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Slow translational instabilities of spike patterns in the one-dimensional
Gray–Scott model
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Slow translational instabilities of symmetrick-spike equilibria for the one-dimensional singularly
perturbed two-component Gray–Scott (GS) model are analyzed. These symmetric spike patterns
are characterized by a common value of the spike amplitude. The GS model is studied on a finite
interval in the semi-strong spike-interaction regime, where the diffusion coefficient of only one of
the two chemical species is asymptotically small. Two distinguished limits for the GS model are
considered: the low feed-rate regime and the intermediate regime. In the low feed-rate regime it is
shown analytically thatk−1 small eigenvalues, governing the translational stability of a symmetrick-
spike pattern, simultaneously cross through zero at precisely the same parameter value at whichk−1
different asymmetrick-spike equilibria bifurcate off of the symmetrick-spike equilibrium branch.
These asymmetric equilibria have the general formSBB . . . BS (neglecting the positioning of theB
andS spikes in the overall spike sequence). For a one-spike equilibrium solution in the intermediate
regime it is shown that a translational, or drift, instability can occur from a Hopf bifurcation in the
spike-layer location when a reaction-time parameterτ is asymptotically large asε → 0. Locally, this
instability leads to small-scale oscillations in the spike-layer location. For a certain parameter range
within the intermediate regime such a drift instability for the GS model is shown to be the dominant
instability mechanism. Numerical experiments are performed to validate the asymptotic theory.

1. Introduction

We study the translational stability of equilibrium spike solutions in the one-dimensional Gray–Scott
(GS) model in particular parameter regimes. The GS system, introduced for continuously stirred
systems in [14], models an irreversible reaction involving two reactants in a gel reactor, where the
reactor is maintained in contact with a reservoir of one of the chemical species. The dimensionless
GS model is (cf. [30], [21])

vt = vxx − v + Auv2, −1 < x < 1, t > 0; vx(±1, t) = 0, (1.1a)

τut = Duxx + (1 − u) − uv2, −1 < x < 1, t > 0; ux(±1, t) = 0. (1.1b)

HereA > 0 is the feed-rate parameter,D > 0, τ > 1, and 0< ε � 1. For ε � 1, there are
equilibrium solutions forv, called spike patterns, that are localized near certain points in the domain.
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The parameterD measures the strength of the inter-spike interactions. The resulting spike patterns
can be classified into two main categories. The semi-strong spike interaction regime corresponds to
the limit ε2

� 1 andD = O(1). The weak-interaction regime, where both theu andv components
are localized, corresponds to the parameter rangeD = O(ε2) � 1. In this paper we will focus on
the semi-strong regime.

The numerical study of [38] for the GS model in the weak-interaction regime in a two-
dimensional domain showed a plethora of spike-type patterns in certain parameter ranges,
including time-dependent oscillating spikes, spike death due to over-crowding, spike-replication
behavior, spatio-temporal chaos, labyrinthine patterns and zigzag instabilities, etc. The similarities
between these behaviors and chemical patterns arising in certain physical experiments are striking
(cf. [24], [25]). These numerical and experimental studies have stimulated much theoretical work
to classify steady-state and time-dependent spike behavior in the simpler case of one spatial
dimension, including: spike-replication and dynamics in the weak-interaction regime (cf. [39],
[41], [36], [44]); spatio-temporal chaos in the weak-interaction regime (cf. [37]); the existence
and stability of equilibrium solutions in the semi-strong interaction regime (cf. [11], [7], [8],
[28], [29], [30], [21], [22]), and the dynamics of solutions in the semi-strong interaction regime
(cf. [5], [6], [43]).

For (1.1) in the semi-strong interaction limit, there are three distinguished limits forA where
different behavior is observed: Thelow feed-rate regimeA = O(ε1/2), the intermediate regime
O(ε1/2) � A � 1, and thehigh feed-rate regimeA = O(1). The high feed-rate regime is
associated with pulse-splitting behavior (cf. [7], [30], [22]). In the low feed-rate regime, we intro-
duce new variablesA andν defined by

A = ε1/2A, v = ε−1/2ν. (1.2)

In terms of (1.2), (1.1) is transformed to

νt = ε2νxx − ν +Auν2, −1 < x < 1, t > 0; νx(±1, t) = 0, (1.3a)

τut = Duxx + (1 − u) − ε−1uν2, −1 < x < 1, t > 0; ux(±1, t) = 0. (1.3b)

In [21] symmetrick-spike equilibrium solutions to (1.3), where the spikes have a common
amplitude, were constructed asymptotically in the low feed-rate regime. A construction of similar
solutions using the geometric theory of singular perturbations is given in [11] for a special scaling
of the GS model. In [21] the stability ofk-spike patterns on anO(1) time-scale was analyzed by first
formally deriving a nonlocal eigenvalue problem (NLEP). From a rigorous analysis of this NLEP,
two fast instability mechanisms were identified: synchronous oscillatory instabilities of the spike
amplitudes, and competition, or overcrowding, instabilities leading to the spike annihilation events.
In the intermediate regimeO(1) � A � O(ε−1/2), the existence and stability ofk-spike patterns
was first analyzed in [7] (see also §4 of [21] for a different approach). A stability analysis for a
one-spike solution on the infinite line was given in [29] in both the low and intermediate feed-rate
regimes. In §2 and Appendix A we briefly summarize those previous results for fast instabilities that
are important for an understanding of the new results derived herein.

The goal here is to study slow translational instabilities of equilibrium spike solutions for the
GS model in the low and intermediate feed-rate regimes. A related analysis for stripe and ring-type
solutions to the GS model is given in [23]. For the low feed-rate regimeA = O(1), in §3 we analyze
the stability of symmetrick-spike equilibrium solutions with respect to the small eigenvalues of
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FIG. 1. Left figure:|ν|2 versusA for the symmetric (solid curves) and asymmetric (dotted curves) solution branches when
A = O(1), D = 0.75 andk = 1, 2, 3, 4. The saddle-node valuesAke increase withk. Right figure:|ν|2 versusA stability
plot. The smooth curve for each symmetric solution branch has three portions with different stability properties. The curves
with widely spaced dots are unstable forτ > 0. The heavy solid curves are stable only with respect to the large eigenvalues
when τ < τhL. The solid curves are stable with respect to both the large and small eigenvalues whenτ < τhL. The
asymmetric branches, shown as the dotted curves, bifurcate at the point where the solid and heavy solid curves meet.

orderO(ε2) that govern translational instabilities of the spike profile. Using a formal asymptotic
analysis, in Principal Result 3.1 we obtain a certain auxiliary problem that the small eigenvalues
satisfy. By solving this problem exactly, we give explicit formulae for the small eigenvalues in
Proposition 3.2 and explicit stability thresholds with respect toD andA in Propositions 3.3 and 3.4,
respectively. In particular, in Proposition 3.4 we show for anyτ = O(1), k > 1, and fixedD > 0,
that thek-spike pattern is stable with respect to translations only whenA > AkS , for some explicit
thresholdAkS . AsA decreases belowAkS , and fork > 1, there arek − 1 small eigenvalues that
simultaneously cross into the unstable right half-plane Re(λ) > 0 along the real axis. Furthermore,
for τ below some threshold andk > 1, we show there is a range of values ofA where a symmetric
k-spike equilibrium pattern is unstable with respect to translations but is stable with respect to the
large eigenvalues of the NLEP that govern fastO(1) instabilities. ForD = 0.75, this range ofA is
illustrated in Fig. 1(b). In §3.1 we perform numerical computations to illustrate spike dynamics for
(1.3) in this range ofA.

In §4 we use a formal asymptotic analysis to study the existence of asymmetrick-spike patterns
where the spikes have different heights. In Principal Result 4.2 we show that the resulting spike
patterns have the formSBB . . . BS, where there arek1 > 0 small spikesS andk2 = k − k1 > 0
large spikesB arranged in any order across the interval. Neglecting the positioning of large and
small spikes in a spike sequence, we show in Principal Result 4.3 that fork > 1 there arek − 1
asymmetrick-spike equilibrium patterns that bifurcate from the symmetrick-spike solution branch
at precisely the threshold valueA = AkS wherek − 1 small eigenvalues for the symmetrick-spike
solution branch simultaneously cross through zero. Thek − 1 bifurcating branches correspond to
the number of small spikesS in a spike sequenceSBB . . . BS.

For D = 0.75, in Fig. 1(a) we plot a bifurcation diagram of the norm ofν versusA for the
symmetrick-spike solution branches fork = 1, . . . , 4. The dotted curves in Fig. 1(a) show the
asymmetrick-spike patterns that bifurcate off of the symmetrick-spike solution branch atA = AkS .
In Fig. 1(b) we illustrate the stability properties of the symmetric solution branches whenτ is below
the Hopf bifurcation thresholdτhL. In this figure, we show the range inA where the pattern is stable
with respect to the large eigenvalues but not the small eigenvalues. In Fig. 2(a) we plot a symmetric
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FIG. 2. Left figure: symmetric three-spike solution on the upper branch of the bifurcation diagram whenD = 0.75,A = 9.0,
andε = 0.02. Right figure: a three-spike BSB asymmetric pattern withD = 0.75,A = 10.5, andε = 0.02. In these plots,ν
are the solid curves andu are the dotted curves.

three-spike solution at a particular point on the upper branch. An asymmetric three-spike solution
of the form BSB is shown in Fig. 2(b).

Similar analyses of the existence and stability ofk-spike patterns have been previously
performed for the Gierer–Meinhardt (GM) model (cf. [13]), widely used to model localization in
biological pattern formation (cf. [26]). This system can be written in dimensionless form as (cf. [17])

at = ε2axx − a +
ap

hq
, τht = Dhxx − h + ε−1am

hs
, |x| < 1; ax(±1, t) = hx(±1, t) = 0.

(1.4)

Here 0< ε2
� 1, D > 0, andτ > 0 are constants. The GM exponents(p, q,m, s) are assumed to

satisfy
p > 1, q > 0, m > 1, s > 0, with ζ ≡

qm

(p − 1)
− (s + 1) > 0. (1.5)

The stability of symmetrick-spike equilibrium solutions to (1.4) was analyzed in [17] for the case
τ = 0 and in [46] forτ > 0. Asymmetrick-spike equilibria were constructed in [45] and [10], and a
partial stability analysis for asymmetric patterns was given in [45]. In [47] asymmetric spike patterns
for the GM model in two spatial dimensions were analyzed rigorously. However, the rigorous proofs
given in [47] do not directly carry over to the one-dimensional situation for the GS model studied
here. The stability of a one-spike solution to (1.4) on the infinite line was studied in [9], and the
dynamics of spikes was studied in [16], [42], and [43]. For the GM model, the relationship between
translational instabilities of symmetrick-spike patterns and the emergence of asymmetric spike
patterns is emphasized in [45] and [47]. The results in this study show that there is a rather close
spectral equivalence between translational instabilities in the GM model and the GS model in the
low feed-rate regime.

The method that we use to study translational instabilities for the GS model is related to
the SLEP (singular limit eigenvalue problem) method developed and applied in [32]–[34], in the
context of analyzing the translational stability of hyperbolic-tangent type interface solutions to
singularly perturbed two-component systems in the semi-strong interaction limit. For these class
of systems, where the nonlinearity associated with the fast variable is bistable, each transition layer
is closely approximated by a heteroclinic connection. The resulting spectral problem has only small
eigenvalues, also called critical spectra, that tend to zero linearly with the thicknessε of the interface.
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Under certain reasonable hypotheses, it was proved in [32] that a one-layer solution is stable. Under
the same conditions, the stability of ann-layer solution was proved in [33] by first reducing the
spectral problem to a certain matrix eigenvalue problem. Similar problems involving only critical
spectra occur in certain phase separation models with an associated variational principle including
the Cahn–Hilliard, Allen–Cahn, and phase-field models (cf. [1]–[4]), and the analysis of lamellar
states for Diblock copolymers (cf. [40]). The stability problem for these transition layer structures
is in marked contrast to the study of the stability of homoclinic-type spike patterns for the GS or
GM models where there is no variational structure, and where there are both large eigenvalues, with
λ = O(1), and small eigenvalues in the spectrum of the linearization.

