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Second order phase field asymptotics
for multi-component systems
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We derive a phase field model which approximates a sharp interface model for solidification of a
multicomponent alloy to second order in the interfacial thicknessε. Since in numerical computations
for phase field models the spatial grid size has to be smaller thanε the new approach allows for
considerably more accurate phase field computations than have been possible so far.

In the classical approach of matched asymptotic expansions the equations to lowest order in
ε lead to the sharp interface problem. Considering the equations to the next order, a correction
problem is derived. It turns out that, when taking a possibly non-constant correction term to a kinetic
coefficient in the phase field model into account, the correction problem becomes trivial and the
approximation of the sharp interface problem is of second order inε. By numerical experiments, the
better approximation property is well supported. The computational effort to obtain an error smaller
than a given value is investigated, revealing an enormous efficiency gain.
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1. Introduction

In sharp interface approaches to solidification, phase boundaries are modeled as hypersurfaces
across which certain quantities jump. In the last two decades also the phase field method has become
a powerful tool for modeling the microstructural evolution during solidification (see [7, 25, 11, 8]
for reviews). Instead of explicitly tracking the solid-liquid interface an order parameter is used. It
takes different values in the phases and changes smoothly in the interfacial regions, which leads to
the notion of diffuse interface models. The typical thickness of the diffuse interface is related to a
small parameterε. In the limit asε → 0 sharp interface models are recovered.

The relation between the phase field model and the free boundary problem is established using
the method of matched asymptotic expansions. It is assumed that the solution to the phase field
model can be expanded inε-series in the bulk regions occupied by the phases (outer expansion)
and, using rescaled coordinates, in the interfacial regions (inner expansion). To leading order inε,
a sharp interface problem is obtained. If we consider the phase field system as an approximation of
the sharp interface problem it would of course be desirable that phase field solutions converge fast
with respect toε to solutions to the sharp interface problem. This becomes even more important as
in numerical computations the spatial grid size has to be chosen smaller thanε (see e.g. [13]). In
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this paper we are interested in phase field approximations of the sharp interface problem which are
of second order, i.e., we aim for constructing phase field systems such that the first order correction
in theε-expansion vanishes. This would then lead to much more efficient numerical approaches for
solidification.

The method is formal in the sense that, a posteriori, it is not controlled whether the asymptotic
expansions really exist and converge. In the context of solidification it has been applied on models
for pure substances [10, 26], alloys [30, 5], multi-phase systems [16], and systems with both multiple
phases and components [15] in order to derive sharp interface limits (first order asymptotics). We
remark that, in some cases, this ansatz has been verified by rigorously showing that, in the limit as
ε → 0, the sharp interface model is obtained from the diffuse interface model (see e.g. [1, 10, 24,
28]).

Our interest in the higher order approximation is motivated by the results obtained by Karma
and Rappel [19] in the context of thin interface asymptotics where the interface thickness is small
but remains finite. Their analysis led to a positive correction term in the kinetic coefficient of the
phase field equation balancing undesirableO(ε)-terms in the Gibbs–Thomson condition and raising
the stability bound of explicit numerical methods. Moreover, the better approximation allows for
larger values ofε and, therefore, for coarser grids. In particular, it is possible to consider the
limit of vanishing kinetic undercooling. Almgren [2] extended the analysis to the case of different
diffusivities in the phases and discussed both classical asymptotics and thin interface asymptotics.
By choosing different interpolation functions for free energy density and internal energy density,
an approximation to second order can still be achieved but the gradient structure of the model
and thermodynamical consistency are lost. Andersson [4] showed, based on the work of Almgren,
that even an approximation of third order is possible by using high order polynomials for the
interpolation. McFadden, Wheeler, and Anderson [23] used an approach based on an energy and
an entropy functional providing more degrees of freedom to tackle the difficulties with unequal
diffusivities in the phases while avoiding the loss of the thermodynamical consistency. Again, both
classical and thin asymptotics are discussed as well as the limit of vanishing kinetic undercooling.
In a more recent analysis Ramirez et al. [27] considered a binary alloy also involving different
diffusivities in the phases and obtained a better approximation by adding a small additional term to
the mass flux (antitrapping mass current, the ideas stem from [18]).

We aim to extend the results to general non-isothermal multi-component alloy systems allowing
for arbitrary phase diagrams with two phases. The models studied in the literature usually use the
free energy or the entropy as thermodynamical potentials (see e.g. [3, 26, 29, 30] and the discussion
in [20]). It turns out that, in our context, the reduced grand canonical potentialψ (see [22]) is more
appropriate for the analysis. To motivate this let us review some thermodynamics.

We will, for simplicity, consider a system with uniform density, which is in mechanical
equilibrium throughout the evolution. Changes in pressure or volume are neglected. In this case,
the Helmholtz free energy densityf is an appropriate thermodynamical quantity to work with.
It is conveniently written as a function of the absolute temperatureT and the concentrations
c = (c(1), . . . , c(N)) ∈ RN , its derivatives being the negative entropy density−s and the chemical
potentialsµ = (µ(1), . . . , µ(N)) ∈ RN ,

df = −s dT + µ · dc.

Here, the central dot denotes the scalar product onRN . The internal energy density ise = f + T s.
For the reduced grand canonical potentialψ = −g/T , g = f − µ · c being the grand canonical
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potential, we then obtain

dψ = d

(
f − µ · c

−T

)
= e d

(
−1

T

)
+ c · d

(
µ

T

)
,

in particularu = (u(0), ũ) = (−1/T ,µ/T ) ∈ RN+1 are the variables conjugate to(e, c) ∈ RN+1.
Assuming local thermodynamical equilibrium the vectoru is continuous across the free boundary
in a sharp interface model. This will be important in the matched asymptotic expansions studied
later and therefore we will state the problem from the beginning in these variables. We refer to
Appendix A for more details on the thermodynamical background.

Next, we will briefly state a sharp interface problem for a liquid-solid phase change in a non-
isothermal multi-component system (cf. [15] for more details). LetDl andDs be the domains
occupied respectively by the liquid phase and the solid phase and letΓ be the interface separating
the phases. InDl andDs , conservation of mass and energy is expressed by the balance equations

∂tψ,u(i)(u) = −∇ · Ji = −∇ ·

N∑
j=0

Lij∇(−u
(j)), 0 6 i 6 N, (1)

whereψ,u(0) = e andψ,u(i) = c(i) denote derivatives ofψ , theJi are the fluxes, andL = (Lij )i,j is
a matrix of Onsager coefficients which may depend onu. Constitutive relations betweenψ , L, and
u may depend on the two phasess andl. OnΓ we have

u(i) is continuous, 06 i 6 N, (2)

[−Ji ]
l
s · ν =

[
−

N∑
j=0

Lij∇u
(j)

]l
s
· ν = v[ψ,u(i)(u)]

l
s, 0 6 i 6 N, (3)

αv = σκ − [ψ(u)]ls, (4)

whereν is the unit normal onΓ pointing intoDl , v is the normal velocity in the directionν, σ is
the surface tension,κ the curvature,α a kinetic coefficient, and [·]ls denotes the jump of the quantity
in the brackets, for example [ψ(u)]ls = ψl(u) − ψs(u). Equations (2) and (3) are also due to
conservation of mass and energy. The Gibbs–Thomson condition (4) couples the motion of the phase
boundaries to the thermodynamical quantities of the adjacent phases such that, locally, entropy
production is non-negative. For the case of a system involving multiple phases this is shown in [15].

The above stated sharp interface model will be approximated by a phase field model of the form

ω∂tϕ = σ∆ϕ − σ
1

ε2
w′(ϕ)+

1

2ε
h′(ϕ)(ψl(u)− ψs(u)), (5)

∂tψ,u(i)(u, ϕ) = ∇ ·

N∑
j=0

Lij∇u
(j), 0 6 i 6 N. (6)

Here,ϕ is the phase field variable. We haveϕ = 1 in the liquid phase andϕ = 0 in the solid
phase. The functionw is a double-well potential with minima at 0 and 1 corresponding to the
values ofϕ in the pure phases. The reduced grand canonical potentialsψl andψs of the pure phases
are interpolated to obtain the system potentialψ(u, ϕ). For this purpose, interpolation functions
between 0 and 1 likeh(ϕ) in the above equation are used.
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The approximation of the sharp interface model has to be understood in the following sense:
Assume that solutions(u, ϕ) to (5) and (6) can be expanded inε-series of the form

u = u0 + εu1 + · · · , ϕ = ϕ0 + εϕ1 + · · · ,

and similarly in the interfacial regions using coordinates which are partially rescaled inε (the
expansions are precisely stated in Section 2, as is the following matching procedure). After matching
the expansions,u0 andϕ0 solve (1)–(4) whereDl = {ϕ0 = 1},Ds = {ϕ0 = 0}, Γ is the set where
ϕ0 jumps, andα is related toω.

