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We derive a phase field model which approximates a sharp interface model for solidification of a
multicomponent alloy to second order in the interfacial thickre&nce in numerical computations

for phase field models the spatial grid size has to be smallerdhihe new approach allows for
considerably more accurate phase field computations than have been possible so far.

In the classical approach of matched asymptotic expansions the equations to lowest order in
¢ lead to the sharp interface problem. Considering the equations to the next order, a correction
problem is derived. It turns out that, when taking a possibly non-constant correction term to a kinetic
coefficient in the phase field model into account, the correction problem becomes trivial and the
approximation of the sharp interface problem is of second orderBBy numerical experiments, the
better approximation property is well supported. The computational effort to obtain an error smaller
than a given value is investigated, revealing an enormous efficiency gain.
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1. Introduction

In sharp interface approaches to solidification, phase boundaries are modeled as hypersurfaces
across which certain quantities jump. In the last two decades also the phase field method has become
a powerful tool for modeling the microstructural evolution during solidification (see [7, 25,11, 8]

for reviews). Instead of explicitly tracking the solid-liquid interface an order parameter is used. It
takes different values in the phases and changes smoothly in the interfacial regions, which leads to
the notion of diffuse interface models. The typical thickness of the diffuse interface is related to a
small parameter. In the limit ase — 0 sharp interface models are recovered.

The relation between the phase field model and the free boundary problem is established using
the method of matched asymptotic expansions. It is assumed that the solution to the phase field
model can be expanded inseries in the bulk regions occupied by the phases (outer expansion)
and, using rescaled coordinates, in the interfacial regions (inner expansion). To leading erder in
a sharp interface problem is obtained. If we consider the phase field system as an approximation of
the sharp interface problem it would of course be desirable that phase field solutions converge fast
with respect te: to solutions to the sharp interface problem. This becomes even more important as
in numerical computations the spatial grid size has to be chosen smaller (kaa e.g.[[13]). In
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this paper we are interested in phase field approximations of the sharp interface problem which are
of second order, i.e., we aim for constructing phase field systems such that the first order correction
in the e-expansion vanishes. This would then lead to much more efficient numerical approaches for
solidification.

The method is formal in the sense that, a posteriori, it is not controlled whether the asymptotic
expansions really exist and converge. In the context of solidification it has been applied on models
for pure substances [110,]26], alloys [BO, 5], multi-phase systems [16], and systems with both multiple
phases and components|[15] in order to derive sharp interface limits (first order asymptotics). We
remark that, in some cases, this ansatz has been verified by rigorously showing that, in the limit as
¢ — 0, the sharp interface model is obtained from the diffuse interface model (selel €.g.[[1], 10, 24,
28)).

Our interest in the higher order approximation is motivated by the results obtained by Karma
and Rappel[[19] in the context of thin interface asymptotics where the interface thickness is small
but remains finite. Their analysis led to a positive correction term in the kinetic coefficient of the
phase field equation balancing undesiradie)-terms in the Gibbs—Thomson condition and raising
the stability bound of explicit numerical methods. Moreover, the better approximation allows for
larger values ofs and, therefore, for coarser grids. In particular, it is possible to consider the
limit of vanishing kinetic undercooling. Almgrehl[2] extended the analysis to the case of different
diffusivities in the phases and discussed both classical asymptotics and thin interface asymptotics.
By choosing different interpolation functions for free energy density and internal energy density,
an approximation to second order can still be achieved but the gradient structure of the model
and thermodynamical consistency are lost. Andersson [4] showed, based on the work of Almgren,
that even an approximation of third order is possible by using high order polynomials for the
interpolation. McFadden, Wheeler, and Anderdon [23] used an approach based on an energy and
an entropy functional providing more degrees of freedom to tackle the difficulties with unequal
diffusivities in the phases while avoiding the loss of the thermodynamical consistency. Again, both
classical and thin asymptotics are discussed as well as the limit of vanishing kinetic undercooling.
In a more recent analysis Ramirez et al.[[27] considered a binary alloy also involving different
diffusivities in the phases and obtained a better approximation by adding a small additional term to
the mass flux (antitrapping mass current, the ideas stem fram [18]).

We aim to extend the results to general non-isothermal multi-component alloy systems allowing
for arbitrary phase diagrams with two phases. The models studied in the literature usually use the
free energy or the entropy as thermodynamical potentials (seele.ql[[3] 26] 29, 30] and the discussion
in [20]). It turns out that, in our context, the reduced grand canonical poten{isde [22]) is more
appropriate for the analysis. To motivate this let us review some thermodynamics.

We will, for simplicity, consider a system with uniform density, which is in mechanical
equilibrium throughout the evolution. Changes in pressure or volume are neglected. In this case,
the Helmholtz free energy density is an appropriate thermodynamical quantity to work with.

It is conveniently written as a function of the absolute temperafurand the concentrations
c= (D, ..., c™M) e RV, its derivatives being the negative entropy densityand the chemical
potentialsyy = (u @, ..., ™) e RV,

df = —sdT + p - de.

Here, the central dot denotes the scalar produ@&¥nThe internal energy density is= f + T's.
For the reduced grand canonical potentia= —g/T, ¢ = f — - ¢ being the grand canonical



MULTI-COMPONENT SYSTEMS 133

potential, we then obtain

oo 2) o) ool )

in particularu = (@, @) = (=1/T, u/T) € RV are the variables conjugateta c) € R¥+1.
Assuming local thermodynamical equilibrium the vecitois continuous across the free boundary

in a sharp interface model. This will be important in the matched asymptotic expansions studied
later and therefore we will state the problem from the beginning in these variables. We refer to
for more details on the thermodynamical background.

Next, we will briefly state a sharp interface problem for a liquid-solid phase change in a non-
isothermal multi-component system (df. [15] for more details). Détand D be the domains
occupied respectively by the liquid phase and the solid phase antbetthe interface separating
the phases. I’ and D*, conservation of mass and energy is expressed by the balance equations

N
O (W) ==V - Ji ==V LV(=u), 0<i<N, (1)
j=0
wherey ,0 = e andy ,» = ¢” denote derivatives of, the J; are the fluxes, andl = (L;;); ; is

a matrix of Onsager coefficients which may dependwo€onstitutive relations betweeh, L, and
u may depend on the two phaseand!. OnI" we have

u" is continuous, i <N, (2)
N 9l
[0tk v =[= 2 Lyvu?] v =oly 0@l 0<i <N, 3)
i=0
av = ok — [y, 4)

wherev is the unit normal o™ pointing into D!, v is the normal velocity in the direction, o is

the surface tensiow, the curvaturey a kinetic coefficient, and]. denotes the jump of the quantity

in the brackets, for examplep[(u)]ls = Y;(u) — ¥s(u). Equations[(R) and [3) are also due to

conservation of mass and energy. The Gibbs—Thomson condifion (4) couples the motion of the phase

boundaries to the thermodynamical quantities of the adjacent phases such that, locally, entropy

production is non-negative. For the case of a system involving multiple phases this is shiown in [15].
The above stated sharp interface model will be approximated by a phase field model of the form

1 1

wdip =0 Ag — Ug—zw/(w) + Z—Sh/(w)(w;(u) — Us(w), (5)

N .