In §5 we investigate translational instabilities for the GS model in the intermediate regime when
τ is asymptotically large asε → 0. For ak-spike equilibrium solution in this regime it was shown
in [7] and [21] that the NLEP governing instabilities on anO(1) time-scale has a Hopf bifurcation
whenτ = O(A4) � 1 (see Principal Result A.3 below). Therefore, in the intermediate regime,
this suggests that for some asymptotic range whereτ � 1 an instability with respect to the small
eigenvalues may be possiblebefore the onset of the Hopf bifurcation in the spike profile. This
exchange in the dominant instability mechanism asτ is increased, which has no known counterpart
in the GM model (1.4), was suggested in [28] and [29] in the context of a one-spike solution for
the infinite-line problem. For a one-spike equilibrium solution on a finite interval, we use a formal
asymptotic analysis to obtain an auxiliary problem in Principal Result 5.1 that the small eigenvalue
satisfies. By studying this problem rigorously, in Proposition 5.2 we show that asτ increases past
some critical value there is a drift instability due to a Hopf bifurcation, which leads to small-scale
oscillations in the spike-layer location. Asτ is increased even further, a pair of unstable complex
conjugate eigenvalues merge onto the positive real axis, which results in a slow monotonic drift of
the spike layer location. The critical value for the onset of an oscillatory drift instability occurs on the
asymptotic rangeτ = O(A−2ε−2). A related type of Hopf bifurcation, followed by a monotonic
drift instability as a reaction-time constant is increased, has been analyzed in [15] and [27] for
hyperbolic tangent-type interfaces associated with a two-component reaction-diffusion system with
bistable nonlinearities. Alternatively, for a three-component reaction-diffusion system it was shown
numerically in [35] that the Hopf bifurcation occursafter the onset of a monotonic drift instability
as a reaction-time parameter is increased.

In §6 we make a few remarks and suggest a few open problems for further study.
Finally, we remark on the mathematical rigor of our approach. The key results of formal

asymptotic derivations are labeled as Principal Results. Rigorous results based either on exact
calculations or mathematical theory are labeled as Propositions. More specifically, in §3 we use
a formal asymptotic analysis to construct equilibriumk-spike solutions and to derive the auxiliary
problem in Principal Result 3.1 for the small eigenvalues. The results in Propositions 3.2–3.6 follow
from exact calculations involving this problem. The construction of asymmetric patterns in §4 is
done using formal asymptotics. In §5 we present a formal derivation of the auxiliary problem for
drift instabilities leading to Principal Result 5.1. The existence of a drift instability threshold in
Proposition 5.2 follows from a rigorous analysis of this problem.

2. Symmetrick-spike equilibria: the stability problem

In this section and in Appendix A we summarize some previous results for the existence and
stability, on anO(1) time-scale, of symmetrick-spike patterns to the GS model (1.3) in the low
feed-rate regimeA = O(1) and in the intermediate regimeO(1) � A � O(ε−1/2). In the low
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feed-rate regime, a symmetrick-spike equilibrium solution to (1.3) was constructed in §2 of [21]
using the method of matched asymptotic expansions. We now briefly outline this derivation, as many
of the formulae are needed below in §3–§5.

For a symmetric spike pattern the spikes have equal height so thatu(xj ) = U for j = 1, . . . , k,
where

xj = −1 +
2j − 1

k
, j = 1, . . . , k. (2.1)

In the inner region near thej th spike, we lety = ε−1(x − xj ). In each inner region, we find that
u ∼ U + O(ε). Therefore, from (1.3a), the leading-order inner solution forν is ν ∼ w/(AU),
wherew(y) =

3
2 sech2(y/2) is the homoclinic solution to

w′′
− w + w2

= 0, −∞ < y < ∞; w → 0 as|y| → ∞, w′(0) = 0, w(0) > 0. (2.2)

In the outer region, defined away from anO(ε) region near each spike,ν is exponentially small
and the termε−1uν2 in (1.3b) can be approximated by a Dirac mass. Thus, the outer solution foru

satisfies

Duxx + (1 − u) −
6

A2U

k∑
j=1

δ(x − xj ) = 0, −1 < x < 1; ux(±1) = 0. (2.3)

In obtaining (2.3), we used
∫

∞

−∞
w2 dy = 6. The solution to (2.3) is

u(x) = 1 −
6

A2U

k∑
j=1

G(x; xj ), (2.4)

whereG(x; xj ) is the Green’s function, satisfying

DGxx − G = −δ(x − xj ), −1 < x < 1; Gx(±1; xj ) = 0. (2.5)

We defineag ≡
∑k

i=1 G(xj ; xi), where the spike locations satisfy (2.1). From an explicit calculation
of G(x; xj ), we deduce thatag is independent ofj , and is given by

ag ≡

k∑
i=1

G(xj ; xi) = [2
√

D tanh(θ0/k)]−1. (2.6)

Evaluating (2.4) atx = xj , whereu(xj ) = U , we obtain a quadratic equation forU ,

U(U − 1) = −
6ag

A2
. (2.7)

In this way, the following formal result for symmetrick-spike equilibrium solutions to (1.3) was
obtained in Principal Result 2.1 of [21]:

PRINCIPAL RESULT 2.1 (from [21]) Letε → 0, withA = O(1) andD = O(1) in (1.3). Then,
whenA > Ake, there are two symmetrick-spike equilibrium solutions to (1.3) given asymptotically
by

ν±(x) ∼
1

AU±

k∑
j=1

w[ε−1(x − xj )], u±(x) ∼ 1 −
1 − U±

ag

k∑
j=1

G(x; xj ). (2.8)
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We refer tou+, ν+ andu−, ν− as the small and large solution, respectively. In (2.8),w andG satisfy
(2.2) and (2.5), respectively. In addition,U± are the roots of (2.7) given by

U± =
1

2

1 ±

√
1 −

A2
ke

A2

 , Ake ≡

√
12θ0

tanh(θ0/k)
, θ0 ≡ D−1/2. 2 (2.9)

Although we have only sketched the formal derivation of equilibrium solutions in the low feed-
rate regime, there are several methods that can be used to construct these solutions rigorously. In
[11] a rigorous geometric singular perturbation approach was used to establish the existence of
a one-spike solution and a periodic solution to a different dimensionless form of the infinite-line
GS model (cf. Theorem 4.3 of [11]). For a one-spike solution on the infinite line, the threshold
A∞

1e =
√

12D−1/4 for the low feed-rate regime is equivalent to that given in Theorem 4.3 of [11].
This infinite-line threshold can be recovered by settingk = 1 and then lettingD → 0 in the formula
for Ake in (2.9).

In Fig. 1(a) we plot the bifurcation diagram of theL2 norm |ν|2 versusA for D = 0.75, and
k = 1, . . . , 4. These are the solid curves in Fig. 1(a). Using (2.8) and (2.9), we obtain

|ν|2 ≡

(
ε−1

∫ 1

−1
ν2 dx

)1/2

∼
2
√

6k

A

1 ±

√
1 −

A2
ke

A2

−1

. (2.10)

The existence thresholdsAke are the saddle-node points in Fig. 1(a). For the valuesA = 9.0,
D = 0.75, andε = 0.02, a symmetric three-spike solution is shown in Fig. 2(a). The classification
of small and large solution refers to low and high concentrations ofν in the core of the spike.
Smaller concentrations ofu in the core of the spike generate larger amplitudes forν. Hence, each
upper branch (upper solid curve) in Fig. 1(a) corresponds to the large solution, while each lower
branch corresponds to the small solution. A convenient way to parametrize these solution branches
is to introduce a parameters defined bys ≡ (1 − U±)/U±. Then, from (2.9), we get

A = Ake

1 + s

2
√

s
, s =

1 − U±

U±

, 0 < s < ∞. (2.11)

The large solutionu−, ν− corresponds to the range 1< s < ∞, while the small solutionu+, ν+

corresponds to 0< s < 1. The existence thresholdAke is ats = 1.
To analyze the stability of symmetrick-spike equilibrium solutions we let

u(x, t) = u±(x) + eλtη(x), ν(x, t) = ν±(x) + eλtφ(x), (2.12)

whereη � 1 andφ � 1. Substituting (2.12) into (1.3), and linearizing, we obtain the eigenvalue
problem

ε2φxx − φ + 2Au±ν±φ +Aην2
± = λφ, −1 < x < 1; φx(±1) = 0, (2.13a)

Dηxx − η − ε−1ν2
±η − 2ε−1u±ν±φ = τλη, −1 < x < 1; ηx(±1) = 0. (2.13b)

There are two classes of eigenvalues and eigenfunctions of (2.13); the large eigenvalues for which
λ = O(1) asε → 0, and the small eigenvalues for whichλ = O(ε2) asε → 0.
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For the large eigenvalues withλ = O(1) asε → 0, which determine the stability of ak-spike
equilibrium solution on anO(1) time-scale, the corresponding eigenfunction has the form

φ(x) ∼

k∑
j=1

bjΦ[ε−1(x − xj )], (2.14)

where
∫

∞

−∞
w(y)Φ(y) dy 6= 0. Here the coefficientsbj , for j = 1, . . . , k, are found to be related to

the eigenvectors of a certain matrix eigenvalue problem. This stability problem, which involves the
analysis of a nonlocal eigenvalue problem, was studied in [7], [8], [21], and [29]. Spectral results for
this problem in the low feed-rate and intermediate regimes of the GS model (1.3) are summarized
in Appendix A.

In this paper we study the small eigenvalues of (2.13) that lead to slow translational instabilities.
In contrast to (2.14), forε → 0 the corresponding eigenfunction in §3 has the form

φ(x) ∼

k∑
j=1

(cjw
′[ε−1(x − xj )] + εcjφ1j [ε−1(x − xj )]). (2.15)

The leading term in (2.15) is simply the translation mode associated with the spike profilew. The
correction termφ1j in (2.15) is shown below in (3.11) (see also (3.27) of Proposition 3.2) to be
proportional to the spike profilew[ε−1(x − xj )] of the j th spike. In §3 we will derive explicit
formulae for the coefficientscj in terms of a matrix eigenvalue problem, and we will calculate the
small eigenvaluesλj = O(ε2) precisely.

Our method to analyze translational instabilities is related to the SLEP method, originally
developed and analyzed rigorously for the study of transition-layer stability associated with two-
component reaction-diffusion systems in the semi-strong limit (cf. [32]–[34]). In these systems, the
nonlinearity in the fast variable is of bistable type. In these works, the study of the critical spectrum
is also reduced to the study of the spectrum of a matrix eigenvalue problem. However, since the
leading term in (2.15) is a monopole when the profilew is a transition layer, only the first term
in (2.15) is sufficient for calculating the spectrum. For the transition layer case, the critical spectra
areO(ε) asε → 0, and the matrix manipulations required to calculate the critical spectrum are
relatively straightforward. In addition, it was shown in [33], under reasonable hypotheses, that the
critical spectra are all negative for ann-layer solution. Therefore, such a solution is stable and there
are no bifurcations to other patterns. Alternatively, in our analysis of spike stability, since the leading
term in (2.15) is a dipole and theO(ε) term in (2.15) is found to be a monopole, these two terms
have the same effective order asε → 0 in our analysis of the critical spectrum ofO(ε2) for (2.13).
In addition, in contrast to the critical spectrum for transition layers, the critical spectrum for spikes
in the GS model can have bifurcations.

