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Mathematically, the problem considered here is that of heteroclinic connections for a system of two
second order differential equations of Hamiltonian type, in which a small parametenveys

a singular perturbation. The motivation comes from a multi-order-parameter phase field model
developed by Braun et al.l[5] and [22] for the description of crystalline interphase boundaries. In
this model, the smallness ofis related to large anisotropy. The existence of such a heteroclinic, and
its dependence o is proved. In addition, its robustness is investigated by establishing its spectral
stability.

1. Introduction
1.1 The model and prior results

The physical context is that of crystals existing in several phases, and the general goal is to
study the structure of interphase boundaries. The modeling framework uses order parameters as
both microscopic and mesoscopic descriptors of the state of the material, with dynamics given
by the gradient flow of a free energy functional involving the order parameters and their spatial
gradients. Properties of the crystalline structure lead naturally to models based on several order
parameters, which involve serious mathematical challenges not found in Cahn—Hilliard and Allen—
Cahn equations and related single-order-parameter models. One new element is the set of invariants
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reflecting the crystallography of the material. This combined with the usual lack of convexity when
there are phase transitions makes the problems rich but difficult. The geometry of the free energy
function is generally quite intricate with many critical points, and the dependence of the surface
energy on orientation is typically not convex.

The model we will be describing in this section, and which forms the basis of the analysis to
follow, is that in [5] and[[22]. It grew out of efforts to overcome the ad hoc approach which has been
employed in single-order-parameter models to represent anisotropic interfaces. This model employs
an energy functional which is intimately related to the crystalline lattice and is formulated in terms
of physically based order parameters. The gradient energy terms are sums of squares of derivatives
with coefficients which reflect the anisotropy. What results is a continuous (diffuse) description
of an interface. One way to model anisotropic interfacial properties in a single-order-parameter
diffuse interface theory is to allow the gradient energy coefficients and the mobility coefficient
to depend on the spatial gradient of the order parameter, which is affected by the orientation of
the interface. In this way the surface energy and the kinetic coefficient can be assigned a given
anisotropy. While this approach allows a great deal of flexibility, it is also somewhat ad hoc. Another
approach involves introducing anisotropy through generalized gradient energy terms that include
higher order derivatives; this approach can also be difficult to justify on theoretical grounds.

On the other hand, the use of continuum models based on an underlying lattice such as we
are considering, has the advantage that the anisotropy appears in a natural way, and correctly
incorporates the crystal symmetries present.

Our description, in this section, of the crystalline framework and the resulting phase field model,
will be brief; full details can be found iri_[5]. We begin with a textbook physical description of
surface tension_[19], since that concept is directly related to our construction of a free energy
functional below. Surface tension can be thought of either as the force per unit length required
to maintain an interface or as (in the present case) the energy per unit area necessary to generate an
interface. On the microscopic level, surface tension can be related to the number of broken bonds,
which is exactly what distinguishes atoms on the surface from those in the interior. Planar cuts of
the crystal at different orientations have different numbers of broken bonds per unit of area, and this
induces anisotropic surface tension.

In the present paper we will be dealing with 3D lattices, and with a type of crystal known as
FCC (face-centered cubic). Quite analogous problems and methods hold for other structures; for
example in the case of crystals of the hexagon-closely-packed (HCP) type the analogy is almost
complete[[16]. The FCC is a periodic arrangement of atoms whose unit cell is a cube with atoms
occupying its corners and the centers of its faces. We easily count twelve closest neighbors to each
atom. We can identify three distinguished planar cuts corresponding to the normal diractions
(1/7/3,1/4/3,1/+/3),7 = (1,0,0), 7 = (0, 1/+/2, 1//2) (Fig.[1). It is a simple exercise to count
broken bonds for each of these orientations. We find respectively three, four, and five broken bonds
per unit area.

Each unit cell in the FCC contains the equivalent of four whole atoms and so a tetrahedron can
be associated with it (Fifj] 2). Each numbered point of such a tetrahedron can serve as the origin of a
primitive cubic Bravais lattice. The FCC lattice is then decomposed into four numbered sublattices.

Following [5], in our work we will consider, as a specific illustrative prototype, the alloyAu,
so that each lattice site is occupied by eithef:aor an Au atom. Continuing this emphasis on
illustrative special prototypes, we focus on boundary regions between two phases, one of them
termed “ordered” (th€u andAu atoms are as illustrated in Fifj] 2) and the other totally disordered
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FIG. 1. The distinguished planar cuts.
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FiG. 2. Aunit cell of the FCC lattice, and the tetrahedron whose corners serve to number the four primitive cubic sublattices.
The lower schematic indicates a way to visualize the numbélodind A atoms assigned to each unit cell.
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(the assignment of any given site in the unit celtio or Au is random, subject to the ratio 6fu
to Au being the same as in the ordered state).

There will be other occasions as well, during our treatment, when restrictions to special cases
are made. The reasons will be mainly to simplify the rigorous analysis. In fact a full mathematical
treatment of interphase boundaries in this multiple order parameter phase field scenario appears
presently to be an unreasonable goal, at least without a wealth of obfuscating details.

We will focus, at least at first, on interphase boundaries representing order-disorder transitions.

The order parameters. In the ordered form the copper atoms occupy the centers of the faces and
the gold atoms the vertices. Four numbefspz, p3, p4 are defined, when ordering is imperfect, to

be the fraction of atoms on each primitive cubic sublattice whichCareWhen ordering is perfect,
copper represents 3 of the total. Hence for the orderé€tiz Au state,

pi(ord) =0,  pz(ord) = p3(ord) = pg(ord) =1,
while for the disordered state

p1(dis) = pz(dis) = p3(dis) = pa(dis) = 3/4.
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In our treatment, the order parametgrsire taken to vary continuously within the order-disorder
transition region. The equations we will be dealing with are written in terms of the alternative
variablesX, Y, Z, W, defined as linear combinations of this:

X =3(p1+ p2—p3—pa).
Y = %(pl—p2+p3—p4),
Z = 7(p1— p2— p3+ pa).
W= %(,01+p2+,03+p4)-

The intuition behind this transformation is that the new order parameters are more amenable to
continuizing [18]. The first three are nonconserved order parameters and the ¥pitltonserved,

since it represents the total density of copper in the crystal. It will be taken fixed (in a more complete
model, W would be taken as fixed not pointwise, but only on averagé [22]). In what follows we
choose to redefine the variablgs, Y, Z, W) as multiples of the previous ones by a fixed number.

To avoid new notation, we continue to use the previous symBaly, Z, W) for the new variables.

