b
N + kq

and letF be a given non-negative differential operator a§ in|(2.3). Assume that a funcgatisfies
the following:

e for someTp < oo,

T
/ F(wg) < 00, / o/ lw|* < oo; (2.5)
RN 0 RN

e suppgw(-, 0)) = suppwop) has the “exterior cone property” 8§ € d SUPFwo), i.€. SUpfwg) N
SUp¢[xo, 0, a]) = ¥ for somed € (0, 7/2) anda € SV~ L;
o there exists a positive constafi§ such that

T T
/ c“’|w<~,T)|Q+calf / c""|D’<w|P</ é“ka(wo)+C0// Wl (2.6)
RN 0 RN RN 0 [¢>0]

forall T € (0, Tp) and allz € Flxo, 0, a].
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Let
I[[N(p— k
S(R) = sup r—V—N/ Fwo), y=—kp+ NP =9 +kps] ) o)
re(0,R) C(xo+ra,0,a) k(s —q)
Then the following holds true.
@) If
lim S(R , 2.8
im (R) < o0 (2.8)
thenw has positive waiting time afp in the sense of Definitign 1.1,
(2) if in addition
S = supS(R) < oo, (2.9)
R>0
then the waiting tim&™* at xg is estimated from below by
___kp(s—q)
T* > CS™ *atNG=s) (2.10)

where(C is a positive constant which only depends@n 6, N, k, [, p, g, ands.

Part (1) recovers an earlier result of Dal Passo and the authofs |19, 20]. It is a qualitative result:
The occurrenceof a waiting time phenomenon only depends on the local behavior of the initial
datum at the point of interest. On the other hand, part (2) exténds [20] and is a quantitative result:
Thedurationof the waiting time phenomenon is estimated tgi@bal quantity, determined by the
overall shape of the initial datum.

REMARK 2.2 If the opening anglé is chosen so that suppg) N sup@¢[xo, 20, a]) = @, then
Theorenj 2.1 holds true with(R) in (2.8) and[(2.p) replaced by

S(R)= sup r 7N / F (wp).
re(0,R) B(xo,r)
Indeed, in this case an elementary geometric argument (see [19, Fig. 1]) implies that
suppwo) NC[xo +ra, 8,a] C B(xo,r),

so thatS(R) < S(R).

Remark{ 2.P allows one to infer explicit versions of Theolfenj 2.1 in the case of power-type
behavior of the initial datum in a straightforward way. The following prototypical case occurs in
many applications.

COROLLARY 2.3 Letu > 0. Assume thatv = |u|*~1u satisfies the assumptions of Theo@ 2.1
with (I, s) = (k, p) and F (wg) = |wg|?. Then:

(1) A critical growth exponent™ = kp/u(p — q) is identified for the functiom, such that if

. ug(x
lim u < 00,

x=xg |x — xo|”"

thenT* > O;
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(2) a positive constar@ = C(Co, 0, N, u, k, p, q, s) exists such that if in addition
luo(x)| < Blx — xol”",

then
T* > CB HP—9)

In the applications to be presented in Sect[dns Jand 4, the codstdoes not depend on initial
data, but does depend 6nThe opening anglé plays indeed a crucial role, since both parts (1) and
(2) are sensitive to the shape of the support. For instance, the critical growth expéneqtroves
if the initial support has an outward-pointing cuspcgt

Our strategy is based on three main ingredients. The first ingredient is a calculus lemma which
extends the classical Stampacchia lemma and gives sufficient conditions for a non-negative, non-
increasing function to become zero at a given point. Its proof is a straightforward modification of
one presented in [19]. The lemma reads as follows.

LEMMA 2.4 Assume that a non-negative, non-increasing funation[0, R] — [0, o0) is such
that

GE) < — (G +5- (R =)Dy (2.11)
& —n"

forall0 <5 < & < R,wherek > 0,5 > 0,a > 0andg > 1 are real constants. If in addition

RY/B=D 5 (2BetB=D/B=D g\1/(B=DyG(0) + § . R¥/B-D,

thenG(R) = 0.