WY (@) =V -y LijVu, 0<i<N. (6)
j=0

Here, ¢ is the phase field variable. We haye= 1 in the liquid phase an¢ = 0 in the solid
phase. The functiom is a double-well potential with minima at 0 and 1 corresponding to the
values ofyp in the pure phases. The reduced grand canonical potetialsdy,; of the pure phases
are interpolated to obtain the system potentidi:, ). For this purpose, interpolation functions
between 0 and 1 liké(¢) in the above equation are used.
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The approximation of the sharp interface model has to be understood in the following sense:
Assume that solution@., ¢) to (§) and[(§) can be expandedstseries of the form

u=upoteur+- -, @=¢o+epr+---,

and similarly in the interfacial regions using coordinates which are partially rescaledtive
expansions are precisely stated in Sedtjon 2, as is the following matching procedure). After matching
the expansionayg andgg solve [1)-#) whered! = {go = 1}, D* = {go = 0}, I" is the set where
@o jumps, andx is related taw.

As long as the first order correction terias, ¢1) do not vanish the approximation of the sharp
interface model by the phase field model is said toberder one Otherwise it is (at leastf order
two. To see whether this is the case one has to derive and analyze the equations satisfie@dy
Our result now reads as follows:

MAIN RESULT. Consider a two-phase multi-component system with arbitrary phase
diagram. Then there is a possibly non-constant correction term to the kinetic coefficient
w such that the sharp interface model (d))-(4) is approximated by the phase field model (5),
(6) to second order. The kinetic coefficient has the structure w = wg + cw1(u) where

o1(w) = [P @) - LY u@)]iC
with some constant C depending on the interpolation function h.

A new feature compared to the existing results i |2, 4, 19] is that, in general, this correction term
depends on, i.e. on temperature and chemical potentials. Indeed, up to some numerical constants,
the latent heat appears in the correction term obtained by Karma and Ragpel [19]. Analogously,
the equilibrium jump in the concentrations enters the correction term when an isothermal binary
alloy is investigated. But from realistic phase diagrams it can be seen that this jump depends on the
temperature leading to a temperature dependent correction term in the non-isothermal case.

Our model will be described in Sectign 2. In Sect[dn 3 we will apply matched asymptotic
expansions to deduce a linear parabdli¢e)-correction problem. Given appropriate initial and
boundary conditions, zero is a solution to the correction problem. By numerical simulations of
suitable test problems we investigate the gain in efficiency due to the better approximation. For
this purpose, numerical approximations of solutions to the phase field model with and without the
correction term are compared in Secfign 4.

2. Phase field model for multi-component systems

Let D c R?, d = 1,2, 3, be a spatial domain with Lipschitz boundary which is occupied by an
alloy and letl = [0, rmax] be a time interval. Further, le¥ € N be the number of components in
the system.

CoNVENTION. Throughout this article, partial derivatives are sometimes denoted by subscripts
after a comma. For example; .., (u, ¢) denotes the second order mixed derivativeydis, ¢)

with w andg. Vectors of sizeV + 1 are printed in bold face except for the derivativegofy,, and

Y with respect tau. Tensors of sizéN + 1) x (N + 1) are underlined.
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2.1 Motivation
The Allen—Cahn equation
1
wodp = Ap — —w'(9)
&

models the motion of an interface between two phases; hasea phase field variable. It describes

the presence of one of the phases. In the regions occupied by pure phésess values close to

0 or 1. These values are the absolute minima of the double-well potentlal transition regions

connecting the regions occupied by the pure phaseayies smoothly between 0 and 1 due to the

diffusion term A¢. The transition region will turn out to have a thickness of oreleBy adding

further terms a dependence of the interface motion on thermodynamical quantities can be modeled.
The above differential equation is coupled to balance equations for energy and mass. The

thermodynamical potentials are postulated to be the derivatives of the entropy density (see [15]),

and for the fluxes we postulate linear combinations of the corresponding thermodynamical forces,

hence with Onsager coefficients; we obtain

1 XN —pu@
de=—V- (LOO(T, OV +) Lo, e p)V— )

j=1
. 1 N —u
e = _v. (L,-O(T, eV + ;LU-(T, eV —r )
whereT is the temperature and = (¢'V, ..., ™)) a vector of concentrations") describing

the presence of componentGiven the free energy density = f(7, c), the chemical potential
corresponding to componentis the derivative off with respect toc”, i.e. @ = f o). The
internal energy density s= f + sT, s = — f.7 being the entropy density.

2.2 Model and assumptions

It turns out to be more appropriate to write down the above conservation laws in terms of
the variablesu = (-1/T,u/T) and to use the reduced grand canonical potential as the
thermodynamical potential (see Appendik A for the thermodynamical relations). We define the set

N
V= [c: ®, ..., M)y eRrVN: Zc(i) = 1},
i=1

and identify its tangent space at every paintith
N .
TN = [u = ®, ™)y e RV Y u® = o}.
i=1

Moreover, we defing := R xT XV. The problem then consists in finding smooth functions

oI xD—>R, u:(u(o),...,u(N)):IxD—>Y
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that solve the partial differential equations

1 1
(wo + ew1(u))dp = Agp — S—Zw/(@ + gh/(tp)k”(u)’ (7)
N .
WV, @)=V Livu,  0<i<N. (8)
=0

The first equation is a forced Allen—Cahn equation for the phase field vagiaflee coupling to

the thermodynamical quantities via the last term in that equation will be clarified below. We are
interested in the limit — 0. The functionw; : ¥ — R is some correction term in order to obtain
quadratic convergence and will be determined later. The derivatives of the reduced grand canonical
potential are the conserved quantities of enargy v ,0 and concentrations® = Vi, 1<

i < N (seq Appendix A for the exact relation betweenc) and the derivatives of with respect to

u). The equations irf {7) are the balance equations for these conserved quantities. Concerning all the
other functions and constants appearing in the above equations we make the following definitions
and assumptions:

A. wo is a positive constant.
B. w: R — R™ is some nonnegative smooth double-well potential which attains its global minima
at 0 and 1; more precisely, we have

w(p) >0 ifg ¢{0,1),
wO=w® =0 wO=w®d=0 w'0=uw"l>0.

Moreover,w is symmetric with respect to/2, i.e.w(1/2+ ¢) = w(1/2 — ¢).
C. h : R — Ris a monotone symmetric interpolation function between 0 and 1, i.e.

h(0) =0, h)=1 h1/2+¢)=1—-h(1/2—¢), h'(p)>0.

Furthermore, we require that(0) = #’(1) = 0.
D. ¥ : Y x R — R is smooth and given as interpolation between the reduced grand canonical
potentials of the two possible phaseand!, i.e.

¥ (u, @) = Y (u) + h(p) (Y (u) — P (u))

with a function’ satisfying AssumptioE]C. Observe that in the case: h the model lacks
thermodynamical consistency, i.e. an entropy inequality might not hold[(sge [2€, 19, Z]). In (7)
we used the abbreviation
Y (u) == Yi(u) — Ys(u).
The functiony is convex inu so that[(B) becomes parabolic. We will frequently yse:, ¢),
¥s(u) and ¥, (u) as functions of arbitrary. € RN*1 which enables one to write down the
partial derivativeys ,« (u, ). But no results depend on the extension as only argumesty’
and derivatives along will be used.
E. The matrixL = (Lij)fYJ.:O of Onsager coefficients is constant, symmetric, positive semi-

definite, and the kernel is exact- = sparf(0, 1,...,1) € RN*1}. Observe that then

N N
Y Lij=00<j<N = a,(z Vo (u, g&)) =0 = %Y @) €Y.
i=1 i=1
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Moreover, for eachy € Y the linear systenhé = v has exactly one solutioh € Y which we

will denote byt = L~1v.

The handling of dependence aris straightforward (cf. the remark at the end of Subsegtion 3.5),
and dependence of the diffusivities on the phase has already been considgfed in [2]. Therefore,
the analysis is restricted to this simple case.