The disordered state now corresponds to

X=Y=7Z=0,

1)

and the ordered state to
X=Y=Z=1

The free energy. Since W is held fixed, the free energy function used [in [5] depends only on
X, Y, Z and their gradients:

J(X,Y, Z):/[Q(VX, VY, VZ)+ F(X,Y, Z)]d&1 dé2 d&s, (2)
2

where the space coordinates &g, &2, £3) and £2 is the volume occupied by the sample. Hgre

is a positive definite quadratic form artlis a fourth degree polynomial which is positive except at
its several global minima, including@, O, 0) and(1, 1, 1). The bulk free energy must conform to
certain crystalline symmetries, for instance it must be invariant under permutationaof Z; if it

is restricted to be a fourth degree polynomial, its general form is that given belpy in (3).

The functionQ represents the influence on the free energy of the differences between the order
parameters at a point and those at nearest neighbors. It is generally the case that this contribution
depends on the orientation of the line between these nearby points, and this dependence is a source
of anisotropy. The simplest type of quadratic fohwhich accounts for anisotropy and which
satisfies other symmetry conditions is of the fofm= A Q1 + B Q2, whereQ; are the simple sums
of squares of derivatives given below E (4). The ratipA = €2 will then be taken as a measure of
the degree of anisotropy of the free energy. In fact, it will be shown that isotropy corresponds to the
caseB = A (e = 1); our focus will be on the anisotropic casex 1.

As a result, we obtain the following fdr and Q:

F(X,Y,Z) =ax(X?+ Y?>+ Z%) + aaXYZ + ann(X* + Y* + 7%
+ aaa(X?Y? + X272 + Y?7?), (3)

1[/ax\2 [av\%2 [az\?
or=3|(5) + () + () |

1T/ax\2 [ax\2 [aY\2 [aY\? [9z\?> [9Z\?
o =3[ () + () + () + () + () + () |

(4)
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The approacandere will be to assume dynamics governed by a gradient flow with respect to
and examine the nature of the interface between grains of ordered and disordered material. In
general, these two states will enjoy different bulk free energies, and the interface will migrate.
However, the motion depends on the values of the coefficienfg in (3), which in turn depend on the
temperature. The simplest situation is when the two bulk valuésare the same. We assume that
the temperature is chosen so that this is the case, and that the two equilifiz0a® and(1, 1, 1),
representing the disordered and ordered state respectively. A possible choice of the coefficients in
(3) such thatF(0,0,0) = F(1,1,1) = Oisaz = 2,a3 = —12,a41 = as2 = 1. The truncation to
fourth degree is discussed in [5] and the extension to sixth degréelin [22]. The inclusion of cubic
terms is sufficient for the existence of first-order transitions [15].

The phase field equationsThe governing evolution PDE’s are given by thé gradient flow of
this functional:

X X
t—|y =LY |-VFX,Y, 2), (5)
o \ 7

whereL is a diagonal matrix of second degree elliptic operators in the space varighies)otes
the gradient with respect to the variablé§ Y, Z), andr is a dimensionless relaxation time.

Although we have described the model in terms of the ordering of a special binary alloy, it serves
partially as a pattern for the treatment of other multiphase materials.

The fundamental paper![5], in addition to the derivation of the model, contains a bifurcation
analysis of the uniform steady states, numerical and formal asymptotic analyses of plane wave
solutions for large anisotropy ratias/ B = ¢ 2, and numerical calculation of the Wulff shapes. This
paper together witH [22] are our basic references. Other related work is cited in these references.
We remark that the parameteshould not be confused with the usual epsilon appearing before the
gradient in the Allen—Cahn and Cahn—Hilliard equations, where it has an entirely different meaning.

Grain boundaries as planar solutions Plane waves in directiagfiand with velocityV are solutions
of (§) of the form

X=x(-(51,62,83) = V1) =x(s), Y =y@s), Z=2z(), (6)

with boundary conditions (—oo) = y(—00) = z(—00) = 0, x(00) = y(0c0) = z(c0) = 1. They
represent planar interfaces with normaseparating an ordered state from a disordered state. The
functionsx = (x, y, z) satisfy (derivatives are with respectsp

— VX' =Ax" —VF(x,y,2), (7

where A is a diagonal matrix whose elements are linear functionst cind B and quadratic
functions ofr.

However, recall that the temperature has been chosen so that the coeffici€raseouch that
F has equal depth wells at the equilibria of the order-disorder transifiot:0, 0) = F(1, 1, 1).
We see by taking the scalar product@f (7) withand integrating that = 0.

1.2 Symmetries

Simplifications to the systeri|(7) can be made by seeking only those profiles which satisfy certain
symmetry constraints. Doing so reduces the dimensionality of the model to two, thereby making the
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mathematics more tractable, while retaining features characteristic of higher-dimensional models.
Of course the direction must be chosen so that the resulting profile satisfies those constraints, and
the functionF and the matrixA have to be compatible with them as well.

One such possible constraint is the restriction of the order parameters to th& pta@e(hence
y = z). In the crystal, this is tied to the symmetry between two sites on the elementary tetrahedron
in Fig.[1. Note from[(L) that = Z = p3 = p4 and that the two symmetric sites share the same
&1 coordinate. Therefore if we takeso thatny, = n3, the symmetryy = Z should be preserved
through the transition. This is indeed true. To exhibit the resulting system, we define our anisotropy
parametet = ,/B/A; the reduced free energy is

1 1
glx,r) = F(x, 72"’ 72r> (8)

(r = v2x = /2y is a modified order parameter); and the anglds defined byn =
(cosa, iz sina, iz sina),0< o < 7. Then B’) is reduced to

(cof a + €sifa)x” — gx(x,r) =0, x(—00)=r(—o0)=0,

1+€2 9
<62C032a+%Slnza)r”—gr(x,r) =0, x(c0)=1 r(c0) =+2 ©)
Isotropy means that the coefficients here are independent of the oriemtaterof«. This happens
whene = 1; our main interest is in the extreme anisotropic case 1.

As can be easily verified, the gradient fldw (5) that determines the full dynamics of the phase
field model leaves invariant the subspace of functions

S ={(X(£1,52,83), Y (51,42, 83), Z(£1,52,83)) 1 Y = Z}. (10)

Note that the special casas= 0 anda = 7/2 correspond to the distinguished ci1s 0, 0)
and(0, 1/+/2, 1/+/2) already mentioned above. When« 1, the problem for the profile at = 0
ora = m/2 is a singular perturbation problem from a limit profileeat= 0, “singular” because
passing to the limit = 0 reduces the order of the systgm|(10) from 4 to 2. In the ease0, the
problem is particularly difficult because of a degeneracy (irregularity) in the limit profile which, for
example, does not allow for the application of the Fenichel theory and its variants.

