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Analysis of the heteroclinic connection in a singularly perturbed system
arising from the study of crystalline grain boundaries
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Mathematically, the problem considered here is that of heteroclinic connections for a system of two
second order differential equations of Hamiltonian type, in which a small parameterε conveys
a singular perturbation. The motivation comes from a multi-order-parameter phase field model
developed by Braun et al. [5] and [22] for the description of crystalline interphase boundaries. In
this model, the smallness ofε is related to large anisotropy. The existence of such a heteroclinic, and
its dependence onε, is proved. In addition, its robustness is investigated by establishing its spectral
stability.

1. Introduction

1.1 The model and prior results

The physical context is that of crystals existing in several phases, and the general goal is to
study the structure of interphase boundaries. The modeling framework uses order parameters as
both microscopic and mesoscopic descriptors of the state of the material, with dynamics given
by the gradient flow of a free energy functional involving the order parameters and their spatial
gradients. Properties of the crystalline structure lead naturally to models based on several order
parameters, which involve serious mathematical challenges not found in Cahn–Hilliard and Allen–
Cahn equations and related single-order-parameter models. One new element is the set of invariants
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reflecting the crystallography of the material. This combined with the usual lack of convexity when
there are phase transitions makes the problems rich but difficult. The geometry of the free energy
function is generally quite intricate with many critical points, and the dependence of the surface
energy on orientation is typically not convex.

The model we will be describing in this section, and which forms the basis of the analysis to
follow, is that in [5] and [22]. It grew out of efforts to overcome the ad hoc approach which has been
employed in single-order-parameter models to represent anisotropic interfaces. This model employs
an energy functional which is intimately related to the crystalline lattice and is formulated in terms
of physically based order parameters. The gradient energy terms are sums of squares of derivatives
with coefficients which reflect the anisotropy. What results is a continuous (diffuse) description
of an interface. One way to model anisotropic interfacial properties in a single-order-parameter
diffuse interface theory is to allow the gradient energy coefficients and the mobility coefficient
to depend on the spatial gradient of the order parameter, which is affected by the orientation of
the interface. In this way the surface energy and the kinetic coefficient can be assigned a given
anisotropy. While this approach allows a great deal of flexibility, it is also somewhat ad hoc. Another
approach involves introducing anisotropy through generalized gradient energy terms that include
higher order derivatives; this approach can also be difficult to justify on theoretical grounds.

On the other hand, the use of continuum models based on an underlying lattice such as we
are considering, has the advantage that the anisotropy appears in a natural way, and correctly
incorporates the crystal symmetries present.

Our description, in this section, of the crystalline framework and the resulting phase field model,
will be brief; full details can be found in [5]. We begin with a textbook physical description of
surface tension [19], since that concept is directly related to our construction of a free energy
functional below. Surface tension can be thought of either as the force per unit length required
to maintain an interface or as (in the present case) the energy per unit area necessary to generate an
interface. On the microscopic level, surface tension can be related to the number of broken bonds,
which is exactly what distinguishes atoms on the surface from those in the interior. Planar cuts of
the crystal at different orientations have different numbers of broken bonds per unit of area, and this
induces anisotropic surface tension.

In the present paper we will be dealing with 3D lattices, and with a type of crystal known as
FCC (face-centered cubic). Quite analogous problems and methods hold for other structures; for
example in the case of crystals of the hexagon-closely-packed (HCP) type the analogy is almost
complete [16]. The FCC is a periodic arrangement of atoms whose unit cell is a cube with atoms
occupying its corners and the centers of its faces. We easily count twelve closest neighbors to each
atom. We can identify three distinguished planar cuts corresponding to the normal directionsn =

(1/
√

3, 1/
√

3, 1/
√

3), n = (1, 0, 0), n = (0, 1/
√

2, 1/
√

2) (Fig. 1). It is a simple exercise to count
broken bonds for each of these orientations. We find respectively three, four, and five broken bonds
per unit area.

Each unit cell in the FCC contains the equivalent of four whole atoms and so a tetrahedron can
be associated with it (Fig. 2). Each numbered point of such a tetrahedron can serve as the origin of a
primitive cubic Bravais lattice. The FCC lattice is then decomposed into four numbered sublattices.

Following [5], in our work we will consider, as a specific illustrative prototype, the alloyCu3Au,
so that each lattice site is occupied by either aCu or anAu atom. Continuing this emphasis on
illustrative special prototypes, we focus on boundary regions between two phases, one of them
termed “ordered” (theCu andAu atoms are as illustrated in Fig. 2) and the other totally disordered
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FIG. 1. The distinguished planar cuts.
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FIG. 2. A unit cell of the FCC lattice, and the tetrahedron whose corners serve to number the four primitive cubic sublattices.
The lower schematic indicates a way to visualize the number ofCu andAu atoms assigned to each unit cell.

(the assignment of any given site in the unit cell toCu or Au is random, subject to the ratio ofCu

to Au being the same as in the ordered state).
There will be other occasions as well, during our treatment, when restrictions to special cases

are made. The reasons will be mainly to simplify the rigorous analysis. In fact a full mathematical
treatment of interphase boundaries in this multiple order parameter phase field scenario appears
presently to be an unreasonable goal, at least without a wealth of obfuscating details.

We will focus, at least at first, on interphase boundaries representing order-disorder transitions.

The order parameters. In the ordered form the copper atoms occupy the centers of the faces and
the gold atoms the vertices. Four numbersρ1, ρ2, ρ3, ρ4 are defined, when ordering is imperfect, to
be the fraction of atoms on each primitive cubic sublattice which areCu. When ordering is perfect,
copper represents 3/4 of the total. Hence for the orderedCu3Au state,

ρ1(ord) = 0, ρ2(ord) = ρ3(ord) = ρ4(ord) = 1,

while for the disordered state

ρ1(dis) = ρ2(dis) = ρ3(dis) = ρ4(dis) = 3/4.
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In our treatment, the order parametersρi are taken to vary continuously within the order-disorder
transition region. The equations we will be dealing with are written in terms of the alternative
variablesX, Y,Z, W , defined as linear combinations of theρ’s:

X =
1
4(ρ1 + ρ2 − ρ3 − ρ4),

Y =
1
4(ρ1 − ρ2 + ρ3 − ρ4),

Z =
1
4(ρ1 − ρ2 − ρ3 + ρ4),

W =
1
4(ρ1 + ρ2 + ρ3 + ρ4).

(1)

The intuition behind this transformation is that the new order parameters are more amenable to
continuizing [18]. The first three are nonconserved order parameters and the fourth,W , is conserved,
since it represents the total density of copper in the crystal. It will be taken fixed (in a more complete
model,W would be taken as fixed not pointwise, but only on average [22]). In what follows we
choose to redefine the variables(X, Y,Z, W) as multiples of the previous ones by a fixed number.
To avoid new notation, we continue to use the previous symbols(X, Y,Z, W) for the new variables.
The disordered state now corresponds to

X = Y = Z = 0,

and the ordered state to
X = Y = Z = 1.

The free energy. SinceW is held fixed, the free energy function used in [5] depends only on
X, Y, Z and their gradients:

J (X, Y,Z) =

∫
Ω

[Q(∇X, ∇Y, ∇Z) + F(X, Y,Z)] dξ1 dξ2 dξ3, (2)

where the space coordinates are(ξ1, ξ2, ξ3) andΩ is the volume occupied by the sample. HereQ

is a positive definite quadratic form andF is a fourth degree polynomial which is positive except at
its several global minima, including(0, 0, 0) and(1, 1, 1). The bulk free energyF must conform to
certain crystalline symmetries, for instance it must be invariant under permutation ofX, Y, Z; if it
is restricted to be a fourth degree polynomial, its general form is that given below in (3).

The functionQ represents the influence on the free energy of the differences between the order
parameters at a point and those at nearest neighbors. It is generally the case that this contribution
depends on the orientation of the line between these nearby points, and this dependence is a source
of anisotropy. The simplest type of quadratic formQ which accounts for anisotropy and which
satisfies other symmetry conditions is of the formQ = AQ1 +BQ2, whereQi are the simple sums
of squares of derivatives given below in (4). The ratioB/A ≡ ε2 will then be taken as a measure of
the degree of anisotropy of the free energy. In fact, it will be shown that isotropy corresponds to the
caseB = A (ε = 1); our focus will be on the anisotropic caseε � 1.