As long as the first order correction terms(u1, ϕ1) do not vanish the approximation of the sharp
interface model by the phase field model is said to beof order one. Otherwise it is (at least)of order
two. To see whether this is the case one has to derive and analyze the equations satisfied by(u1, ϕ1).
Our result now reads as follows:

MAIN RESULT. Consider a two-phase multi-component system with arbitrary phase
diagram. Then there is a possibly non-constant correction term to the kinetic coefficient
ω such that the sharp interface model (1)-(4) is approximated by the phase field model (5),
(6) to second order. The kinetic coefficient has the structure ω = ω0 + εω1(u) where

ω1(u) = [ψ,u(u)]
l
s · L−1[ψ,u(u)]

l
sC

with some constant C depending on the interpolation function h.

A new feature compared to the existing results in [2, 4, 19] is that, in general, this correction term
depends onu, i.e. on temperature and chemical potentials. Indeed, up to some numerical constants,
the latent heat appears in the correction term obtained by Karma and Rappel [19]. Analogously,
the equilibrium jump in the concentrations enters the correction term when an isothermal binary
alloy is investigated. But from realistic phase diagrams it can be seen that this jump depends on the
temperature leading to a temperature dependent correction term in the non-isothermal case.

Our model will be described in Section 2. In Section 3 we will apply matched asymptotic
expansions to deduce a linear parabolicO(ε)-correction problem. Given appropriate initial and
boundary conditions, zero is a solution to the correction problem. By numerical simulations of
suitable test problems we investigate the gain in efficiency due to the better approximation. For
this purpose, numerical approximations of solutions to the phase field model with and without the
correction term are compared in Section 4.

2. Phase field model for multi-component systems

Let D ⊂ Rd , d = 1,2,3, be a spatial domain with Lipschitz boundary which is occupied by an
alloy and letI = [0, tmax] be a time interval. Further, letN ∈ N be the number of components in
the system.

CONVENTION. Throughout this article, partial derivatives are sometimes denoted by subscripts
after a comma. For example,ψ,uϕ(u, ϕ) denotes the second order mixed derivative ofψ(u, ϕ)
with u andϕ. Vectors of sizeN + 1 are printed in bold face except for the derivatives ofψ ,ψs , and
ψl with respect tou. Tensors of size(N + 1)× (N + 1) are underlined.
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2.1 Motivation

The Allen–Cahn equation

ω0∂tϕ = ∆ϕ −
1

ε2
w′(ϕ)

models the motion of an interface between two phases; here,ϕ is a phase field variable. It describes
the presence of one of the phases. In the regions occupied by pure phases,ϕ takes values close to
0 or 1. These values are the absolute minima of the double-well potentialw. In transition regions
connecting the regions occupied by the pure phases,ϕ varies smoothly between 0 and 1 due to the
diffusion term∆ϕ. The transition region will turn out to have a thickness of orderε. By adding
further terms a dependence of the interface motion on thermodynamical quantities can be modeled.

The above differential equation is coupled to balance equations for energy and mass. The
thermodynamical potentials are postulated to be the derivatives of the entropy density (see [15]),
and for the fluxes we postulate linear combinations of the corresponding thermodynamical forces,
hence with Onsager coefficientsLij we obtain

∂te = −∇ ·

(
L00(T , c, ϕ)∇

1

T
+

N∑
j=1

L0j (T , c, ϕ)∇
−µ(j)

T

)
,

∂tc
(i)

= −∇ ·

(
Li0(T , c, ϕ)∇

1

T
+

N∑
j=1

Lij (T , c, ϕ)∇
−µ(j)

T

)
,

whereT is the temperature andc = (c(1), . . . , c(N)) a vector of concentrations,c(i) describing
the presence of componenti. Given the free energy densityf = f (T , c), the chemical potential
corresponding to componenti is the derivative off with respect toc(i), i.e. µ(i) = f,c(i) . The
internal energy density ise = f + sT , s = −f,T being the entropy density.

2.2 Model and assumptions

It turns out to be more appropriate to write down the above conservation laws in terms of
the variablesu = (−1/T ,µ/T ) and to use the reduced grand canonical potential as the
thermodynamical potential (see Appendix A for the thermodynamical relations). We define the set

ΣN :=
{
c = (c(1), . . . , c(N)) ∈ RN :

N∑
i=1

c(i) = 1
}
,

and identify its tangent space at every pointc with

TΣN :=
{
ũ = (u(1), . . . , u(N)) ∈ RN :

N∑
i=1

u(i) = 0
}
.

Moreover, we defineY := R ×TΣN . The problem then consists in finding smooth functions

ϕ : I ×D → R, u = (u(0), . . . , u(N)) : I ×D → Y
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that solve the partial differential equations

(ω0 + εω1(u))∂tϕ = ∆ϕ −
1

ε2
w′(ϕ)+

1

2ε
h′(ϕ)Ψ (u), (7)

∂tψ,u(i)(u, ϕ) = ∇ ·

N∑
j=0

Lij∇u
(j), 0 6 i 6 N. (8)

The first equation is a forced Allen–Cahn equation for the phase field variableϕ. The coupling to
the thermodynamical quantities via the last term in that equation will be clarified below. We are
interested in the limitε → 0. The functionω1 : Y → R is some correction term in order to obtain
quadratic convergence and will be determined later. The derivatives of the reduced grand canonical
potential are the conserved quantities of energye = ψ,u(0) and concentrationsc(i) = ψ,u(i) , 1 6
i 6 N (see Appendix A for the exact relation between(e, c) and the derivatives ofψ with respect to
u). The equations in (7) are the balance equations for these conserved quantities. Concerning all the
other functions and constants appearing in the above equations we make the following definitions
and assumptions:

A. ω0 is a positive constant.
B. w : R → R+ is some nonnegative smooth double-well potential which attains its global minima

at 0 and 1; more precisely, we have

w(ϕ) > 0 if ϕ 6∈ {0,1},

w(0) = w(1) = 0, w′(0) = w′(1) = 0, w′′(0) = w′′(1) > 0.

Moreover,w is symmetric with respect to 1/2, i.e.w(1/2 + ϕ) = w(1/2 − ϕ).
C. h : R → R is a monotone symmetric interpolation function between 0 and 1, i.e.

h(0) = 0, h(1) = 1, h(1/2 + ϕ) = 1 − h(1/2 − ϕ), h′(ϕ) > 0.

Furthermore, we require thath′(0) = h′(1) = 0.
D. ψ : Y × R → R is smooth and given as interpolation between the reduced grand canonical

potentials of the two possible phasess andl, i.e.

ψ(u, ϕ) = ψs(u)+ h̃(ϕ)(ψl(u)− ψs(u))

with a functionh̃ satisfying Assumption C. Observe that in the caseh̃ 6= h the model lacks
thermodynamical consistency, i.e. an entropy inequality might not hold (see [26, 19, 2]). In (7)
we used the abbreviation

Ψ (u) := ψl(u)− ψs(u).

The functionψ is convex inu so that (8) becomes parabolic. We will frequently useψ(u, ϕ),
ψs(u) andψl(u) as functions of arbitraryu ∈ RN+1, which enables one to write down the
partial derivativeψ,u(k)(u, ϕ). But no results depend on the extension as only argumentsu ∈ Y

and derivatives alongY will be used.
E. The matrixL = (Lij )

N
i,j=0 of Onsager coefficients is constant, symmetric, positive semi-

definite, and the kernel is exactlyY⊥
= span{(0,1, . . . ,1) ∈ RN+1

}. Observe that then

N∑
i=1

Lij = 0, 0 6 j 6 N ⇒ ∂t

( N∑
i=1

ψ,u(i)(u, ϕ)
)

= 0 ⇒ ∂t (ψ,u(u, ϕ)) ∈ Y.
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Moreover, for eachv ∈ Y the linear systemLξ = v has exactly one solutionξ ∈ Y which we
will denote byξ = L−1v.
The handling of dependence onu is straightforward (cf. the remark at the end of Subsection 3.5),
and dependence of the diffusivities on the phase has already been considered in [2]. Therefore,
the analysis is restricted to this simple case.

2.3 Evolving curves

To relate the diffuse interface model to a sharp interface model, the method of formally matched
asymptotic expansions will be used. The procedure is outlined with great care in [14, 12]. Here, we
will only sketch the main ideas for the two-dimensional case, i.e.d = 2.

For someε > 0 we will denote a smooth solution to (7) and (8) by(u(t, x; ε), ϕ(t, x; ε)). The
family of curves

Γ (t; ε) := {x ∈ D : ϕ(t, x; ε) = 1/2}, ε > 0, t ∈ I, (9)

is supposed to be a set of smooth curves inD. In addition, we assume that they are uniformly
bounded away from∂D and depend smoothly on(ε, t) so that asε → 0 some limiting curve
Γ (t; 0) is obtained. We denote byDl(t; ε) andDs(t; ε) the regions occupied by the liquid phase
(whereϕ(t, x; ε) > 1/2) and the solid phase (whereϕ(t, x; ε) < 1/2) respectively.