1.3 Statement of results

In the present paper we study the orientatios /2 corresponding to grain boundaries parallel to
the second distinguished cut in Fig. 1. We establish existence and spectral stability of the interface
between the ordered and disordered states in the invariant sulfspaeene do this for solutions
of (9. The caser = 0 is very different both in results and methods of proof. We referlto[[1], [9].
More precisely, we prove the following theorems (see the remarks follofifg (11)):

THEOREM A (The heteroclinic orbit) Ife > 0 is sufficiently small, then there exists a solution
(xc(5), re(s)) of (X)) such that:
Xe = X0+ Xe, re=ro+7 With i, 7 € HX(R) N C3(R),
(e, Fe) L (xg,rg) (N LA(R) x L*(R)),

and
(e, F)llne = O(€?),
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where
Ny 22112 =2 = 2 ~ 12
[ (Fe, FONIL e = €T 2 + 17N 2 + 1ZellT2 + [17ellF2-

Here(xo(s), ro(s)) is the solution of[(P) foe = 0, defined below in Sef. 2.2.

THEOREM B (Stability of spectrum) Letx., r.) be the heteroclinic orbit of Theorem A. Then

if ¢ > 0 is sufficiently small, the spectrum of the linearized operdiprabout (x, r¢) has the
following form: zero is a simple eigenvalue at the bottom of the spectrum and the rest of the
spectrum is contained irC], co), whereC is a positive constant independentecof

As we have mentioned before, existence[for 93 /2, can be treated via Fenichel’s invariant
manifold theory/[[8]. For this choice @f, (9) is equivalent, by simple stretching of variables, to

sz// = gx(-xv r)?

r’ =g (x,r). (1)
This system is Hamiltonian and fer= 0 it has a heteroclinic connectid@mg(s), ro(s)), a standard
fact.

The limit cases = 0 has an easily obtained solution. Theorems A and B are in effect singular
perturbation results corresponding to small positivd he first asserts that when there is a large
amount of anisotropy, a resulting phase interface exists and is a small perturbation of the ideal
limiting one. Moreover, the change in the interfacial profitest’, r, ' can be estimated in terms
of that singular perturbation parameter

Theorem B is a robustness result for the profile, which begins to address the effects of a multitude
of physical influences which may affect the phase field model. Among these are departures from
symmetry, the motion of interfaces due to temperature changes and to their possible curvature, and
many other deficiencies in the modeling. What Theorem B says, in a very general way, is that due to
the stability of the spectrum, such influences which may disrupt the special conditions under which
the profile’s existence was proved are not, if they are small, expected to change either the existence
result or the properties of the interface, in other than a minor way. Since every mathematical model
in this field of study is necessarily only an approximately valid conception, questions of robustness
form a central issue. The stability of the spectrum is a natural first place to begin an investigation
of robustness. Further steps would involve modeling the disruptions themselves; but the set of
possible disruptions is vast and largely unknown, so those steps would be a formidable undertaking
inappropriate for a paper like this.

Fenichel's machinery, as presented for example in Jdnes [14], allows the reduction of the
existence problem to one on a two-dimensional center-like manifold, and by using the Hamiltonian
structure one can establish the existence of a heteroclinic connection foksmall

The main approach to the question of existence in this paper is different from Fenichel’s, and
more appropriate to the robustness issues mentioned above. Our procedure is based on the study
of the linearized operator of the parabolic problgrm (5), constrained by the symmetries already
mentioned, about the zero order approximation to the heteroclinic. Thus it deals with an infinite-
dimensional phase space and is more functional-analytic. The main effort is to establish a theorem
on the spectrum of this operator. Then this result is utilized in [Sec. 3, where the existence of the
heteroclinic is established fairly quickly via a contraction mapping argument. Finally, i Bec. 4
we establish stability of the spectrum of the heteroclinic via the theorem i Bec. 2 and a simple
perturbation argument.
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2. The spectrum
2.1 Preliminaries
The boundary value probletn (11) to be considered is

ex" = ge(x, 1),

12

r//:gi’(xvr)v ( )

x=x(s), r=r(s), seR, '=d/ds, (13)
x(—00) =r(—00) =0, x(0)=1  r(c0) =2 (14)

For future reference we record here the most relevant facts about the fugickoom [8), [(3),
3
gx,r) =2(x* +r?) —6xr2+x2r2+Zr4+x4, (15)

with equal minima at0, 0) and(1, v/2). Therefore

G =4+ 22 +12:2 > 4,
&xr = —12r 4 4xr, (17)

g =4—12¢ + 2x2 4+ 92,
Furthermore,
g6 =0 r*=—, (18)

which can be inverted far € [0, 3) to obtainx = x(r), whereyx : R — [0, 3) is smooth, even,
andx(0) =0, x(v2) =1, x'(0) = 0.

2.2 Thee = 0 approximation
Settinge = 0 in the first equation of (32) and using the expectation i@} < [0, 1], we get
x = x (r). Substituting into the second equation, we have

r" — g (x(r),r) =0. (19)

We look for a solution to this equation such thét-co) = 0, r(+00) = +/2.
Setting
G(r)=g(x(),r), reR, (20)

we have
G'(r) =gc(x (), X' () + & (x(r), r) = g (x(r), r). (21)

Thus [19) can be written as
r" —G'(r) =0. (22)
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It can be checked fror@Gb:(]lS) thatasanges from 0 ta/2, the functionG’(r) = g-(x (), r)
starts positive and then becomes negative. &l$6) = G (+/2) = 0.

It is known [4,[11] that in the phase plane there is a heteroclinic orbit conne@din®
to (v/2,0). This furnishes a solution t9) with the desired behavior at infinity, unique up to
translation. We denote it by (s) and call the “base heteroclinic”.

We also know thaty(s) > 0 fors € R, hence 0< ro(s) < V2. We setxo(s) = x(ro(s)). Then
x0(—00) = x (ro(—o0)) = x(0) = 0, x0(c0) = x(+/2) = 1. Hence the paitxo, ro) is a solution of
)—) fore = 0. Furthermore, we know thag(s) andr((s) approach their limits exponentially
ass — =+oo. This follows fromG”(0) > 0, G”(+/2) > 0 via linear theory.

From ) we then deduce thg§ converges exponentially ds| — oo to 0. Alsory’ =
roG" (ro), which implies that;’ converges exponentially to O.

Function spaces and the bistable operatoln this paper the notatioh?, H?, €2 will denote the
corresponding spaces of functions defined on the whole reaRtiié (R), etc.

From the exponential convergence, we know thatrj, ry’ L2, which in turn gives that
ry € H2. Similarly, sincexg = x (r0), we getx} € H2.

We also note that far € R,

g (x(), NP

G"(r) = gur(x(r), X' (r) + g (x(r), 1) =
&xx(x(r),r)

+&r(x(r),r). (23)
Set

q(s) = G"(ro(s)), seR. (24)
We define the operatd® by

Bh = —h" +qh with D(B) = H?, (25)

which is unbounded and self-adjoint @3. It is called thebistable operatar The following facts
are well known:

e The essential spectrum &fis contained in 1, oo), whereCy > 0.
¢ The smallest eigenvalue & is 0, which is simple (we know thaf, € ker(B)).