As a result, we obtain the following forF andQ:

F(X, Y,Z) = a2(X
2
+ Y 2

+ Z2) + a3XYZ + a41(X
4
+ Y 4

+ Z4)

+ a42(X
2Y 2

+ X2Z2
+ Y 2Z2), (3)

Q1 =
1

2

[(
∂X

∂ξ1

)2

+

(
∂Y

∂ξ2

)2

+

(
∂Z

∂ξ3

)2]
,

(4)

Q2 =
1

2

[(
∂X

∂ξ2

)2

+

(
∂X

∂ξ3

)2

+

(
∂Y

∂ξ1

)2

+

(
∂Y

∂ξ3

)2

+

(
∂Z

∂ξ1

)2

+

(
∂Z

∂ξ2

)2]
.
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The approacandere will be to assume dynamics governed by a gradient flow with respect toJ ,
and examine the nature of the interface between grains of ordered and disordered material. In
general, these two states will enjoy different bulk free energies, and the interface will migrate.
However, the motion depends on the values of the coefficients in (3), which in turn depend on the
temperature. The simplest situation is when the two bulk values ofF are the same. We assume that
the temperature is chosen so that this is the case, and that the two equilibria are(0, 0, 0) and(1, 1, 1),
representing the disordered and ordered state respectively. A possible choice of the coefficients in
(3) such thatF(0, 0, 0) = F(1, 1, 1) = 0 is a2 = 2, a3 = −12,a41 = a42 = 1. The truncation to
fourth degree is discussed in [5] and the extension to sixth degree in [22]. The inclusion of cubic
terms is sufficient for the existence of first-order transitions [15].

The phase field equations.The governing evolution PDE’s are given by theL2 gradient flow of
this functional:

τ
∂

∂t

X

Y

Z

 = L

X

Y

Z

 − ∇F(X, Y,Z), (5)

whereL is a diagonal matrix of second degree elliptic operators in the space variables,∇ denotes
the gradient with respect to the variables(X, Y,Z), andτ is a dimensionless relaxation time.

Although we have described the model in terms of the ordering of a special binary alloy, it serves
partially as a pattern for the treatment of other multiphase materials.

The fundamental paper [5], in addition to the derivation of the model, contains a bifurcation
analysis of the uniform steady states, numerical and formal asymptotic analyses of plane wave
solutions for large anisotropy ratiosA/B ≡ ε−2, and numerical calculation of the Wulff shapes. This
paper together with [22] are our basic references. Other related work is cited in these references.
We remark that the parameterε should not be confused with the usual epsilon appearing before the
gradient in the Allen–Cahn and Cahn–Hilliard equations, where it has an entirely different meaning.

Grain boundaries as planar solutions.Plane waves in directionn and with velocityV are solutions
of (5) of the form

X = x(n · (ξ1, ξ2, ξ3) − V t) = x(s), Y = y(s), Z = z(s), (6)

with boundary conditionsx(−∞) = y(−∞) = z(−∞) = 0, x(∞) = y(∞) = z(∞) = 1. They
represent planar interfaces with normaln separating an ordered state from a disordered state. The
functionsx = (x, y, z) satisfy (derivatives are with respect tos)

− V x′
= Λx′′

− ∇F(x, y, z), (7)

where Λ is a diagonal matrix whose elements are linear functions ofA and B and quadratic
functions ofn.

However, recall that the temperature has been chosen so that the coefficients ofF are such that
F has equal depth wells at the equilibria of the order-disorder transition:F(0, 0, 0) = F(1, 1, 1).
We see by taking the scalar product of (7) withx′ and integrating thatV = 0.

1.2 Symmetries

Simplifications to the system (7) can be made by seeking only those profiles which satisfy certain
symmetry constraints. Doing so reduces the dimensionality of the model to two, thereby making the
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mathematics more tractable, while retaining features characteristic of higher-dimensional models.
Of course the directionn must be chosen so that the resulting profile satisfies those constraints, and
the functionF and the matrixΛ have to be compatible with them as well.

One such possible constraint is the restriction of the order parameters to the planeY = Z (hence
y = z). In the crystal, this is tied to the symmetry between two sites on the elementary tetrahedron
in Fig. 1. Note from (1) thatY = Z ⇒ ρ3 = ρ4 and that the two symmetric sites share the same
ξ1 coordinate. Therefore if we taken so thatn2 = n3, the symmetryY = Z should be preserved
through the transition. This is indeed true. To exhibit the resulting system, we define our anisotropy
parameterε =

√
B/A; the reduced free energy is

g(x, r) = F

(
x,

1
√

2
r,

1
√

2
r

)
(8)

(r =
√

2x =
√

2y is a modified order parameter); and the angleα is defined byn =

(cosα, 1
√

2
sinα, 1

√
2

sinα), 0 6 α 6 π . Then (7) is reduced to

(cos2 α + ε2 sin2 α)x′′
− gx(x, r) = 0, x(−∞) = r(−∞) = 0,(

ε2 cos2 α +
1 + ε2

2
sin2 α

)
r ′′

− gr(x, r) = 0, x(∞) = 1, r(∞) =
√

2.
(9)

Isotropy means that the coefficients here are independent of the orientationn, i.e. ofα. This happens
whenε = 1; our main interest is in the extreme anisotropic caseε � 1.

As can be easily verified, the gradient flow (5) that determines the full dynamics of the phase
field model leaves invariant the subspace of functions

S = {(X(ξ1, ξ2, ξ3), Y (ξ1, ξ2, ξ3), Z(ξ1, ξ2, ξ3)) : Y = Z} . (10)

Note that the special casesα = 0 andα = π/2 correspond to the distinguished cuts(1, 0, 0)

and(0, 1/
√

2, 1/
√

2) already mentioned above. Whenε � 1, the problem for the profile atα = 0
or α = π/2 is a singular perturbation problem from a limit profile atε = 0, “singular” because
passing to the limitε = 0 reduces the order of the system (10) from 4 to 2. In the caseα = 0, the
problem is particularly difficult because of a degeneracy (irregularity) in the limit profile which, for
example, does not allow for the application of the Fenichel theory and its variants.

1.3 Statement of results

In the present paper we study the orientationα = π/2 corresponding to grain boundaries parallel to
the second distinguished cut in Fig. 1. We establish existence and spectral stability of the interface
between the ordered and disordered states in the invariant subspaceS, i.e. we do this for solutions
of (9). The caseα = 0 is very different both in results and methods of proof. We refer to [1], [9].

More precisely, we prove the following theorems (see the remarks following (11)):

THEOREM A (The heteroclinic orbit) Ifε > 0 is sufficiently small, then there exists a solution
(xε(s), rε(s)) of (11) such that:

xε = x0 + x̃ε, rε = r0 + r̃ε with x̃ε, r̃ε ∈ H 2(R) ∩ C2(R),

(x̃ε, r̃ε) ⊥ (x′

0, r
′

0) (in L2(R) × L2(R)),

and
‖(x̃ε, r̃ε)‖1,ε = O(ε2),
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where
‖(x̃ε, r̃ε)‖

2
1,ε = ε2

‖x̃′
ε‖

2
L2 + ‖r̃ ′

ε‖
2
L2 + ‖x̃ε‖

2
L2 + ‖r̃ε‖

2
L2.

Here(x0(s), r0(s)) is the solution of (9) forε = 0, defined below in Sec. 2.2.

THEOREM B (Stability of spectrum) Let(xε, rε) be the heteroclinic orbit of Theorem A. Then
if ε > 0 is sufficiently small, the spectrum of the linearized operatorLε about(xε, rε) has the
following form: zero is a simple eigenvalue at the bottom of the spectrum and the rest of the
spectrum is contained in [C, ∞), whereC is a positive constant independent ofε.

As we have mentioned before, existence for (9),α = π/2, can be treated via Fenichel’s invariant
manifold theory [8]. For this choice ofα, (9) is equivalent, by simple stretching of variables, to

ε2x′′
= gx(x, r),

r ′′
= gr(x, r).

(11)

This system is Hamiltonian and forε = 0 it has a heteroclinic connection(x0(s), r0(s)), a standard
fact.

The limit caseε = 0 has an easily obtained solution. Theorems A and B are in effect singular
perturbation results corresponding to small positiveε. The first asserts that when there is a large
amount of anisotropy, a resulting phase interface exists and is a small perturbation of the ideal
limiting one. Moreover, the change in the interfacial profilesx, x′, r, r ′ can be estimated in terms
of that singular perturbation parameterε.