The second ingredient is the particular choice of test functions already introduced]in (2.2).
Their cone-shaped positivity set allows one to handle non-convex initial supports and is such that
homogeneous interpolations hold true; furthermore, they are well-behaved with respect to nesting:

LEMMA 2.5 The functiong[xo + ra, 6, a](x) given by [2.1) are such that for all> O:

{[xo+ra,f,al(x) =r  forall x € C[xo, 0, d], (2.12)
C[xo+ra,b,al(x) <2r forallx € Cl[xg+ra,?b,a]\C[xo, 0, al. (2.13)
The last ingredient is an interpolation argument, which—thanks to the aforementioned

properties of the test functions—transforms the integral inequflity (2.6) into a pointwise inequality
of the form [2.11) for the integral function

T
Gram = [ [ ', (2.14)
0 JC[xo+(R—r)a,0.a]

to which Lemma 24 can then be applied. It leads to the following result.

LEMMA 2.6 Under the assumptions of Theorgm]2.1, there exists a consglant =
C1(Co,6, N, p,q,s, k1) such that

(C17)?

& e (OO + SRR =70 (2.15)

Gr,r(&) <
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forall T € (0, Tp) and all 0< n < & < R, with S(R) given by [2.7) and with parameters
_ N(s —q)

kpg + N(p—q)’

The combination of Lemnja 4.4 and Lemma] 2.6 yields The¢rein 2.1, as we now show.

Proof of Theore 1. In order to apply Lemm.4 with = Gz andS = S(R), we only need
to ensure that

ﬂ=19+(s—19p)§, a=Ipp+ (k—1)pv.

RGPV > (CoT)T D PD{Gr p(0) + S(R)RY/P~D) (2.16)

for someT e (0,Tp) andR > 0 (hereCy = 2f@+A-D/A=NBE-D 1) Then it follows from
Lemmaq 2.4 anfl 2.6 thair x(R) = 0, which means that we have a waiting time phenomenon
of durationT at xo. To establish part (1), we just observe tHat (P.16) is satisfied bg aihd T
sufficiently small provided (Z]8) holds. To establish part (2), we proceed as follows. Wfiting (2.16)
equivalently as

T < szl(R—Ol/(ﬂ—l)GT’R(O) + S(R))—(ﬁ—l)/(l—ﬂ)'

we see that we have a waiting time phenomenon of dur&tiahxg in particular if

T < Cz_l(R_a/(ﬁ_l)GT,R(o) +Sugs(p))—(ﬂ—l)/(l—z9)
p>

for someR > 0. Taking the supremum on the right-hand side with respe@ tmd using[(2}5)

yields
T* > Cz—ls—(ﬁ—l)/(l—ﬁ)

as the desired lower bound for waiting time. Finally, we notice that

p-1_ _ kpGs—q)
1-9 kpg+N(p—s)
which entails[(2.10) and proves Theorgm|2.1. a

The rest of the section is concerned with the proofs of Lenjméas 2.5 and 2.6.

Proof of Lemma 2]5. Without loss of generality we may let = 0 anda = ey. We introduce for
notational convenience the projectiop = x — (x, ey )en, the sets

C(r) =Clren, 6, en] (2.17)
and the functions
;r =§[r€N,9,eN], (218)
so that )
o _ IXn|
00 = 0= (1 XN)ztar?Q)+.

Sinceg, is decreasing with respect [0y |, in order to estimate it from below ai(0), respectively
from above inC(r) \ C(0), we only need to evaluate it a€(0) = {—xy = |xy|tand}. There, we

have
r—2xy
§r|36(0)=r<r )

— XN
which is decreasing fary € (—oo, 0). Hence the bounds. |
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Before giving the proof of Lemmia 2.6, let us state a version of Gagliardo—Nirenberg’s inequality
[24,32)33] which will be needed in the sequel.