Hence by the variational characterization of the eigenvalues of self-adjoint operatofs (see [20]) we
have

o0
/ [(W)2 + qh®]ds > Ca||h||2, forallh € H? h L r)(in L. (26)

—00

2.3 The operatorL.
We now consider the operatdg, obtained by linearizing (12) abouto, ro). We have

h1\ _ ((—€%h] + gex (x0, r0)h1 + gur (x0, ro)h2
Le - Vi ’ (27)
ha —h% + gxr(x0, ro)h1 + grr(xo0, ro)h2

with L. : D(L.) — L? x L? D(L.) = H? x H2. Itis an unbounded self-adjoint operator in
L? x L2



168 N. D. ALIKAKOS ET AL .

We recall that(xg(s), ro(s)) — (0,0) ass — —oo and(xg(s), ro(s)) — (1, +/2) ass — 400
(in all cases, exponentially); and that (se€g] (17))

gXX (07 O) = 47 gxr(ov O) = 07 g"r(ov O) = 4,

gx(LV2) =20, g, (1L V2 =-8V2 g, (1 V2)=12 (28)
We write
b= (5 2) v (B i) @)
so that
v (50) we(B W)
Then
Lch = —Dch” 4+ N(s)h,  h = (h1, h2)*. (31)
In what follows, we make use of the operator
Leh = —=Deh” + N(s)h, (32)
whereN (s) = N(—o0) if s < 0, andN(s) = N(oo) if s > 0. We can easily show that
(Leh,h)p2, 2 > Callh|%,, ,  Yh e H? x H?, (33)
with C3 > 0 independent of > 0. Hence
oesdLe) C o(Le) C [Ca, 00). (34)

Also (L — Lo)h = (N(s) — N(s))h, whereN(s) — N(s) — 0 in the matrix norm exponentially as
|s] = oo.
It can be shown that the operator

(Le —LoL7Y:12x L2 - L2 x L?
is compact. In other wordg,. — L. is relatively L.-compact. From this it follows that
OesdLe) = Uessfl:e) C [C3, 00) (35)

(I3, p. 140)).

Occasionally we will drop the subscriptand writeL instead ofL..

Throughout this paper, all the inner products are in the sengé of L? x L2, unless specified
otherwise. TheL.? x L? inner product is defined bgu, v), 2, ;2 = [ (u1v1 + uv2) ds, where
u = (u1,u2), v = (v1,v2) € L2 x L2 Furthermore, all the constants will be independent of
€ > 0.
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2.4 The operatorskj (1), K5(A), and the reduction to a single equation with bistable structure

The eigenvalues of L and their corresponding eigenfunctiog, ho) € H? x H? satisfy

- 62h/{(S) + gxx (x0(s), ro(s))h1(s) + gxr (x0(s), ro(s))ha(s) = Ah1(s), (36)
—h5(s) 4 gxr (x0(s), ro(s)hi(s) + & (xo(s), ro(s))ha(s) = Aha(s), (37)
lh1l?, + lIh2)l2; = 1. (38)

From now on for simplicity we will not explicitly writes and write insteag,, in place of
gxx (x0(s), ro(s)), etc. Also since we are interested in the small eigenvaluds, @fe can assume
without loss of generality that < 2.

From [36) we have

- 62]’1/{ + (gxx —Mh1 = _gxth' (39)

We know thatg,, > 4 and sincer < 2, we haveg,, — A > 2. Hence for each > 0,1 < 2, and
hy € L?, there exists a unique solutian € H? of the above equation. Hence we can define a linear
operatork§ (1) : L2 — L2 by

h1 = K§(Mh2 (40)

fore > 0,1 < 2. We also define another linear operaki()) : H2 — H2fore > 0 andx < 2
by writing

8xr
gxx — A

h1 = KS()hy = — ha + €2K5(Mh2, (41)
where
8xr
8xx — A
Observe that the first term on the right side [of](41) is the solutiplf (39) whene = 0.
Substituting[(4]1) intq (37), we get

.1 .
KS(M)hy = ?( ho + K (A)h2>.

—h+ g [— B ha+ 2K (A)hz} + grrha = Aha. (42)
gxx — A
which we rewrite in the form
g2 g2
R (e R e e et L (43)
8xx 8xx (gxx —A)

Hence the eigenvalue problem [36)4(38) is equivalent to

g2 g?

a5+ (o = 5 Yo =14 B 2 k3000 (@5)
XX XX XX

Ih12; + llh2]l?, = 1. (46)

Observe that on the left df (#5), we have the bistable opetufr(25).
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2.5 H?estimates

LEMMA 1 Foreveryi, A1, A2 < 2 and every > 0, the following inequalities hold:

IKSG) fll2 < Call fll 2 Vf € L2, (47)
IKS) fll2 < Csll fllyz Vf € HZ, (48)
I(KS(r1) — K5(h2) fll 2 < Colra — 22l [ fllyz Yf € H?, (49)

whereCy, Cs, Cg are independent of, A1, A2, e andf.

Proof. Let f € L2, » < 2 ande > 0, and setX = K{(1)f € H? Then by the definition of the
linear operatok { (1), we have

— GZXN +(gxx — V)X = _gxrf’ (50)

from which we obtain

0 o o
- ezf XX ds + / (gxx — MX?ds = —/ gor fX ds, (51)
oo oo

—00 —

and by integration by parts, which is valid sinkec H?, we get

o0 o0 o0
€? / (X)?ds + / (gxx — M) X?%ds = — / gor fX ds. (52)
—0o0 —0o0 o0

(we also used the fact that(s), X'(s) — 0 as|s| — oo, sinceX € H?). Now sinceg,, — A > 2
andg,, is bounded, by the Cauchy—Schwarz inequality we have

)
2IIXIIiz < Suplgxrlf |£11X]ds < suplger| 1 fI 2]l Xl 2. (53)
s —00 seR

Hence| X |2 < Cy|l f 2. This proves[(4]7).
Now let f € H2. By the definition ofK 5 (1), the equation

—e%u” +(Qux —MNu=—gu f
is equivalent to
w=——2 F L PKE .
&xx — A

SetX = K5(1) f; then

Vi
—e2<—Lf + eZX) + (g — x)(— S e2X> = —guf
gxx - )L gxx - )L

which simplifies to

”
_62X//+(gxx_)\.)X=—< 8xr f) .
gxx — A
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By working as before, we get

1xie < (=2 f)
L2 2 Sxx — A

Taking into account thag,, — A > 2 and that the functiong,, andg,, of s are bounded along
with their first and second derivatives, we can estimate the right hand side of the above inequality,
and get| X || ;2 < Cs|| f || z2. This proves|[(48).

SetX1 = K5(A1) f andX2 = K5(12) f. Then

L2.