Let γ (t, s; 0) be a parametrization ofΓ (t; 0) by arc-lengths for every t ∈ I . The vector
ν(t, s; 0) denotes the unit normal onΓ (t; 0) pointing intoDl(t; 0), andτ(t, s; 0) := ∂sγ (t, s; 0)
denotes the unit tangent vector. The orientation is such that(ν, τ ) is positively oriented.

We assume that the curvesΓ (t; ε) can be parametrized overΓ (t; 0) using some distance
functiond(t, s; ε) by

γ (t, s; ε) := γ (t, s; 0)+ d(t, s; ε)ν(t, s; 0). (10)

Close toε = 0 we assume that there is an expansiond(t, s; ε) = d0(t, s)+ε
1d1(t, s)+ε

2d2(t, s)+

O(ε3). As d(t, s; 0) ≡ 0 we conclude thatd0(t, s) ≡ 0.
Also the curvatureκ(t, s; ε) and the normal velocityv(t, s; ε) of Γ (t; ε) are smooth and can be

expanded (see Appendix C). We get

κ(t, s; ε) = κ(t, s; 0)+ ε(κ(t, s; 0)2d1(t, s)+ ∂ssd1(t, s))+O(ε2),

v(t, s; ε) = ∂tγ (t, s; ε) · ν(t, s; ε) = v(t, s; 0)+ ε∂◦d1(t, s)+O(ε2);

here,∂◦
= ∂t − vτ ∂s denotes the (intrinsic) normal time derivative,vτ = ∂tγ · τ being the non-

intrinsic tangential velocity (cf. Appendix B).

2.4 Definition of outer variables

We suppose that in each domainE whose closureE with respect to the topology onRd satisfies
E ⊂ D\Γ (t; 0) the solution can be expanded in a series close toε = 0 (outer expansion):

u(t, x; ε) =

K∑
k=0

εkuk(t, x)+O(εK+1), ϕ(t, x; ε) =

K∑
k=0

εkϕk(t, x)+O(εK+1). (11)
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NearΓ (t; 0), we can define the coordinates(s, r), r being the signed distance ofx from Γ (t; 0)
(positive in directionν, i.e. if x ∈ Dl(t; 0)). Hence, in a neighborhood ofΓ (t; 0) we can write, for
r 6= 0,

û(t, s, r; ε) = u(t, x; ε), ϕ̂(t, s, r; ε) = ϕ(t, x; ε). (12)

2.5 Definition of inner variables

Let z be the 1/ε-scaled signed distance ofx from Γ (t; 0), i.e. z = r/ε, and letU (t, s, z; ε) :=
û(t, s, r; ε), Φ(t, s, z; ε) := ϕ̂(t, s, r; ε). We now suppose that we can expandU andΦ in these
new variables as follows:

U (t, s, z; ε) =

K∑
k=0

εkU k(t, s, z)+O(εK+1), (13)

Φ(t, s, z; ε) =

K∑
k=0

εkΦk(t, s, z)+O(εK+1). (14)

2.6 Matching conditions

For the two expansions foru to match in the limit asε → 0, certain conditions are necessary (see
Appendix D for the derivation): asz → ±∞ for all i ∈ {0, . . . , N},

U
(i)
0 (z) ≈ u

(i)
0 (0

±), (15)

U
(i)
1 (z) ≈ u

(i)
1 (0

±)+ (∇u
(i)
0 (0

±) · ν)z, (16)

∂zU
(i)
1 (z) ≈ ∇u

(i)
0 (0

±) · ν, (17)

∂zU
(i)
2 (z) ≈ ∇u

(i)
1 (0

±) · ν + ((ν · ∇)(ν · ∇)u
(i)
0 (0

±))z (18)

and analogously forΦ andϕ. Here, for a functiong(t, x) = ĝ(t, s, r),

g(0+) := lim
r↘0

ĝ(t, s, r), g(0−) := lim
r↗0

ĝ(t, s, r),

wherer = dist(x, Γ (t; 0)). Remember thatr > 0 if and only ifx ∈ Dl(t; 0), and thatr < 0 if and
only if x ∈ Ds(t; 0).

3. Asymptotic analysis

3.1 Outer solutions

In the region away fromΓ (t; 0) we plug the expansions (11) into the differential equations (7)
and (8). All terms that appear are expanded inε.

To leading orderO(ε−2) we obtain from (7) the identity 0= −w′(ϕ0). But the only stable
solutions to this equation are the minima ofw, henceϕ0 ≡ 0 orϕ0 ≡ 1. We defineDs(t; 0) as the
set of all points withϕ0 = 0 and similarlyDl(t; 0) with ϕ0 = 1.

To the next orderO(ε−1) we obtain

0 = −w′′(ϕ0)ϕ1 +
1
2h

′(ϕ0)Ψ (u0). (19)

As ϕ0 = 0 or= 1, using Assumptions B and C we obtainϕ1 ≡ 0 as the only solution.
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To leading orderO(ε0) we obtain from (8), written as a vectorial equation,

∂t (ψ,u(u0, ϕ0)) = L∆u0. (20)

Depending onϕ0 we haveψ,u(u0, ϕ0) = (ψl),u(u0) orψ,u(u0, ϕ0) = (ψs),u(u0). In both cases
(20) is a parabolic equation foru0 by Assumption D.

To orderO(ε1) we obtain

∂t ((ψ,uu)(u0, ϕ0)u1) = L∆u1 (21)

where we have already made use ofϕ1 ≡ 0. Assumption D states thatψ is convex so that (21) is a
linear parabolic equation foru1.

To determine boundary conditions for (20) and (21) onΓ (t; 0) we plug the expansions (13) and
(14) into the differential equations.

3.2 Inner solutions to leading order

In Appendix B we describe how the derivatives with respect to(t, x) transform into derivatives with
respect to(t, s, z). To leading orderO(ε−2) we get from (7)

0 = ∂zzΦ0 − w′(Φ0). (22)

By (9) and the assumption that (14) holds true forε = 0 we haveΦ0(0) = 1/2. The matching
conditions (15) imply

Φ0(t, s, z) → ϕ(t, s; 0+) = 1 asz → ∞,

Φ0(t, s, z) → ϕ(t, s; 0−) = 0 asz → −∞.

ThereforeΦ0(z) only depends onz. FurthermoreΦ0 is monotone, approximates the values at±∞

exponentially fast and satisfiesΦ0(−z) = 1 −Φ0(z).
For the conserved variables we get from (8)

0 = L∂zzU0. (23)

Using Assumption E we have∂zzU0 = L−10 = 0 in Y so thatU0 is affine linear inz. By the
matching conditions (15),U0 has to be bounded asz → ±∞, hence we see thatU0 must be
constant inz, which meansU0 = U0(t, s). The matching condition (15) implies thatU0(t, s) is
exactly the value ofu0 at the pointγ (t, s; 0) ∈ Γ (t; 0) from both sides of the interface. In particular,

u0 is continuous across the interfaceΓ (t; 0). (24)

3.3 Inner solutions to first order

To orderO(ε−1) equation (7) yields

−ω0v∂zΦ0 = ∂zzΦ1 − κ∂zΦ0 − w′′(Φ0)Φ1 +
1
2h

′(Φ0)Ψ (U0). (25)

From the solution to (19) we getϕ1(t, s,0±) = 0. Moreover,∇ϕ0(t, s,0±) ·ν = 0 asϕ0 is constant.
Due to the matching conditions (16) we haveΦ1 → 0 asz → ±∞. The operatorL(Φ0)b =
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∂zzb − w′′(Φ0)b is symmetric with respect to theL2-product overR. Differentiating (22) with
respect toz we see that∂zΦ0 lies in the kernel ofL(Φ0). SinceΦ0(−z) = 1 − Φ0(z) we find with
the help of Assumption C that∂zΦ0 andh′(Φ0) are even, hence (25) allows for an even solution and
in the following we will assume thatΦ1 is even.

We can deduce a solvability condition by multiplying the equation with∂zΦ0 and integrating
overR with respect toz:

0 =

∫
R
((κ − ω0v)(∂zΦ0(z))

2
−

1
2Ψ (U0)h

′(Φ0(z))∂zΦ0(z))dz = (κ − ω0v)I −
1
2Ψ (U0) (26)

where

I =

∫
R
(∂zΦ0)

2 dz.

The system (8) becomes, to orderO(ε−1),

−v∂zψ,u(U0, Φ0) = −v∂z((ψs),u(U0)+ h̃(Φ0)Ψ,u(U0)) = L∂zzU1.