THEOREM 2.7 (Gagliardo—Nirenberg) Let@ ¢ < p, 1 <r < oo,m € N,m > 0. LetC c RV
be a half-cone with opening andles (0, /2). Then there exists a positive constaht(depending
onN,#6,m, p,q,r)such that

(/CW)W<C1(L|Dmu|’)ﬁ/r(/c|u|q)(lW (2.19)

1_ (1 m fa 19)1
p \r N q

where

with ¢ in the interval [Q 1).

Note that the summability exponents ¢ are allowed to be less than one; for a proof of
the corresponding inhomogeneous version valid on cubes (and via linear transformation also on
parallelepipeds), see [21]. From the inhomogeneous inequality, the homogeneous one follows as
usual by a simple scaling argument.

Proof of Lemm@ 2]6. As in the proof of Lemmf 2|5, we let without loss of generaligy= 0 and

a = ey. We use the abbreviatior|s (2]17)—(2.18) and denot€ bygeneric constant which depends
on Co, 8, and on the parameter$, p, ¢, s, k, . The starting point is estimatg (2.6), written for
0<n <& < Rand¢ = ¢g—, inthe form

T
I k
supf zR”_n|w(-,z>|‘f+// e | Dk w)?
1€(0,7) JC(R—n) 0 JC(R-n)

T
<C{/ é,’é’inF(on// |w|f}. (2.20)
C(R-n) 0 JC(R-n)

If we observe that, by (2.12),
CR—plor—gy = (E—n) for0O<n <& <R,

(2.20) simplifies to

T
sup/ |w(-,r>|q+(s—n>(k—”"ff Dkw|?
te(0,T) JC(R-E&) 0 C(R-§)

oll o f ]
<< F(wo) + @21
T {/C(R_n) g, F(wo) o e lw| (2.21)

Using the homogeneous Gagliardo—Nirenberg inequdlity (2.19) together with the lower bopnd on
expressed ir] (2]4), we may estimate

T (s—9p)/q T 4
/ / [w]® < CTM< sup / |w(~,t)|‘1> (/ / |Dkw|P) (2.22)
0 C(R-&) te(0,T) JC(R-§) 0 C(R-§)
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. _ N(s—q) ! . . .
with ¢ = BN G=3) Observe thal) implies the estimate

T
D*w {/ kg +/ / s}'
/ /C(R s)l (E )k” C(an)CR_" (10) 0 C(an)|W|

Together with[(Z2.2R2) andl (2.21), this entails

/T/- T1-9 kp T (s=0p)/q+v
lwl” < C - {/ Cp— F(wo)+/ / |w|s} :
o Jew-o (§ — ) =2RH? {er—y) ™" o Jew-n

Introducing

pi= TP Ly
q
l -9 kpq?v
= 26 ’;H PIT — 1pB+ (k= D)o,
and recalling the definition (2.14) @t7 g, we find
CTlfﬁ k B

G <—— P F(wo) +G } . 2.23
7.R(&) = '7)“{/;:(1?—17) {p—nF (wo) 7,R (1) (2.23)

Using the exterior cone property of and [2.18), we see that

CR—n XC(R—p)nsuppwe) < SR—n XC(R—m\C(O) < 2(R —n).
Therefore, inequality (2.23) implies that

CTl—z? ‘ B
Grr() < —a{(R—n)p/ F(w0)+GT,R(77)} .
€ —mn) C(R—1)
Introducing
S(R) = sup rk”_“/(ﬁ_l)/ F(wo),
re(0,R) Cr)
we obtain
crt? @/(B=D G py1B
Grr(§) < W{GT,R(W) +(R—1n) S(R)}
forall T > 0 and 0< n < & < R. Atedious, but straightforward calculation shows that
o
kp ———=—y — N,
g1~ 7
which means tha§(R) = S(R). Thereforem) holds, and the proof is complete. O