"
CEX 4 (g X = (2L ) iz
gxx_)\i
and so
gurf gorf '
—62(X1—X2)”+(gxx—M)(Xl—Xz):()»l—?»z)Xz—( e ) . (54)
gxx_)hl gxx_)LZ

Now by (48), we have
X2l 2 = IK5(22) fll L2 < Csll f || g2,

and so by working as in the proof ¢f (47) and|[of](48) (to estimate the norm of the last tgrnj of (54)),
we get

"
2/1X1 = Xall 2 < ol — Aol | fll gz + H( gl 8] ) < Colin = 22l 1 fll -
8xx — Al xx — A2 L2
This proves[(4P). The proof of Lemrpé 1 is complete. O

LEMMA 2 Define, as always; = g, — g2./gxx- If —=h" +qh = f, h € H%, h L r{(in L?) and
f € L? then
IAllgz < C7ll fll L2,

with C7 independent off.
Proof. Working as in the proof of Lemnig 1, we get

f [(h/>2+qh2]ds=/ Fhds < | fll 2Rl 2.

Utilizing (26), we have
CallnlZ2 < 11 2lRl e
Hence
Ikl 2 < C3 £l 2. (55)
Also,
A" 2 = llgh = fllz2 < lglloollklzz + 1 £l 22 < (IglleeCs ™t + DILFIl L2-
Obviously—2hh” < h? + (h")2, and

o0
2 / (Y2 ds < 11112, + |2, (56)

—00

From [5%) and[(56), we obtaifh| ;2 < C7l| f || .2, which proves the lemma. a
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2.6 A priori estimates

PROPOSITION1 Suppose that, ) is a solution to[(36)£(38). Then there exist positive constants
€0, .0 < min{2, C3}, Mo, aog, independent of, X, &, such that if 0< € < ¢g and|A| < Ag, then the
following estimates hold:

(i) 1Al < Moe?,
(i) 1Ipll g2 < Mo€?, |al > ag, where

ho=ay+p, y=ry/llrglle,  pLry (inL?.

(For simplicity we do not write the dependenceiofz, p one.)

Proof. Throughout the proofC; > 0 will denote constants independenteof., 4. Substitutei, =
ay + p in (45) and set

2
> 8
K5\ = g K5(0), o =1+ —12
2 Sar 2 8xx(&xx —A)
with [0 (s)] < llolle. s € R (lollo independent ok sinceg,, — A > 2). Then [[4b) takes the
following form (recall that—y” + gy = 0):

—p ' +qp=racy — ezakg(k)y + Aop — 62125 M) p. (57)
By Lemmg], we have

C8||f||H2’ (58)
Cgli1 — A2l | fll 2 (59)

IKS) £l 12
IKS(A) f — K52 £l 2

for every f € H2, i, i1, 2 < 2 ande > 0 (Cg independent of., A1, A2, €, f). Multiplying (57)
by y, integrating, and using the fact that p” + gp, ¥);2 = (p, —y" + q¥) ;2 = 0 gives

NN

ra(oy, y) — €a(K5(0)y, y) + i(op, y) — (K5 p, y) =0.
Since the functiow satisfiesy > 1, |y|l;2 = 1, via (58) we have
Al lal < €lalCallyll gz + Al o llcoll Pl L2 + €2Cal pll 2 (60)
Applying Lemmg 2 to[(5]7) gives

Ipll g2 < C7llracy — €2aK5(\)y + rop — €2K5(A)pll 2
< C7(Allal lollso + €2lalCallyll g2 + 1Al o ol Pl 2 + €2Csll pll 2).

or in a more compact form,
1Pl gz < Collrllal + €%lal + Al 1Pl gz + €211 pll 2)-

Choosingeg andig such thatCg(Ag + GS) < 1/2, we get

Ipll gz < 2Co(IAl lal + €2]al). (61)
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Now using Lemmd L, we havighill;2 = IK{(M)h2l 2 < Callhzll;2, so by [46) we have
k2], > C10 > O for C10 = 1/(1+ C3). Also
1> |hall5, = lal® + [Ipll52 > C10 > 0. (62)
In particular,|a| < 1. Thus from|(6]L) we have
1Pl g2 < 2C9(A| + €2). (63)

Further reducingo, Ao SO thatCo(Xo + €3) < +/C10/4, we infer from ) tha¢|p||i{2 < 3Cio
This and ) givea|2 > $C1o.
Returning to[(6D) and using the above, we have
IAv/C10/2 < Ca€?llyll gz + A lo ol pll 2 + €2Callpll 2
< Cg€?llyll gz + (1Al 10 oo + Cge?)2Cq(|1] + €2)
< C11(? + (Al 4+ €9?) = C11(? + |12 + €* + 2|1 €?).

Choosing even smaller such thatC1140 < 34/C10/2, we get
A < C12(€? + €* + 2|1 |€?) < C12(26? + 2|1 |€?) < Ciae?.

Finally, utilizing the estimate ir] (§3), we obtajip | ;2 < C1ae?.
This completes the proof of Propositi@w 1 withy = max{Ci3, C14}, ag = /C10/2. O

2.7 Existence, unigueness, and simplicity of critical eigenvalues
Following Nishiura[[17], we call the eigenvalugs with the property lim_.o A, = O critical.

PrROPOSITION2 The eigenvalue probleni (36)—{38) has the following property: There exists
€1 < €o such that for 0< € < ¢y, there is a critical eigenvalue(e) satisfying|r(e)| = O(€?).
Furthermorei(¢) is simple and it is the unique eigenvalue in the interval{, Ag], whereeg and

Ao are as in Propositidr 1.

Proof

I. Existence of a critical eigenvalue.With y as in Prop[]L, we search for a solution|of|(4#)}(46) of
the formh, = y + p, p L y. Substituting in[(4p) gives (recall thaty” + gy = 0)

—p"+qp=roy —62125()»))74-)»0’]) —ezkg(k)p. (64)
Next, we will define amaf : (A, p) — (&, p) for
(L.p)eS={( p) eRx H*: x| < M1e?, ||pllyz < Ma€®, p Ly (in L)}

(M; constants independentofind to be determined latetj.is a closed subset of the Banach space
R x H? equipped with the normi(x, p)|l = |A| + | pll 2. We require that
— P +qp =hoy —2K5(0)y + rop — 2K5(M)p. (65)
_ (€®K5Wy — rop + 2K5()p, y)
@y, ) '

>

(66)
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Notice that@) implies that the right side pf (65)li8-orthogonal toy. So for(k, p) € S, there is
aunique(i, p) € R x H2, p L vy, satisfying|(65); hence the mapis well defined. Observe that
if (A, p) € Sis afixed point off’, theni andhy = y + p # 0 (sincep L y) satisfy [45).

Using [58) and the Cauchy—Schwarz inequality (re@ail, y) > 1 and||y|| 2 = 1), we obtain

Al < €2Csllylly2 + Mool pll 2 + €2Calipll g2 < €%[Callyll 2 + (M1Ma||o |l + M2Cg)e?].