2.3 Evolving curves

To relate the diffuse interface model to a sharp interface model, the method of formally matched
asymptotic expansions will be used. The procedure is outlined with great carelin[14, 12]. Here, we
will only sketch the main ideas for the two-dimensional casedi2.2.

For somes > 0 we will denote a smooth solution 10] (7) andl (8) bz, x; ¢), ¢ (¢, x; ¢€)). The
family of curves

Ct;e) ={xeD:plt,x;e)=1/2}, e>0tel, (9)

is supposed to be a set of smooth curvedinln addition, we assume that they are uniformly
bounded away fromd D and depend smoothly oft, ) so that as= — 0 some limiting curve
I'(t; 0) is obtained. We denote hi'(z; ) and D*(z; &) the regions occupied by the liquid phase
(whereg(t, x; ) > 1/2) and the solid phase (whepér, x; ¢) < 1/2) respectively.

Let y(z,s; 0) be a parametrization of (t; 0) by arc-lengths for everyt € I. The vector
v(t, s; 0) denotes the unit normal of(r; 0) pointing into D!(; 0), andz(z, s; 0) = 3,y (z, s; 0)
denotes the unit tangent vector. The orientation is such(tha is positively oriented.

We assume that the curves(t; ) can be parametrized ovdr(¢; 0) using some distance
functiond(z, s; €) by

y(t,s;¢) =y, s;0)+d(t,s; e)v(t, s; 0). (20)

Close tos = 0 we assume that there is an expanslan s; £) = do(z, s) +etda(t, s) + €do(t, 5) +
0(£3). Asd(z, s; 0) = 0 we conclude thaiy(z, s) = 0.
Also the curvature (¢, s; ¢) and the normal velocity(z, s; ¢) of I'(¢; €) are smooth and can be
expanded (sge Appendix C). We get
K(t,s1€) = k(t,5:0) + e(e(t, s:0%d1(t, 5) + dsda(t, 5)) + O(e?),
v(t,s;e) =0y(t,s;¢e)-v(t,s; &) =v(t,s; 0) + ed°d1(t, s) + 0(82);

here,0° = 9, — v, 9d; denotes the (intrinsic) normal time derivativg, = 9;y - T being the non-

intrinsic tangential velocity (cf. Appendix|B).

2.4 Definition of outer variables

We suppose that in each domainwhose closureE with respect to the topology oR“ satisfies
E C D\I'(t; 0) the solution can be expanded in a series cloge=00 (outer expansion):

K K
ult,x;e) =Y fu(t.x) + 0, et xie) =) faw )+ 0 ., (1)
k=0 k=0
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Near I'(¢; 0), we can define the coordinatés r), r being the signed distance offrom I"(¢; 0)
(positive in directiory, i.e. if x € D!(t; 0)). Hence, in a neighborhood &f(z; 0) we can write, for
r #0,

u(t,s,rie) =u(t,x;e), @,s,r;8) =, x;¢). (12)

2.5 Definition of inner variables

Let z be the Ye-scaled signed distance offrom I'(z; 0), i.e.z = r/¢, and letU (¢, s, z; €) =
u(t,s,r;e), ®(,s, z;e) = @, s, r; e). We now suppose that we can expdiidand @ in these
new variables as follows:

K

Ut,s,z;6) = Y U, s, 2) + 0K, (13)
k=0
K

D(t,s,z:8) = Yy " Pr(t,5,2) + 0K, (14)
k=0

2.6 Matching conditions
For the two expansions far to match in the limit ag — 0, certain conditions are necessary (see

for the derivation): as— +oo foralli € {0, ..., N},

Uy (2) ~ ul(0%), (15)
UV () ~ ul(05) + (Vui’ (0F) - v)z, (16)
9,U(2) ~ Vul (0F) - v, (17)
9, UY () = vl (0%) - v + (v - V) - V)u (0F))z (18)

and analogously fo® andg. Here, for a functiorg (¢, x) = g(¢, s, r),

g(0h) = rli\n})é(t, s,r), g07):= Ji;noé(t, s,7),

wherer = dist(x, I"(s; 0)). Remember that > 0 if and only ifx € D/(¢; 0), and that < 0 if and
only if x € D*(z; 0).

3. Asymptotic analysis
3.1 Outer solutions

In the region away fromi"(z; 0) we plug the expansiong ([L1) into the differential equati¢hs (7)
and [8). All terms that appear are expandee.in

To leading order0 (¢ ~2) we obtain from[{¥) the identity G= —w’(¢o). But the only stable
solutions to this equation are the minimawefhencepg = 0 or gg = 1. We defineD*(¢; 0) as the
set of all points withpg = 0 and similarlyD’(¢; 0) with o = 1.

To the next ordeO (¢~1) we obtain

0= —w"(¢po)g1 + 3h' (90)¥ (uo). (19)
As ¢o = 0 or= 1, using Assumptioris|B aiid C we obtgin= 0 as the only solution.
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To leading ordei0 (%) we obtain from[(B), written as a vectorial equation,
3 (Y u(uo, 90)) = LAug. (20)

Depending orpg we havey o (uo, 9o) = (Y1), w(10) OF ¥ o (uo, 90) = (V) «(uo). In both cases
(20) is a parabolic equation farg by Assumptiorn Ip.
To orderO (¢1) we obtain

0 ( ww) (w0, po)u1) = LAuy (21)

where we have already made usepef= 0. Assumptiof D states that is convex so thaf (21) is a
linear parabolic equation far;.

To determine boundary conditions for [20) ahd| (21)®m; 0) we plug the expansions ([L3) and
(I4) into the differential equations.

3.2 Inner solutions to leading order

In we describe how the derivatives with respect.to) transform into derivatives with
respect taz, s, z). To leading orde (¢ ~2) we get from [

0=9,.Po — w'(Po). (22)

By (@) and the assumption that {14) holds true fo= 0 we have®y(0) = 1/2. The matching
conditions[(Ib) imply

Do(t, s, z) —> e(t,s; O+) =1 asz— oo,
Do(t,s,z2) > ¢(t,s;07)=0 asz—> —oo.

Therefore®o(z) only depends on. Furthermoredg is monotone, approximates the valuestab
exponentially fast and satisfigg(—z) = 1 — ®o(2).
For the conserved variables we get frgr (8)

0 = Ld,.U. (23)

Using Assumptio@E we have.Up = L~10 = 0in Y so thatUy is affine linear inz. By the
matching conditions (15)/¢ has to be bounded as— +o0, hence we see thdfg must be
constant inz, which meandJ/o = Uy(¢, s). The matching conditiorf (15) implies th&fo(z, s) is
exactly the value ofig at the pointy (¢, s; 0) € I'(¢; 0) from both sides of the interface. In particular,

ug IS continuous across the interfacét; 0). (24)

3.3 Inner solutions to first order

To order0O (¢~1) equation[(}) yields
—wovd, Do = ;D1 — k3, Py — W' (P0)P1 + 31 (Po)¥ (U0). (25)

From the solution td (19) we get (s, s, 0%) = 0. MoreoverVyo(t, s, 0F) - v = 0 asyg is constant.
Due to the matching conditiong (16) we hawe — 0 asz — =oo. The operatoll(Pg)b =
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d,.b — w” (Po)b is symmetric with respect to the2-product overR. Differentiating [22) with
respect ta we see thad, @ lies in the kernel ofZ(®g). Sincedg(—z) = 1 — Po(z) we find with
the help of AssumptiC that g andh’ (®g) are even, hencg (R5) allows for an even solution and
in the following we will assume thag; is even.