3. Applications to degenerate parabolic equations

In this section, we will establish lower bounds on waiting times for various degenerate parabolic
equations, including doubly degenerate parabolic equations of second and higher order as well as
thin-film equations. Without loss of generality, we shall assume throughout this sectiop thdl

is an element ob suppgwp) and that supfwg) satisfies the “exterior cone property” & with

opening angle 2 and symmetry axis = ey, and letC(r) = C[ren, 0, en].
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3.1 The porous-medium and related equations

Let us first study the propagation of the free boundary for non-negative, mass-conserving solutions
to the porous-medium equation

u, = Au™ (3.1
in the slow-diffusion regimen > 1. Equation[(3.]L) is not only the simplest degenerate parabolic
equation to which our result applies. To the best of our knowledge, it is also the only equation
for which two-sided bounds on the waiting time could be established so far, as discussed in the
introduction. In order to apply Theorgdm P.1, we only have to establish an inequality in the spirit of
). Using, for positiver and¢ € F[0, 6, ey], the functionz2u® as the test function in the weak
formulation of [3.1), it is straightforward that

T T
sup {2ua+1(" 1) + C_l/ / ;2|Du(a+m)/2| < / §2ug+1 + C/ / potm
1€(0,T) JRV o Jr¥ RN 0 Jic=0]

forall > 0 and allz € F[0, 8, ey], with a constanC depending o andm. Therefore[(26)
holds true for the choices
_2(@+1)

(a+m)/2
] a+m ]

w=u p=s=2, k=1=1, F(wo):wg.

For the functionS, we obtain

S(R) = sup r—(2(a+1))/(m—1)—Nf sy
re(0,R) C(r)
Thus, part (1) of Theorein 3.1 recovers the optimal growth expopiért 2/(m — 1) obtained by
Alikakos [1], whereas part (2) yields the lower bound
T* > C(supS(R))L—m/@+d),
R>0

In particular, if the growth of the initial data is bounded@gx) < B|x|%™~D, Corollary2.3 (with
u = (¢ + m)/2) translates as the lower bound

T* > CBY™. (3.2)

Note that[(3.R) is independent of the spatial dimension. Moreover, the scalBgdamncides with
that of the upper bound obtained by Chipot and Sideris [17] (1.2)) and therefore it is optimal.

Similarly, Theorenfi Z]1 can be applied to doubly non-linear coercive parabolic equations of any
order of the form

(lul?"2u), + (=D* > D*(|D*u|P~2D*u) =0, (3.3)
A=k

with k > 1 and 1< g < p. We refer e.g. to [12] for the existence theory,[tol[13, 9] for the finite
speed of propagation property, and(tol[20, 36] for results on waiting time. In particular ($ee [20]), it
is possible to show that far € F[0, ey, 6],

t t
/ ;kp|u<-,t>|q+0*1// ;kf’|D"u|P</ z"P|uo|‘f+C// ul”,
RV 0 JRN RN 0 J[¢>0]

which coincides with[(2]6) withv = u, s = p and! = k. Theoren 21 can then be applied; in
particular, Corollary 2J3 holds with = 1.
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3.2 Thin-film equations

The thin-film equation
u; +div(ju|"VAu) =0 (3.4)

with real parameters > 0 is probably the most prominent example of a higher order degenerate
parabolic equation that implicitly defines a free boundary problem. With a grain of sat, (3.4) models
the purely surface tension driven evolution of the height of a thin film of viscous liquid that spreads
on a plane surface. In recent years, much effort has been invested to study its well-posedness and
qualitative properties. The analysis mostly concentratedeno-contact-angleolutions. These are
non-negative, mass-conserving solutions characterized by additional regularity properties, which
imply a zero slope at the free boundarguppu). Surprisingly, thoseero-contact-angle solutions

only exist forn € (0,3). Forn > 3, the solution’s support is expected to be constant in time.
Another interesting and unexpected analytical feature is-dapendent change in the structure of

the operator which requires different methods in the parameter regime®, 2) andn € [2, 3).