3. Slow translational instabilities for a symmetrick-spike pattern

For ε � 1, we now study the stability of the symmetrick-spike equilibrium solutions of Principal
Result 2.1 with respect to the small eigenvalues of (2.13) of orderO(ε2). The first part of the
analysis is to reduce (2.13) to the study of a matrix eigenvalue problem. We begin by writing (2.13)
in the form

Lεφ +Aην2
± = λφ, −1 < x < 1; φx(±1) = 0, (3.1a)

Dηxx − (1 + τλ + ε−1ν2
±)η = 2ε−1u±ν±φ, −1 < x < 1; ηx(±1) = 0, (3.1b)
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whereu± andν± are given in (2.8) of Principal Result 2.1. Here the operatorLε is defined by

Lεφ ≡ ε2φxx − φ + 2Au±ν±φ. (3.1c)

Sinceλ = O(ε2), (3.1b) yieldsτλ � 1 unlessτ = O(ε−2). In the derivation below, we will assume
thatτ = O(1) so that the small eigenvalues are asymptotically independent ofτ . It is important to
emphasize here that we cannot naively replaceLε by the noninvertible Fisher operatorL0 of the
NLEP problem of Principal Result A.1. Although the coefficients in these two operators areO(ε)

close near a spike, the small spatial variations in the coefficients ofLε are important for estimating
the small eigenvalues forε � 1.

Sinceν± is localized near each spikexj , the spike pattern is nearly translationally invariant. To
show this, we differentiate the equilibrium problem for (1.3a) with respect tox1 to get

Lεν±x = −Au±xν
2
±. (3.2)

Definingwj = wj (yj ) ≡ w[ε−1(x − xj )], wherew satisfies (2.2), we calculate from (2.8) that for
x nearxj ,

ν± ∼
1

AU±

wj , ν±x ∼
ε−1

AU±

w′

j . (3.3)

Substituting (3.3) into (3.2), forx nearxj we obtain

Lεw
′

j ∼ −εU−1
± u±xw

2
j = O(ε). (3.4)

This suggests that we look for an eigenfunction to (3.1) in the form

φ = φ0 + εφ1 + · · · , η(x) = εη0(x) + · · · , (3.5a)

where, for some coefficientscj , with j = 1, . . . , k, to be determined, we have

φ0 ≡

k∑
j=1

cjw
′

j [ε−1(x − xj )], φ1 ≡

k∑
j=1

cjφ1j [ε−1(x − xj )]. (3.5b)

Here and below we have defined〈ζ 〉j ≡ (ζ(xj+) + ζ(xj−))/2 and [ζ ]j ≡ ζ(xj+) − ζ(xj−),
whereζ(xj±) are the one-sided limits ofζ(x) asx → xj±. In particular, by differentiating the outer
solutionu± given in (2.8), it follows that the equilibrium positions forxj of (2.1) satisfy

〈u±x〉j = 0, j = 1, . . . , k. (3.6)

We substitute (3.5a) into (3.1a) withλ = O(ε2) � 1, and we use (3.4). Forx nearxj , we find
thatφ1j (y) satisfies

cjLεφ1j ∼ f (xj + εyj )w
2
j , f (x) ≡

cju±x(x)

U±

−
η0(x)

AU2
±

. (3.7)

Substituting (3.5a) into (3.1b), we deduce thatη0 satisfies

Dη0xx − (1 + ε−1ν2
±)η0 ∼ 2ε−2u±ν±(φ0 + εφ1), −1 < x < 1; η0x(±1) = 0. (3.8)
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Sinceφ0 is proportional to the odd functionw′

j nearx = xj , the term multiplied byφ0 in (3.8)
behaves like a dipole nearx = xj . Hence, forε � 1 andx nearxj , this term is proportional to
δ′(x − xj ) for j = 1, . . . , k, whereδ(x) is the delta function. Thus,η0 is discontinuous across
x = xj .

Sinceη0 is discontinuous acrossx = xj , it would suggest thatf (x) in (3.7) is also discontinuous
acrossx = xj . However, this is not the case, as we find that the first term on the right-hand side of
f (x) in (3.7) exactly cancels this singularity. To see this, we differentiate the equilibrium problem
for u in (1.3b) with respect tox, and subtract appropriate multiples of the resulting equation and
(3.8) to find that the dipole term proportional toφ0 cancels exactly. In this way, we find forx near
xj thatf (x) satisfies

Dfxx − (1 + ε−1ν2
±)f = −

2ε−1cj

AU2
±

φ1ju±ν±, −1 < x < 1; fx(±1) =
cju±xx(±1)

U±

. (3.9)

Assume for the moment thatφ1j is an even function. Then the right-hand side of (3.9) is a monopole
term. Therefore, we would conclude thatf (x) is continuous acrossx = xj , and consequently
〈f 〉j = f (xj ). Since〈u±x〉j = 0 from (3.6), (3.7) reduces forε � 1 to

cjLεφ1j ∼ f (xj )w
2
j , f (xj ) = −

〈η0〉j

AU2
±

. (3.10)

SinceLεwj = w2
j + O(ε), andLε is uniformly invertible on function spaces of even functions, we

can solve (3.10) uniquely as

cjφ1j ∼ f (xj )wj . (3.11)

Sincewj is even, so isφ1j , and the calculation is self-consistent. Alternatively, if we had initially
assumed thatφ1j was odd in (3.9) we would reach a contradiction. Ifφ1j is an odd function, then the
right-hand side of (3.9) is a dipole term and forε → 0 can be represented asεdδ′(x − xj ) for some
O(1) constantd. Therefore, forε � 1, the leading order behavior off (x) is still continuous across
x = xj . Hence, (3.10) still holds, and the resulting form (3.11) contradicts the assumed oddness
of φ1j .

This discussion shows that the term in (3.8) proportional toφ1 behaves like a linear combination
of δ(x − xj ). Most importantly, this shows in (3.12) below that the effect of the monopole term
for φ1 is of the same orderin ε as the dipole term proportional toφ0. Therefore, to calculate an
eigenvalue of orderO(ε2), we need to determine the asymptotic eigenfunction forφ in (3.5a) to
both theO(1) andO(ε) terms.

Next, in the sense of distributions, we calculate the strengths of the dipole and monopole terms
appearing on the right-hand side of (3.8). Using (3.3) forν± and u± ∼ U± for x nearxj , we
calculate from (3.5b), (3.10), and (3.11) that, forx nearxj ,

2ε−2u±ν±φ0 →
6cj

A
δ′(x − xj ), ε−1ν2

± →
6

A2U2
±

δ(x − xj ), (3.12a)

2ε−1u±ν±φ1 →
12f (xj )

A
δ(x − xj ) = −

12〈η0〉j

A2U2
±

δ(x − xj ). (3.12b)
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Here we have used
∫

∞

−∞
w2

j dy = 6. Substituting (3.12) into (3.8), we see thatη0 satisfies

Dη0xx −

[
1+

6

A2U2
±

k∑
j=1

δ(x −xj )

]
η0 =

6

A

k∑
j=1

cj δ
′(x −xj )−

12

A2U2
±

k∑
j=1

〈η0〉j δ(x −xj ), (3.13)

with η0x(±1) = 0. Using (2.7) forU±, and the definition ofs in (2.11), we can write

6

A2U2
±

=
s

ag

, s =
1 − U±

U±

, (3.14)

whereag is given in (2.6). Substituting (3.14) into (3.13), we conclude that (3.13) is equivalent to

Dη0xx − η0 = 0, −1 < x < 1; η0x(±1) = 0, (3.15a)

[Dη0]j =
6cj

A
; [Dη0x ]j =

−s

ag

〈η0〉j , j = 1, . . . , k. (3.15b)

Next, we estimate the small eigenvalue. We substitute (3.5) into (3.1a) and then multiply both
sides of (3.1a) byw′

j . By integrating the resulting equation across the domain, we get

k∑
i=1

(w′

j , ciLεw
′

i) + εA(η0ν
2
±, w′

j ) + ε

k∑
i=1

(w′

j , ciLεφ1i) ∼ λ

k∑
i=1

ci(w
′

j , w
′

i). (3.16)

Here we have defined(f, g) ≡
∫ 1
−1 f (x)g(x) dx. Sincew′

j is exponentially small away fromx = xj ,
it follows that to within negligible exponentially small terms the dominant contribution to the sums
in (3.16) arises fromi = j . Thus, (3.16) reduces asymptotically to

cj (w
′

j , Lεw
′

j ) + εA(η0ν
2
±, w′

j ) + ε(w′

j , cjLεφ1j ) ∼ λcj (w
′

j , w
′

j ). (3.17)

We then integrate the third term on the left-hand side of (3.17) by parts. SinceLε is self-adjoint, we
can then use (3.4) forLεw

′

j and (2.8) forν±. Since the integrands are localized nearx = xj , we can

write the resulting integrals in terms ofy = ε−1(x − xj ) to get

−
ε2cj

U±

∫
∞

−∞

w′w2u±x dy +
ε2

AU2
±

∫
∞

−∞

w2w′η0 dy −
ε3cj

U±

∫
∞

−∞

φ1jw
2u±x dy

∼ ελcj

(∫
∞

−∞

w′2 dy

)
, (3.18)

wherew satisfies (2.2). In this expression we have labeledη0 ≡ η0(xj+εy) andu±x ≡ u±x(xj+εy).
Using (3.11) forφ1j , and (3.7) forf (x), we can write (3.18) more compactly as

−ε2
∫

∞

−∞

w′w2f (xj + εy) dy −
ε3f (xj )

U±

∫
∞

−∞

w3u±x(xj + εy) dy ∼ ελcj

(∫
∞

−∞

w′2 dy

)
. (3.19)

The second integral on the left-hand side of (3.19) isO(ε4) sincew is even and〈u±x〉j = 0 from
(3.6).
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From (3.9) and (3.11), it follows thatf (x) is continuous but not differentiable acrossx = xj .
Therefore, we must calculate the first term on the left-hand side of (3.19) by first expanding
f (xj + εy) in one-sided Taylor series. After doing so, we then integrate the resulting equation
by parts. This yields ∫

∞

−∞

w′w2f (xj + εy) dy ∼ −
ε

3
〈f ′

〉j

∫
∞

−∞

w3 dy. (3.20)

Using (3.7) forf (x), and〈u±xx〉j = (U± − 1)/D from (2.3), we calculate

〈f ′
〉j =

cj (U± − 1)

U±D
−

〈η0x〉j

AU2
±

. (3.21)

Then we substitute (3.21) and (3.20) into (3.19), to obtain

λcj ∼
ε2

3

[
cj (U± − 1)

U±D
−

〈η0x〉j

AU2
±

]( ∫∞

−∞
w3 dy∫

∞

−∞
w

′2 dy

)
. (3.22)

Here〈η0x〉j is to be found from (3.15). Finally, we write (3.22) and (3.15) in terms ofη̃0 defined by

η0 ≡ −
6ag

A
η̃0. (3.23)

In addition, we calculate the ratio of the two integrals in (3.22) usingw(y) =
3
2 sech2(y/2). In this

way, we formally obtain the following problem that determines the small eigenvalues:

PRINCIPAL RESULT 3.1 Letε � 1 andτ = O(1). Then the eigenvalues of (2.13) of orderO(ε2)

satisfy

λcj ∼ 2ε2s

[
〈η̃0x〉j −

cj

D

]
, j = 1, . . . , k, (3.24)

where〈η̃0x〉j is obtained from the solution to the following auxiliary problem:

Dη̃0xx − η̃0 = 0, −1 < x < 1; η̃0x(±1) = 0, (3.25a)

[Dη̃0]j = −
cj

ag

; [Dη̃0x ]j =
−s

ag

〈η̃0〉j , j = 1, . . . , k. (3.25b)

Heres, which parametrizes the equilibrium solution branches, is defined in (2.11). 2

A problem similar to (3.25) was formally derived in Proposition 8 of [17] in the context of the GM
model (1.4) with exponent set(p, q,m, s), whereζ ≡ qm/(p − 1) − (1 + s) > 0. By comparing
Proposition 8 of [17] with Principal Result 3.1 above, we conclude that (3.25) for the GS model is
equivalent to the corresponding problem for the small eigenvalues of a GM model with exponent
set(p, q,m, s) = (2, s, 2, s), wheres = (1−U±)/U±. A similar spectral equivalence principle for
the large eigenvalues of the GM model and the GS model in the low feed-rate regime was derived
in Proposition 3.3 of [21].