We can deduce a solvability condition by multiplying the equation wit#o and integrating
overR with respect ta;:

0= /R ((k — wov)(3;P0(2))? — 3 (Uo)' (P0(2))d.Po(2)) dz = (k — wov)] — 3% (Uo)  (26)
where
I = / (0,D0)° dz.
R
The systen{ (8) becomes, to ord@ts 1),
039 u(Uo, Po) = —vd((¥) u(Uo) + h(@)¥,u(Uo)) = LI -U1.
AsUp = Uo(t, s) we obtain®,,(Uo) = [{,u(u0)l} = (1) w(uo) — (¥),u(ug) for all z. We
integrate two times with respect taand get
Ui= —L_1<v /Z V¥ u(Uo, o) dz’ — Az) +u
0
~ =L oW wUo)z — Az — o[ u(uo)] H) + @ asz — oo
~ =L o) wU0)z — Az — o[ u(uo)iH) + 1 asz > —oo (27)

whereA € R x XV (observe that theny ,, — A € ¥, which allowed us to use AssumptiEl]w Eto
invert L) andw € Y are two integration constants and
~ 00 ~ 0 ~
A= / (1 - h(@o(2))) dz = / (@o(2) dz.
0 —00
Here, we used the fact théfy converges to constants exponentially fast, so that the intg;‘@rladis
been replaced by~ while the linear terms remain. Usir{g {16) we derive
ui(t, s, 0%) = @ + vL Y w(uo)l} A, (28)
which means, in particular, that
w1 iS continuous acrosE (¢; 0). (29)
By (I7) the following jump condition is obtained at the interface:
[~LVug], - v:= —LVuo(t,s,0") - v+ LVuq(t,s,07) - v
= (1) u(uo) — A) — (V(¥y) ul(uo) — A)
= o[y w(uo)l;. (30)
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3.4 Inner solutions to second order

Using the fact thatbo only depends op the phase field equation to orders°) gives

— wovd, D1 — w1(uo)vd, Py — wp(8°d1)d,Po
= 811@2 - u)”((])o)(])z + (asd1)23zz<1>o - KZ(Z + dl)az(po - assdlaz(po
— k001 — 3w (P0)(P1)* + 3¥ (Uo)h" (@0) 1 + 3¥.u(Uo) - Urh' ().

To guarantee thab, exists there is again a solvability condition which is obtained by multiplying
with 9, &g and integrating ovelR with respect taz. The®4-terms in this condition vanish as can be
seen as follows:

/ ((k — wov)3, @1 + Sw” (@) (P1)* — SW (Uo)h" (Po)P1)d, Do dz
R
- fR (k — wpu)d: ®19, B0 — w' (Bo)P13. By + 10 (Uo)h' (@0)d d1) e
=2k — wov)/ 0,10, Podz — / 0,,P10,P1 dz
R R

where we used (25) to obtain the last identity. Sidg@1 - 9,®¢ and 9., P - 9.P1 are odd the
integrals in the last line vanish. Defining the constants

0 0
H = / 29,(h o ®o)(z) dz = —/ 29, (h o Po)(2) dz,
0 o)

o0 Z -
J = / d.(h o cDo)(z)/ (1= (ho ®g)(z))dz' dz
0 0

0 0
= f 3. (h o ®0)(2) / (h o @o)(z') dz' dz

—00

and using[(2]7) for the remainirlg1-term, a short calculation shows

— fR 3w (Uo) - U1d, (h o ®o) dz

= —1[V w0l - (@ — LY w(wo)].H + LY w(u0)]2J)
= =3[V u@0)], - u1 + V[V u (@), - LY w(uo)]i(H + H — 2J)/2

where we used (28) to get the last equality.
The whole solvability condition then becomes

0 = (—wod° + dys + kAdrl — [ w(uo)]ius
+ v(—o1(uo)l + [V w0l - LY w(uo)li(H + H — 27)/2). (31)

We remark thab°d; and(d,; + «2)dy are the first order corrections of the normal velocity and the

curvature ofl"(z, s; €) (seq Appendix {C).
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In the following, whenever we will evaluat¢ and its derivatives atU o, @¢) this will be
denoted by a superscrippt The conservation lawE](8) yield, to ordene"),

03, (YO U1+ ¥ 0, @1) + 8°¥, — (0°d)d.y 9, = L (0.:.U2 — k3. U1+ d,Uo)  (32)
where we used the fact thBty does not depend an Integrating once with respect tdeads to

— Lo, Uy = v3z(¢2mUl + w’qugbl) - B

0]
+ / (@°d1)a. 0, — 9°90,) di’ — kLU +Ldy U (33)
0

N’

(iii)

(i)
whereB € Y is an integration constant. We want to derive a correction to the jump conditipn (30),

i.e. a jump condition foi1. Therefore we are interested in the terms contributingdq - v in (3.
Applying (18) to®1, U1 and using the fact that (0) = 4’(1) = 0 we see that

@) ~v(W) wu(ug)ur — B+ (...)z asz — oo,

~v(V¥s) wu(uwo)ur — B+ (...)z asz - —oo.

Furthermore,

(i) = 0°d) (Y% |p) — /O [0°((¥5)%) + (3°W ) (h 0 P0)(2)] dz’

~ 3(0°dD)[¥ (@)l — (3°(W1) w(uo))z + °[¥ u(uw)LH  asz — oo,
~ —1@°d) ¥ wuo)l} — 3°(Wy) wo)z + 3°[¥ u(u)LH  asz — —oo

where for the first term the symmetry bin Assumptio@: has been used. In (iii) we Us€ (28) again
to obtain
(i) =«Luy(,s,0)+ (...)z asz — *oo.

Finally, by {29), the first order correction of the jump conditipn] (30) at the interface is

[—LVuil' v = o[ wu(uo)]. - u1 + (9°d1) [V w(u0)]’. (34)

3.5 Summary of the leading order problem and the correction problem
The problem to leading order consists of the bulk equafioh (20) which is coupled to the conditions

(24). (39) and[(Z6) ori” (z; 0):

(LOP) Find a functiorug : I x D — Y and a family of curve$"(¢; 0)},c; separatingD
into two domainsD!(r; 0) and D* (¢; 0) such that

3 (Y1) w(uo)) = LAug inD'(1;0), r € I,
3 ((Vs) w(uo)) = LAug  inD°(t;0), t € 1,



MULTI-COMPONENT SYSTEMS 143

and such that for all € 1, on I"(¢; 0) we have:

ug IS continuous,
[—LVuol; - v = o[y w(uo)]},

1 1
wov = K — Z[W(Uo)]s
wherev is the unit normal ta”(¢; 0) pointing into D (z; 0).

If we choose ~
_ H+H-2J
01 = 01(u0) = [V u(uo)l; LY u(uo)y————

then the correction problem consisting[of](2[L),](20)] (34) &nfl (31) reads as follows:

(39)

(CP) Let(ug, {I'(t; 0)};) be a solution to (LOP), let(r) be the length off"(¢; 0) and set
S;={(t,s):t€l,s €]0,I1())}. Find functionsuy : I x D — Y andd; : S; — R such
that

(Y1) wu(uo)ur) = LAug  in D'(1;0), 1 € 1,
at((Ws),uu(UO)ul) =LAu in Ds(t; 0), r el,
and such that for all € 1 on I"(¢; 0) we have:
w1 IS continuous,
[—LVuily - v = v[Ywu@o)lius + (3°d)[V w(uo)l;,
o 2 1 I
wo(9°d1) = (dgs + k°)d1 — Z[‘!f,u(uo)]x “ug.
Obviously,(u1, d1) = 0 is a solution given appropriate boundary conditions on If this solution
is unique then the leading order problem is approximated to second orddyyithe phase field

model. The calculation in Appendix] C shows that (CP) is in fact the linearization of (LOP). We
point out that the choic€ (85) is crucial in order to guarantee that the undesired tefrns in (31) vanish.