Theorem B is a robustness result for the profile, which begins to address the effects of a multitude
of physical influences which may affect the phase field model. Among these are departures from
symmetry, the motion of interfaces due to temperature changes and to their possible curvature, and
many other deficiencies in the modeling. What Theorem B says, in a very general way, is that due to
the stability of the spectrum, such influences which may disrupt the special conditions under which
the profile’s existence was proved are not, if they are small, expected to change either the existence
result or the properties of the interface, in other than a minor way. Since every mathematical model
in this field of study is necessarily only an approximately valid conception, questions of robustness
form a central issue. The stability of the spectrum is a natural first place to begin an investigation
of robustness. Further steps would involve modeling the disruptions themselves; but the set of
possible disruptions is vast and largely unknown, so those steps would be a formidable undertaking
inappropriate for a paper like this.

Fenichel’s machinery, as presented for example in Jones [14], allows the reduction of the
existence problem to one on a two-dimensional center-like manifold, and by using the Hamiltonian
structure one can establish the existence of a heteroclinic connection for smallε > 0.

The main approach to the question of existence in this paper is different from Fenichel’s, and
more appropriate to the robustness issues mentioned above. Our procedure is based on the study
of the linearized operator of the parabolic problem (5), constrained by the symmetries already
mentioned, about the zero order approximation to the heteroclinic. Thus it deals with an infinite-
dimensional phase space and is more functional-analytic. The main effort is to establish a theorem
on the spectrum of this operator. Then this result is utilized in Sec. 3, where the existence of the
heteroclinic is established fairly quickly via a contraction mapping argument. Finally, in Sec. 4
we establish stability of the spectrum of the heteroclinic via the theorem in Sec. 2 and a simple
perturbation argument.
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2. The spectrum

2.1 Preliminaries

The boundary value problem (11) to be considered is

ε2x′′
= gx(x, r),

r ′′
= gr(x, r),

(12)

x = x(s), r = r(s), s ∈ R, ′
= d/ds, (13)

x(−∞) = r(−∞) = 0, x(∞) = 1, r(∞) =
√

2. (14)

For future reference we record here the most relevant facts about the functiong. From (8), (3),

g(x, r) = 2(x2
+ r2) − 6xr2

+ x2r2
+

3

4
r4

+ x4, (15)

with equal minima at(0, 0) and(1,
√

2). Therefore

gx = 4x − 6r2
+ 2xr2

+ 4x3, gr = r(4 − 12x + 2x2
+ 3r2), (16)

gxx = 4 + 2r2
+ 12x2 > 4,

gxr = −12r + 4xr,

grr = 4 − 12x + 2x2
+ 9r2.

(17)

Furthermore,

gx = 0 ⇔ r2
=

2x + 2x3

3 − x
, (18)

which can be inverted forx ∈ [0, 3) to obtainx = χ(r), whereχ : R → [0, 3) is smooth, even,
andχ(0) = 0, χ(

√
2) = 1, χ ′(0) = 0.

2.2 Theε = 0 approximation

Settingε = 0 in the first equation of (12) and using the expectation thatx(s) ∈ [0, 1], we get
x = χ(r). Substituting into the second equation, we have

r ′′
− gr(χ(r), r) = 0. (19)

We look for a solution to this equation such thatr(−∞) = 0, r(+∞) =
√

2.
Setting

G(r) = g(χ(r), r), r ∈ R, (20)

we have
G′(r) = gx(χ(r), r)χ ′(r) + gr(χ(r), r) = gr(χ(r), r). (21)

Thus (19) can be written as
r ′′

− G′(r) = 0. (22)
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It can be checked from (16), (18) that asr ranges from 0 to
√

2, the functionG′(r) = gr(χ(r), r)

starts positive and then becomes negative. AlsoG(0) = G(
√

2) = 0.
It is known [4, 11] that in the phase plane there is a heteroclinic orbit connecting(0, 0)

to (
√

2, 0). This furnishes a solution to (19) with the desired behavior at infinity, unique up to
translation. We denote it byr0(s) and call the “base heteroclinic”.

We also know thatr ′

0(s) > 0 for s ∈ R, hence 0< r0(s) <
√

2. We setx0(s) = χ(r0(s)). Then
x0(−∞) = χ(r0(−∞)) = χ(0) = 0, x0(∞) = χ(

√
2) = 1. Hence the pair(x0, r0) is a solution of

(12)–(14) forε = 0. Furthermore, we know thatr0(s) andr ′

0(s) approach their limits exponentially
ass → ±∞. This follows fromG′′(0) > 0, G′′(

√
2) > 0 via linear theory.

From (22) we then deduce thatr ′′

0 converges exponentially as|s| → ∞ to 0. Also r ′′′

0 =

r ′

0G
′′(r0), which implies thatr ′′′

0 converges exponentially to 0.

Function spaces and the bistable operator.In this paper the notationL2, H 2, C2 will denote the
corresponding spaces of functions defined on the whole real lineR: L2(R), etc.

From the exponential convergence, we know thatr ′

0, r ′′

0 , r ′′′

0 ∈ L2, which in turn gives that
r ′

0 ∈ H 2. Similarly, sincex0 = χ(r0), we getx′

0 ∈ H 2.
We also note that forr ∈ R,

G′′(r) = gxr(χ(r), r)χ ′(r) + grr(χ(r), r) = −
[gxr(χ(r), r)]2

gxx(χ(r), r)
+ grr(χ(r), r). (23)

Set
q(s)

.
= G′′(r0(s)), s ∈ R. (24)

We define the operatorB by

Bh = −h′′
+ qh with D(B) = H 2, (25)

which is unbounded and self-adjoint onL2. It is called thebistable operator. The following facts
are well known:

• The essential spectrum ofB is contained in [C1, ∞), whereC1 > 0.
• The smallest eigenvalue ofB is 0, which is simple (we know thatr ′

0 ∈ ker(B)).

Hence by the variational characterization of the eigenvalues of self-adjoint operators (see [20]) we
have ∫

∞

−∞

[(h′)2
+ qh2] ds > C2‖h‖

2
L2 for all h ∈ H 2, h ⊥ r ′

0 (in L2). (26)

2.3 The operatorLε

We now consider the operatorLε , obtained by linearizing (12) about(x0, r0). We have

Lε

(
h1
h2

)
=

(
−ε2h′′

1 + gxx(x0, r0)h1 + gxr(x0, r0)h2
−h′′

2 + gxr(x0, r0)h1 + grr(x0, r0)h2

)
, (27)

with Lε : D(Lε) → L2
× L2, D(Lε) = H 2

× H 2. It is an unbounded self-adjoint operator in
L2

× L2.
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We recall that(x0(s), r0(s)) → (0, 0) ass → −∞ and(x0(s), r0(s)) → (1,
√

2) ass → +∞

(in all cases, exponentially); and that (see (17))

gxx(0, 0) = 4, gxr(0, 0) = 0, grr(0, 0) = 4,

gxx(1,
√

2) = 20, gxr(1,
√

2) = −8
√

2, grr(1,
√

2) = 12.
(28)

We write

Dε =

(
ε2 0
0 1

)
, N(s) =

(
gxx(x0, r0) gxr(x0, r0)

gxr(x0, r0) grr(x0, r0)

)
, (29)

so that

N(−∞) =

(
4 0
0 4

)
, N(+∞) =

(
20 −8

√
2

−8
√

2 12

)
. (30)

Then

Lεh = −Dεh
′′

+ N(s)h, h = (h1, h2)
⊥. (31)

In what follows, we make use of the operator

L̃εh = −Dεh
′′

+ Ñ(s)h, (32)

whereÑ(s) = N(−∞) if s 6 0, andÑ(s) = N(∞) if s > 0. We can easily show that

(L̃εh, h)L2×L2 > C3‖h‖
2
L2×L2 ∀h ∈ H 2

× H 2, (33)

with C3 > 0 independent ofε > 0. Hence

σess(L̃ε) ⊂ σ(L̃ε) ⊂ [C3, ∞). (34)

Also (Lε − L̃ε)h = (N(s) − Ñ(s))h, whereN(s) − Ñ(s) → 0 in the matrix norm exponentially as
|s| → ∞.