To calculate explicit formulae for the small eigenvalues, we must first solve (3.25) to calculate
〈η̃0x〉j for j = 1, . . . , k. By substituting the resulting expressions into (3.24) we find thatλj , for j =

1, . . . , k, are the real eigenvalues of a certain generalized symmetric matrix eigenvalue problem.
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Each eigenvector of this problem generates a set of coefficientscj for j = 1, . . . , k. The eigenvalues
and eigenvectors of this matrix can be calculated analytically. Since the details of this exact, but
lengthy, calculation parallel that given in §4.2 of [17] for the GM model (1.4), we only outline the
key steps in this derivation in Appendix B. In this way, the following rigorous result is obtained for
the small eigenvalues of Principal Result 3.1.

PROPOSITION3.2 Letε � 1 andτ = O(1). Assume that the invertibility condition (B.12) holds.
Then the eigenvalues of (2.13) of orderO(ε2) are given explicitly by

λj ∼ −
2ε2s

D

[
1 − cos(πj/k) − zj (cosh(2θ0/k) − 1)

cosh(2θ0/k) − cos(πj/k)

]
, j = 1, . . . , k. (3.26a)

Herezj is defined in terms of the parametrizations = (1 − U±)/U± of eachk-spike equilibrium
solution branch as

zj ≡
sγ

sγ − ξj
csch2

(
2θ0

k

)
sin2

(
πj

k

)
, j = 1, . . . , k; γ ≡ 2 tanh

(
θ0

k

)
, θ0 = D−1/2.

(3.26b)
For j = 1, . . . , k, ξj is defined in (B.20a) of Appendix B. The corresponding eigenfunctionφ from
(3.5) is

φ(x) ∼

k∑
n=1

(cnw
′[ε−1(x − xn)] + εs〈η̃0〉nw[ε−1(x − xn)]), (3.27a)

where〈η̃0〉n is thenth component of〈η̃0〉 given by

〈η̃0〉 = γ
√

D[I + sγ (B − sγ I)−1]Pgc. (3.27b)

Here the matricesB andPg are defined in (B.10) and (B.4), respectively. Finally, there arek

independent choices for the vector of coefficientsct
= (c1, . . . , ck), given explicitly byct

j =

(c1,j , . . . , ck,j ) where

ct
k =

1
√

k
(1, −1, 1, . . . , (−1)k+1); cl,j =

√
2

k
sin

(
πj

k
(l −1/2)

)
, j = 1, . . . , k −1. (3.28)

Herect
j , for j = 1, . . . , k, are the eigenvectors of the matrixBg defined in (B.20b). 2

As shown in Appendix B, the invertibility condition (B.12) holds when the parameters are such that
λ = 0 is not an eigenvalue of the NLEP problem (A.1) of Appendix A for the large eigenvalues.

Next, we determine the sign ofλj with respect to the parameters. Sincezk = 0 in (3.26b), it
follows thatλk < 0 for anyk, D andA. Therefore, there is always one negative eigenvalue and one
stable direction, given byck in (3.28) and (3.27a), for translational perturbations of the equilibrium
solution. From (3.26a) we infer thatλj < 0 for j = 1, . . . , k − 1 if and only if

1 − cos

(
πj

k

)
− 2zj sinh2

(
θ0

k

)
> 0, j = 1, . . . , k. (3.29)

Using (3.26b) forzj , we can write (3.29) as

ξj

γ
< s − s cos2

(
πj

2k

)
sech2

(
θ0

k

)
, j = 1, . . . , k. (3.30)
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Finally, by (B.20a) forξj , a short calculation shows that we can write the stability condition (3.30)
as (

1 − s + csch2
(

θ0

k

))(
1 − cos2

(
πj

2k

)
sech2

(
θ0

k

))
< 0, j = 1, . . . , k. (3.31)

Since the second bracketed term on the left-hand side of (3.31) is always positive, we conclude that
λj < 0 for j = 1, . . . , k − 1 if and only if

1 − s + csch2
(

θ0

k

)
< 0. (3.32)

Since (3.32) is independent ofj , it follows that any zero-crossing of the small eigenvaluesλj , for
j = 1, . . . , k − 1, must be simultaneous.

For the small solutionu+, ν+, where 0< s < 1, the left-hand side of (3.32) is always positive,
and so there arek − 1 positive small eigenvaluesλj , for j = 1, . . . , k − 1. For the large solution
wheres > 1, we can calculate stability thresholds from (3.32). The threshold condition from (3.32)
can be written as

sinh2
(

θ0

k

)
=

1

s − 1
, θ0 ≡ D−1/2. (3.33)

This can be solved in the form

D =
4

k2

ln

( s + 1

s − 1

)
+

√(
s + 1

s − 1

)2

− 1

−2

. (3.34)

In (3.34), we then use (2.11) fors to writeD in terms ofA. This yields the following main result:

PROPOSITION 3.3 Let ε � 1, andτ = O(1). For k = 1, both the large and small solutions
u±, ν± are always stable with respect to the small eigenvalue. Fork > 1, and for the small solution
u+, ν+, there are alwaysk −1 positive small eigenvalues and one negative eigenvalueλk. Similarly,
for k > 1, we also haveλk < 0 for the large solutionu−, ν−. However, the other small eigenvalues
λj , for j = 1, . . . , k − 1, are negative at a fixed value ofA/Ake if and only if D satisfies

D < DkS ≡
4

k2[ln(r +
√

r2 − 1)]2
, r ≡

[
1 −

A2
ke

A2

]−1/2

. (3.35)

If D = DkS , thenλ = 0 is an eigenvalue of algebraic multiplicityk − 1. 2

The criterion (3.35) expressesDkS in terms of the ratioAke/A. However, sinceAke also depends
on D, the criterion (3.35) is a transcendental equation forDkS . Below, we solve this equation
asymptotically in the intermediate regime to obtain a certain scaling law.

A similar criterion can be found with respect toA. We substitute the stability condition (3.32)
into (2.11) to obtain the stability threshold

A
Ake

=
1 + s

2
√

s
=

2 + csch2(θ0/k)

2
√

1 + csch2(θ0/k)

. (3.36)

By simplifying (3.36), we obtain the next result.
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PROPOSITION3.4 Letε � 1, τ = O(1), andk > 1. For the large solutionu−, ν−, the small
eigenvaluesλj , for j = 1, . . . , k − 1, are negative at a fixed value ofD if and only ifA satisfies

A > AkS, AkS ≡ Ake

[
tanh

(
2θ0

k

)]−1

, θ0 ≡ D−1/2. (3.37)

HereAke is the existence threshold of (2.9). Notice thatAkS −Ake → 0+ asD → 0. 2

Propositions 3.3 and 3.4 show thatk − 1 small eigenvalues simultaneously cross through zero as
eitherD crosses throughDkS or asA crosses throughAkS . Therefore, there must be a bifurcation
at these critical values. In §4, this bifurcation is shown to be related to the emergence of asymmetric
solution branches.

Next, we compareDkS andAkS with the large eigenvalue stability thresholdsDkL andAkL

of Principal Result A.2, which hold whenτ is below the Hopf bifurcation threshold. A simple
calculation shows that

AkS > AkL, DkS < DkL. (3.38)

Therefore, the stability thresholds with respect to the small eigenvalues are more stringent than
those for the large eigenvalues. The next result summarizes the main stability conclusion for the
large solution branchu− andν− with respect to both the small and the large eigenvalues.

PRINCIPAL RESULT 3.5 Letε � 1, and consider the large solution branchu−, ν− of Principal
Result 2.1. Suppose thatτ < τhL, whereτhL is the Hopf bifurcation value of the NLEP problem of
Principal Result A.1 for the large eigenvalues. Then thek-spike symmetric solution branch is stable
with respect to both the large and the small eigenvalues when eitherD < DkS , or equivalently when
A > AkS . For τ < τhL whereD satisfiesDkS < D < DkL, or whenAkL < A < AkS , the large
solution is stable with respect to the large eigenvalues but is not stable with respect to the small
eigenvalues. 2

To illustrate our main stability result graphically, in Fig. 1(b) of §1 we plotted the norm|ν|2 defined
in (2.10) versusA for the parameter valuesD = 0.75 andk = 1, . . . , 4. The stability information
of Principal Result 3.5 is shown by different shadings of different portions of these branches. For
smaller values ofD, we still haveAke < AkL < AkS for k > 2, but in this caseAkS is close to
Ake.

Next, we derive a scaling law for the small eigenvalues that is valid in the intermediate parameter
regimeO(1) � A � O(ε−1/2). In this regime, we know from (2.11) that to leading order,s ∼

4A2/A2
ke � 1. Letting s → ∞ in (3.26) we obtain the following limiting result for the small

eigenvalues:

PROPOSITION3.6 Letε � 1, D = O(1), τ = O(1), and assume thatO(1) � A � O(ε−1/2).
Then, for the large solutionu−, ν−, the small eigenvalues of (2.13) are given asymptotically by

λ ∼ −
4ε2A2θ0

3
tanh

(
θ0

k

)
sin2

(
πj

2k

)
1 − sech2(θ0/k) cos2(πj/(2k))

cosh(2θ0/k) − cos(πj/k)
+O(ε2), j = 1, . . . , k. 2

(3.39)
From (3.39), we conclude thatλj < 0 for j = 1, . . . , k whenD = O(1) andτ = O(1). Therefore,
whenD = O(1) andτ = O(1), we always have stability with respect to the small eigenvalues in
the intermediate regime forA. However, stability can be lost whenD is asymptotically large. To
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show this we uses ∼ 4A2/A2
ke in (3.35) to conclude that ak-spike pattern is stable with respect to

translations whenD < D∞

kS , whereD∞

kS for k > 1 is the unique root of

√
D =

A2

3k2
tanh

(
1

k
√

D

)
. (3.40)

In the intermediate regime, (3.40) can be solved asymptotically to predict a minimum inter-spike
distanceLmS for the translational stability of a spike pattern. For ak-spike pattern on a domain of
length 2, the inter-spike separation isL = 2/k. ForA � 1, the root of (3.40) satisfiesD � 1. For
D � 1, we solve (3.40) fork with A = ε−1/2A to conclude that ak-spike pattern is translationally
stable when

L > LmS ∼

(
24Dε

A2

)1/3

, O(ε1/2) � A � O(1). (3.41)

Since LmS � O(ε), the calculation is self-consistent. A similar scaling law for competition
instabilities in the intermediate regime, associated with the large eigenvalues, was derived in §4
of [21]. For τ below the Hopf bifurcation thresholdτhL, it was shown in [21] that there are no
positive real eigenvalues when

L > LmC ∼

(
12γkDε

A2

)1/3

, O(ε1/2) � A � O(1); γk = 1 + cos(π/k). (3.42)

ClearlyLmC < LmS . Therefore, as the inter-spike separation distanceL is decreased belowLmS ,
instability is first lost due tok − 1 independent slow translational instabilities. AsL is further
decreased belowLmC , there are fastO(1) instabilities leading to spike annihilation events.