As U0 = U0(t, s) we obtainΨ,u(U0) = [ψ,u(u0)]ls = (ψl),u(u0) − (ψs),u(u0) for all z. We
integrate two times with respect toz and get

U1 = −L−1
(
v

∫ z

0
ψ,u(U0, Φ0)dz′ − Az

)
+ ū

∼ −L−1(v(ψl),u(U0)z− Az− v[ψ,u(u0)]
l
sH̃ )+ ū asz → ∞

∼ −L−1(v(ψs),u(U0)z− Az− v[ψ,u(u0)]
l
sH̃ )+ ū asz → −∞ (27)

whereA ∈ R ×ΣN (observe that thenvψ,u − A ∈ Y , which allowed us to use Assumption E to
invertL) andū ∈ Y are two integration constants and

H̃ =

∫
∞

0
(1 − h̃(Φ0(z)))dz =

∫ 0

−∞

h̃(Φ0(z))dz.

Here, we used the fact thatΦ0 converges to constants exponentially fast, so that the integral
∫ z

0 has
been replaced by

∫
∞

0 while the linear terms remain. Using (16) we derive

u1(t, s,0
±) = ū + vL−1[ψ,u(u0)]

l
sH̃ , (28)

which means, in particular, that

u1 is continuous acrossΓ (t; 0). (29)

By (17) the following jump condition is obtained at the interface:

[−L∇u0]ls · ν := −L∇u0(t, s,0
+) · ν + L∇u0(t, s,0

−) · ν

= (v(ψl),u(u0)− A)− (v(ψs),u(u0)− A)

= v[ψ,u(u0)]
l
s . (30)
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3.4 Inner solutions to second order

Using the fact thatΦ0 only depends onz the phase field equation to orderO(ε0) gives

− ω0v∂zΦ1 − ω1(u0)v∂zΦ0 − ω0(∂
◦d1)∂zΦ0

= ∂zzΦ2 − w′′(Φ0)Φ2 + (∂sd1)
2∂zzΦ0 − κ2(z+ d1)∂zΦ0 − ∂ssd1∂zΦ0

− κ∂zΦ1 −
1
2w

′′′(Φ0)(Φ1)
2
+

1
2Ψ (U0)h

′′(Φ0)Φ1 +
1
2Ψ,u(U0) · U1h

′(Φ0).

To guarantee thatΦ2 exists there is again a solvability condition which is obtained by multiplying
with ∂zΦ0 and integrating overR with respect toz. TheΦ1-terms in this condition vanish as can be
seen as follows:∫

R
((κ − ω0v)∂zΦ1 +

1
2w

′′′(Φ0)(Φ1)
2
−

1
2Ψ (U0)h

′′(Φ0)Φ1)∂zΦ0 dz

=

∫
R
((κ − ω0v)∂zΦ1∂zΦ0 − w′′(Φ0)Φ1∂zΦ1 +

1
2Ψ (U0)h

′(Φ0)∂zΦ1)dz

= 2(κ − ω0v)

∫
R
∂zΦ1∂zΦ0 dz−

∫
R
∂zzΦ1∂zΦ1 dz

where we used (25) to obtain the last identity. Since∂zΦ1 · ∂zΦ0 and ∂zzΦ1 · ∂zΦ1 are odd the
integrals in the last line vanish. Defining the constants

H :=
∫

∞

0
z∂z(h ◦Φ0)(z)dz = −

∫ 0

−∞

z∂z(h ◦Φ0)(z)dz,

J :=
∫

∞

0
∂z(h ◦Φ0)(z)

∫ z

0
(1 − (h̃ ◦Φ0)(z

′))dz′ dz

=

∫ 0

−∞

∂z(h ◦Φ0)(z)

∫ 0

z

(h̃ ◦Φ0)(z
′)dz′ dz

and using (27) for the remainingU1-term, a short calculation shows

−

∫
R

1
2Ψ,u(U0) · U1∂z(h ◦Φ0)dz

= −
1
2[ψ,u(u0)]

l
s · (ū − L−1[ψ,u(u0)]

l
sH + L−1[ψ,u(u0)]

l
s2J )

= −
1
2[ψ,u(u0)]

l
s · u1 + v[ψ,u(u0)]

l
s · L−1[ψ,u(u0)]

l
s(H + H̃ − 2J )/2

where we used (28) to get the last equality.
The whole solvability condition then becomes

0 = (−ω0∂
◦
+ ∂ss + κ2)d1I −

1
2[ψ,u(u0)]

l
su1

+ v(−ω1(u0)I + [ψ,u(u0)]
l
s · L−1[ψ,u(u0)]

l
s(H + H̃ − 2J )/2). (31)

We remark that∂◦d1 and(∂ss + κ2)d1 are the first order corrections of the normal velocity and the
curvature ofΓ (t, s; ε) (see Appendix C).
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In the following, whenever we will evaluateψ and its derivatives at(U0, Φ0) this will be
denoted by a superscript0. The conservation laws (8) yield, to orderO(ε0),

−v∂z(ψ
0
,uuU1 + ψ0

,uϕΦ1)+ ∂◦ψ0
,u − (∂◦d1)∂zψ

0
,u = L (∂zzU2 − κ∂zU1 + ∂ssU0) (32)

where we used the fact thatU0 does not depend onz. Integrating once with respect toz leads to

− L∂zU2 = v∂z(ψ
0
,uuU1 + ψ0

,uϕΦ1)− B︸ ︷︷ ︸
(i)

+

∫ z

0
((∂◦d1)∂zψ

0
,u − ∂◦ψ0

,u)dz′︸ ︷︷ ︸
(ii)

− κLU1︸ ︷︷ ︸
(iii )

+L∂ssU0z (33)

whereB ∈ Y is an integration constant. We want to derive a correction to the jump condition (30),
i.e. a jump condition foru1. Therefore we are interested in the terms contributing to∇u1 ·ν in (18).
Applying (16) toΦ1,U1 and using the fact that̃h′(0) = h̃′(1) = 0 we see that

(i) ∼ v(ψl),uu(u0)u1 − B + (. . . )z asz → ∞,

∼ v(ψs),uu(u0)u1 − B + (. . . )z asz → −∞.

Furthermore,

(ii) = (∂◦d1)(ψ
0
,u

∣∣z
0)−

∫ z

0
[∂◦((ψs)

0
,u)+ (∂◦Ψ 0

,u)(h̃ ◦Φ0)(z
′)] dz′

∼
1
2(∂

◦d1)[ψ,u(u0)]ls − (∂◦(ψl),u(u0))z+ ∂◦[ψ,u(u0)]lsH̃ asz → ∞,

∼ −
1
2(∂

◦d1)[ψ,u(u0)]
l
s − (∂◦(ψs),u(u0))z+ ∂◦[ψ,u(u0)]

l
sH̃ asz → −∞

where for the first term the symmetry ofh̃ in Assumption C has been used. In (iii) we use (28) again
to obtain

(iii ) = κLu1(t, s,0)+ (. . . )z asz → ±∞.

Finally, by (29), the first order correction of the jump condition (30) at the interface is

[−L∇u1]ls · ν = v[ψ,uu(u0)]
l
s · u1 + (∂◦d1)[ψ,u(u0)]

l
s . (34)

3.5 Summary of the leading order problem and the correction problem

The problem to leading order consists of the bulk equation (20) which is coupled to the conditions
(24), (30) and (26) onΓ (t; 0):

(LOP) Find a functionu0 : I × D → Y and a family of curves{Γ (t; 0)}t∈I separatingD
into two domainsDl(t; 0) andDs(t; 0) such that

∂t ((ψl),u(u0)) = L∆u0 in Dl(t; 0), t ∈ I,

∂t ((ψs),u(u0)) = L∆u0 in Ds(t; 0), t ∈ I,
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and such that for allt ∈ I , onΓ (t; 0) we have:

u0 is continuous,

[−L∇u0]ls · ν = v[ψ,u(u0)]
l
s,

ω0v = κ −
1

2I
[ψ(u0)]

l
s

whereν is the unit normal toΓ (t; 0) pointing intoDl(t; 0).

If we choose

ω1 = ω1(u0) := [ψ,u(u0)]
l
s · L−1[ψ,u(u0)]

l
s

H + H̃ − 2J

2I
(35)

then the correction problem consisting of (21), (29), (34) and (31) reads as follows:

(CP) Let(u0, {Γ (t; 0)}t ) be a solution to (LOP), letl(t) be the length ofΓ (t; 0) and set
SI = {(t, s) : t ∈ I, s ∈ [0, l(t))}. Find functionsu1 : I ×D → Y andd1 : SI → R such
that

∂t ((ψl),uu(u0)u1) = L∆u1 in Dl(t; 0), t ∈ I,

∂t ((ψs),uu(u0)u1) = L∆u1 in Ds(t; 0), t ∈ I,

and such that for allt ∈ I onΓ (t; 0) we have:

u1 is continuous,

[−L∇u1]ls · ν = v[ψ,uu(u0)]
l
su1 + (∂◦d1)[ψ,u(u0)]

l
s,

ω0(∂
◦d1) = (∂ss + κ2)d1 −

1

2I
[ψ,u(u0)]

l
s · u1.