Forn € (0, 2), zero-contact-angle solutions are characterized by the so called entropy estimate (see
[11],[15] in one space dimension, ahdl[18], 16] M 3)

T
sup §4u(’,t)a+l+c—1/ / £ D2y o+ D/2)2
1€(0,T) JRV o Jr¥

T
</ ;4u3‘“+0/ / wtT(vet + c?Ac?),  (3.5)
RN 0 RN

which holds for alle € (max0, 1/2 — n),2 —n) and allz € C3(RV; Rg). This estimate is also
the starting point for results on waiting time. Indeed, if we take F[0, 6, ex] (which can easily
be justified by an appropriate approximation argument) and choose

2 1
= yletnthiz =5 =2 q=—(a+) k=1=2 F(wo) = wf,

v a+n+1

Theorenj 2.1l applies with

S(R): sup r—4(oc+l)/n—N/ ug+l.
re(0,R) Cr)

Thus, part (1) recovers the critical growth exponghit= 4/n which has already been obtained in
[19], and part (2) yields the lower bound

T* > C(supS(R))~"/@+D,
R>0

For initial data such thato(x) < B|x[*", Corollary{2.8 (withu = (« + n + 1)/2) translates as
T* > CB™". (3.6)

In the parameter regime € [2, 3), entropies defined similarly t¢ (3.5) are no longer globally
decreasing. Therefore, we take advantage of the weighted energy estimate

T T
1e(0,T) JRN 0o JRV RV 0 Jie>0]
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for ¢ € F[O, 0, en], as derived in[2[7]. Together with a Hardy-type inequality valid on cones (see
[28, Section 3]), we infer the inequality

T T
sup §4u2(-,t)+C_1/ / £8vu+2/66 g/ ;6|w0|2+c/ / u" 2. (3.7)
te(0,T) JRN 0 JRN RN 0 J[¢>0]

Note that the presence of a generic paraméeite((2.6) is essential for Theorgm 2.1 to apply in this
case. Choosing

12 2
w=u"20 p=s5=6 g= . k=1 =3 Fwo) =|Vu®"P2

we obtain

S(R) = sup r*z(“/"*l)*N/ |Vuol?.
re(O,R) C(r)
Note that in this case the condition is stronger than in the previous one as it involves the gradient
of initial data. Nevertheless, Theor¢m]2.1 still recovers the critical growth expoyiertibtained
already in[[19. 28] and yields

T* > C(supS(R))™"/? (3.8)

R>0

as the lower bound for the waiting time. For initial data satisfying the critical growth condition in
the sense of

|Vuo(x)| < Blx|[*" 7,

inequality [3.8) translates again into the lower bodnd](3.6).
Theorenj 2.1 also applies to doubly non-linear thin-film equations in one space dimension:

-2
ur + (un|uxxx|p Uxyx)x = 0.

Existence and qualitative properties of zero-contact-angle solutions have been workedlout in [2] for
p>2,n€((p—1/2 2p—1).In particular, the following counterpart ¢f (3.7) can be found there:

T T
sup [ ¢¥ 2P0+ C / / SUITAEONNUES / ;¥ uf, +C / / u"tp
1e(0,7) JR o Jr R 0 Jir=0]
forall ¢ € F[O, ey, 6]. Applying Theorenj 21 with

2
w=uPP s =p g = P , k=3, I=
n+p p

we get

3p—2
S(R) = sup r*2<in+pp—2*1)*1/ ul,.

re(0,R) C(r)
The critical growth exponenBp — 2)/(n + p — 2) coincides with the one obtained in [2], and for
initial data of the form -

p—

Juox ()] < Blx|r-2""

part (2) yields the lower bound
T* 2 CB*("‘prz).
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4. Applications to degenerate parabolic systems

This section is devoted to the analysis of waiting time phenomena for the following drift-diffusion
model for semiconductors (see [30] and the references therein):

ny = div(Vr* —nVV) — R(n,p) in2x0,7T),
pr =div(Vp® + pVV) — R, p) in2 x (0, T), (4.2)
AV =n—p— D(x) in 2 x (0, 7).