Choosing
M1 > max{Csllyllgz + 1, Mo}, (67)
Mz > max{C7(Millo |l + Csllyll g2 + 1), Mo/ao}, (68)
0 < €1 < MiN{(M1Mallo [loo + CaMa) ™", €0, v/2o/ M}, (69)
we deduce thaf.| < M1e2.
Also by Lemm4 P and (§8),

151l g2 < C7llhoy — €2K5(W)y + Aop — €2K5 (M) pll 2

C7(M1€%|10 [loo + €°Cally | g2 + M1€%|l0 || oo M2e? + €2CeMoe?)
Cre2(M1]|ollos + Callyl gz +1)  (by (69))

Mo? (b (68)).

/

INCINN

HenceT : § — S.
The next step is to show thdtis a contraction on the closed setlLet (A1, p1), (A2, p2) € S;
then

i1 — A2l < €2(IKS(h)y — K§(A2)yll 2 + 1K (A1) p1— K5 (h2) p2ll12) + 110 oo A1 p1 — A2p2ll 2.
Using [58) and[(59) gives

IKS(A)p1 — K5(A2)p2llp2 < I1KS(Ga)(p1 — p2)ll2 + +IKS5() p2 — K (A2) p2ll 2

<
< Cgllpr — p2llg2 + CglA1 — A2| | p2ll y2
< Csllpr — p2llgz + CeMae?|n1 — 2al.

Also

lA1p1 — Azp2lipe < |21l llp1 — pallp2 + (A1 — A2l | p2ll .2

< M1€?||p1 — pall 2 + M2e?|hg — 2.
Hence
A1 — ka2l = O(®) (A1 — A2l + Il p1 — p2ll g2)- (70)
Moreover,
—(p1— P2+ q(p1— p2) = (h1 — h2)oy — (K5 (1)y — K5(12)y)
+ 0 (Ap1— A2p2) — €2(K5 (1) p1 — K5(A2) p2).

By Lemmd2,

151 — P2l gz < C7ll(Ga — A2)oy — €2(K5(M)y — K5(A2)y)
+ 0 (rp1 — r2p2) — €2(K5()p1 — K5(A2) p2) |l 2.
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Working as before and using (70), we get

Ip1 — p2llyz = O (h1 — A2l + I p1 — p2ll y2)-

So combining the inequality above wifh {70) gives

i1 — A2l + 11 — P2l gz = O(€)(IA1 — A2l + lIp1 — p2ll y2)-

Choosinge; > 0 sufficiently small, we see that é < €1, thenT is a contraction. Applying the
Banach fixed point theorem, we infer that there exists a unigue) € S such that?' (1, p) =
(A, p), thatis,, = A andp = p. So by @) and@G), we get

—p" +qp =hroy —?K50)y + rop — K51 p.

Obviouslya, (h1, h2) # O with hy = K{(3)h2 satisfy [44) and (45) and we can assume that (46) is
also satisfied. Hence we found an eigenvalweth || < M1e? corresponding to an eigenfunction
(h1, h2).

1. Uniqueness and simplicity of the critical eigenvaluéSuppose that for some< €1 we have an
eigenvalue. (not necessarily # A) such thafi| < Ag. Then by PropositioE]l,

by 2 = 2 =
Al < Moe®,  |Ipllgz < Moe®, |al > ao,

wherehy = ay+ p, y L p (again we suppress the dependenck,of, i, p, @ one) with (h1, 2)
a normalized eigenvector. Usir{g {67)(69), we deduce from the above that

A < M1€?,  |Ip/allye < Mae?,

thus(x, p/a) is a fixed point ofl" in S. Hencex = A andp/a = p. Thatis,ho = a(y + p) = ah»
and . o
h1 = Ki()\)hz = ZZKE()»)hz =ahy,

wherea depends or > 0 and is due to the normalization 0f1, ). Since(h1, ho) and(h1, ho)
are normalized, we conclude th@ = 1. Hence ife < €1, thena is the unique eigenvalue in
[0, A0] and it is simple. The proof of Propositipi 2 is complete. |

2.8 The lower bound of the spectrum

LEMMA 3 Letx < 0 be an eigenvalue with correspondibg normalized eigenfunctioth1, />).
Then||hz| y2 < C16, WhereCyg is independent of, €.

Proof. Let A < O be an eigenvalue df (B6)—(38) with corresponding eigenfuncfign/z,). From
(ex)}

(hy + 1h2)? = (gerh1 + grrh2)® < (82, + 82)(h3 + h3)
< supg?, + g% (h + h).
s

Let C15 = sup (g2, + g2.). Then via(3B) and integration by parts, we have

00 o0 o0
[ mprasea? [“igas-z [ apte<cs
—o0 o0 —o0
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Sincex < 0, from the inequality above we obtain
o o0 o0
/ (h3)?ds < C15,  and so / (h3)?ds + / h2ds < C15+ 1.
—0oQ —0o0 —0o0

Also from the identity—2h2hy < (h4)? + h3, we get

o
2 / (hy)?ds < C15+ 1.
oo

Hence| ha|| g2 < ‘/g(Cls + 1) = C16. The proof of LemmH3 is complete. O

PROPOSITION3 Leteq, Ag be as in Propositiodn| 2. There is¢, < €1 such that for O< € < e,
there are no eigenvalugswith A < —Ag.

Proof. Suppose that there is an eigenvaluaith 1 < —1o. By (45),
g2

~h3 4 qho = A[l—i— —or
2 1 8xx (gxx - )‘)

}hz — 28, K5(Wha.

We know that/_[(h")? + gh?]ds > O for allh € H?, since the spectrum of the bistable operator
Bh = —h" + gh is positive. Also we recall that < —Ag. Multiplying both sides of the above
equation by, and integrating by parts gives

rollh2ll?, < €21(gxr K5 (Wh2, h2)| < €2 suplge| | K5()h2ll 2]lh2ll 2
s

< €2suplgr| I1KS (W) h2ll 2 < €2 suplgy|Callhzll g2,
s S

where we used the estimafé. |, < 1 and [48). Now using Lemnjg 3, we gtz|| ;2 < Ci7¢?.
Moreover, by[(4F7),
Ih1llz2 = IK§(Wha2ll 2 < Callhzll g2 < Cige®.

Obviously ife < €2, then these estimates contradict the equamwiz + ||hz||i2 = 1. The proof
of Propositior} B is complete. |

2.9 The basic result on the spectrumiof

THEOREM1 If € > 0 is sufficiently small, then the spectrum bf (cf. (27)) has the following
form:

(i) Atthe bottom of the spectrum, there is a simple eigenvalue) = O(¢?). Furthermore the
L? x L? normalized eigenfunctioths, h$) corresponding ta (¢) satisfies

/
T .
h;:aem'FPE» PeJ—r(/) (InLZ)a
0

ac €R, pe€H? la|>a0>0, |pelyz= O(?).