Obviously,(u1, d1) ≡ 0 is a solution given appropriate boundary conditions on∂D. If this solution
is unique then the leading order problem is approximated to second order inε by the phase field
model. The calculation in Appendix C shows that (CP) is in fact the linearization of (LOP). We
point out that the choice (35) is crucial in order to guarantee that the undesired terms in (31) vanish.

REMARK . If the diffusivity matrixL depends onu then equation (32) becomes

− v∂z(ψ,uu
0U1 + ψ0

,uϕΦ1)+ ∂◦ψ0
,u − (∂◦d1)∂zψ

0
,u = L(U0)∂zzU2

+ ∂z(L,u(U0)U1∂zU1)+ L,u(U0)(∂sU0)
2
+ L(U0)∂ssU0 − κL(U0)∂zU1

resulting in

−L∂zU2 = (i)+ (ii)− κL(U0)U1︸ ︷︷ ︸
=(iii )

+L,u(U0) · U1∂zU1︸ ︷︷ ︸
=:(iv)

+(L,u(U0)(∂sU0)
2
+ L(U0)∂ssU0)z

instead of (33). The matching conditions (15), (16) and (17) yield

(iv) = L,u(u0) · u1∇u0(0
±) · ν + (. . .)z asz → ±∞.
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This leads to an additional term in the jump condition of the correction problem. The condition (34)
now reads

[−L(u0)∇u1 − L,u(u0) · u1∇u0]ls · ν = v[ψ,uu(u0)]
l
su1 + (∂◦d1)[ψ,u(u0)]

l
s,

but this is still consistent with the above statement that (CP) is the linearization of (LOP) as the
additional term results from expandingL in a straightforward way.

4. Numerical simulations

Numerical simulations were performed in order to show that convergence to second order indicated
by the analysis can really be obtained. For this purpose, we analyzed theε-dependence of numerical
solutions to the phase field system and compared the numerical solutions with analytical solutions
to the sharp interface problem if available. The differential equations of the phase field system were
discretized in space and time using finite differences on uniform grids with spatial mesh size∆x

and time step∆t . The update in time was explicit, and to guarantee stability we chose∆t . ∆x2.
If not otherwise stated we decreased the mesh size∆x until we were sure that the error due to the
discretization became inessential.

The order of convergence can be estimated by the following procedure. Assume that theε-
dependence of the error can approximately be expressed by

Err(ε) = errεk + higher order terms

with a constant err and an exponentk > 0 which we are interested in. Given somem > 1 (we often
usedm =

√
2) one can derive up to higher order terms

Err(ε)− Err(ε/m)

Err(ε/m)− Err(ε/m2)
=

(
1

m

)−k

= mk (36)

from which one can calculatek by inserting the measured values for Err(ε).

4.1 Scalar case in 1D

Let d = 1 andN = 1, i.e. we consider a pure material. We setu = u(0) and postulate the reduced
grand canonical potential

ψ(u, ϕ) =
1
2cvu

2
+ λ(um − u)(1 − h(ϕ)), i.e. Ψ (u) = λ(u− um),

whereλ, um and cv are constants. Choosingw(ϕ) =
9
2ϕ

2(1 − ϕ)2 as double-well potential we
obtain:

ε(ω0 + εω1)∂tϕ = εσ∂xxϕ −
9σ

ε
ϕ(1 − ϕ)(1 − 2ϕ)+

1

2
λ(u− um)h

′(ϕ), (37)

∂tψ,u = ∂t (cvu− λ(1 − h̃(ϕ))) = K∂xxu. (38)
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This system differs from typical phase field systems (see e.g. [26]) by the termεω1. With these
equations the following sharp interface problem is approximated:

cv∂tu = K∂xxu, x 6= p(t),

u is continuous,

λp′(t) = [−K∂xu]ls, x = p(t),

ω0p
′(t) = λ(um − u), x = p(t),

wherep(t) denotes the position of the interface at timet . Imposing the boundary conditionu → u∞

asx → ∞ there is the following traveling wave solution: settingui = c−1
v λ+ u∞ we define

p(t) = vt = ω−1
0 λ(um − ui)t, (39)

u = ui, x 6 vt, (40)

u = u∞ + (ui − u∞)exp(−K−1cvv(x − vt)), x > vt. (41)

Choosingh̃(ϕ) = h(ϕ) = ϕ2(3−2ϕ) we computeI = 1/2,H + H̃ −2J = 19/90. Furthermore, if

λ = 0.5, um = −1.0, u∞ = −2.0, cv = 1.0, ω0 = 0.25, K = 1.0, σ = 1.0

we obtain the velocityv = 1.0, the valueui = −1.5 at the interface and by (35) the correction term
ω1 ≈ 0.013194444.

We solved the differential equations on the time intervalI = [0,0.1] for several values ofε.
We chose Dirichlet boundary conditions foru given by the traveling wave solution (40), (41) to the
sharp interface model and homogeneous Neumann boundary conditions forϕ. To initializeϕ we set

ϕ(0, x) := 1
2(1 + tanh(3

2z)) = Φ0(z), z = (x − x0)/ε, (42)

with some suitable initial transition pointx0 such that the transition region (the set{ϕ ∈ (δ,1 − δ)}

for some smallδ, e.g.δ = 10−3) remains away from the outer boundary during the evolution. The
functionΦ0 is the solution to (22) with the boundary conditionsΦ0(z) → 0,1 asz → −∞,+∞.
Initial values foru were obtained by matching outer and inner solutions to leading and first order
obtained from the asymptotic expansions (see e.g. [21])

u(0, x) = u0(0, x)+ εu1(0, x)+ U0(0, z)+ εU1(0, z)− common part.

The functionu0(0, x) has the profile of the traveling wave solution:

u0(0, x) =

u∞ + (ui − u∞)exp

(
−
cv

K
v(x − x0)

)
, x > x0,

ui, x 6 x0.

(43)

As we wantu1 ≡ 0 to be a solution to the correction problem we choseu1(0, x) = 0. By equations
(23) and (24),U0 ≡ ui is the interface value which is constant in the normal direction. Equation
(17) implies∂zU1(z) → ∇ · u0(x

−

0 ) = 0 asz → −∞. As u1(0, x) = 0 we haveū = −(v/K)λH̃

by (28). By (27) we see thatA = v(ψs),u(U0), which yields

U1(0, z) =
v

K


λ− z+

∫ z

0
(1 − h̃ ◦ ϕ0)(z

′)dz′ − H̃ , z > 0,

λ

∫ 0

z

(h̃ ◦ ϕ0)(z
′)dz′ − H̃ , z < 0.

The common part isui − (vλ/K)z if z > 0 andui if z < 0.
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FIG. 1. Left: deviations of the phase boundaries measured from the exact interface position given by (39) overε; the
resolution of the transition region is very fine so that the error caused by the discretization is negligible; the dashed line
corresponds to a linear convergence behavior inε. Right: behavior of the numerically computed convergence rates (cf. (36))
in time for the angleβ = 15◦ (see Section 4.2).

The phase boundaries{ϕ = 1/2} were determined by linearly interpolating the values at the grid
points. Subtracting from the computed transition point the exact position given by (39) we got, up to
sign, the values in Figure 1 (left). We found that when considering the correction term the interface
was too slow but the numerical results indicated a quadratic convergence. Without the correction
termω1 the interface was too fast and larger errors occurred indicating only linear convergence inε.
Similar results concerning the order of convergence hold true if

u(0, x) = u0(0, x) or ϕ = χ[x0,∞]

was chosen as initial data instead of the above smooth functions. The only difference is that then the
errors are larger.

In the above simulations, the transition regions were resolved by more than 100 grid points to
determine the error and the convergence behavior accurately. In applications, such resolutions of
the interface are much too costly. Therefore, we simulated the same problem over the larger time
intervalI = [0,8.0] with much less grid points in the interface. We found that theε/∆x ratio should
be at least 5

√
2. The deviations att = 8.0 are given in the following table:

ε 0.4 0.4/
√

2 0.2 0.2/
√

2 0.1 0.1/
√

2 0.05

with correction −0.0601 −0.0354 −0.0280
without corr. 0.5867 0.4155 0.2867 0.2020 0.1355 0.0948 0.0502

Again the errors are much larger without the correction term. To get an error as obtained with the
correction term we need to takeε and∆x eight times smaller. If explicit methods are used the
expenditure becomes 8 times larger if the grid constant is halved due to the stability constraint
∆t . ∆x2 for the time step. Hence, in our example, the costs without the correction term are
83

= 512 times larger to obtain the same size of the error.
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4.2 Scalar case in 2D

Now, letN = 1 andd = 2 and consider the same reduced grand canonical potential as in Subsection
4.1. Instead of the smooth double-well potential we used the obstacle potential

wob(ϕ) =


8

π2
ϕ(1 − ϕ), 0 6 ϕ 6 1,

∞, elsewhere.