Finally, we comment on the uniformity of our results in (3.26) and (3.39) with respect to the
diffusivity D, which measures the inter-spike interaction strength. First, we consider a one-spike
solution withD � 1. From (3.26), we obtainλ1 ∼ −2ε2s/D < 0 for D � 1. This suggests that a
one-spike solution to the GS model is stable whenD � 1. However, for the shadow problem where
D = ∞, it is well known for the corresponding GM model (1.4) that a spike is translationally
unstable forε � 1 due to a positive exponentially small eigenvalue, which leads to dynamic
metastability of the spike (cf. [17], [20]). Therefore, with the close relationship between the GS
and GM models, (3.26) for the GS model is not expected to be uniformly valid asD → ∞. In fact,
for D = O(ec/ε) an extra term must be added to the expressionλ1 ∼ −2ε2s/D, which arises from
analyzing exponentially weak boundary layer effects forφ nearx = ±1. The resulting formula for
λ1 leads to a bifurcation of a one-spike equilibrium on the rangeD = O(ec/ε), for somec > 0.
We do not study this problem in detail here, since a very similar issue for the GM model (1.4) was
studied in detail in [20] (see also §5.2 of [17]).

For the GS model in the other limit whereD → 0, we summarize our comments as follows:

REMARK 3.1 The analysis leading to (3.26) and (3.39) is valid provided thatD � O(ε2). This
is needed to ensure a decoupling of the slow and fast variables in the core of the spike. However, if
we did letD → 0 in (3.26), but withD � O(ε2), after a short calculation we obtain

λk ∼ −
8ε2s

D
e−2/(k

√
D)

; λj ∼
8ε2s

D

(
s

s − 1

)
sin2

(
πj

k

)
e−2/(k

√
D), j = 1, . . . , k−1. (3.43)

Therefore, forD � 1, there arek exponentially small eigenvalues, withk − 1 of them being
positive for the large solution branch wheres > 1. However, in the weak interaction regimeD =
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O(ε2), where both variables are localized, ak-spike pattern with anO(1) inter-spike separation
distance is essentially equivalent to a periodic, near-homoclinic, pattern of an asymptotically large
period. For such long-wavelength periodic patterns, with a sufficiently large wavelength, it was
proved in [12] that there is a continuous loop of spectra in the neighborhood of each isolated
eigenvalue of the infinite-period homoclinic connection. Although the result (3.43) was derived
for Neumann boundary conditions rather than periodic conditions, the discrete spectra in (3.43)
should presumably be related to the breaking of the spectral loop near the origin resulting from the
transition from the weak to the semi-strong interaction regime. A potential parametrization for this
transition is to takeD = ε2−p with 0 6 p 6 2. 2

3.1 Slow translational instabilities: dynamics

We now perform a few numerical experiments to illustrate the theory and to show the significance of
the small eigenvalues for the dynamics of spike patterns. The computational results shown below for
(1.3) have been computed using the routine D03PCF of the NAG library [31] with 1500 uniformly
spaced meshpoints.

For (1.3) we takeD = 0.75, k = 2, ε = 0.03, andτ = 2.0. For this two-spike equilibrium
solution, the stability thresholds for the small and large eigenvalues, obtained from (3.37) and (A.4),
respectively, areA2S = 6.296 andA2L = 5.633. Sinceτ is below the stability thresholdτhL, there
is no Hopf bifurcation for the equilibrium profile. For the initial condition for (1.3), we take the
equilibrium solution of Principal Result 2.1, with initial spike locationsxj (0) slightly offset from
their equilibrium values of±1/2.

We first takeA = 6.5 > A2S , andx1(0) = 0.52,x2(0) = −0.48. For this value ofA, the two
small eigenvalues are negative. Therefore, the equilibrium solution should be stable with respect to
translations of the profile. In Fig. 3(a) we plot the spike amplitudesνm(t) = ν−(xj , t), for j = 1, 2,
versust showing the convergence towards a symmetric two-spike equilibrium solution over a long
time-scale. In Fig. 3(b) we plotx2 versust , which shows thatx2 → 1/2 ast increases. A similar
plot can be made forx1.

Next, we takeA = 6.0, so thatA2L < A < A2S . We again choosex1(0) = 0.52, x2(0) =

−0.48. In Fig. 4(a) we plot the locations of the two spikes as a function of time showing the

1:1
1:2
1:3

0 500 1000 1500 2000
�m

t
(a)νm versust

0:480:500:52

0 500 1000 1500 2000
x2

t
(b) xj versust

FIG. 3. Numerical solution to (1.3) withD = 0.75, k = 2, ε = 0.03, τ = 2.0, andA = 6.5. Left figure: plot of the spike
amplitudesνm of ν− versust . Right figure: plot of the spike locationx2 versust .
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FIG. 4. Numerical solution to (1.3) withD = 0.75, k = 2, ε = 0.03, τ = 2.0, andA = 6.0. Left figure: plot of the spike
locationsxj versust . Right figure: plot of the spike amplitudesνm versust .
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FIG. 5. Left figure: plot of numerical solution to (1.3) at different times for the parameter values of Fig. 4. The clustered
solid curves correspond tot = 0, 150, 300, and the heavy solid curve corresponds tot = 500. Only one spike remains at
t = 500. Right figure: plot of the spike locationx2 versust for the parameter values of Fig. 4, except now with symmetric
initial locationsx1(0) = 0.52 andx2(0) = −0.52.

divergence away from the two-spike equilibrium locations±1/2. In Fig. 4(b) we plot the amplitudes
νm of the two spikes versust . The numerical solution forν versusx is shown in Fig. 5(a) at different
times. This example suggests the following scenario: For this value ofA = 6.0, the equilibrium two-
spike solution is stable with respect to profile instabilities (large eigenvalues), but is unstable with
respect to translations (small eigenvalues). Therefore, the locations of the two spikes diverge away
from ±1/2. During their evolution, a competition instability occurs on a fastO(1) time-scale as
a result of a large eigenvalue crossing into the right half-plane. Recall that the results in §2 and
Appendix A pertain only to profile instabilities associated withequilibriumspike solutions, and not
the quasi-equilibrium solutions where the spike locations are not at their equilibrium positions. This
competition instability annihilates one of the spikes at approximatelyt ≈ 500, and the other spike
then slowly drifts to the stable one-spike equilibrium solution centered at the origin. Sinceλk < 0
in Proposition 3.3, a one-spike equilibrium solution is always stable with respect to translations.

Finally, we takeA = 6.0, but we now introduce a symmetric perturbation in the initial spike
locations so thatx1(0) = −0.52 andx2(0) = 0.52. Although, the equilibrium solution is unstable
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with respect to translations, the spike locationx2 is shown in Fig. 5(b) to approach its equilibrium
value. An identical convergence occurs forx1. To explain this, we recall from Proposition 3.3 that,
althoughλ1 > 0 for A = 6.0, we always haveλ2 < 0. Therefore, there is a saddle-structure
for the two-spike equilibrium solution. From Proposition 3.3, and from the form of the stable
eigenvectorc2, given in (3.28) withk = 2, it follows that symmetric perturbations of the initial
spike locations are, locally, on the stable manifold of the saddle point. Therefore, with sufficient
numerical resolution it may be possible that we can approach the saddle point ast increases. This is
what is observed in Fig. 5(b).

4. Asymmetric k-spike equilibria

We now construct asymmetric equilibrium spike patterns, where the spikes have different heights.
We follow a similar approach as in [45] for the GM model (1.4) by first constructing a one-spike
solution centered at the origin for (1.3) posed on−l < x < l, with ux(±l) = νx(±l) = 0. For
ε � 1, such a solution forν andu is even,ν(l) is exponentially small, andu(l) = O(1). We
determine all values ofl, labeled byl1, . . . , ln, such thatu(l1) = · · · = u(ln). For a certain range of
the parameters, as found below, there are exactly two such values ofl. These “local” solutions are
then used to construct a global asymmetric equilibriumk-spike pattern for (1.3) on [−1, 1].

To construct a solution to (1.3) on−l < x < l with a spike at the origin, we proceed as in §2
for a symmetric spike pattern. We obtain

ν(x) ∼
1

AU
w(x/ε), u(x) ∼ 1 −

6

A2U
Gl(x; 0). (4.1)

Herew(y) satisfies (2.2), andGl(x; 0) is the Green’s function on−l < x < l satisfying

DGlxx − Gl = −δ(x), −l < x < l; Glx(±l; 0) = 0; Gl(x; 0) =

(
θ0

2

)
cosh[(l − |x|)θ0]

sinh(lθ0)
,

(4.2)
whereθ0 ≡ D−1/2. The constantU in (4.1), representing the leading-order approximation foru

in the inner region, is obtained by settingu(0) = U in (4.1). By solving the resulting quadratic
equation we get

U =
1

2

(
1 ±

√
1 −

coth(θ0l)

Ã2

)
, A ≡

√
12θ0Ã, θ0 ≡ D−1/2. (4.3)

To construct asymmetric patterns, we must calculateu(l). Using (4.1) and (4.2), we get

u(l) − 1

U − 1
=

Gl(l; 0)

Gl(0; 0)
= sech(lθ0). (4.4)

Combining (4.4) and (4.3), we obtain a key formula foru(l):

u(l) = E±(z) ≡ 1 +
1

2
sech(z)

[
−1 ±

√
1 −

cothz

Ã2

]
, z ≡ θ0l. (4.5)
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The minus and plus signs in (4.5) refer to the large and small solutions, respectively. In (4.5),E±(z)

is defined only whenÃ2 > cothz > 1. This yieldsz > z0, where

z0 ≡
1

2
ln

(
Ã2

+ 1

Ã2 − 1

)
. (4.6)

ClearlyE±(z) > 0 for z > z0. Forz > z0, we readily derive some key properties ofE±(z).

LEMMA 4.1 Let Ã > 1. Then, forz > z0, E′
+(z) > 0 with E+(z0) < 1, andE+(z) → 1 as

z → ∞. Alternatively,E−(z0) < 1 with E′
−(z) < 0 for z0 < z < zm, andE′

−(z) > 0 for z > zm.
Moreover,E−(z) → 1 asz → ∞. The pointzm whereE−(z) has its minimum value is the unique
root of

Ã = [tanhz]−1/2[tanh(2z)]−1. (4.7)

Proof. Clearly E±(z0) < 1 andE±(z) → 1 asz → ∞. In addition, by differentiating (4.5) it
follows readily thatE′

+(z) > 0 for z > z0. ForE−(z), we calculate

E′
−(z) =

sinhz

2 cosh2 z

[
1 +

√
1 −

cothz

Ã2

]
−

sechz

Ã2

csch2 z√
1 −

cothz

Ã2

. (4.8)

Therefore,E′
−(z) < 0 only when

2Ã2 tanhz

[√
1 −

cothz

Ã2
+ 1 −

cothz

Ã2

]
> csch2 z. (4.9)

By manipulating (4.9), we find thatE′
−(z) < 0 if and only if√

1 −
cothz

Ã2
>

cosh(2z)

2Ã2 sinh2 z
cothz − 1. (4.10)

It is easy to see from (4.10) that there exists azm such thatE′
−(z) < 0 for z0 < z < zm, and

E′
−(z) > 0 for z > zm. To determine whereE′

−(z) = 0, we square both sides of (4.10) to obtain

1 − t =

(
t cosh(2z)

2 sinh2 z
− 1

)2

, t ≡
cothz

Ã2
. (4.11)

By solving (4.11) fort > 0 we find thatt = tanh2(2z). SinceÃ2
= (cothz)/t , we obtain (4.7)

for Ã. 2

Therefore, whenÃ > 1, it follows that for anyz in z0 < z < zm, there exists a uniquẽz, with
z̃ > zm, such thatE−(z) = E−(z̃). In Fig. 6 we plotE−(z) versusz whenÃ = 3. Sincez = θ0l and
z̃ = θ0l̃, the implication of this result is that given anyl with z0 < lθ0 < zm, there exists a uniquẽl,
with l̃θ0 > zm, such thatu(l) = u(l̃). This implies that in any asymmetric pattern generated using
E−(z) there are only two distinct types of spikes. Furthermore, sinceE+(z) is increasing we cannot
construct asymmetric patterns for the small solution.