It can be shown that the operator

(Lε − L̃ε)L̃
−1
ε : L2

× L2
→ L2

× L2

is compact. In other words,Lε − L̃ε is relativelyL̃ε-compact. From this it follows that

σess(Lε) = σess(L̃ε) ⊂ [C3, ∞) (35)

([13, p. 140]).
Occasionally we will drop the subscriptε and writeL instead ofLε .
Throughout this paper, all the inner products are in the sense ofL2 or L2

× L2, unless specified
otherwise. TheL2

× L2 inner product is defined by(u, v)L2×L2 =
∫

∞

−∞
(u1v1 + u2v2) ds, where

u = (u1, u2), v = (v1, v2) ∈ L2
× L2. Furthermore, all the constantsCi will be independent of

ε > 0.
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2.4 The operatorsKε
1(λ), Kε

2(λ), and the reduction to a single equation with bistable structure

The eigenvaluesλ of L and their corresponding eigenfunctions(h1, h2) ∈ H 2
× H 2 satisfy

− ε2h′′

1(s) + gxx(x0(s), r0(s))h1(s) + gxr(x0(s), r0(s))h2(s) = λh1(s), (36)

−h′′

2(s) + gxr(x0(s), r0(s))h1(s) + grr(x0(s), r0(s))h2(s) = λh2(s), (37)

‖h1‖
2
L2 + ‖h2‖

2
L2 = 1. (38)

From now on for simplicity we will not explicitly writes and write insteadgxx in place of
gxx(x0(s), r0(s)), etc. Also since we are interested in the small eigenvalues ofL, we can assume
without loss of generality thatλ 6 2.

From (36) we have
− ε2h′′

1 + (gxx − λ)h1 = −gxrh2. (39)

We know thatgxx > 4 and sinceλ 6 2, we havegxx − λ > 2. Hence for eachε > 0, λ 6 2, and
h2 ∈ L2, there exists a unique solutionh1 ∈ H 2 of the above equation. Hence we can define a linear
operatorKε

1(λ) : L2
→ L2 by

h1
.
= Kε

1(λ)h2 (40)

for ε > 0, λ 6 2. We also define another linear operatorKε
2(λ) : H 2

→ H 2 for ε > 0 andλ 6 2
by writing

h1 = Kε
1(λ)h2 = −

gxr

gxx − λ
h2 + ε2Kε

2(λ)h2, (41)

where

Kε
2(λ)h2

.
=

1

ε2

(
gxr

gxx − λ
h2 + Kε

1(λ)h2

)
.

Observe that the first term on the right side of (41) is the solutionh1 of (39) whenε = 0.
Substituting (41) into (37), we get

− h′′

2 + gxr

[
−

gxr

gxx − λ
h2 + ε2Kε

2(λ)h2

]
+ grrh2 = λh2, (42)

which we rewrite in the form

− h′′

2 +

(
grr −

g2
xr

gxx

)
h2 = λ

[
1 +

g2
xr

gxx(gxx − λ)

]
h2 − ε2gxrK

ε
2(λ)h2. (43)

Hence the eigenvalue problem (36)–(38) is equivalent to

h1 = Kε
1(λ)h2, (44)

−h′′

2 +

(
grr −

g2
xr

gxx

)
h2 = λ

[
1 +

g2
xr

gxx(gxx − λ)

]
h2 − ε2gxrK

ε
2(λ)h2, (45)

‖h1‖
2
L2 + ‖h2‖

2
L2 = 1. (46)

Observe that on the left of (45), we have the bistable operatorB of (25).
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2.5 H 2 estimates

LEMMA 1 For everyλ, λ1, λ2 6 2 and everyε > 0, the following inequalities hold:

‖Kε
1(λ)f ‖L2 6 C4‖f ‖L2 ∀f ∈ L2, (47)

‖Kε
2(λ)f ‖L2 6 C5‖f ‖H2 ∀f ∈ H 2, (48)

‖(Kε
2(λ1) − Kε

2(λ2))f ‖L2 6 C6|λ1 − λ2| ‖f ‖H2 ∀f ∈ H 2, (49)

whereC4, C5, C6 are independent ofλ, λ1, λ2, ε andf .

Proof. Let f ∈ L2, λ 6 2 andε > 0, and setX = Kε
1(λ)f ∈ H 2. Then by the definition of the

linear operatorKε
1(λ), we have

− ε2X′′
+ (gxx − λ)X = −gxrf, (50)

from which we obtain

− ε2
∫

∞

−∞

X′′X ds +

∫
∞

−∞

(gxx − λ)X2 ds = −

∫
∞

−∞

gxrf X ds, (51)

and by integration by parts, which is valid sinceX ∈ H 2, we get

ε2
∫

∞

−∞

(X′)2 ds +

∫
∞

−∞

(gxx − λ)X2 ds = −

∫
∞

−∞

gxrf X ds. (52)

(we also used the fact thatX(s), X′(s) → 0 as|s| → ∞, sinceX ∈ H 2). Now sincegxx − λ > 2
andgxr is bounded, by the Cauchy–Schwarz inequality we have

2‖X‖
2
L2 6 sup

s
|gxr |

∫
∞

−∞

|f | |X| ds 6 sup
s∈R

|gxr | ‖f ‖L2‖X‖L2. (53)

Hence‖X‖L2 6 C4‖f ‖L2. This proves (47).
Now letf ∈ H 2. By the definition ofKε

2(λ), the equation

−ε2u′′
+ (gxx − λ)u = −gxrf

is equivalent to

u = −
gxr

gxx − λ
f + ε2Kε

2(λ)f.

SetX = Kε
2(λ)f ; then

−ε2
(

−
gxr

gxx − λ
f + ε2X

)′′

+ (gxx − λ)

(
−

gxr

gxx − λ
f + ε2X

)
= −gxrf,

which simplifies to

−ε2X′′
+ (gxx − λ)X = −

(
gxr

gxx − λ
f

)′′

.
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By working as before, we get

‖X‖L2 6
1

2

∥∥∥∥(
gxr

gxx − λ
f

)′′
∥∥∥∥

L2
.

Taking into account thatgxx − λ > 2 and that the functionsgxx andgxr of s are bounded along
with their first and second derivatives, we can estimate the right hand side of the above inequality,
and get‖X‖L2 6 C5‖f ‖H2. This proves (48).

SetX1 = Kε
2(λ1)f andX2 = Kε

2(λ2)f . Then

−ε2X′′

i + (gxx − λi)Xi = −

(
gxrf

gxx − λi

)′′

, i = 1, 2,

and so

− ε2(X1 − X2)
′′

+ (gxx − λ1)(X1 − X2) = (λ1 − λ2)X2 −

(
gxrf

gxx − λ1
−

gxrf

gxx − λ2

)′′

. (54)

Now by (48), we have
‖X2‖L2 = ‖Kε

2(λ2)f ‖L2 6 C5‖f ‖H2,

and so by working as in the proof of (47) and of (48) (to estimate the norm of the last term of (54)),
we get

2‖X1 − X2‖L2 6 C5|λ1 − λ2| ‖f ‖H2 +

∥∥∥∥(
gxrf

gxx − λ1
−

gxrf

gxx − λ2

)′′
∥∥∥∥

L2
6 C6|λ1 − λ2| ‖f ‖H2.

This proves (49). The proof of Lemma 1 is complete. 2

LEMMA 2 Define, as always,q = grr − g2
xr/gxx . If −h′′

+ qh = f, h ∈ H 2, h ⊥ r ′

0 (in L2) and
f ∈ L2, then

‖h‖H2 6 C7‖f ‖L2,

with C7 independent off .

Proof. Working as in the proof of Lemma 1, we get∫
∞

−∞

[(h′)2
+ qh2] ds =

∫
∞

−∞

f h ds 6 ‖f ‖L2‖h‖L2.

Utilizing (26), we have
C2‖h‖

2
L2 6 ‖f ‖L2‖h‖L2.

Hence
‖h‖L2 6 C−1

2 ‖f ‖L2. (55)

Also,
‖h′′

‖L2 = ‖qh − f ‖L2 6 ‖q‖∞‖h‖L2 + ‖f ‖L2 6 (‖q‖∞C−1
2 + 1)‖f ‖L2.

Obviously−2hh′′ 6 h2
+ (h′′)2, and

2
∫

∞

−∞

(h′)2 ds 6 ‖h‖
2
L2 + ‖h′′

‖
2
L2. (56)

From (55) and (56), we obtain‖h‖H2 6 C7‖f ‖L2, which proves the lemma. 2
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2.6 A priori estimates

PROPOSITION1 Suppose that(λ, h) is a solution to (36)–(38). Then there exist positive constants
ε0, λ0 < min {2, C3}, M0, a0, independent ofε, λ, h, such that if 0< ε < ε0 and|λ| < λ0, then the
following estimates hold:

(i) |λ| 6 M0ε
2,

(ii) ‖p‖H2 6 M0ε
2, |a| > a0, where

h2 = ay + p, y = r ′

0/‖r
′

0‖L2, p ⊥ r ′

0 (in L2).