Then (37) has to be replaced by a variational inequality forϕ but the asymptotic analysis can be
done in a similar way (see [6]). The main advantage of such a potential is that the stable minima 0
and 1 ofw are attained outside of the thin interfacial layer so that the phase field equations only have
to be solved in a small tube around the approximated interface. The equation (38) foru remains the
same except that∂xx is replaced by the Laplacian∆.

We chose the following constants:

λ = 0.5, um = 2.0, cv = 1.0, ω0 = 0.25, K = 0.1, σ = 0.1.

We simulated the evolution of a radial interface. Initially, forϕ we used the profile

ϕ(0, x) =


0, −∞ < z 6 −π2/8,
1
2(1 + sin(4z/π)), −π2/8 6 z 6 π2/8,

1, π2/8 6 z < ∞,

z =
r − r0

ε
,

which is the solution to the variational inequality corresponding to (22) when restricted to a radial
direction. Here,r =

√
x2 + y2 is the radius and we choser0 = 0.8. Forh̃(ϕ) = h(ϕ) = ϕ2(3−2ϕ)

we get the constantsI =
1
2,H + H̃ − 2J = 23π2/1024 and hence

ω1 =
λ2

K

H + H̃ − 2J

2I
≈ 0.554201419.

For u initially the 1D profile (43) of the traveling wave solution in Subsection 4.1 in the radial
direction was used. As in the 1D case,ui = −1.5, v = (ω0/λ)(um − ui) = 0.25 andu∞ = −2.0.

We considered the domainD = [0,8]2 and chose the grid constant∆x = 0.02. At different
times we measured the distance of the level setϕ = 1/2 from the origin depending on the angleβ
with thex-direction. Again, the values at the grid points were linearly interpolated. Att = 1.5 we
obtain the following results:

without correction with correction
β = 20◦ β = 15◦ β = 0◦ β = 20◦ β = 15◦ β = 0◦

ε = 0.2 2.398226 2.398924 2.399661 1.851693 1.852492 1.853469
ε = 0.14 2.277925 2.278367 2.278668 1.889131 1.889779 1.890377
ε = 0.1 2.180093 2.180095 2.179580 1.910175 1.910433 1.910311

k 0.596551 0.589719 0.576271 1.662103 1.704448 1.777240

The distances as well as the order of convergence (cf. the procedure around equation (36) for its
derivation) do not essentially depend on the angle. The order of convergence is much better if the
correction term is taken into account. Moreover, the change in the radius when changingε is much
smaller if a correctionω1 is considered. In Figure 1 the time behavior of the convergence rates is
shown indicating a slight decrease.



148 H. GARCKE AND B. STINNER

4.3 Binary isothermal systems

To model phase transformations in systems with non-trivial, non-linearized phase diagrams (see
e.g. Figure 2) we need to introduce au-dependent correction term. In this subsection we will
demonstrate that our approach in fact makes it possible to obtain a superior approximation behavior
also in this case.

Sinceũ = (u(1), u(2)) ∈ TΣ2 it is sufficient to consideru(1). We postulate the reduced grand
canonical potential

ψ(u(0), u(1), ϕ) =
1
2((u

(0))2 + (u(1))2)+ (λ(u(0) − um)+G(u(1))2(3 − 2u(1)))(1 − h̃(ϕ))

with constantsum = −1.0, λ = G = 0.1. The two phasesl ands are in equilibrium if [ψ(u)]ls = 0
(see Appendix A). Here, the equilibrium condition reads

u(0) = um −
G

λ
(u(1))2(3 − 2u(1)) (44)

from which we can construct the phase diagram in Figure 2 by the relationsT = −1/u(0) and
c = ψ,u(1) = u(1) − 6Ghs(ϕ)u(1)(1 − u(1)) wherehs(ϕ) := 1 − h̃(ϕ). Moreover, we get

[c(u(1))]ls = 6Gu(1)(1 − u(1)).

For the isothermal case, i.e.u(0) is constant, we solved (7) and

∂tc(u
(1)) = ∂tψ,u(1)(u

(1)) = d∂xxu
(1)

in the domainD = [0,28] for t ∈ [0,40] numerically. We imposed homogeneous Neumann
boundary conditions and setd = 0.4. Initially we chose foru(1) a profile as in (43) foru(0),

u(1)(0, x) =

{
u
(1)
∞ + (ui − u

(1)
∞ )exp(− 1

d
v(x − x0)), x > x0,

u
(1)
i , x 6 x0.

(45)

Writing u(1) as a function inc we get

u(1) =

c, hs(ϕ) = 0,
1

12Ghs(ϕ)
(6Ghs(ϕ)− 1 +

√
(6Ghs(ϕ)− 1)2 + 24Ghs(ϕ)c), hs(ϕ) > 0.

Due to the fraction this is numerically unstable ashs(ϕ) → 0. Definingβ = 6Ghs(ϕ) we set
u(1) = c if β 6 10−4, but checks were done with different cut off values. The following results do
not essentially depend on the cut off value.

Choosingu(1)i = 0.6 for the interface value, the equilibrium concentrations arec(l) = 0.6 and
c(s) = 0.456. To model the solidification of an alloy of concentration 0.456, we letc(l) decay
andu(1) exponentially to this value by settingu(1)∞ = 0.456. Foru(1) = u

(1)
i = 0.6 we obtain at

equilibrium u
(0)
eq ≈ −1.648 and an equilibrium temperature ofTeq ≈ 0.6067. To make the front

move we initialized with an undercooling ofT = 0.55, i.e.u(0) ≡ −1/0.55. Formula (39) yields an
estimation of the initial velocity of the front: forω0 = 0.08 we havev ≈ (λ/ω0)(u

(0)
eq −u(0)) ≈ 0.2.

The initial position of the frontx0 = 8.0 was appropriately chosen so that there were not much
interaction with the external boundary. Initial values forϕ were again defined as in (42). By (35),
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FIG. 2. Left: phase diagram for a binary mixture computed from (44). Right: profiles of the solutionc for the binary system in
Section 4.3 during the evolution,ε = 0.4; the figure indicates already that there is only a negligible influence of the boundary
conditions on the evolution as gradients ofc do not vanish only in the transition region. But simulations on domains with
different lengths were performed to verify this conjecture.

the correction term is (h andh̃ are chosen as before)

ω1(u
(1)) =

([c(u(1))]ls)
2

d

H + H̃ + J

2I
.

Equation (45) does not describe the profile of a traveling wave solution, but a nearly traveling
wave solution can be observed (see Figure 2). We computed the following transition points ofϕ at
t = 20.0:

without correction with correction
ε 0.4 0.4√

2
0.2 0.2√

2
0.4 0.4√

2
0.2 0.2√

2

transition 12.3923 12.3369 12.2945 12.2589 12.1928 12.1976 12.1971 12.1907

Without the correction term, the changes in the interface position when changingε are much larger
than with the correction term. For example, comparing the positions forε = 0.4 and 0.2, there is a
change of≈ 10−1 without the correction term but only of≈ 5 · 10−3 with it. An explicit solution
to the corresponding sharp interface model to compare with is not known. But this behavior inε

indicates that the approximation of the sharp interface solution is improved thanks to the correction
term. A convergence rate of the interface position for simulations with the correction term could not
be computed because of the oscillations in the positions (the position does not behave monotonically
in ε). Simulations on several slightly finer grids indicated that the numerical error is of the same size
of about 10−3 which explains these oscillations.

4.4 Binary non-isothermal case

Now we will demonstrate that a better convergence behavior can also be observed if several
conserved quantities are considered. We postulate the following reduced grand canonical potential:

ψ(u(0), u(1), ϕ) =
1
2((u

(0))2 + (u(1))2)+ (λ(u(0) − um)+G(u(1) − ue))(1 − h̃(ϕ))
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with constantsum = −1.0, ue = 0.6, λ = G = 0.2. For the energye = ψ,u(0) we postulate
the fluxK∇u(0) with K = 4.0 and for the concentrationc = ψ,u(1) we postulated∇u(1) with
d = 0.1, i.e. there are no cross effects between mass and energy diffusion. As [c(u)]ls = G and
[e(u)]ls = λ are independent ofu we obtain a constant correction term (h and h̃ are chosen as

above)ω1 = (λ
2

K
+

G2

d
)H+H̃−2J

2I ≈ 0.8655555. Usually temperature diffusivity is much faster than
mass diffusivity so that the influence of the concentration part on the correction term is much larger.