ForE−(z), solutions of lengthl andl̃ are calledS-typeandB-typespikes, respectively. We now
construct asymmetrick-spike patterns to the global problem (1.3) on [−1, 1] with k1 > 0 S-type
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FIG. 6. Plot ofE− versusz for z > z0 whenÃ = 3.

spikes andk2 = k − k1 > 0 B-type spikes arranged in any sequence from left to right across the
interval as

SBSSB . . . B, k1 S’s, k2 B ’s. (4.12)

To do so, we use translation invariance and the conditionu(l) = u(l̃) to glueS-type andB-type
spikes together to obtain differentiability for the global functionu on [−1, 1]. The global functionν
is asymptotically differentiable since the local function is such thatν(l) andν(l̃) are exponentially
small whenε � 1.

Since the supports of anS-spike and aB-spike are 2l and 2̃l, respectively, we get the length
constraint 2k1l + 2k2l̃ = 2. The other condition, which ensures thatu is differentiable, is that
E−(z) = E−(z̃). Usingl = zθ0 and l̃ = z̃θ0, we obtain a nonlinear coupled algebraic system forz

andz̃:

k1z + k2z̃ = θ0, E−(z) = E−(z̃); l = zθ−1
0 , l̃ = z̃θ−1

0 , θ0 = D−1/2. (4.13)

HereE−(z) is defined in (4.5). In terms of the half-lengthsl and l̃ of the supports of the spikes as
given in (4.13), we formally obtain the following result for asymmetrick-spike patterns:

PRINCIPAL RESULT 4.2 LetÃ > 1 andD > 0. Then, forε → 0, an asymmetric equilibrium
k-spike pattern for (1.3) withk1 spikes of type S andk2 = k − k1 spikes of typeB is characterized
by

ν−(x) ∼

k∑
j=1

1

AU(lj )
w[ε−1(x − xj )], U(lj ) ≡

1

2

1 −

√
1 −

coth(θ0lj )

Ã2

 , A ≡

√
12θ0Ã,

(4.14a)

wherew(y) satisfies (2.2). Here for eachj , lj = l or lj = l̃, wherel and l̃ are determined in
terms ofk1, k2, θ0, andÃ by (4.13). The valuelj = l occursk1 > 0 times, whilelj = l̃ occurs
k2 = k − k1 > 0 times. The small and large spikes are arranged in any sequence. Forε � 1, the
leading-order outer solution is

u(x) = 1 −

k∑
j=1

2[1 − U(lj )]

θ0 coth(θ0lj )
G(x; xj ), (4.14b)
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HereG(x; xj ) is the (global) Green’s function satisfying (2.5). The spike locationsxj are found
from

x1 = l1 − 1, xk = 1 − lk, xj+1 = xj + lj+1 + lj , j = 1, . . . , k − 2. 2 (4.14c)

To recover the symmetrick-spike equilibrium solutions constructed earlier in §2, we setz = z̃ =

θ0/k, which solves (4.13). Then (4.13) has a solution only whenz = z̃ = zm. Therefore, setting
z = θ0/k in (4.7) we obtain the critical value of̃A for the emergence of the asymmetric branch. By
comparing this critical value with that in Proposition 3.4 of §3, we obtain the following bifurcation
result:

PRINCIPAL RESULT 4.3 Let k > 1 andε � 1. For a fixedD > 0 the asymmetrick-spike
equilibrium solutions bifurcate from thek-spike symmetric large equilibrium solution branch of
Principal Result 2.1 at the valueA = AkS in (3.37) of Proposition 3.4. Alternatively, for a fixed ratio
A/Ake > 1, the asymmetrick-spike branches bifurcate from the large symmetrick-spike solution
branch at the valueD = DkS in (3.35) of Proposition 3.3. These critical values are precisely the
thresholds wherek − 1 small eigenvalues associated with the translational stability of the large
symmetric solution simultaneously cross through zero. 2

Neglecting the positioning of the small and large spikes in ak-spike sequence, there arek − 1
possible asymmetric patterns for ak-spike solution. Principal Result 4.3 shows that these patterns
emerge at the simultaneous zero-crossings ofk − 1 small eigenvalues for the symmetrick-spike
solution branch.

This result was illustrated graphically in Fig. 1(a) of §1. To display the bifurcation diagram for
the asymmetric branches we use (4.14a) to calculate theL2 norm|ν|2 as

|ν|2 ≡

(
ε−1

∫ 1

−1
ν2 dx

)1/2

∼
1

A
[(6k1/[U(l)]2) + (6k2/[U(l̃)]2)]1/2. (4.15)

In Fig. 1(a) we plotted|ν|2 versusA for the symmetric and asymmetric solution branches fork =

1, . . . , 4 whenD = 0.75. The dashed lines in Fig. 1(a) of §1 correspond to plots of (4.15) versus
A for all of the asymmetric branches that emerge from the symmetric branches at the bifurcation
valuesA = AkS , for k = 1, . . . , 4. In this bifurcation diagram, the ordering of spikes on the interval
is invisible to the norm (4.15). From (4.13), (4.15), and Fig. 1(a), it can be seen that an asymmetric
branch withk1 small spikes asymptotes to the symmetric branch withk − k1 spikes asA → ∞.

In Fig. 7 we plot a few of the asymmetric patterns forν when D = 0.75, ε = 0.02, and
k = 1, . . . , 4. These parameters correspond to those in the bifurcation diagram of Fig. 1(a). The
plots in Fig. 7 are obtained by first solving (4.13) using Newton’s method with different numbers
k1 of small spikes on the interval and for different values ofA. The different patterns forν are then
obtained from (4.14).

Finally, we comment on the stability of the asymmetric solutions. Although we do not analyze
this problem here, we expect that these branches are all unstable with respect to the small
eigenvalues. From numerical computations of a certain matrix eigenvalue problem, it was shown
in [45] that the asymmetric spike patterns for the GM model (1.4) are unstable with respect to
translations. However, since the asymmetric patterns emerge at the pointA = AkS > AkL, where
the NLEP problem (A.1) has no unstable eigenvalues forτ < τhL, we would expect by continuity
that the asymmetric branches are stable with respect to the large eigenvalues forA−AkS sufficiently
small and whenτ is below some threshold.
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FIG. 7. Asymmetric patterns forD = 0.75 andε = 0.02. The thresholds areA2S = 6.296,A3S = 9.500, andA4S =

13.487. Top left:SB: A = A2S (heavy solid),A = 6.60 (solid),A = 6.90 (dotted), andA = 7.20 (widely spaced dots).
Top right:SBB: A = A3S (heavy solid),A = 9.90 (solid),A = 10.40 (dotted), andA = 11.10 (widely spaced dots).
Middle left: SSB: A = A3S (heavy solid),A = 9.020 (solid),A = 8.90 (dotted), andA = 9.04 (widely spaced dots).
Middle right:SBBB:A = A4S (heavy solid),A = 15.30 (solid),A = 16.43 (dotted), andA = 17.83 (widely spaced dots).
Bottom left:SSBB:A = A4S (heavy solid),A = 13.60 (solid),A = 13.95 (dotted), andA = 14.37 (widely spaced dots).
Bottom right:SSSB:A = A4S (heavy solid),A = 12.34 (solid),A = 11.30 (dotted), andA = 11.12 (widely spaced dots).

5. A traveling-wave, or drift, instability for τ = O(ε−2)

In §3 we analyzed the small eigenvalues forτ = O(1). In this section, we study the initiation of
a traveling-wave, or drift, instability for a one-spike large equilibrium solutionu−, ν− centered at
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the origin for the regime whereτ � 1. For this solution, we show that a small eigenvalue can
become complex whenτ � 1. In addition, we derive a formula for the critical valueτT W of τ ,
with τT W � 1, where a traveling-wave instability occurs as a result of a pair of complex small
eigenvalues entering the unstable right half-plane through a Hopf bifurcation. The path of these
small eigenvalues as a function ofτ for τ > τT W is analyzed. This instability with respect to
translations in the spike profile leads to oscillations in the spike location, and is distinct from the
Hopf bifurcation of §2 for the amplitude of the spike profile. The thresholds for drift and profile
instabilities are compared, and it is shown that a drift instability is the dominant instability on the
asymptotic subrangeO(ε−1/3) � A � O(ε−1/2) of the intermediate regime, and is subdominant
to the profile instability whenO(1) � A � O(ε−1/3). In the context of the infinite-line problem
this interchange in the dominant instability mechanism was explored in [28].

For τ = O(ε−2), we now derive a formula for the small eigenvalue associated with a one-spike
solution. By repeating the analysis leading to Principal Result 3.1, we obtain the following result:

PRINCIPAL RESULT 5.1 Letε � 1 andτ = O(ε−2). Then the small eigenvalue of (2.13) for a
one-spike large solution satisfies

λ ∼ 2ε2s

[
〈η̃0x〉0 −

1

D

]
. (5.1)

Here〈η̃0x〉0 is to be calculated from the auxiliary problem

Dη̃0xx − [1 + τλ]η̃0 = 0, −1 < x < 1; η̃0x(±1) = 0, (5.2a)

[Dη̃0]0 = −
1

ag

; [Dη̃0x ]0 =
−s

ag

〈η̃0〉0. (5.2b)

Here〈ζ 〉0 ≡
1
2(ζ(0+)+ζ(0−)), [ζ ]0 ≡ ζ(0+)−ζ(0−), s = (1 − U−)/U−, ag = [2

√
D tanhθ0]−1,

andU− is given in (2.9). 2

An eigenvalue with Re(λ) > 0 yields a drift instability since, from (3.5), the perturbation inν is

ν−(x) ∼
1

AU−

[w(ε−1x) + δeλtw′(ε−1x)] ∼
1

AU−

w(ε−1[x − x0(t)]), x0 ∼ −εδeλt , (5.3)

whereδ � 1. An instability withλ > 0 real leads to a monotonic drift of the spike away from
x = 0. An instability withλ = ±iλI andλI > 0 leads to the onset of small-scale oscillations
aroundx = 0.