(For simplicity we do not write the dependence ofλ, a, p on ε.)

Proof. Throughout the proof,Ci > 0 will denote constants independent ofε, λ, h. Substituteh2 =

ay + p in (45) and set

K̃ε
2(λ) := gxrK

ε
2(λ), σ := 1 +

g2
xr

gxx(gxx − λ)
,

with |σ(s)| 6 ‖σ‖∞, s ∈ R (‖σ‖∞ independent ofλ sincegxx − λ > 2). Then (45) takes the
following form (recall that−y′′

+ qy = 0):

− p′′
+ qp = λaσy − ε2aK̃ε

2(λ)y + λσp − ε2K̃ε
2(λ)p. (57)

By Lemma 1, we have

‖K̃ε
2(λ)f ‖L2 6 C8‖f ‖H2, (58)

‖K̃ε
2(λ1)f − K̃ε

2(λ2)f ‖L2 6 C8|λ1 − λ2| ‖f ‖H2 (59)

for everyf ∈ H 2, λ, λ1, λ2 6 2 andε > 0 (C8 independent ofλ, λ1, λ2, ε, f ). Multiplying (57)
by y, integrating, and using the fact that(−p′′

+ qp, y)L2 = (p, −y′′
+ qy)L2 = 0 gives

λa(σy, y) − ε2a(K̃ε
2(λ)y, y) + λ(σp, y) − ε2(K̃ε

2(λ)p, y) = 0.

Since the functionσ satisfiesσ > 1, ‖y‖L2 = 1, via (58) we have

|λ| |a| 6 ε2
|a|C8‖y‖H2 + |λ| ‖σ‖∞‖p‖L2 + ε2C8‖p‖H2. (60)

Applying Lemma 2 to (57) gives

‖p‖H2 6 C7‖λaσy − ε2aK̃ε
2(λ)y + λσp − ε2K̃ε

2(λ)p‖L2

6 C7(|λ| |a| ‖σ‖∞ + ε2
|a|C8‖y‖H2 + |λ| ‖σ‖∞‖p‖L2 + ε2C8‖p‖H2),

or in a more compact form,

‖p‖H2 6 C9(|λ| |a| + ε2
|a| + |λ| ‖p‖H2 + ε2

‖p‖H2).

Choosingε0 andλ0 such thatC9(λ0 + ε2
0) < 1/2, we get

‖p‖H2 6 2C9(|λ| |a| + ε2
|a|). (61)
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Now using Lemma 1, we have‖h1‖L2 = ‖Kε
1(λ)h2‖L2 6 C4‖h2‖L2, so by (46) we have

‖h2‖
2
L2 > C10 > 0 for C10 = 1/(1 + C2

4). Also

1 > ‖h2‖
2
L2 = |a|

2
+ ‖p‖

2
L2 > C10 > 0. (62)

In particular,|a| 6 1. Thus from (61) we have

‖p‖H2 6 2C9(|λ| + ε2). (63)

Further reducingε0, λ0 so thatC9(λ0 + ε2
0) <

√
C10/4, we infer from (63) that‖p‖

2
H2 6 1

2C10.

This and (62) give|a|
2 > 1

2C10.
Returning to (60) and using the above, we have

|λ|
√

C10/2 6 C8ε
2
‖y‖H2 + |λ| ‖σ‖∞‖p‖L2 + ε2C8‖p‖H2

6 C8ε
2
‖y‖H2 + (|λ| ‖σ‖∞ + C8ε

2)2C9(|λ| + ε2)

6 C11(ε
2
+ (|λ| + ε2)2) = C11(ε

2
+ |λ|

2
+ ε4

+ 2|λ|ε2).

Choosing even smallerλ0 such thatC11λ0 < 1
2

√
C10/2, we get

|λ| 6 C12(ε
2
+ ε4

+ 2|λ|ε2) 6 C12(2ε2
+ 2|λ|ε2) 6 C13ε

2.

Finally, utilizing the estimate in (63), we obtain‖p‖H2 6 C14ε
2.

This completes the proof of Proposition 1 withM0 = max{C13, C14}, a0 =
√

C10/2. 2

2.7 Existence, uniqueness, and simplicity of critical eigenvalues

Following Nishiura [17], we call the eigenvaluesλε with the property limε→0 λε = 0 critical.

PROPOSITION2 The eigenvalue problem (36)–(38) has the following property: There exists
ε1 < ε0 such that for 0< ε < ε1, there is a critical eigenvalueλ(ε) satisfying|λ(ε)| = O(ε2).
Furthermoreλ(ε) is simple and it is the unique eigenvalue in the interval [−λ0, λ0], whereε0 and
λ0 are as in Proposition 1.

Proof

I. Existence of a critical eigenvalue.With y as in Prop. 1, we search for a solution of (44)–(46) of
the formh2 = y + p, p ⊥ y. Substituting in (45) gives (recall that−y′′

+ qy = 0)

− p′′
+ qp = λσy − ε2K̃ε

2(λ)y + λσp − ε2K̃ε
2(λ)p. (64)

Next, we will define a mapT : (λ, p) 7→ (λ̂, p̂) for

(λ, p) ∈ S = {(λ, p) ∈ R × H 2 : |λ| 6 M1ε
2, ‖p‖H2 6 M2ε

2, p ⊥ y (in L2)}

(Mi constants independent ofε and to be determined later).S is a closed subset of the Banach space
R × H 2 equipped with the norm‖(λ, p)‖ = |λ| + ‖p‖H2. We require that

− p̂′′
+ qp̂ = λ̂σy − ε2K̃ε

2(λ)y + λσp − ε2K̃ε
2(λ)p, (65)

λ̂ =
(ε2K̃ε

2(λ)y − λσp + ε2K̃ε
2(λ)p, y)

(σy, y)
. (66)
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Notice that (66) implies that the right side of (65) isL2-orthogonal toy. So for(λ, p) ∈ S, there is
a unique(λ̂, p̂) ∈ R × H 2, p̂ ⊥ y, satisfying (65); hence the mapT is well defined. Observe that
if (λ, p) ∈ S is a fixed point ofT , thenλ andh2 = y + p 6= 0 (sincep ⊥ y) satisfy (45).

Using (58) and the Cauchy–Schwarz inequality (recall(σy, y) > 1 and‖y‖L2 = 1), we obtain

|λ̂| 6 ε2C8‖y‖H2 + |λ|‖σ‖∞‖p‖L2 + ε2C8‖p‖H2 6 ε2[C8‖y‖H2 + (M1M2‖σ‖∞ + M2C8)ε
2].

Choosing

M1 > max{C8‖y‖H2 + 1, M0}, (67)

M2 > max{C7(M1‖σ‖∞ + C8‖y‖H2 + 1), M0/a0}, (68)

0 < ε1 < min{(M1M2‖σ‖∞ + C8M2)
−1/2, ε0,

√
λ0/M1}, (69)

we deduce that|λ̂| 6 M1ε
2.

Also by Lemma 2 and (58),

‖p̂‖H2 6 C7‖λ̂σy − ε2K̃ε
2(λ)y + λσp − ε2K̃ε

2(λ)p‖L2

6 C7(M1ε
2
‖σ‖∞ + ε2C8‖y‖H2 + M1ε

2
‖σ‖∞M2ε

2
+ ε2C8M2ε

2)

6 C7ε
2(M1‖σ‖∞ + C8‖y‖H2 + 1) (by (69))

6 M2ε
2 (by (68)).

HenceT : S → S.
The next step is to show thatT is a contraction on the closed setS. Let (λ1, p1), (λ2, p2) ∈ S;

then

|λ̂1 − λ̂2| 6 ε2(‖K̃ε
2(λ1)y − K̃ε

2(λ2)y‖L2 +‖K̃ε
2(λ1)p1 − K̃ε

2(λ2)p2‖L2)+‖σ‖∞‖λ1p1 −λ2p2‖L2.