At equilibrium (see Appendix A for the conditions) we have the linear relationu
(1)
eq − ue =

u
(0)
eq − um. For u(1) = ue = 0.6 andu(0) = um = −1.0 (; T (0) = Tm = 1.0) the equilibrium

concentrations arec(l) = u(1) = 0.6 andc(s) = u(1) −G = 0.4.
We solved the differential equations forx ∈ D = [0.0,1.4] andt ∈ I = [0.0,0.5] numerically.

Initial values forϕ were again defined as in (42) with an interface located atx0 = 0.6 away from
the boundaries. Settingu(1)(t = 0) ≡ 0.6 andu(0)(t = 0) ≡ −1.0 we got initial values forc
ande from ψ . Forϕ andu(1) we imposed homogeneous Neumann boundary conditions. We took
the same boundary condition foru(0) at x = 1.4, but at the other boundary point we imposed the
Dirichlet boundary conditionu(0)(x = 0.0) = −1.25 which corresponds to an undercooling of 1/5
and made the transition point move to the right. We choseω0 = 0.08 andσ = 1.0. At t = 0.4 we
measured the interface and we obtained the following results (varying∆x in the column andε in
the line):

∆x\ε 0.4/
√

2 0.2 0.2/
√

2 0.1 0.1/
√

2

with 0.002 0.704470 0.708335 0.710319
correction 0.001 0.710339 0.711441 0.712032

without 0.002 0.730569 0.726796 0.723258
correction 0.001 0.723281 0.720480 0.718347

The computations forε = 0.2/
√

2 reveal that the error due to the grid is small compared to the
deviation due to the different values forε. Computing numerically the order of convergence (see
(36)) we obtained values ofk ≈ 1.78 with the correction term andk ≈ 0.57 without the correction
term when the runs forε ∈ {0.4/

√
2,0.2/

√
2,0.1/

√
2} are compared. Similar results were obtained

at timet = 0.5.

5. Conclusions

The asymptotic analysis of a phase field model for solidification in multi-component alloy systems
has been carried out using matched asymptotic expansions. In addition to the leading order problem
a linear correction problem has been derived. If a certain small correction term to the kinetic
coefficient in the phase field equation is taken into account the zero function solves this correction
problem. Hence, there is no linear correction and our model approximates the related sharp interface
problem to second order.

Numerical simulations in one and two space dimensions and for several conserved quantities
were performed with and without the correction term. In all cases the convergence behavior turned
out to be superior when the correction term was considered. Whenever a comparison with an explicit
solution to the sharp interface model was possible a quadratic convergence could be observed while
a linear convergence was observed without correction.



MULTI -COMPONENT SYSTEMS 151

Acknowledgements

The authors gratefully acknowledge the financial support provided by the DFG (German Research
Foundation) within the priority research program (SPP) “Analysis, Modeling and Simulation of
Multiscale Problems” 1095 under Grant No. Ga 695/1-2.

Appendix A. Remarks on thermodynamics

To model solidification in alloy systems, often the free energy densityf is taken as thermodynamical
potential. We assume that pressure and mass density are constant. Then the free energy is a function
of temperature and concentrations,

f : R ×ΣN
→ R, (T , c) 7→ f (T , c).

Here,T is the temperature andc = (c(1), . . . , c(N)) is a vector of concentrations, i.e.c(i) describes
the concentration of componenti. The free energyf is supposed to be concave inT and convex
in c. Its derivative operates on the tangent space of the domain, i.e. onR ×TΣN

⊂ RN+1, and its
gradient can be naturally interpreted as a vector inR ×TΣN , hence

Df : R ×ΣN
→ R ×TΣN , (T , c) 7→ Df (T , c) = (∂T f, ∂cf ) =: (−s,µ).

The quantitys = −
∂
∂T
f is the entropy density andµ =

∂
∂cf are generalized chemical potential

differences. In the language of differential forms we have

df = −s dT + µ · dc.

The internal energye is the Legendre transform of−f with respect toT , i.e.e(s) = (−f )∗(s) =

sT (s)+ f (T (s)). As f is concave inT , e is concave ins. We have

de = df + s dT + T ds = T ds + µ · dc

leading to

ds =
1

T
de −

µ

T
· dc =: −u(0) de − ũ · dc.

In the following we will writee = c(0), c̄ = (c(0), c(1), . . . , c(N)) andu = (u0, ũ). We have

−s : R ×ΣN
→ R, c̄ 7→ −s(c̄),

and assume that−s is strictly convex inc̄. This already implies that

D(−s) : R ×ΣN
→ R ×TΣN , c̄ 7→ D(−s)(c̄) = u,

can be locally inverted. We assume the inversion can even be done globally and thatc̄ can be written
as a function ofu, c̄(u) = (−Ds)−1(u). The reduced grand canonical potential is then defined to
be the Legendre transform of−s, i.e.

ψ := (−s)∗ : R ×TΣN
→ R, u 7→ ψ(u) := c̄(u) · u + s(c̄(u)).
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One would naturally identify its derivativeDψ(u) with a vector inR ×TΣN . But usingc̄(u) =

(−Ds)−1(u) we can derive the derivative ofψ in u in directionv ∈ R ×TΣN to be

〈Dψ(u),v〉 =
d

dδ
((u + δv) · c̄(u + δv)+ s(c̄(u+ δv)))

∣∣∣∣
δ=0

= u · (Dc̄(u)v)+ v · c̄(u)+Ds(c̄(u)) · (Dc̄(u)v)

= v · c̄(u).

This motivates identifyingDψ(u) with c̄(u) and writing

Dψ : R ×TΣN
→ R ×ΣN , u 7→ Dψ(u) = c̄(u) = (−Ds)−1(u).

In particular, we see that

d

du(0)
ψ(u) = e(u),

d

dũ
ψ(u) = (c(1), . . . , c(N))(u).

One can think off , s andψ as being extended to all ofRN+1 whenever partial differentials
of the functions appear. But only the definition on the domains and only derivatives in tangential
direction as mentioned above enter the equations in Sections 2, 3 and 4.

Appendix B. Transformation of derivatives near the interface

For the following computations compare also [12]. Letε0 > 0. Near the interfaceΓ (t; 0) we
consider the diffeomorphism

Fε(t, s, z) := (t, γ (t, s; 0)+ (εz+ d(t, s; ε))ν(t, s)),

which, for eacht ∈ I andε ∈ (0, ε0), maps an open setV (t; ε) ⊂ R2 onto an open tubeB(t)
aroundΓ (t; 0). The parameters is the arc-length ofΓ (t; 0) andν andγ are as in Section 2. The
coordinates(t, s, z) are such that the interface is given by the set{Fε(t, s, z) : z = 0}. It is supposed
that, uniformly int , s andε, the tubeB(t) is large enough so that the values forz lying in a fixed
interval around zero are allowed as arguments forz. We are interested in the inverse of the derivative
of Fε to obtain∇(t,x)z(t, x) and∇(t,x)s(t, x).

Let κ := κ(t, s; 0) be the curvature ofΓ (t; 0) defined by∂sτ = κν or, equivalently, by∂sν =

−κτ . Furthermore, let

v = v(t, s; 0) = ∂tγ (t, s; 0) · ν(t, s; 0) (normal velocity, intrinsic),

vτ = vτ (t, s; 0) = ∂tγ (t, s; 0) · τ(t, s; 0) (tangential velocity, non-intrinsic).

Hence, writingdε = d(t, s; ε) we get

DFε(t, s, z) =

(
∂t t (t, s, z) ∂s t (t, s, z) ∂zt (t, s, z)

∂tx(t, s, z) ∂sx(t, s, z) ∂zx(t, s, z)

)
=

(
1 0 0

∂tγ + (εz+ dε)∂tν + (∂tdε)ν τ − (εz+ dε)κτ + (∂sdε)ν εν

)
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and

D(F−1
ε )(t, x) = (DFε)

−1(t, x) =

∂t t (t, x) ∇x t (t, x)

∂t s(t, x) ∇xs(t, x)

∂tz(t, x) ∇xz(t, x)



=

 1 (0,0)
−

1
1−κ(εz+dε)

(vτ + (εz+ dε)τ · ∂tν)
1

1−κ(εz+dε)
τ⊥

1
ε
(−∂tdε +

∂sdε(εz+dε)
1−κ(εz+dε)

τ · ∂tν +
∂sdε

1−κ(εz+dε)
vτ − v) 1

ε
ν⊥

−
∂sdε

ε(1−κ(εz+dε))
τ⊥


where∂tγ , ν, τ , κ and∂tν are evaluated at(t, s; 0).