To determine an explicit formula forλ in (5.1), we must calculate〈η̃0x〉0. By solving (5.2) we
obtain

〈η̃0x〉0 =
β

D
tanh(θ0β) tanhθ0, β ≡

√
1 + τλ. (5.4)

Substituting (5.4) into (5.1), we get

λ ∼
2ε2s

D
[β tanh(θ0β) tanhθ0 − 1]. (5.5)

To analyze (5.5), it is convenient to introduce the new variablesτd , ω, andξ , defined by

τ =

(
D

2sε2

)
τd , λ =

(
2sε2

D

)
ω, ξ = τdω = τλ. (5.6)
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Substituting (5.6) into (5.5), we find thatξ satisfiesF(ξ) = 0, where

F(ξ) ≡
ξ

τd

− G(ξ), G(ξ) ≡ β tanhθ0 tanh(θ0β) − 1, β ≡
√

1 + ξ, θ0 = D−1/2. (5.7)

In (5.7), the principal value of the square root is taken. In terms of the rootsF(ξ) = 0, the scaled
eigenvaluesω are recovered fromω = ξ/τd .

We seek complex rootsξ = ξR + iξI to F(ξ) = 0. For eachD > 0, we will show thatF(ξ) = 0
has a pair of complex conjugate roots on the imaginary axisξR = 0 whenτd = τdh. Increasing
τd pastτdh, this complex conjugate pair of roots merges onto the positive real axis in theξ plane
whenτd = τdm. At this value ofτd , (5.7) has a double real root. Forτd > τdm, (5.7) always has two
positive real roots.

Before analyzing the zeros ofF(ξ) in (5.7), we discuss the implications for the stability of a
one-spike solution in the intermediate regimeO(1) � A � O(ε−1/2) asτ is increased. Since
s = O(A2) in this regime, (5.6) shows that a traveling-wave instability occurs whenτ = τT W =

O(A−2ε−2). In contrast, from (A.7) a Hopf bifurcation in the spike profile will occur whenτ =

τH = O(A4). Comparing the asymptotic orders of these two scales, we conclude that

τH � τT W for 1 � A � O(ε−1/3); τT W � τH for O(ε−1/3) � A � O(ε−1/2). (5.8)

For the infinite-line problem, (5.8) was also observed in [28]. Therefore, there is some scaling
regime within the intermediate rangeO(1) � A � O(ε−1/2) where, asτ is increased, a traveling-
wave instability will occur before the onset of the Hopf bifurcation associated with the spike profile.

We first look for roots ofF(ξ) = 0 along the real axis. These roots correspond to the
intersections points of the lineξ/τd with G(ξ). A simple calculation using (5.7) shows that

Gξ (ξ) =
tanhθ0

2β
[tanh(θ0β) + βθ0 sech2(θ0β)], (5.9a)

Gξξ (ξ) =
tanhθ0

4β3
[(θ0β) sech2(θ0β) − tanh(θ0β)] −

θ2
0

2β
tanhθ0 tanh(θ0β) sech2(θ0β). (5.9b)

Sincez sech2 z − tanhz < 0 for all z > 0, it follows thatG(ξ) is an increasing, and concave,
function forξ > 0. In addition,G(0) = − sech2 θ0 < 0. Therefore, there are exactly two real roots
to F(ξ) = 0 whenτd > τdm and no such roots when 0< τd < τdm. Hereτdm is the value ofτd

for which the straight lineξ/τd intersectsG(ξ) tangentially at some pointξm. By combining the
equationsF = Fξ = 0 for the double root atτd = τdm andξ = ξm, we find, after a little algebra,
thatξm is the unique root of

(β2
+ 1)

tanh(θ0β)

θ0β
− (β2

− 1) sech2(θ0β) =
2

θ0 tanhθ0
, β =

√
1 + ξ . (5.10)

This yieldsξm as a function ofθ0 = D−1/2, which can be computed numerically using Newton’s
method. In terms ofξm, we then calculateτdm and the eigenvalueωm from τdm = ξm/G(ξm) and
ωm = ξm/τdm.

In Fig. 8(a) we plot the numerical results forτdm andωm versusD. ForD = 0.75 andD = 0.1,
we get

D = 0.75, τdm = 4.914, ωm = 0.717; D = 0.1, τdm = 2.229, ωm = 0.116. (5.11)
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FIG. 8. Left figure:τdm (heavy solid curve) andωm (solid curve) versusD. Right figure: graphical determination of real roots
to F = 0 whenD = 0.75; hereG(ξ) (heavy solid curve), andξ/τd are shown forτd = 2.0 (dotted curve),τd = τdm ≈ 4.91
(solid curve), andτd = 6.0 (widely spaced dots).

For D = 0.75, in Fig. 8(b) we plotG(ξ) together with the straight lineξ/τd for three different
values ofτd , one of which is the double root valueτd = τdm. From this figure we see that there
are two real roots toF(ξ) = 0 whenτd > τdm and none when 0< τd < τdm. Fig. 8(a) suggests
that τdm andωm have limiting values asD → 0 andD → ∞, respectively. LetD → 0 so that
θ0 → ∞. In this limit, ξm → 0 from (5.10). Therefore, forD → 0, τdm corresponds to the value of
τd for whichF(ξ) = 0 has a double root at the origin. Using (5.7), we setF(0) = Fξ (0) = 0, and
let θ0 → ∞ to obtain

1

τdm

=
1

2
[tanh2 θ0 + θ0 tanhθ0 sech2 θ0] →

1

2
asθ0 → ∞. (5.12)

Hence,τdm → 2 asD → 0, which is consistent with Fig. 8(a). To determine the limiting behavior
of ωm asD → ∞, we letθ0 → 0 in (5.10) to conclude thatξm → ∞. Sinceβ ∼

√
ξ whenξ � 1,

the double root condition forF can be written asymptotically as

ξ

τd

∼
√

ξθ0 tanh(
√

ξθ0) − 1,
1

τd

∼
1

2
√

ξ
[θ0 tanh(

√
ξθ0) +

√
ξθ2

0 sech2(
√

ξθ0)]. (5.13)

Assuming that
√

ξθ0 → µ asθ0 → 0 for someµ = O(1), we can combine the equations in (5.13)
to get

µ tanhµ − 2 = µ2 sech2 µ. (5.14)

The unique root of (5.14) isµ = 2.2649. Then, sinceωm = ξm/τdm andξm ∼ Dµ2, we conclude
that

ωm ∼ µ tanhµ − 1 ≈ 1.2166, ξm ∼ 5.1298D, τdm ∼ 4.2165D asD → ∞. (5.15)

Hence forD � 1, τdm is linear inD. The limiting behavior forωm is clearly seen in Fig. 8(a).
Next, we look for roots ofF(ξ) = 0 on the positive imaginary axisξ = iξI with ξI > 0.

Separating (5.7) into real and imaginary parts, we obtain

FR(ξI ) = −GR(ξI ), FI (ξI ) =
ξI

τd

− GI (ξI ), (5.16)
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where FR(ξI ) ≡ Re[F(iξI )], FI (ξI ) ≡ Im[F(iξI )], GR(ξI ) ≡ Re[G(iξI )], and GI (ξI ) ≡

Re[G(iξI )].
Using (5.7), we readily see that for eachD > 0 we haveGR(0) = − sech2 θ0 < 0 and that

GR(ξI ) is increasing withGR → +∞ asξI → ∞. Therefore,FR(ξI ) = 0 has a unique root,
which we label byξh. Then, settingFI (ξh) = 0, we determine the Hopf bifurcation value ofτd as

τdh =

(
θ0

tanhθ0

)
ξh

Im(z tanhz)
, z ≡ θ0

√
1 + iξh. (5.17)

The corresponding value ofω for the frequency of small-scale oscillations isωh = ξh/τdh. In
Fig. 9(a) we plot the numerical results forτdh andωm versusD. For D = 0.75 andD = 0.1, we
get

D = 0.75, τdh = 2.617, ωh = 0.772; D = 0.1, τdh = 1.986, ωh = 0.115. (5.18)

Clearly,τdh ∼ τdm ∼ 2 asD → 0.

0:01:02:03:04:0

0:25 0:50 0:75 1:00 1:25 1:50
�dh, !h

D
(a) τdh andωh

�1:0�0:50:00:51:0

0:00 0:25 0:50 0:75 1:00
!I

!R
(b) Eigenvalues in right half-plane

FIG. 9. Left figure: The Hopf bifurcation values:τdh (heavy solid curve) andωh (solid curve) versusD. Right figure:
eigenvaluesω = ωR + iωI in the right half-plane forτ > τdh whenD = 0.75 (heavy solid curve) andD = 0.1 (solid
curve).

By calculating the roots ofF(ξ) = 0 with ξ = ξR + iξI numerically on the rangeτdh < τd <

τdm we obtain a path in the complexξ plane. In Fig. 9(b) we plot this path in terms ofω = ξ/τd

for bothD = 0.75 andD = 0.1. These numerical results suggest that for eachτd > τdh there are
exactly two small eigenvalues in the right half-plane.

To prove that, for eachD > 0, there are exactly two small eigenvalues in the right half-plane
when τd > τdh we must show thatF(ξ) = 0 has exactly two roots in Re(ξ) > 0 whenτd >

τdh. This is done by calculating the winding number ofF(ξ) over the counterclockwise contour
composed of the imaginary axis−iR 6 Im(ξ) 6 iR and the semi-circleΓR, given by|ξ | = R > 0,
for Re(ξ) > 0. For anyτd > 0, (5.7) shows thatF(ξ) ∼ (ξ/τd)[1 + O(ξ−1/2)] as |ξ | → ∞ in
Re(ξ) > 0. Therefore, the change in the argument ofF(ξ) overΓR asR → ∞ is π . SinceF(ξ)

is analytic in Re(ξ) > 0, we then use the argument principle, together withF(ξ) = F(ξ), to show
that the numberM of zeros ofF(ξ) in Re(ξ) > 0 is

M =
1

2
+

1

π
[argF ]ΓI

. (5.19)
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Here [argF ]ΓI
denotes the change in the argument ofF(ξ) along the semi-infinite imaginary axis

ΓI = iξI , 0 6 ξI < ∞, traversed in the downwards direction.
To calculateM we note thatFI = O(ξI ) andFR = O(

√
ξI ) asξI → ∞, and thatFI (0) = 0

with FR(0) > 0. Therefore, argF = π/2 asξI → +∞, and argF = 0 atξI = 0. Since the root
to FR(ξI ) = 0 is unique, we conclude that [argF ]ΓI

is either 3π/2 or−π/2 wheneverFI (ξI ) < 0
or FI (ξI ) > 0, respectively, at the unique root ofFR(ξI ) = 0. Therefore,M = 0 or M = 2 from
(5.19). Finally, since the rootξh to FR(ξI ) = 0 is independent ofτd , we conclude thatFI (ξI ) < 0
whenτd > τdh andFI (ξI ) > 0 whenτd < τdh. This leads to a strict transversal crossing condition
at the Hopf bifurcation point. This result is illustrated in Fig. 10(a) and Fig. 10(b) where we show a
graphical determination of the roots ofFR(ξI ) = 0 andFI (ξI ) = 0.

�0:4�0:20:00:20:4

0:0 1:0 2:0 3:0 4:0 5:0
Re(G)

�I
(a) Re(G(iξI )) versusξI

0:01:02:03:0

0:0 1:0 2:0 3:0 4:0 5:0
Im(G)

�I
(b) Im(G(iξI )) versusξI

FIG. 10. Graphical determination of the roots ofF(iξI ) = 0 whenD = 0.75. Left figure: Re[G(iξI )] versusξI . Right
figure: Im[G(iξI )] versusξI (heavy solid curve). We also plotξI /τd for τd = 1.5 (dotted curve),τd = τdh = 2.6169 (solid
curve), andτd = 4.0 (widely spaced dots).