The unknowns: and p describe electron and hole density, respectivElys the electric potential
andR serves as a recombination term. We assuine R”" to be a bounded domain representing
the semiconductor, the doping profill-) to be essentially bounded, and> 1 (a typical example

for « is @ = 5/3 which corresponds to a high-injection regime, §eé [23] and the references therein).
The problem is complemented by mixed Dirichlet / homogeneous Neumann boundary conditions
and non-negative, bounded initial data:

n=np, P =DPD, V=Vp on (8Q)DX(O, T),
Vh-v=Vp.-v=VV.v=0 on(@2)y x (0, T), (4.2)
n(x,0) =nox), p,0 = po(x) forx e 2.

We assume the Dirichlet boundary data to be also bounded. For this system, subjected to mild
assumptions oR(-, -), Diaz, Galiano, andithgel established global existence of weak solutions in
[22]. In addition, they proved the following result on the occurrence of a waiting time phenomenon.

LEMMA (Diaz, Galiano, iingel) Assume that
R(n, p) = bn? foralln, p >0, (4.3)

with » > 0 andg € (0, 1) satisfyinge + 8 < 2. Then the solutiorin, p, V) of (4.1) satisfies the
following. Letxg € £2, ¢ > 0 be sufficiently small and & pg < p1 < dist(xg, 382). If ng = 0in
B(xo, po) and if

2 +1)
y:—

1 (4.4)

sup (o — po)_V_N/ n&Hdx <e,
PE(po,p1) B(xo,r)

then there exist$™* > 0 such that(-, 1) = 0in B(xg, po) forall0 < ¢ < T*.

In what follows, we will show that it is also possible to derive a lower bound on the waiting
time. As a by-product, our result shows that

e the conditionr + 8 < 2 may be relaxed t6 < 1, removing the constraints en(e < 2—8 < 2)
andg (B <2 — a);

e itis not necessary to impose any smallness condition, on

e the occurrence of a waiting time phenomenon may be establehedch pointof 3 B(xg, o)
rather than only globally oB (xg, po).

It turns out that local results on finite speed of propagation only depend on global quantities like
Inllsos |lp —n — Dl 5, and the distance from the boundary of the initial support. This fact allows
us to apply Theorefn 2.1 to the more general situation of mixed Dirichlet/homogeneous Neumann
boundary conditions. Our result holds for connected componenfsupgng) which are compact
subsets of2, and reads as follows.
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PrROPOSITION4.1 Assume[(4]3) holds for sonee (0, 1). Let (n, p, V) be a solution of (4]1)-
(4.2) as obtained in [22], and let be a connected component of sgpg such that

A C B(xg, Rg) C B(xg, Ro+5d) C §2,

A = suping) N B(xo, Ro + 5d) (4-5)

for somexg c RY, Ry > 0 andd > 0. Let
To=supt € (0,T) : tlln — p — DllLo@x©r) < 1/4}, (4.6)
@ = minfe, 2 — B} > 1. 4.7)

Then:

(@) L =sufr < Tp : n(-, 1) = 0in B(xo, Ro+ 3d) \ B(xo, Ro+d)} > 0;
(b) if furthermoreA has the “exterior cone property” ag € A, i.e. A N Supp¢[zo, 8, a]) = @ for
somed € (0, 7/2),a € "1, and if for some’ € (1, 3] we have
: 25+ N(ox — &
lim riV*N/ n’go <00, y= M, (4.8)
ri0 Clzo+ra,0,a]NA a—1
thenn has positive waiting time af;
(c) if furthermore

S = supr‘V‘N/
r>0 Clzo+ra,0,alNA

then the waiting tim&* is estimated from below as

n%<oo,

)
T* > min{Ty, (C1S5) ZFNea},

whereC1 depends of, N, o, B, b, 8, [InllLe@x©,1)), In — p — DllL>2x©,1)), andd.

Here, the rangé < (1, 3] has been chosen such that, under the assumptiéng < 2 of
the Diaz—Galiano-ingel Lemmag = « + 1 is always admissible irf (4.8). In that case the two
critical exponenty in (4.4), resp.[(4]8), coincide—whereas the results do not, ginde (4.8) is a local
condition atzg.