(i) The rest of the spectrum is contained ing[oo), where ag, Ag are positive constants
independent of.
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Proof. By Propositior] B, ife < e, there exists a unique eigenvalu&) € [—Ag, Ag]. Moreover
Ae) = O(€?) and A is simple. Also the correspondinty, satisfies the required estimate.
Furthermore, by Propositi¢n 3, there is no eigenvalue-ito, —g]. Hencex is the only eigenvalue
in (—oo, o] and consequently it is the principal eigenvalue. Denote it.byBy the results in
Sectior] 2L, the essential spectrumlefis contained in {3, co), whereCs > 0 is independent
of ¢, andig < Cs.

The proof of Theorerf|1 is complete. |

3. The heteroclinic

We seek a solution = (x, r) of (12) of the formu = ug + i1, whereug = (xo, ro) andi = (%, 7) €
H? x H? i L ufyin L?. Obviously,u has the required behavil4) at infinity. It remains to be
shown that: satisfies|(1R), from which we also infer that €2 x C2.

We have
Leii = N@i) + E, (71)
where
N (i) = _(gx (X + xo0, 7 +ro) — 8x(x0, 70) — &xx (¥0, r0)X — gxr (X0, Vo)7> (72)
&r(X + xo, 7 + ro) — gr(x0, r0) — &xr (X0, Y0)X — &rr (X0, rO)7
and

a
E = 62<X8).

The existence of a solutiahof (7)) follows from the following propositions (see Theorgln 2 in
Sectior] 3.]L below).

PROPOSITION4 If € is sufficiently small, there exists a pdir, ii) with ¢ € R andi € H? x
H2, i 1 up, such that

Li = —cuy+ N@) + E, iillLe = O(€?), (73)

where||(x, |2, = €21X'[12, + IF'12, + I1x 112, + [Ir]1Z,.
PROPOSITION5 Let(c, it) be as in Propositign 4. Then= 0.
In the remainder of the paper, it is assumed that € < e».

LEMMA 4 Fore sufficiently small, we have

() 1h — (a/lIrgll2)ugll 2. 2 < C21€2,
(i) 1k, up)| = 3174l 2,

whereh = (h1, ho) is the normalized eigenfunction corresponding iqrecalliy = ay + p, y =
ro/ TGl 2) @andug = (xo, ro). C21 is independent of (recall thatiy, b, a depend or).
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Proof. For (i), we have

/

/
- ——r
0

[

- ——u hy — ———x( h
0 1 0 2
” Irollz2 Iroll 2

<

LZ‘

= HKE(M)(GY +p)— ——Xxg
7ol L2
|al
< IKf A pll2 + W”Ki()»l)ré —xollz2 4+ Iplze.
ollL

L2x L2 L2

+ llh2 —ayl .2
L2

By ), the estimatelp|| 2 = 0(€2), |a| < 1 and the definition oK% (1), thisis

< C1962 + C20 —Lré + GZKE ()»1)7’6 + 8xr }’6
Bax — )\l 8xx L2
A rl
< C19€2 + Cop _ M8xrTp + 62C20 KE(M)V(/) < C2162,
8xx(8xx — A1) |12 L2

where we used the fact that;| = O (¢2) and Lemm@l.
(i) follows trivially from (i) via ||k ;2,2 = 1.

LEMMA 5 Fore sufficiently small and everw such thatw € H? x H?, w L h, the following
estimates hold:

() (Lew,w) = rollwll?,,
(i) (Lew,w) > Caallwlif,,
wherekg is as in Propositiop]1, an@z3 > 0 is independent of andw.

Proof. (i) is obvious from the variational characterization of the eigenvalues of self-adjoint
operators.
(i) Let w = (w1, wo) € H? x H2, w L h,and 0< C < 1. Then

(Lew,w) = Clwl}, = A= O)(Lew, w) + Cl(Lew, w) — [wl,]

o0
> (= OppollwZe + € [ [gar = Duf + 2guwaun + (g — Dudlds
o

> (1- Onollwl?, — CCollwl2,.

ChoosingC sufficiently small completes the proof wittps := C.

LEMMA 6 LetU; € HYx HY, |Uillre < Me?, i =1,2, M > 1, € < 1L.Then|N(U;)|| 2,2 <
C24M363 and

IN(U1) — N(U2)ll 2512 < C2aM?€® | Uy — Uzl 12, 2,
whereCa4, 8§ > 0 are independent ef M, U;.

Proof. Let U = (x,r) € H' x H! with U1 < Me? Then|x|lzz < Me, |Ir|g <

Me2, x|z < Me2, |Irll,2 < Me2. From [16),[(17) [(7R),

NU) = 6r2 — 2xr? — Axrrg — Zxor2 — 43— 12x2xo
T\ 12xr — 2x%r — 2x%rg — dxxor — 3r3 — 92 |
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We recall the Gagliardo—Nirenberg inequality[12]uife HZ, then|ullrr < C||u||211||u||i§9 for
p=>2 0<60<1 6>1/2—1/p. We estimate a typical term to explain the procedure.
Consider the term2 in the expression o (U):

1/2
L2

12 _
L2 =

1/4
H!

3/4, .3/4,  5/4

2 2 4 2 3.23/4
lxrslipz < [l 2 I lxllallrlZe < Cllxllyg el el e < C M3,

The rest of the terms can be estimated analogouslyllket (x;,r;) € H! x H! be such that
1Uillle < Me?, i = 1,2. Then|xi|loo < CMe¥? and|ri|co < CMe?. We will treat a typical
term in N (U1) — N(U>) and leave the rest to the reader:

2 2 2 2 2 2
||X272 —xlr]_”LZ < ||x2r2 - x2”l||L2 + ||X271 - xl”1||L2
2
lx2llooll(=r2 + r1)(=r2 — ro)ll g2 + Ir{lleollx2 — x1ll 2

<
< 2M2C?%€3|rp — r1|l ;2 + C2M?e*|x2 — x1| 2. O

Proof of Propositior

. The transformatiotii > w. Forii € L2 x L2, i L uj), set

w=ii— (& h— ——uly )i (74)
7ol 2

By Lemmd 4(i), the right hand side is a small perturbation of the identity. Hercis iSufficiently
small, the above linear transformation is invertible and= Q(w). Also note that we have the
equivalencev L h < i L ug. Furthermore, ik is sufficiently small, then

10(w1) — Qw225 2 < Cosllwi — w2l 2,2

and||Q(w)|l1.e < Casllwllve, for everyws, wp € L? x L%, w € H x HY, w1, wp, w L h, where
Cy5 > 1lis a constant independentaf w, w1, wo.