REMARK. If the diffusivity matrix L depends om then equatior (32) becomes
— 03 (VU1 + Y0, 1) + 3°Y, — (0°d1)d, ¥, = LU0)d.. U
+ 0 (L ,(Uo)U10;U1) + L ,,(U0) (s Uo)? + L(U0)dssUo — k L(U0)d,; U1
resulting in
—L3.Up = (i) + (i) =k LWU0) U1+ L ,(Uog) - U1d, U1 +(L ,(U0)(3,U0)? + L(U0)d5sUo)z
=(iii) =:(iv)
instead of[(3B). The matching conditiofis(15),|(16) dnd (17) yield

(V) = L ,,(uo) - u1Vuo(0F) - v + (...)z  asz — =oo.
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This leads to an additional term in the jump condition of the correction problem. The confitjon (34)
now reads

[—L(uo)Vur — L 4, (uo) - u1Vugl, - v = o[y wu(uo)lius + (3°d0)[¥,u(uo)];,

but this is still consistent with the above statement that (CP) is the linearization of (LOP) as the
additional term results from expandiidgin a straightforward way.

4. Numerical simulations

Numerical simulations were performed in order to show that convergence to second order indicated
by the analysis can really be obtained. For this purpose, we analyzeditmendence of numerical
solutions to the phase field system and compared the numerical solutions with analytical solutions
to the sharp interface problem if available. The differential equations of the phase field system were
discretized in space and time using finite differences on uniform grids with spatial meshisize
and time stepAz. The update in time was explicit, and to guarantee stability we chosg Ax?.
If not otherwise stated we decreased the meshsizentil we were sure that the error due to the
discretization became inessential.

The order of convergence can be estimated by the following procedure. Assume that the
dependence of the error can approximately be expressed by

Err(e) = erre® + higher order terms

with a constant err and an exponént 0 which we are interested in. Given some> 1 (we often
usedm = +/2) one can derive up to higher order terms

—k
Err(e) — Err(e/m) <1> ok (36)

Err(e/m) — Err(e/m2)  \m

from which one can calculateby inserting the measured values for Ejt

4.1 Scalar casein 1D

Letd = 1 andN = 1, i.e. we consider a pure material. We get «© and postulate the reduced
grand canonical potential

Y, @) = Seou? + Aum — (A= h(p)), i€ W) = A — un),

whereA, u,, andc, are constants. Choosing(p) = %goz(l — ¢)2 as double-well potential we
obtain:

¢] 1
£(w0 + £w1) g = £0Dyxp — ?Gw(l — )= 2¢) + S — un) (@), 37)
Y = (ot — A(L—h(9))) = Kdyyu. (38)
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This system differs from typical phase field systems (see [e.g. [26]) by thestermWith these
equations the following sharp interface problem is approximated:
cpiu = K0y, x # p(t),
u is continuous,
ap' () = [-Kdwull, x=p@),
wop'(t) = Mupm —u),  x = p(1),

wherep(t) denotes the position of the interface at timbmposing the boundary condition— 1+
asx — oo there is the following traveling wave solution: settimg= ¢ *A + 1, we define

p(1) = vt = wy A — uit, (39)
u=u;, x < ut, (40)
U=1loo + (U; — Uso) eX;X—K_lcvv(x —vt)), x> vt. (41)

Choosingi(¢) = h(p) = ¢2(3—2¢) we computd = 1/2, H + H —2J = 19/90. Furthermore, if
A=05 u,=-10, wuew=-20, ¢,=10, @wy=025 K=10, =10

we obtain the velocity = 1.0, the value:; = —1.5 at the interface and by (B5) the correction term
w1 ~ 0.013194444,

We solved the differential equations on the time intetvak [0, 0.1] for several values of.
We chose Dirichlet boundary conditions fogiven by the traveling wave solution (40), {41) to the
sharp interface model and homogeneous Neumann boundary conditigngoinitialize ¢ we set

9(0,x) = 21 +tanh32)) = do(z),  z = (x —x0)/e, (42)

with some suitable initial transition poimg such that the transition region (the $ete (5, 1 — §)}

for some smalb, e.g.5 = 10-3) remains away from the outer boundary during the evolution. The
function &g is the solution to[(Z2) with the boundary conditiofg(z) — 0, 1 asz — —oo, +00.

Initial values foru were obtained by matching outer and inner solutions to leading and first order
obtained from the asymptotic expansions (see ke.g. [21])

u(0, x) = uo(0, x) + eu1(0, x) + Uo(0, z) 4+ eU1(0, z) — common part
The functionug(0, x) has the profile of the traveling wave solution:

Cy
w0 (0, x) = {uoo + (U; — uoo) exp(—?v(x — xo)>, X > xq, (43)

Ui, x < Xo.

As we wantu; = 0 to be a solution to the correction problem we chas€, x) = 0. By equations
(23) and[2W)Uo = u; is the interface value which is constant in the normal direction. Equation
@7) impliesd,U1(z) — V - uo(xg) = 0 asz — —oo. Asu1(0, x) = 0 we haveir = —(v/K)AH

by (28). By [2T) we see thad = v(¥r;) (Uo), which yields

< ~ ~
v )“_Z+/(1_h0¢0)(2/)dz/—H, z>0,
U1(0,Z)=? 0 _ 0 )
)\/ (hoo)(z)dz' — H, z <0.
V4

The common partig; — (vA/K)z if z > 0 andy; if z < O.
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Deviation of the transition att = 0.1
10 T

Convergence rate behaviors in time
T T

T T 24 : T T
—— wﬁthout corr_ection —— with correction term
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1 - - - linear convergence
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FIG. 1. Left: deviations of the phase boundaries measured from the exact interface position gijeh by (39)toeer
resolution of the transition region is very fine so that the error caused by the discretization is negligible; the dashed line
corresponds to a linear convergence behavier Right: behavior of the numerically computed convergence rate§ (¢f. (36))

in time for the anglegd = 15° (see SectioZ).

The phase boundari¢g = 1/2} were determined by linearly interpolating the values at the grid
points. Subtracting from the computed transition point the exact position givénlby (39) we got, up to
sign, the values in Figufg 1 (left). We found that when considering the correction term the interface
was too slow but the numerical results indicated a quadratic convergence. Without the correction
termw; the interface was too fast and larger errors occurred indicating only linear convergence in
Similar results concerning the order of convergence hold true if

1(0,x) =ug(0,x) OF @ = X[x.00]

was chosen as initial data instead of the above smooth functions. The only difference is that then the
errors are larger.