Using (58) and (59) gives

‖K̃ε
2(λ1)p1 − K̃ε

2(λ2)p2‖L2 6 ‖K̃ε
2(λ1)(p1 − p2)‖L2 + +‖K̃ε

2(λ1)p2 − K̃ε
2(λ2)p2‖L2

6 C8‖p1 − p2‖H2 + C8|λ1 − λ2| ‖p2‖H2

6 C8‖p1 − p2‖H2 + C8M2ε
2
|λ1 − λ2|.

Also
‖λ1p1 − λ2p2‖L2 6 |λ1| ‖p1 − p2‖L2 + |λ1 − λ2| ‖p2‖L2

6 M1ε
2
‖p1 − p2‖L2 + M2ε

2
|λ1 − λ2|.

Hence
|λ̂1 − λ̂2| = O(ε2)(|λ1 − λ2| + ‖p1 − p2‖H2). (70)

Moreover,

−(p̂1 − p̂2)
′′

+ q(p̂1 − p̂2) = (λ̂1 − λ̂2)σy − ε2(K̃ε
2(λ1)y − K̃ε

2(λ2)y)

+ σ(λ1p1 − λ2p2) − ε2(K̃ε
2(λ1)p1 − K̃ε

2(λ2)p2).

By Lemma 2,

‖p̂1 − p̂2‖H2 6 C7‖(λ̂1 − λ̂2)σy − ε2(K̃ε
2(λ1)y − K̃ε

2(λ2)y)

+ σ(λ1p1 − λ2p2) − ε2(K̃ε
2(λ1)p1 − K̃ε

2(λ2)p2)‖L2.
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Working as before and using (70), we get

‖p̂1 − p̂2‖H2 = O(ε2)(|λ1 − λ2| + ‖p1 − p2‖H2).

So combining the inequality above with (70) gives

|λ̂1 − λ̂2| + ‖p̂1 − p̂2‖H2 = O(ε2)(|λ1 − λ2| + ‖p1 − p2‖H2).

Choosingε1 > 0 sufficiently small, we see that ifε < ε1, thenT is a contraction. Applying the
Banach fixed point theorem, we infer that there exists a unique(λ, p) ∈ S such thatT (λ, p) =

(λ, p), that is,λ̂ = λ andp̂ = p. So by (65) and (66), we get

−p′′
+ qp = λσy − ε2K̃ε

2(λ)y + λσp − ε2K̃ε
2(λ)p.

Obviouslyλ, (h1, h2) 6= 0 with h1 = Kε
1(λ)h2 satisfy (44) and (45) and we can assume that (46) is

also satisfied. Hence we found an eigenvalueλ with |λ| 6 M1ε
2 corresponding to an eigenfunction

(h1, h2).

II. Uniqueness and simplicity of the critical eigenvalue.Suppose that for someε < ε1 we have an
eigenvaluēλ (not necessarilȳλ 6= λ) such that|λ̄| 6 λ0. Then by Proposition 1,

|λ̄| 6 M0ε
2, ‖p̄‖H2 6 M0ε

2, |ā| > a0,

whereh̄2 = āy + p̄, y ⊥ p̄ (again we suppress the dependence ofλ, λ̄, h̄2, p̄, ā onε) with (h̄1, h̄2)

a normalized eigenvector. Using (67)–(69), we deduce from the above that

|λ̄| 6 M1ε
2, ‖p̄/ā‖H2 6 M2ε

2,

thus(λ̄, p̄/ā) is a fixed point ofT in S. Henceλ̄ = λ andp̄/ā = p. That is,h̄2 = ā(y + p) = ãh2
and

h̄1 = Kε
1(λ̄)h̄2 = ãKε

1(λ)h2 = ãh1,

whereã depends onε > 0 and is due to the normalization of(h1, h2). Since(h1, h2) and(h̄1, h̄2)

are normalized, we conclude that|ã| = 1. Hence ifε < ε1, thenλ is the unique eigenvalue in
[−λ0, λ0] and it is simple. The proof of Proposition 2 is complete. 2

2.8 The lower bound of the spectrum

LEMMA 3 Letλ < 0 be an eigenvalue with correspondingL2 normalized eigenfunction(h1, h2).
Then‖h2‖H2 6 C16, whereC16 is independent ofλ, ε.

Proof. Let λ < 0 be an eigenvalue of (36)–(38) with corresponding eigenfunction(h1, h2). From
(37),

(h′′

2 + λh2)
2

= (gxrh1 + grrh2)
2 6 (g2

xr + g2
rr)(h

2
1 + h2

2)

6 sup
s

g2
xr + g2

rr(h
2
1 + h2

2).

Let C15 = sups (g2
xr + g2

rr). Then via (38) and integration by parts, we have∫
∞

−∞

(h′′

2)
2 ds + λ2

∫
∞

−∞

h2
2 ds − 2λ

∫
∞

−∞

(h′

2)
2 ds 6 C15.
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Sinceλ < 0, from the inequality above we obtain∫
∞

−∞

(h′′

2)
2 ds 6 C15, and so

∫
∞

−∞

(h′′

2)
2 ds +

∫
∞

−∞

h2
2 ds 6 C15 + 1.

Also from the identity−2h2h
′′

2 6 (h′′

2)
2
+ h2

2, we get

2
∫

∞

−∞

(h′

2)
2 ds 6 C15 + 1.

Hence‖h2‖H2 6
√

3
2(C15 + 1) = C16. The proof of Lemma 3 is complete. 2

PROPOSITION3 Let ε1, λ0 be as in Proposition 2. There is 0< ε2 < ε1 such that for 0< ε < ε2,
there are no eigenvaluesλ with λ 6 −λ0.

Proof. Suppose that there is an eigenvalueλ with λ 6 −λ0. By (45),

−h′′

2 + qh2 = λ

[
1 +

g2
xr

gxx(gxx − λ)

]
h2 − ε2gxrK

ε
2(λ)h2.

We know that
∫

∞

−∞
[(h′)2

+ qh2] ds > 0 for all h ∈ H 2, since the spectrum of the bistable operator
Bh = −h′′

+ qh is positive. Also we recall thatλ 6 −λ0. Multiplying both sides of the above
equation byh2 and integrating by parts gives

λ0‖h2‖
2
L2 6 ε2

|(gxrK
ε
2(λ)h2, h2)| 6 ε2 sup

s
|gxr | ‖K

ε
2(λ)h2‖L2‖h2‖L2

6 ε2 sup
s

|gxr | ‖K
ε
2(λ)h2‖L2 6 ε2 sup

s
|gxr |C8‖h2‖H2,

where we used the estimate‖h2‖L2 6 1 and (48). Now using Lemma 3, we get‖h2‖L2 6 C17ε
2.

Moreover, by (47),
‖h1‖L2 = ‖Kε

1(λ)h2‖L2 6 C4‖h2‖L2 6 C18ε
2.

Obviously if ε < ε2, then these estimates contradict the equality‖h1‖
2
L2 + ‖h2‖

2
L2 = 1. The proof

of Proposition 3 is complete. 2

2.9 The basic result on the spectrum ofLε

THEOREM 1 If ε > 0 is sufficiently small, then the spectrum ofLε (cf. (27)) has the following
form:

(i) At the bottom of the spectrum, there is a simple eigenvalueλ1(ε) = O(ε2). Furthermore the
L2

× L2 normalized eigenfunction(hε
1, h

ε
2) corresponding toλ1(ε) satisfies

hε
2 = aε

r ′

0

‖r ′

0‖L2
+ pε, pε ⊥ r ′

0 (in L2),

aε ∈ R, pε ∈ H 2, |aε | > a0 > 0, ‖pε‖H2 = O(ε2).

(ii) The rest of the spectrum is contained in [λ0, ∞), where a0, λ0 are positive constants
independent ofε.
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Proof. By Proposition 2, ifε < ε2, there exists a unique eigenvalueλ(ε) ∈ [−λ0, λ0]. Moreover
λ(ε) = O(ε2) and λ is simple. Also the correspondingh2 satisfies the required estimate.
Furthermore, by Proposition 3, there is no eigenvalue in(−∞, −λ0]. Henceλ is the only eigenvalue
in (−∞, λ0] and consequently it is the principal eigenvalue. Denote it byλ1. By the results in
Section 2.1, the essential spectrum ofLε is contained in [C3, ∞), whereC3 > 0 is independent
of ε, andλ0 < C3.