Il. The w-equation. Substituting[(7}4) intd (13) gives
Lw = —cug+ N(Qw)) + E — (Q(w), h)r1h. (75)
We define a functio® : H? x H?> — R by

cw) (N(QW)) + E —210(W), h) (76)

~ wp h)
(from Lemmfﬂl(ii),|(ug, h)| > 3lrgll 2). We seekW € H? x H2, W L h, such that

LW = —C(W)ug+ N(Q(W)) + E — (Q(W), h)A1h. (77)
We can define an operator

T:(H?>x H)Nht > (H>x HHNnht

by TW = W, whereW is the unique solution i6H2 x H?) N h™* of

LW = —C(W)uy+ N(Q(W)) + E — (Q(W), R)A1h. (78)
This map is well defined via (76) and Lemirja 5(i).
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LetS = {W e (H2x H>)Nh' : |W| 1. < M3e?}, whereMz > 1is to be chosen. Lév < S.
Then
[C(W)| < CoelIN(Q(W)) + E —210(W)ll 2,2
<

C26(C2aC3M3E® + ||x{ |l 2€2 + M1€2CosM3e?).
From [78) via Lemm@]5(ii) and the above, we have
ITWllse < C2r(CaaC3sM3e® + x§ Il 262 + M1CasMze®).
By choosingM3 sufficiently large and sufficiently small, we conclude thdT W1 < M3é?)ie.
TS CS.
Now let W1, W> € S; we have
|C(W1) — C(W2)| < C26lN(Q(W1)) — N(Q(W2))ll 12512 + Co6M1€| Q(W1) — Q(W2) | 2412
< Cap(C24C55ME€° + M1€®) || Q(W1) — Q(W2) |l 22
< Co6(C2aC3sM3€% + M1€%)Casl| W1 — Wall1.c

and
ITW1 — TWal|1.e < Cag(C2aC2:M3€® + M1e2)Cos|| Wi — Wal|1.c.

If € is sufficiently small T is a contraction on the closed seand7 S C S. Thus there exist¥ € S
such thatf W = W. Hence we obtain a pa€ = C(W) € RandW € H2 x H?, with W L h
and|W|1. < Mse?, that satisfieq (5). Obviously = C(W) andi = Q(W) satisfy [73) and
i € H2 x H%, i Luj, |iilye < CosM3e?.

This completes the proof of Propositioh 4. |
REMARK 1 From [73) we see thate C2 x C2.

Proof of Propositior] p. Setu = ug+ i = (x,r) € C2 x C? (recall thati depends or and
lilLe = O(€?). Thenx(s) — 0 andr(s) — 0 ass — —oo; x(s) — 1 andr(s) — /2 as
s — oo; andx’(s), r'(s) — 0 as|s| — oo. Rewriting [73) in a more suitable form, we have

2.1
€Xx — gx (xs r) _ /

< r’ —gr(x,r) ) - o
Now taking the inner product of both sides withgives

o0
/ €x"x" +r"r = ge(x, r)x" — gr(x, r)r')ds = c(ug, ug+ '),

—00
© d /€2 1 .
/_ & (E(x/)z + 5007 - g, r)) ds = c(lugll2, 2 + (g, i),
ie.
c(llugl?z, 2 + (up. @) = g(0,0) — g(1,v/2) = 0.

From this, we assert that for sufficiently smelve havec = 0. Indeed, sincdii||1 < CosMze?,
we have||it'|| 2, ;2 < CasM3e, and so

lugh?s, 2 + (. @) = Nugl?a, 2 — lugll 2y 2l || 2y 2

> Nlugll 25 2(lugll 25 2 — C25M3€) > 0

if € is sufficiently small. This completes the proof of Proposifipn 5. O
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3.1 The existence theorem
We have therefore proved the following, which is the same as Theorem A:
THEOREM2 If € > 0 is sufficiently small, then there exists a solutiag, r.) of (12) such that
Xe = X0+ Xe, Fe=ro+Te Withie,feeHzﬂCZ,
(Fe,Fe) L (xp, 7y (in L% x L?),
and
IGe, F)llne = O(€?),

where
2 202 2 2 2
I(x, T e =€ lx Ml 2+ Irlly 2+ Ixly2 + 7172

4. The stability of the spectrum of the heteroclinic

Theorem B is embodied in the corollary below. We consider a family of funciions), r.(s)) €
C? x C? ¢ > 0, satisfying
(H1) (xc(s), re(s)) are continuous i uniformly for s € R with (xg(s), ro(s)) as in Sed. 212,

liM 5] = 00 Xe, lIM 5|00 re €XiSt, and||x/ [, 7. lloos 127 1| 2, 7] || 2 are bounded uniformly

ine.
In this section we assume that,, g.-, g-» are evaluated atx., r.) satisfying (H1). We define
(using the same notation) the operakeras in [2]) but now withx, r¢) in place of(xg, ro). From
the asymptotic behavior Gf,., g.r, & as|s| — oo it follows as in Sed. 2]3 that for smadl> 0
we haveses{Le) C [C3/2, 00).

We now consider the eigenvalue probldmh = Ah, h = (h1, h), |hll;242 = 1. We can

perform steps{Eg)EM) without any cha@dowever, in order to continue, we need the following
lemma whose proof is an immediate consequence of (H1), Th. 3.1, p. 482 in [7], 4nd (26).

LEMMA 7 Setg(s, €) = g — g2,/gxx and define the operatdi(e) in L? via
B(e)h = —h" + q(s, €)h, with D(B(e)) = H?.

Then ife > 0 is sufficiently small, the essential spectrumBxk) is contained in {'1/2, oo) and
the smallest eigenvalye; (¢) of B(e) is simple,u1(€) — 0 and the corresponding? normalized
eigenfunctiony, satisfiesy. — y in H? (y as in Sed. 2]6).

Using this, we can prove the analogs of the results in $edg. 212, .7, 2.8 and obtain (using the same
notation):

THEOREM3 If € > 0 is sufficiently small andx., r.) satisfies (H1), then the spectrum bf
has the following form: At the bottom of the spectrum, there is a simple eigenvalige with
r(e) = O0(e? + p1(e)). Furthermore, the normalized eigenfunctiori, 45) corresponding to
A1 (e) satisfies

h;=a6)’e+Pe’ Pe Lye (in LZ)’
ac €R, pe€H? lac|>a0. pellyz = 0(e? + pa(e)
(a0, Ao are positive constants independent pbut depending on the famili,, r¢)).

1 Except now instead of the boundedness of the derivativgs,ofz, ., we use (H1).
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The following corollary, which completes the proofs of the theorems stated in the introduction,
implies the stability of the spectrum of the heteroclinic orbif of| (12) obtained in[$ec. 3.

COROLLARY 1 Let (xc,rc) be the heteroclinic orbit of (12) given in Theorgm 2 above. Then

if € > 0 is sufficiently small, the spectrum of the linearized operdtprabout (x., r.) has the
following form: zero is a simple eigenvalue at the bottom of the spectrum and the rest of the
spectrum is contained inChg, co) whereCo9 > 0 (and as always with constants, independent
of €).

Proof. It is easy to show thatx., r.) satisfies (H1) via[(7]1) and that zero is an eigenvalue of
L with normalized eigenfunction. /| u. ||, whereu. = (x¢, re). Now the corollary follows by
Theoreni B. O
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