In the above simulations, the transition regions were resolved by more than 100 grid points to
determine the error and the convergence behavior accurately. In applications, such resolutions of
the interface are much too costly. Therefore, we simulated the same problem over the larger time
interval = [0, 8.0] with much less grid points in the interface. We found thatsth&x ratio should
be at least §2. The deviations at= 8.0 are given in the following table:

: [o4a  Joavz o2  Jozvz |01  |o01/v2 | 005
with correction || —0.0601 | —0.0354 | —0.0280
without corr. 0.5867 0.4155 0.2867 0.2020 0.1355 0.0948 0.0502

Again the errors are much larger without the correction term. To get an error as obtained with the
correction term we need to takeand Ax eight times smaller. If explicit methods are used the
expenditure becomes 8 times larger if the grid constant is halved due to the stability constraint
At < Ax? for the time step. Hence, in our example, the costs without the correction term are
8% = 512 times larger to obtain the same size of the error.
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4.2 Scalar case in 2D
Now, letN = 1 andd = 2 and consider the same reduced grand canonical potential as in Subsection
[4.]. Instead of the smooth double-well potential we used the obstacle potential
8
;w(l—w), O<e<1
0, elsewhere.

Wob(¢) =

Then [3T) has to be replaced by a variational inequalityyfdnut the asymptotic analysis can be
done in a similar way (se€l[6]). The main advantage of such a potential is that the stable minima O
and 1 ofw are attained outside of the thin interfacial layer so that the phase field equations only have
to be solved in a small tube around the approximated interface. The eq(iajion (88gfoains the
same except thak,, is replaced by the Laplacian.

We chose the following constants:

A=05  u, =20, ¢, =10, w=025 K=01 o¢=01

We simulated the evolution of a radial interface. Initially, fowe used the profile

0, —00 < z < —7m?/8,

1 ; 2 2 r—ro
90, x) = {51 +sin(4z/n)), —n/8<z<n%/8, z= —

1, 7r2/8 <z < o0,

which is the solution to the variational inequality corresponding t (22) when restricted to a radial

direction. Herer = /x2 + y2is the radius and we chosg= 0.8. Fori(¢) = h(p) = ¢*(3— 2p)
we get the constants= 3, H + H — 2J = 237?/1024 and hence

M H+H-2]
K 21
For u initially the 1D profile [43) of the traveling wave solution in Subsecfior] 4.1 in the radial
direction was used. As in the 1D casg,= —1.5,v = (wo/A) (U, — u;) = 0.25 andu, = —2.0.

We considered the domaif = [0, 8]2 and chose the grid constantr = 0.02. At different
times we measured the distance of the levelsset 1/2 from the origin depending on the angle
with the x-direction. Again, the values at the grid points were linearly interpolated.-Atl.5 we
obtain the following results:

w1 ~ 0.554201419

without correction with correction
p=20 | p=15 | B=0° p=20 | p=15 | B=0°
e=0.2 2.398226| 2.398924| 2.399661| 1.851693| 1.852492| 1.853469
e=0.14 || 2.277925| 2.278367| 2.278668|| 1.889131| 1.889779| 1.890377
e=0.1 2.180093| 2.180095| 2.179580|| 1.910175| 1.910433| 1.910311

[& [ 0.596551] 0.589719] 0.576271] 1.662103] 1.704448] 1.777240]

The distances as well as the order of convergence (cf. the procedure around efuétion (36) for its
derivation) do not essentially depend on the angle. The order of convergence is much better if the
correction term is taken into account. Moreover, the change in the radius when chaigmgch
smaller if a correctionw; is considered. In Figurg 1 the time behavior of the convergence rates is
shown indicating a slight decrease.
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4.3 Binary isothermal systems

To model phase transformations in systems with non-trivial, non-linearized phase diagrams (see
e.g. Figurd P) we need to introduceuadependent correction term. In this subsection we will
demonstrate that our approach in fact makes it possible to obtain a superior approximation behavior
also in this case.

Sincew = P, u@) e TX? it is sufficient to considerV. We postulate the reduced grand
canonical potential

Y@, u®, 9) = 32+ @M + 0.0 — up) + GuP)?3 = 2uD)) (L - h(p))
with constants.,, = —1.0,A = G = 0.1. The two phasekands are in equilibrium if i (u)]} = 0
(seq Appendix A). Here, the equilibrium condition reads

G
u® = uy — I(u<1>)2(3 —2u®) (44)

from which we can construct the phase diagram in Figlre 2 by the relafioas —1/u© and
c=v 0 =u? —6Gh(p)u® L —u®) whereh,(p) := 1 — h(¢p). Moreover, we get
e, =66uP @ - u?).
For the isothermal case, i£? is constant, we solvef|(7) and
ey = 9y @) = dou?

in the domainD = [0, 28] for ¢t € [0, 40] numerically. We imposed homogeneous Neumann
boundary conditions and sét= 0.4. Initially we chose fou® a profile as in[(4B) fon©,
(1)

u D0, x) = {uoo + (i — u&) exp—2v(x — x0)). x> xo,

45
y lgl) (45)

, x < Xp.
Writing « ™™ as a function inc we get

h(9) =0,
(6Ghy(9) — 1+ (6Gh, (@) — 12+ 24Gh(g)c), hy(@) > O.

WD =
12Ghy(p)

Due to the fraction this is numerically unstable/agy) — 0. Defining = 6Gh,(¢) we set
u® = ¢if B < 1074, but checks were done with different cut off values. The following results do
not essentially depend on the cut off value.

Choosingufl) = 0.6 for the interface value, the equilibrium concentrationsce= 0.6 and
¢ = 0.456. To model the solidification of an alloy of concentration 0.456, we-{étdecay
andu® exponentially to this value by settind) = 0.456. Foru® = «Y = 0.6 we obtain at
equilibrium ué%) ~ —1.648 and an equilibrium temperature Bf; ~ 0.6067. To make the front
move we initialized with an undercooling &f = 0.55, i.e.u® = —1/0.55. Formula[(3P) yields an
estimation of the initial velocity of the front: fasg = 0.08 we havey ~ (A/wo)(ué%) —u©®y~0.2.
The initial position of the fronttg = 8.0 was appropriately chosen so that there were not much
interaction with the external boundary. Initial values fowere again defined as ip (42). By (35),
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Phase Diagram Profiles of c att =0, 6, 12, 18, 24, 30, 36
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FIG. 2. Left: phase diagram for a binary mixture computed fonj (44). Right: profiles of the soltftiothe binary system in
Sectioff 4B during the evolution,= 0.4; the figure indicates already that there is only a negligible influence of the boundary
conditions on the evolution as gradientscaflo not vanish only in the transition region. But simulations on domains with
different lengths were performed to verify this conjecture.

the correction term isi(andi are chosen as before)

AANTAY 3
o1 D) = [c@)? H+H+J
d 21
Equation [(45) does not describe the profile of a traveling wave solution, but a nearly traveling

wave solution can be observed (see Figure 2). We computed the following transition paires of
t = 20.0:

without correction with correction
04 0.2 04 0.2
e 0.4 ‘ > ‘ 0.2 ‘ oz 0.4 ‘ > ‘ 0.2 ‘ oz

| transition [[ 12.3923] 12.3369] 12.2945] 12.2589] 12.1928] 12.1976] 12.1971] 12.1907 |

Without the correction term, the changes in the interface position when changinegmuch larger

than with the correction term. For example, comparing the positions £010.4 and 02, there is a
change ofv 10~1 without the correction term but only ef 5 - 10-3 with it. An explicit solution

to the corresponding sharp interface model to compare with is not known. But this behawior in
indicates that the approximation of the sharp interface solution is improved thanks to the correction
term. A convergence rate of the interface position for simulations with the correction term could not
be computed because of the oscillations in the positions (the position does not behave monotonically
in ¢). Simulations on several slightly finer grids indicated that the numerical error is of the same size
of about 10°2 which explains these oscillations.