The proof of Theorem 1 is complete. 2

3. The heteroclinic

We seek a solutionu = (x, r) of (12) of the formu = u0 + ũ, whereu0 = (x0, r0) andũ = (x̃, r̃) ∈

H 2
× H 2, ũ ⊥ u′

0 in L2. Obviously,u has the required behavior (14) at infinity. It remains to be
shown thatu satisfies (12), from which we also infer thatu ∈ C2

× C2.
We have

Lε ũ = N(ũ) + E, (71)

where

N(ũ) = −

(
gx(x̃ + x0, r̃ + r0) − gx(x0, r0) − gxx(x0, r0)x̃ − gxr(x0, r0)r̃

gr(x̃ + x0, r̃ + r0) − gr(x0, r0) − gxr(x0, r0)x̃ − grr(x0, r0)r̃

)
(72)

and

E = ε2
(

x′′

0
0

)
.

The existence of a solutioñu of (71) follows from the following propositions (see Theorem 2 in
Section 3.1 below).

PROPOSITION4 If ε is sufficiently small, there exists a pair(c, ũ) with c ∈ R and ũ ∈ H 2
×

H 2, ũ ⊥ u′

0, such that

Lũ = −cu′

0 + N(ũ) + E, ‖ũ‖1,ε = O(ε2), (73)

where‖(x, r)‖2
1,ε = ε2

‖x′
‖

2
L2 + ‖r ′

‖
2
L2 + ‖x‖

2
L2 + ‖r‖2

L2.

PROPOSITION5 Let (c, ũ) be as in Proposition 4. Thenc = 0.

In the remainder of the paper, it is assumed that 0< ε < ε2.

LEMMA 4 Forε sufficiently small, we have

(i) ‖h − (a/‖r ′

0‖L2)u′

0‖L2×L2 6 C21ε
2,

(ii) |(h, u′

0)| > 1
2‖r ′

0‖L2,

whereh = (h1, h2) is the normalized eigenfunction corresponding toλ1 (recallh2 = ay + p, y =

r ′

0/‖r
′

0‖L2) andu0 = (x0, r0). C21 is independent ofε (recall thatλ1, h, a depend onε).
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Proof. For (i), we have∥∥∥∥h −
a

‖r ′

0‖L2
u′

0

∥∥∥∥
L2×L2

6

∥∥∥∥h1 −
a

‖r ′

0‖L2
x′

0

∥∥∥∥
L2

+

∥∥∥∥h2 −
a

‖r ′

0‖L2
r ′

0

∥∥∥∥
L2

=

∥∥∥∥Kε
1(λ1)(ay + p) −

a

‖r ′

0‖L2
x′

0

∥∥∥∥
L2

+ ‖h2 − ay‖L2

6 ‖Kε
1(λ1)p‖L2 +

|a|

‖r ′

0‖L2
‖Kε

1(λ1)r
′

0 − x′

0‖L2 + ‖p‖L2.

By (47), the estimates‖p‖H2 = O(ε2), |a| 6 1 and the definition ofKε
2(λ), this is

6 C19ε
2
+ C20

∥∥∥∥−
gxr

gxx − λ1
r ′

0 + ε2Kε
2(λ1)r

′

0 +
gxr

gxx

r ′

0

∥∥∥∥
L2

6 C19ε
2
+ C20

∥∥∥∥ λ1gxrr
′

0

gxx(gxx − λ1)

∥∥∥∥
L2

+ ε2C20

∥∥∥∥Kε
2(λ1)r

′

0

∥∥∥∥
L2

6 C21ε
2,

where we used the fact that|λ1| = O(ε2) and Lemma 1.
(ii) follows trivially from (i) via ‖h‖L2×L2 = 1.

LEMMA 5 For ε sufficiently small and everyw such thatw ∈ H 2
× H 2, w ⊥ h, the following

estimates hold:

(i) (Lεw, w) > λ0‖w‖
2
L2,

(ii) (Lεw, w) > C23‖w‖
2
1,ε ,

whereλ0 is as in Proposition 1, andC23 > 0 is independent ofε andw.

Proof. (i) is obvious from the variational characterization of the eigenvalues of self-adjoint
operators.

(ii) Let w = (w1, w2) ∈ H 2
× H 2, w ⊥ h, and 0< C < 1. Then

(Lεw, w) − C‖w‖
2
1,ε = (1 − C)(Lεw, w) + C[(Lεw, w) − ‖w‖

2
1,ε ]

> (1 − C)λ0‖w‖
2
L2 + C

∫
∞

−∞

[(gxx − 1)w2
1 + 2gxrw1w2 + (grr − 1)w2

2] ds

> (1 − C)λ0‖w‖
2
L2 − CC22‖w‖

2
L2.

ChoosingC sufficiently small completes the proof withC23 := C. 2

LEMMA 6 LetUi ∈ H 1
×H 1, ‖Ui‖1,ε 6 Mε2, i = 1, 2, M > 1, ε < 1. Then‖N(Ui)‖L2×L2 6

C24M
3ε3 and

‖N(U1) − N(U2)‖L2×L2 6 C24M
2εδ

‖U1 − U2‖L2×L2,

whereC24, δ > 0 are independent ofε, M,Ui .

Proof. Let U = (x, r) ∈ H 1
× H 1 with ‖U‖1,ε 6 Mε2. Then ‖x‖H1 6 Mε, ‖r‖H1 6

Mε2, ‖x‖L2 6 Mε2, ‖r‖L2 6 Mε2. From (16), (17), (72),

N(U) =

(
6r2

− 2xr2
− 4xrr0 − 2x0r

2
− 4x3

− 12x2x0

12xr − 2x2r − 2x2r0 − 4xx0r − 3r3
− 9r2r0

)
.
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We recall the Gagliardo–Nirenberg inequality [12]: ifu ∈ H 1, then‖u‖Lp 6 C‖u‖
θ
H1‖u‖

1−θ

L2 for
p > 2, 0 6 θ 6 1, θ > 1/2 − 1/p. We estimate a typical term to explain the procedure.

Consider the termxr2 in the expression ofN(U):

‖xr2
‖L2 6 ‖x2

‖
1/2
L2 ‖r4

‖
1/2
L2 = ‖x‖L4‖r‖

2
L8 6 C‖x‖

1/4
H1 ‖x‖

3/4
L2 ‖r‖

3/4
H1 ‖r‖

5/4
L2 6 CM3ε23/4.

The rest of the terms can be estimated analogously. LetUi = (xi, ri) ∈ H 1
× H 1 be such that

‖Ui‖1,ε 6 Mε2, i = 1, 2. Then‖xi‖∞ 6 CMε3/2 and‖ri‖∞ 6 CMε2. We will treat a typical
term inN(U1) − N(U2) and leave the rest to the reader:

‖x2r
2
2 − x1r

2
1‖L2 6 ‖x2r

2
2 − x2r

2
1‖L2 + ‖x2r

2
1 − x1r

2
1‖L2

6 ‖x2‖∞‖(−r2 + r1)(−r2 − r1)‖L2 + ‖r2
1‖∞‖x2 − x1‖L2

6 2M2C2ε3
‖r2 − r1‖L2 + C2M2ε4

‖x2 − x1‖L2. 2

Proof of Proposition 4

I. The transformatioñu 7→ w. For ũ ∈ L2
× L2, ũ ⊥ u′

0, set

w = ũ −

(
ũ, h −

a

‖r ′

0‖L2
u′

0

)
h. (74)

By Lemma 4(i), the right hand side is a small perturbation of the identity. Hence ifε is sufficiently
small, the above linear transformation is invertible andũ = Q(w). Also note that we have the
equivalencew ⊥ h ⇔ ũ ⊥ u′

0. Furthermore, ifε is sufficiently small, then

‖Q(w1) − Q(w2)‖L2×L2 6 C25‖w1 − w2‖L2×L2

and‖Q(w)‖1,ε 6 C25‖w‖1,ε , for everyw1, w2 ∈ L2
× L2, w ∈ H 1

× H 1, w1, w2, w ⊥ h, where
C25 > 1 is a constant independent ofε, w, w1, w2.

II. Thew-equation. Substituting (74) into (73) gives

Lw = −cu′

0 + N(Q(w)) + E − (Q(w), h)λ1h. (75)

We define a functionC : H 2
× H 2

→ R by

C(W) =
1

(u′

0, h)
(N(Q(W)) + E − λ1Q(W), h) (76)

(from Lemma 4(ii),|(u′

0, h)| > 1
2‖r ′

0‖L2). We seekW ∈ H 2
× H 2, W ⊥ h, such that

LW = −C(W)u′

0 + N(Q(W)) + E − (Q(W), h)λ1h. (77)

We can define an operator

T : (H 2
× H 2) ∩ h⊥

→ (H 2
× H 2) ∩ h⊥

by T W = Ŵ , whereŴ is the unique solution in(H 2
× H 2) ∩ h⊥ of

LŴ = −C(W)u′

0 + N(Q(W)) + E − (Q(W), h)λ1h. (78)

This map is well defined via (76) and Lemma 5(i).
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Let S = {W ∈ (H 2
×H 2)∩h⊥ : ‖W‖1,ε 6 M3ε

2
}, whereM3 > 1 is to be chosen. LetW ∈ S.