Proof. For notational convenience, we introduce the sets
B(R) = B(xg, R).

Let us start by taking a generic cut-gficompactly supported iB(Ro + 4d). A few integrations by
parts show that fo8 > 1,

T
/§2n3(~,T)=/ ;an—a(s/ /n““*ZV(;Z)Vn
22 22 0 2
T T
+/ /nSV(gz)vv—(a—l)/ /gznuv
0 2 0 2

T T
—ad(s — 1)/ / £2ne =3 vp? — 5/ f %n® R (n, p).
0 2 0 2
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In view of (4.5), distB(Ro + 4d), 352) > d. Hence, by standard results of elliptic regularity theory
we infer the existence of a constantdepending otin — p — DIz (2 x(0,15)) andd, such that

IVV Lo (B(Ry+4d)x (0,T0)) < C- (4.9)
Combining [4.B) and (4]9) with standard absorption methods entailg, fr7,
T T
sup {ZnS(’ t) + C*l/ / §2na+873|vn|2 + C*l/ / §2n5+ﬁfl
re@.1) /2 0 Je 0 Je

< / ?ny+ (8 —DTolln — p — Dlr=@x@.1p) SUP [ ¢2n°(,1)
2 te(0,T) J 2

T
+ C/ / |v§|2(nd+5—1 +n5+1—ﬁ).
0 Jg

Using the definition[(4]6) ofp ands € (1, 3], we thus obtain in particular
T
sup Czna(,’t)_i_c—l/ / (2743 yp 2
0o Je

te(0,T) J £2
T
2 0 2

We may further simplify the right-hand side provided we also allaéwto depend on
71l Lo (2x(0.75))- Then, witha as in [4.7), we conclude that

T T _
sup ;Zn(‘(.,z)juc—l/ /¢2n“+3—3|w|2</ ;2ng+cf /|v;|2n“+5—1. (4.10)
te(0,T) J 2 0 J@ 2 0 J@

As is well known (see e.gL [16], [21]), using arguments similar to those of Theorem 1—with test
functionsg, supported on nested balls rather than on nested cofies}-(4.10) yields the following local
result on finite speed of propagation:

LEMMA 4.2 Assume thatg = 0 on B(x1,r1) C B(Rg + 4d). Then there exists a continuous,
decreasing function(t), independent af1, such that (0) = 1 and

n(-,t) =0 onB(xy, r()).
Combining Lemm@ 4]2 wittj (4]5) shows that there is a positive flimguch that
n(t)=0 iInB(Ry+3d)\ B(Ro+d) forallte (0, T). (4.11)

Indeed, it is sufficient to coveB (R + 4d) \ B(Rp) by balls of radius  centered o B(Rg + 2d)
and to apply the lemma above. As longras 71, we may thus extend(-, ¢)| p(ry+34) DY zero to
the whole ofRY for eachr e (0, Ty). If we introduce, for < Ty,

ity = | PO, x € B(Ro+ 30,
R ) elsewhere
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(4.10) may be reformulated as

T T
sup {%MCJ)+C_{/ /';QVwFs;/ ;%%dx+c1/ /i IVePw®  (4.12)
1e(0,T) JRN o JR¥ RN 0 J[¢>0]

for all ¢ supported inB(Rg + 3d), with

25 2@ +8-1)

g=—"—, s§s= .
a+5—1 a+46—1

But in view of (4.11),w(-,r) = 0 onRN \ B(Ro + d) for all 0 < ¢ < Ty. Hence the restriction
SUPH¢) C B(Ro+3d) is not necessary any longer apd (4.12) holds for test functiof$ag, 6, al.
If we observe thatv¢| < C(6) and thaly < s (sincea > 1), an application of Theoren 2.1 (with

p = 2,k =1 = 1) now completes the proof of Proposition}4.1. Note that the presence of a generic

s in (2.8) is essential for Theorgm 2.1 to apply to this case. O
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