4.4 Binary non-isothermal case

Now we will demonstrate that a better convergence behavior can also be observed if several
conserved quantities are considered. We postulate the following reduced grand canonical potential:

@@ u®, 0) = 2@+ @P)?) + @@ — uw) + G —u))(L - h(p))
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with constants:,, = —1.0,u, = 0.6,1 = G = 0.2. For the energy = v, we postulate
the flux K Vu@ with K = 4.0 and for the concentration = v 1) we postulate/Vu'D with
d = 0.1, i.e. there are no cross effects between mass and energy diffusion(A¥ [= G and
[e(w)]) = A are independent of we obtain a constant correction tervn &ndh are chosen as

above)w; = (’}(—2 + %2)%,‘2’ ~ 0.8655555. Usually temperature diffusivity is much faster than
mass diffusivity so that the influence of the concentration part on the correction term is much larger.
At equilibrium (se for the conditions) we have the linear relamj&h— Ue =
u(e%) — . Foru® =y, = 0.6 andu® = u,, = —1.0 (~ 7O = 7, = 1.0) the equilibrium
concentrations aré”) = uY = 0.6 andc® = u® — G = 0.4.
We solved the differential equations fore D = [0.0, 1.4] andt € I = [0.0, 0.5] numerically.
Initial values forg were again defined as ip (42) with an interface locatechat 0.6 away from
the boundaries. Setting?(+ = 0) = 0.6 andu@( = 0) = —1.0 we got initial values for
ande from . For¢ andu™® we imposed homogeneous Neumann boundary conditions. We took
the same boundary condition fof® atx = 1.4, but at the other boundary point we imposed the
Dirichlet boundary condition©@ (x = 0.0) = —1.25 which corresponds to an undercooling ¢51
and made the transition point move to the right. We chage= 0.08 ando = 1.0. At = 0.4 we
measured the interface and we obtained the following results (varyino the column and in
the line):

] | ax\e  Joavz  Jo2 lo2/v2  Jo1 loyvz |
with 0.002 0.704470 0.708335 0.710319

correction | 0.001 0.710339 0.711441 0.712032
without 0.002 0.730569 0.726796 0.723258

correction | 0.001 0.723281 0.720480 0.718347

The computations for = 0.2/+/2 reveal that the error due to the grid is small compared to the
deviation due to the different values fer Computing numerically the order of convergence (see
(38)) we obtained values @f~ 1.78 with the correction term anid~ 0.57 without the correction
term when the runs far € {0.4/+/2, 0.2/+/2, 0.1/+/2} are compared. Similar results were obtained
attimer = 0.5.

5. Conclusions

The asymptotic analysis of a phase field model for solidification in multi-component alloy systems
has been carried out using matched asymptotic expansions. In addition to the leading order problem
a linear correction problem has been derived. If a certain small correction term to the kinetic
coefficient in the phase field equation is taken into account the zero function solves this correction
problem. Hence, there is no linear correction and our model approximates the related sharp interface
problem to second order.

Numerical simulations in one and two space dimensions and for several conserved quantities
were performed with and without the correction term. In all cases the convergence behavior turned
out to be superior when the correction term was considered. Whenever a comparison with an explicit
solution to the sharp interface model was possible a quadratic convergence could be observed while
a linear convergence was observed without correction.
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Appendix A. Remarks on thermodynamics

To model solidification in alloy systems, often the free energy derfsitytaken as thermodynamical
potential. We assume that pressure and mass density are constant. Then the free energy is a function
of temperature and concentrations,

fiRxEZN SR, (T,e) > f(T,0).
Here,T is the temperature ang= (¢, ..., ¢‘™) is a vector of concentrations, i.€? describes
the concentration of componehtThe free energyf is supposed to be concave Thand convex

in ¢. Its derivative operates on the tangent space of the domain, iR>chx”Y c R¥*1, and its
gradient can be naturally interpreted as a vectd 7 XV, hence

Df :RxXN 5> RxTEN, (T,¢)+ Df(T,c) = 7 f, dcf) = (—s, p).

The quantitys = —%f is the entropy density and = aicf are generalized chemical potential
differences. In the language of differential forms we have

df = —sdT + p - de.

The internal energy is the Legendre transform ef f with respecttd’, i.e.e(s) = (— f)*(s) =
sT(s) 4+ f(T(s)). As f is concave ifT, e is concave irs. We have

de=df +sdT +Tds=Tds+pu-dc

leading to

1

ds = —de—ﬁ~dc=: —u9de — @ -de.
T T
In the following we will writee = ¢©@, & = (¢©, D, ..., ¢™) andu = (ug, ). We have
—s:RxEXVN >R, & —s(o),
and assume thats is strictly convex inc. This already implies that
D(—s) :RxXV¥ > RxTXY, & D(—s5)(@) =u,

can be locally inverted. We assume the inversion can even be done globally andadhdie written
as a function of, &¢(u) = (—Ds)~1(u). The reduced grand canonical potential is then defined to

be the Legendre transform efs, i.e.

ri=(—s)*:R xTEN - R, wur ¢¥(u):=clu)- u+ s(c(u)).
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One would naturally identify its derivativ®y (u) with a vector inR x7 V. But usinge(u) =
(—Ds)~Y(u) we can derive the derivative ¢f in w in directionv € R xT XV to be

(DY (u), v) = %((u + 6v) - c(u + 6v) + s(c(u + §v))) .
5=

=u- (Dc(u)v) + v - c(u) + Ds(c(u)) - (De(u)v)

=v-c(u).
This motivates identifyind>y (u) with ¢(u) and writing
DY :RxTEZN 5> RxEV, wr Dy(u) =) = (—Ds) L(u).

In particular, we see that
—d _d @ (N)
0 © Y(u) = e(u), dﬁx//(u) =D, ..., cMy().

One can think off, s andy as being extended to all @" ! whenever partial differentials
of the functions appear. But only the definition on the domains and only derivatives in tangential
direction as mentioned above enter the equations in Se¢iiphs 2] and 4.

Appendix B. Transformation of derivatives near the interface

For the following computations compare alsol[12]. lset > 0. Near the interfacd™(s; 0) we
consider the diffeomorphism

Fe(t,s,2) .= (t,y(t,s;0) + (ez + d(z, s; €)v(t, 5)),

which, for eactr € I ande € (0, gg), maps an open sét(t; ) C R? onto an open tube ()
aroundI”(r; 0). The parametes is the arc-length of "(r; 0) andv andy are as in Sectiop|2. The
coordinatest, s, z) are such that the interface is given by the{$&iz, s, z) : z = 0}. It is supposed
that, uniformly inz, s ande, the tubeB(z) is large enough so that the values fdying in a fixed
interval around zero are allowed as arguments fove are interested in the inverse of the derivative
of F; to obtainV )z (z, x) andV xs(z, x).

Letx := «(¢, s; 0) be the curvature of (z; 0) defined byd;t = «v or, equivalently, byd;v =
—kt. Furthermore, let

v=u(t,s;0) =0y, s;0) v, s;0 (normal velocity, intrinsic),
v = v (t,5;0) =09v(t,s5;0) -t(s,5;0) (tangential velocity, non-intrinsic).