Inserting the ansatzdε = εd1(t, s)+ ε
2d2(t, s)+ · · · we obtain, for a functionb(t, s, z) and for

a vector fieldEb(t, s, z),

d

dt
b = −

1

ε
v∂zb + ∂◦b − (∂◦d1)∂zb +O(ε),

∇xb =
1

ε
∂zbν + (∂sb − ∂sd1∂zb)τ

+ ε(κ(z+ d1)∂sb − (∂sd2 + ∂sd1κ(z+ d1))∂zb)τ +O(ε2),

∇x · Eb =
1

ε
∂z Eb · ν + (∂s Eb − ∂sd1∂z Eb) · τ

+ ε(κ(z+ d1)∂s Eb − (∂sd2 + ∂sd1κ(z+ d1))∂z Eb) · τ +O(ε2),

∆xb =
1

ε2
∂zzb −

1

ε
κ∂zb

+ (∂sd1)
2∂zzb − 2∂sd1∂szb − κ2(z+ d1)∂zb − ∂ssd1∂zb + ∂ssb +O(ε),

where∂◦
= ∂t − vτ ∂s is the (intrinsic) normal time derivative (see e.g. [17]).

Appendix C. Expansions of interfacial normal velocity and curvature

Let us assume that the normal velocity and the curvature ofΓ (t; ε) can be expanded inε-series, i.e.

v(t, s; ε) = v0(t, s; 0)+ εv1(t, s; 0)+ ε2v2(t, s; 0)+ · · · ,

κ(t, s; ε) = κ0(t, s; 0)+ εκ1(t, s; 0)+ ε2κ2(t, s; 0)+ · · · .

By (10) and the following paragraph, the interfacesΓ (t; ε) are parametrized byγε := γ (t, s; ε) =

γ (t, s; 0)+dεν(t, s; 0)wheredε = d(t, s; ε) = εd1(t, s)+ε
2d2(t, s)+· · · .We want to identify the

functionsvi , κi in terms of the functionsdi(t, s), i = 1,2, . . . , v := v(t, s; 0) andκ := κ(t, s; 0).
The unit tangent vector and the unit normal vector are

τ(t, s; ε) =
∂sγε

|∂sγε|
=

(1 − κdε)τ + (∂sdε)ν

((1 − κdε)2 + (∂sdε)2)1/2
,

ν(t, s; ε) =
∂sγ

⊥
ε

|∂sγε|
=

(1 − κdε)ν − (∂sdε)τ

((1 − κdε)2 + (∂sdε)2)1/2
.
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Inserting the expansion fordε yields

((1 − κdε)
2
+ (∂sdε)

2)−1/2
= 1 + εκd1(t, s)+O(ε2)

and finally forv(t, s; ε) the expansion

v(t, s; ε) = ∂tγε · ν(t, s; ε)

=
(∂tγ (t, s; 0)+ ∂tdεν + dε∂tν) · ((1 − κdε)ν − (∂sdε)τ )

((1 − κdε)2 + (∂sdε)2)1/2

=
(1 − κdε)v + ∂tdε(1 − κdε)− ∂sdεvτ − dε∂sdε∂tν · τ

((1 − κdε)2 + (∂sdε)2)1/2

= v + ε∂◦d1 +O(ε2)

where we used∂tν · ν =
1
2∂t |ν|

2
= 0. To compute the expansion ofκ(t, s; ε) we need

∂ssγ (t, s; ε) = −(2(∂sdε)κ + dε(∂sκ))τ + (κ + ∂ssdε − κ2dε)ν.

Then

det(∂sγ (t, s; ε), ∂ssγ (t, s; ε)) = −(1 − κdε)(κ + ∂ssdε − κ2dε)− (∂sdε)(2(∂sdε)κ + dε(∂sκ)).

As
|∂sγε|

−3
= (1 − 2κdε + κ2d2

ε + (∂sd
2
ε ))

−3/2
= 1 + ε3κd1 +O(ε2)

we obtain

κ(t, s; ε) =
− det(∂sγε, ∂ssγε)

|∂sγε|3
= κ + ε(κ2d1 + ∂ssd1)+O(ε2).

Appendix D. Derivation of matching conditions

In this appendix we will derive the conditions (15)–(18) foru. Analogous results can be obtained
for ϕ.

By (11) and (12) the functionŝuk(t, s, r) = uk(t, x) are well defined in the neighborhood of
Γ (t; 0) which we suppose to be a tube of radiusδ0. We assume that they can be smoothly and
uniformly extended ontoΓ (t; 0) from both sides asr ↘ 0 andr ↗ 0 respectively. An expansion
in Taylor series atr = 0 yields

ûk(t, s, r) = ûk(t, s,0
+)+ ∂r ûk(t, s,0

+)r

+
1
2∂rr ûk(t, s,0

+)r2
+O(r3), r ∈ (0, δ0], (46)

ûk(t, s, r) = ûk(t, s,0
−)+ ∂r ûk(t, s,0

−)r

+
1
2∂rr ûk(t, s,0

−)r2
+O(r3), r ∈ [−δ0,0). (47)

Let α ∈ (0,1) andl(t) be the length ofΓ (t; 0). We assume that the expansion

û(t, s, r; ε) =

N∑
k=0

εkûk(t, s, r)+O(εN+1) (48)

is valid uniformly on{(t, s, r; ε) : t ∈ I, s ∈ [0, l(t)], r ∈ (εαδ0/2, δ0], ε ∈ (0, ε0]}.
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We assume that the functionsU k(t, s, z) in (13) are defined fort ∈ I , s ∈ [0, l(t)] andz ∈ R
and that they approximate some polynomial inz uniformly in t, s for largez, i.e.

U k(t, s, z) ≈ U±

k,0(t, s)+ U±

k,1(t, s)z+ · · · + U±

k,nk
(t, s)znk , z → ±∞, (49)

with nk ∈ N for all k. Moreover, we assume that the expansion (13) is valid uniformly on
{(t, s, z; ε) : t ∈ I, s ∈ [0, l(t)], z ∈ εα−1[−δ0, δ0], ε ∈ (0, ε0]}.

To derive the matching conditions letζ ∈ (δ0/2, δ0) andε ∈ (0, ε0] and consider the inter-
mediate variableζεα. The expansion (48) is valid withr = ζεα for ε small enough. We can use
(46) and get (dropping the uniform dependence on(t, s))

û(ζ εα; ε) = ε0û0(0
+)+ εα∂r û0(0

+)ζ + ε2α 1
2∂rr û0(0

+)ζ 2
+O(ε3α)

+ ε1û1(0
+)+ ε1+α∂r û1(0

+)ζ + ε1+2α 1
2∂rr û1(0

+)ζ 2
+O(ε1+3α)

+ ε2û2(0
+)+ ε2+α∂r û2(0

+)ζ + ε2+2α 1
2∂rr û2(0

+)ζ 2
+O(ε2+3α)

+O(ε3
+ ε4α).

Using (47) the same can be written for−ζ ∈ (δ0/2, δ0) with 0+ replaced by 0−.
Now, for ζ positive, again (13) is valid for the choicez = ζεα−1. Using (49) and again dropping

the dependence on(t, s) we obtain

U(ζεα−1
; ε) = ε0U+

0,0 + εα−1U+

0,1ζ + · · · + εn0(α−1)U+

0,n0
ζ n0

+ ε1U+

1,0 + ε1+α−1U+

1,1ζ + · · · + ε1+n1(α−1)U+

1,n1
ζ n1

+ ε2U+

2,0 + ε2+α−1U+

2,1ζ + · · · + ε2+n2(α−1)U+

2,n2
ζ n2 + · · · .

The same holds true for−ζ ∈ (δ0/2, δ0) with U+ replaced byU−.
The expansions ofU andû are said to match if, in the limitε ↘ 0, the coefficients to every

order inε andζ agree. Comparing the two series forU andû yields the following relations between
the coefficientsU+

k,n on the one hand and the derivatives∂jr ûl(0+) on the other hand fork 6 2:

U+

0,0 = û0(0
+), U+

0,i = 0, 1 6 i 6 n0,

U+

1,0 = û1(0
+), U+

1,1 = ∂r û0(0
+), U+

1,i = 0, 2 6 i 6 n1,

U+

2,0 = û2(0
+), U+

2,1 = ∂r û1(0
+), U+

2,2 =
1
2∂rr û0(0

+), U+

2,i = 0, 3 6 i 6 n2.

Obviously from the definition ofr, a derivative of some function with respect tor corresponds to
the derivative with respect tox in the directionν = ν(t, s(t, x); 0). Hence, we can replace∂r ûk by
∇uk · ν. As ν is independent ofr we can also replace∂rr ûk by (ν · ∇)(ν · ∇)uk. We use (49) again
and obtain the following matching conditions (compare (15)–(18)): asz → ±∞,

U0(z) ≈ u0(0
±),

U1(z) ≈ u1(0
±)+ (∇u0(0

±) · ν)z,

∂zU1(z) ≈ ∇u0(0
±) · ν,

∂zU2(z) ≈ ∇u1(0
±) · ν + ((ν · ∇)(ν · ∇)u0(0

±)).
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