Then
|C(W)| 6 C26‖N(Q(W)) + E − λ1Q(W)‖L2×L2

6 C26(C24C
3
25M

3
3ε3

+ ‖x′′

0‖L2ε
2
+ M1ε

2C25M3ε
2).

From (78) via Lemma 5(ii) and the above, we have

‖T W‖1,ε 6 C27(C24C
3
25M

3
3ε3

+ ‖x′′

0‖L2ε
2
+ M1C25M3ε

4).

By choosingM3 sufficiently large andε sufficiently small, we conclude that‖T W‖1,ε 6 M3ε
2, i.e.

T S ⊂ S.
Now letW1, W2 ∈ S; we have

|C(W1) − C(W2)| 6 C26‖N(Q(W1)) − N(Q(W2))‖L2×L2 + C26M1ε
2
‖Q(W1) − Q(W2)‖L2×L2

6 C26(C24C
2
25M

2
3εδ

+ M1ε
2)‖Q(W1) − Q(W2)‖L2×L2

6 C26(C24C
2
25M

2
3εδ

+ M1ε
2)C25‖W1 − W2‖1,ε

and
‖T W1 − T W2‖1,ε 6 C28(C24C

2
25M

2
3εδ

+ M1ε
2)C25‖W1 − W2‖1,ε .

If ε is sufficiently small,T is a contraction on the closed setS andT S ⊂ S. Thus there existsW ∈ S

such thatT W = W . Hence we obtain a pairC = C(W) ∈ R andW ∈ H 2
× H 2, with W ⊥ h

and‖W‖1,ε 6 M3ε
2, that satisfies (75). ObviouslyC = C(W) and ũ = Q(W) satisfy (73) and

ũ ∈ H 2
× H 2, ũ ⊥ u′

0, ‖ũ‖1,ε 6 C25M3ε
2.

This completes the proof of Proposition 4. 2

REMARK 1 From (73) we see that̃u ∈ C2
× C2.

Proof of Proposition 5. Setu = u0 + ũ = (x, r) ∈ C2
× C2 (recall thatũ depends onε and

‖ũ‖1,ε = O(ε2)). Thenx(s) → 0 andr(s) → 0 ass → −∞; x(s) → 1 andr(s) →
√

2 as
s → ∞; andx′(s), r ′(s) → 0 as|s| → ∞. Rewriting (73) in a more suitable form, we have(

ε2x′′
− gx(x, r)

r ′′
− gr(x, r)

)
= cu′

0.

Now taking the inner product of both sides withu′ gives∫
∞

−∞

(ε2x′′x′
+ r ′′r ′

− gx(x, r)x′
− gr(x, r)r ′) ds = c(u′

0, u
′

0 + ũ′),∫
∞

−∞

d

ds

(
ε2

2
(x′)2

+
1

2
(r ′)2

− g(x, r)

)
ds = c(‖u′

0‖
2
L2×L2 + (u′

0, ũ
′)),

i.e.
c(‖u′

0‖
2
L2×L2 + (u′

0, ũ
′)) = g(0, 0) − g(1,

√
2) = 0.

From this, we assert that for sufficiently smallε we havec = 0. Indeed, since‖ũ‖1,ε 6 C25M3ε
2,

we have‖ũ′
‖L2×L2 6 C25M3ε, and so

‖u′

0‖
2
L2×L2 + (u′

0, ũ
′) > ‖u′

0‖
2
L2×L2 − ‖u′

0‖L2×L2‖ũ
′
‖L2×L2

> ‖u′

0‖L2×L2(‖u
′

0‖L2×L2 − C25M3ε) > 0

if ε is sufficiently small. This completes the proof of Proposition 5. 2
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3.1 The existence theorem

We have therefore proved the following, which is the same as Theorem A:

THEOREM 2 If ε > 0 is sufficiently small, then there exists a solution(xε, rε) of (12) such that

xε = x0 + x̃ε, rε = r0 + r̃ε with x̃ε, r̃ε ∈ H 2
∩ C2,

(x̃ε, r̃ε) ⊥ (x′

0, r
′

0) (in L2
× L2),

and
‖(x̃ε, r̃ε)‖1,ε = O(ε2),

where
‖(x, r)‖2

1,ε = ε2
‖x′

‖
2
L2 + ‖r ′

‖
2
L2 + ‖x‖

2
L2 + ‖r‖2

L2.

4. The stability of the spectrum of the heteroclinic

Theorem B is embodied in the corollary below. We consider a family of functions(xε(s), rε(s)) ∈

C2
× C2, ε > 0, satisfying

(H1) (xε(s), rε(s)) are continuous inε uniformly for s ∈ R with (x0(s), r0(s)) as in Sec. 2.2,
lim|s|→∞ xε, lim|s|→∞ rε exist, and‖x′

ε‖∞, ‖r ′
ε‖∞, ‖x′′

ε ‖L2, ‖r ′′
ε ‖L2 are bounded uniformly

in ε.

In this section we assume thatgxx, gxr , grr are evaluated at(xε, rε) satisfying (H1). We define
(using the same notation) the operatorLε as in (27) but now with(xε, rε) in place of(x0, r0). From
the asymptotic behavior ofgxx, gxr , grr as|s| → ∞ it follows as in Sec. 2.3 that for smallε > 0
we haveσess(Lε) ⊂ [C3/2, ∞).

We now consider the eigenvalue problemLεh = λh, h = (h1, h2), ‖h‖L2×L2 = 1. We can
perform steps (39)–(54) without any change.1 However, in order to continue, we need the following
lemma whose proof is an immediate consequence of (H1), Th. 3.1, p. 482 in [7], and (26).

LEMMA 7 Setq(s, ε) = grr − g2
xr/gxx and define the operatorB(ε) in L2 via

B(ε)h = −h′′
+ q(s, ε)h, with D(B(ε)) = H 2.

Then if ε > 0 is sufficiently small, the essential spectrum ofB(ε) is contained in [C1/2, ∞) and
the smallest eigenvalueµ1(ε) of B(ε) is simple,µ1(ε) → 0 and the correspondingL2 normalized
eigenfunctionyε satisfiesyε → y in H 2 (y as in Sec. 2.6).

Using this, we can prove the analogs of the results in Secs. 2.2, 2.7, 2.8 and obtain (using the same
notation):

THEOREM 3 If ε > 0 is sufficiently small and(xε, rε) satisfies (H1), then the spectrum ofLε

has the following form: At the bottom of the spectrum, there is a simple eigenvalueλ1(ε) with
λ1(ε) = O(ε2

+ µ1(ε)). Furthermore, the normalized eigenfunction(hε
1, h

ε
2) corresponding to

λ1(ε) satisfies

hε
2 = aεyε + pε, pε ⊥ yε (in L2),

aε ∈ R, pε ∈ H 2, |aε | > a0, ‖pε‖H2 = O(ε2
+ µ1(ε))

(a0, λ0 are positive constants independent ofε, but depending on the family(xε, rε)).

1 Except now instead of the boundedness of the derivatives ofgxr , gxx , we use (H1).
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The following corollary, which completes the proofs of the theorems stated in the introduction,
implies the stability of the spectrum of the heteroclinic orbit of (12) obtained in Sec. 3.

COROLLARY 1 Let (xε, rε) be the heteroclinic orbit of (12) given in Theorem 2 above. Then
if ε > 0 is sufficiently small, the spectrum of the linearized operatorLε about (xε, rε) has the
following form: zero is a simple eigenvalue at the bottom of the spectrum and the rest of the
spectrum is contained in [C29, ∞) whereC29 > 0 (and as always with constants, independent
of ε).

Proof. It is easy to show that(xε, rε) satisfies (H1) via (71) and that zero is an eigenvalue of
Lε with normalized eigenfunctionu′

ε/‖u
′
ε‖, whereuε = (xε, rε). Now the corollary follows by

Theorem 3. 2
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