Hence, writingd, = d(¢, s; €) we get

DFg(l,s,z)=<8’t(t’S’Z) ost(t, s, 2) azt(t,s,z)>

ox(t,s,z) 0sx(t,s,27) 0;x(t,5,2)

1 0 0
o (aty + (ez +dg)orv + (0:d)v T — (ez+ dg)kt + (05dg)v 81))
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and
0rt(t,x) Vit(t,x)

D(F. Y, x) = (DF) X1, x) = | 8s(t,x)  Vis(t,x)
0;z(t, x)  Viyz(t, x)

1 (0,0
L _(v; + (624 do)T - dv) R
= T-x(eztd,) \UT 2T e t T—x(eztdy)
1 dyde (e2+ds) 3yd, 1.1 3yd, 1
2 (Z0de + T T T 0V e Ve — V) BV T sise(eer ) ¢

whereo,; y, v, 7, k andd,v are evaluated at, s; 0).
Inserting the ansaZ, = edi1(t, s) + €2dy(t, s) + - - - we obtain, for a functiom(z, s, z) and for
a vector fieldb(s, s, z),

d 1
Eb = — —vd;b+ 38°b — (8°d1)d;b + O(e),
€

1

Vib = Z3.bv + (3sb — d3d19,b)T
&£
+ £(k (z + d1)dsb — (Byda + 0yd1k (z + d1))d.b)T + O(?)

- 1 - . .
V, b= gazb v+ (85b — 85d19.b) - T

+ £(k(z + d1)dsh — (05d2 + d;d1xc (z + d1))3,b) - T + O(&?),
1 1

Ach = 0.:b — “Kkd:b
£ I
+ (asdl)zazzb - Zasdlaszb - KZ(Z + dl)azb - assdlazb + 8ssb + 0(8)7

whered® = 9; — v; 9, is the (intrinsic) normal time derivative (see e[g./[17]).

Appendix C. Expansions of interfacial normal velocity and curvature

Let us assume that the normal velocity and the curvaturé(ofe) can be expanded itseries, i.e.

v(t,s;e) = vo(t,s; 0) + evi(t, s; 0) + szvz(t, ;00 4+,
k(t,s;e) =ko(t,s; 0) + sk1(z, 55 0) + 82K2(t, 5;0) 4.

By (I0) and the following paragraph, the interfadeg; ¢) are parametrized by, := y(z, s; &) =

y(t,s; 0)+dsv(t, s; 0) whered, = d(t, s; &) = ed1(t, s)+&2do(t, )+ -- . We want to identify the

functionsv;, «; in terms of the functiong; (¢, s),i = 1,2, ..., v = v(¢t, s; 0) andk = « (¢, s; 0).
The unit tangent vector and the unit normal vector are

T(t,s;¢) = ds¥e — (1 — kde)T + (05d;)v
o 10svel (L= kdy)? + (95d,)2) /2’
v(t,s;¢€) = Bxygl (A —kde)v — (0sde)T

105vel (L= kde)? + (35de)2) V2"
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Inserting the expansion fak, yields
(L= kde)? + (3,d)?) ™2 = 1+ exda(t, 5) + O(e?)
and finally forv(z, s; ) the expansion

v(t,s;€) = 0rye - v(L,S;€)
@y (t,530) + 8dev + dpdyv) - (1 — kde)v — (35de)T)
B (L= Kkde)2 + (35de)2) 12
_ (1—«dg)v+ 0;de (1 — kd;) — 05devy — dg05de 0V - T
- (1 — kde)? + (35de)?)1/2
= v+ 0%+ O(c?)

where we used;v - v = %8,|v|2 = 0. To compute the expansion oft, s; £) we need
Bssy (1, 53 8) = —(2(Bsde)kc + de (k)T + (K + dysde — k2d;)v.
Then
det(d;y (¢, s; €), 055y (2, 55 8)) = —(L — kdg) (kK + 055de — /czdg) — (05dg) (2(05de )k + dg (35K)).

As
195 vel 73 = (1 — 2iede + k%d? + (0,d2) ™32 = 1+ e3kdy + O(£?)
we obtain
- det(as)/s’ s Ve)
|8Sy8|3

K(t,s:€) = =k + e(,cdy + dy5d1) + O(£2).

Appendix D. Derivation of matching conditions

In this appendix we will derive the conditiors {15)(18) fer Analogous results can be obtained
for ¢.

By (11)) and [(IR) the functiondy(z, s, r) = wu(z, x) are well defined in the neighborhood of
I'(t; 0) which we suppose to be a tube of radiigs We assume that they can be smoothly and
uniformly extended ontd™(¢; 0) from both sides as \, 0 andr 0 respectively. An expansion
in Taylor series at = 0 yields

(t, s, r) = (t,s,0") + ot (t, s,00)r

+ 20t (t, 5,002+ 003, r e (0,50, (46)
i (t, s, r) =ur(t,s,07) + 0, ur(t,s,0)r
+ 10,0 (r, 5,002 + 03, r €[—80,0). (47)

Leta € (0, 1) andi(z) be the length of"(¢; 0). We assume that the expansion

N
W, s,rie) =Y et s, r)+ 0@E"h (48)
k=0

is valid uniformly on{(z, s, r;¢) 1t € I, s € [0,1(2)], r € (€%80/2, 30], € € (O, 0]}
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We assume that the functiolfi& (z, s, z) in (I3) are defined for € 1, s € [0,/(r)] andz € R
and that they approximate some polynomiat imniformly in ¢, s for largez, i.e.

Uit,s.2) R Ut 8) + Uy (6, 9)z+ -+ Uj, (6,92, 7 — Foo, (49)

with ny € N for all k. Moreover, we assume that the expansipn (13) is valid uniformly on
((t,s,z;6):tel, s el0,1()], z€e* b0, a], € € (0, gg]}.

To derive the matching conditions lete (5p/2, 80) ande € (0, 9] and consider the inter-
mediate variable ¢¥. The expansior] (48) is valid with = ¢¢* for ¢ small enough. We can use
(46) and get (dropping the uniform dependencé:om))

@(s”; 6) = e%0(0") + £%0,40(0M)¢ + 62 50, 10(07)¢ % + 0(6™)

+ ela(0%) + M8, 41 (0M)¢ + e 18, 41(0M)¢? + 0(e173)
+ £20(0%) + 218, 4p(0M) ¢ + e272 38, 02(0M)¢2 + 0(273%)
+ 0(e3 + &%),

Using [4T) the same can be written fot € (8o/2, §o) with O replaced by 0.

Now, for ¢ positive, again[(13) is valid for the choige= ¢e*~*. Using [49) and again dropping
the dependence an, s) we obtain
Ue* o) =Uf o+ e U 0+ -+ 0@ VUL, 0"
+ SlUil—O + El+a—lUi|—l§ TN 81+nl(oz—l)U+ Cnl

1ny
+ 82U3—,0 + €2+0171U—2i:1§ 4ot 82+n2(otfl)U—2i:n2{n2 4

The same holds true fers e (80/2, 8p) with U™ replaced bylU .

The expansions o/ andu are said to match if, in the limig N\, O, the coefficients to every
order ine and¢ agree. Comparing the two series tdrandw yields the following relations between
the coefficientsU,jn on the one hand and the derivativigsi; (0™) on the other hand fot < 2:

Ujo=w(0"), Uj,;=0d100"), Uf, =0 2<i<n,
Uso=1420"). U, =840, Uj,=3d,400), U =0 3<i<ne

Obviously from the definition of, a derivative of some function with respectt@orresponds to
the derivative with respect toin the directionv = v(z, s(z, x); 0). Hence, we can repladu; by
Vuy - v. Asv is independent of we can also replacg, o by (v - V)(v - V)u,. We use[(4P) again
and obtain the following matching conditions (comparg (15)}-(18)}:-as o0,

Uo(z) ~ uo(0%),
U1(z) ~ u1(0F) + (Vuo(0F) - v)z,
3.U1(z) ~ Vug(0F) - v,
9. U2(2) ~ Vur(0F) - v + (v - V)(v - V)uo(0h)).
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