We summarize our results as follows:

PROPOSITION 5.2 Let ε � 1 andτ = O(ε−2), and consider the small eigenvalue withλ =

O(ε2) for the large one-spike solution. Then there is a complex conjugate pair of pure imaginary
eigenvalues whenτd = τdh. For anyτd > τdh there are exactly two eigenvalues in the right half-
plane. These eigenvalues have nonzero imaginary parts whenτdh < τd < τdm, and they merge onto
the positive real axis atτd = τdm. They remain on the positive real axis for allτd > τdm. 2

We now compare the two thresholds of instability for a one-spike solution in the intermediate
regime. LetτH denote the Hopf bifurcation threshold of the spike amplitude, and letτT W denote
the drift stability threshold for a spike-layer oscillation. Then, from (A.7) and (5.6), we obtain

τH = 1.748 tanh2(θ0)s
2, τT W =

D

2sε2
τdh, (5.20a)

where

s =
1 − U−

U−

, U− =
1

2

1 −

√
1 −

A2
1e

A2

 , A = ε−1/2A, A1e ≡

√
12θ0

tanh(θ0)
, (5.20b)

andθ0 ≡ D−1/2. For D = 0.1 andD = 0.75, we plot log10(τH ) and log10(τT W ) in Fig. 11(a)
and Fig. 11(b), respectively, for two values ofε on the parameter rangeε1/2A1e < A < 1. We
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FIG. 11. Plots of log10(τH ) (increasing curves) and log10(τT W ) (decreasing curves) as a function ofA on the range
ε1/2A1e < A < 1. The left figure and right figure are forD = 0.1 andD = 0.75, respectively. The heavy solid curves are
for ε = 0.005 and the solid curves are forε = 0.01.

observe that whenε is sufficiently small, the curvesτH andτT W will cross at some point in the
intermediate parameter regime. To determine this crossing point, we setτH = τT W and solve forA.
Using (5.20) ands ∼ 4ε−1A2/A2

1e, we find that the de-stabilization of a one-spike solution occurs
by a traveling-wave instability when

A > Asw ∼

(
εDτdh

223.744 tanh2(θ0)

)1/6

A1e. 2 (5.21)

Alternatively, a de-stabilization by a Hopf bifurcation in the spike amplitude occurs whenA < Asw.
This interchange in the instability mechanism from profile to drift instabilities asτ is increased
suggests that drift instabilities will be the dominant instabilities withτT W = O(ε−1) in the pulse-
splitting regime whereA = O(1). These instabilities are indeed found to play an important role in
this regime (see [22]).

We now recover the result of [29] (see Section 2.6 of [29]) for the infinite-line problem by letting
D → 0. In (5.21) we letθ0 → ∞, τdh → 2, and we set̃ε ≡ ε/

√
D andA1e =

√
12θ0. Then (5.21)

becomes
Asw = 1.578ε̃1/6, ε̃ ≡ ε/

√
D, (5.22)

which agrees with the result derived in [29]. The result (5.21) for the finite domain problem is new.
Qualitatively, the effect of the finite domain on the traveling-wave instability is to de-stabilize a
one-spike solution through a Hopf bifurcation leading to oscillations in the spike-layer location.
This will occur for any fixedD > 0. Alternatively, for the infinite-domain problem corresponding
to the limitD → 0, the unstable complex conjugate eigenvalues merge into the origin (see Fig. 9(b)
for a plot whereD = 0.1). This leads to a monotonic drift instability of a one-spike solution for the
infinite-line problem.

To illustrate the analysis, we takeD = 0.75, A = 0.96436, andε = .005. ForD = 0.75, we
getτdh = 2.617 from (5.18). Then, from (5.20), we calculateτT W ≈ 935 andτH ≈ 2066> τT W .
For four values ofτ , we then compute the numerical solution to (1.1) and output the spike location
x0 as a function oft . The initial condition forv in (1.1) was

v(x, 0) = 60 sech2[ε−1(x + .01)], (5.23)
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FIG. 12. Example 1:D = 0.75,A = 0.96436, andε = 0.005. Left figure:x0(t) versust for τ = 850 (heavy solid curve)
andτ = 920 (solid curve). Right figure:x0(t) versust for τ = 950 (solid curve) andτ = 1000 (heavy solid curve). In these
figuresx0(t) is the location of the maximum ofv(x, t).

which represents a layer initially located atx0(0) = −0.01. In Fig. 12(a) we show that the spike
location has a decaying oscillation aroundx0 = 0 for τ = 850 andτ = 920< τT W . Alternatively,
in Fig. 12(b), whereτ = 950> τT W andτ = 1000, the oscillations are found to grow. The ultimate
fate of these large-scale oscillations in the spike-layer location is unknown.

6. Discussion and conclusion

We have analyzed slow translational instabilities for two parameter regimes of the GS model (1.3).
In the low feed-rate regime, we have shown analytically thatk − 1 small eigenvalues, governing
the translational stability of a symmetrick-spike pattern, simultaneously cross through zero at
precisely the same parameter value at whichk − 1 different asymmetric equilibria of the form
BS . . . SB (neglecting the positioning of theB andS spikes in the spike sequence) bifurcate from the
symmetrick-spike solution branch. For a one-spike equilibrium solution for (1.3) in the intermediate
regimeO(1) � A � O(ε−1/2), we showed that a traveling-wave instability will result from a Hopf
bifurcation in the spike-layer location whenτ = τT W , for some thresholdτT W � 1. Locally, this
instability yields small-scale oscillations in the spike-layer location.

There are some specific open problems that should be investigated. The first problem is
to determine the stability of asymmetrick-spike equilibria with respect to the large and small
eigenvalues. We expect that these equilibria are all unstable with respect to translational instabilities,
but that they should be stable with respect to the largeO(1) eigenvalues sufficiently close to
the bifurcation points where they originate from the symmetric solution branches. Another open
problem is to study the large-scale oscillations of the spike-layer location seen in §5 after the onset
of the Hopf bifurcation that occurs whenτ = τT W . The large-scale oscillations presumably arise
from a local spike motion coupled to memory effects of a time-dependent Green’s function. Finally,
it would be interesting to study the transition between spectral properties in the weak interaction
regimeD = O(ε2) and those analyzed here in the semi-strong regimeD = O(1). In particular,
for periodic waves of a sufficiently long wavelength it was proved in [12] that there is a continuous
loop of spectra in the neighborhood of each isolated eigenvalue of the infinite-period homoclinic
connection. For the GS model (1.3), this result pertains to ak-spike solution in the weak interaction
regimeD = O(ε2), where the spikes are separated byO(1) distances. In Remark 3.1 of §3, we
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have shown that our discrete critical spectraλj , j = 1, . . . , k, for the Neumann problem, are all
exponentially small whenD � 1. However, our analysis is not valid whenD = O(ε2). Therefore,
it would be interesting to see how the discrete critical spectra emerge from a loop spectrum in terms
of a homotopy parameter, such asD = ε2−p with 0 6 p 6 2, which connects the weak and
semi-strong interaction regimes.

In a more general context, as discussed in §1 and §2, our method of analysis is related to the
SLEP method, originally developed and analyzed for transition-layer stability problems associated
with two-component reaction-diffusion systems in the semi-strong limit (cf. [32]–[33]). In these
systems, where the nonlinearity in the fast variable is of bistable type, the study of the critical
spectrum is reduced to the study of the spectrum of a matrix eigenvalue problem (cf. [33]). Under
reasonable hypotheses, the critical spectra for these problems are all negative and there are no
bifurcations to other patterns (cf. [33]). In this sense, it would be worthwhile to extend the case-
study analyses presented here, and for the GM model (1.4) in [17], [45], and [47], in order to
develop a “SLEP method for spikes” for general two-component systems in the semi-strong regime,
where the fast component has a homoclinic connection. For this class of systems, in what sense is it
generic that the critical spectra will have simultaneous zero crossings leading to asymmetric spike
patterns? In this more general context, once we have derived an equivalent auxiliary problem as in
Principal Result 3.1, the matrix manipulations of Appendix B could then still be used to calculate
the critical spectrum explicitly.

Appendix A. The instabilities of the large eigenvalues

In this appendix we summarize some stability results for the large eigenvalues of (2.13). For the
low feed-rate regime, a formal asymptotic analysis was used in §3.1 of [21] to derive a nonlocal
eigenvalue problem (NLEP), which determines the stability of ak-spike equilibrium solution on an
O(1) time-scale. The result in Principal Result 3.2 of [21] is as follows:

PRINCIPAL RESULT A.1 (from [21]) Letε � 1 andA = O(1). Then, withΦ = Φ(y), theO(1)

eigenvalues of (2.13) satisfy the NLEP

L0Φ − χw2
(∫∞

−∞
wΦ dy∫

∞

−∞
w dy

)
= λΦ, −∞ < y < ∞; Φ → 0 as|y| → ∞. (A.1a)

HereL0 is the local operatorL0Φ ≡ Φ ′′
− Φ + 2wΦ associated with Fisher’s equation. Thek

choices for the multiplierχ = χj (z), and its reciprocalCj (z), for j = 1, . . . , k, are given by

[Cj (λ)]−1
≡ χj (λ) = 2s

(
s +

√
1 + z

tanh(θ0/k)

[
tanh(θλ/k) +

(1 − cos[π(j − 1)/k])

sinh(2θλ/k)

])−1

, (A.1b)

where z ≡ τλ, θλ ≡ θ0
√

1 + z, and θ0 ≡ D−1/2. Here s is given in (2.11). There arek
independent choices for the vector of coefficientsbt

= (b1, . . . , bk) in (2.14), given explicitly by
bt
j = (b1,j , . . . , bk,j ) where

bt
1 =

1
√

k
(1, . . . , 1); bl,j =

√
2

k
cos

(
π(j − 1)

k
(l − 1/2)

)
, j = 2, . . . , k. (A.2)

Heret denotes transpose. 2
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There is an equivalent formulation of (A.1). A simple calculation shows that the eigenvalues of
(A.1) with

∫
∞

−∞
wΦ dy 6= 0 are the union of the zeros of the functionsgj (λ) = 0 for j = 1, . . . , k,

where

gj (λ) ≡ Cj (λ) − f (λ), f (λ) ≡

∫
∞

−∞
w(L0 − λ)−1w2 dy∫

∞

−∞
w2 dy

. (A.3)

SinceL0w = w2, the conditionCj (0) = 1 implies that the NLEP problem (A.1) has a zero
eigenvalue. From a rigorous analysis of the zeros ofgj (λ) in Re(λ) > 0, the following main stability
result for multi-spike solutions in the low feed-rate regime was obtained in Propositions 3.10 and
3.13 of [21]:

PROPOSITIONA.2 (from [21]) The small solutionu+, v+ is unstable on anO(1) time-scale for
any 0 < s < 1, k > 1, andD > 0. Next, letk > 1, and consider the multi-spike large solution
u−, v−, wheres > 1. ForD < DkL, orA > AkL, this solution will be stable on anO(1) time-scale
when 0< τ < τhL, for someτhL > 0. Alternatively, suppose thatD > DkL, orAke < A < AkL.
Then this solution is unstable for anyτ > 0. The thresholdsAkL andDkL are given explicitly by

DkL ≡
4

k2[ln(rk +

√
r2
k − 1)]2

, AkL ≡ Ake

((γk/2) + 2 sinh2(θ0/k))

([(γk/2) + 2 sinh2(θ0/k)]2 − (γk/2)2)1/2
, (A.4)

whereγk ≡ 1 + cos(π/k) andrk ≡ 1 + γk/(s − 1). 2

Suppose thatA satisfiesA > AkL. Then, asτ increases beyondτhL, a Hopf bifurcation in the spike
amplitudes was computed numerically in [21]. The thresholdτhL is given by theminimum valueof
the setτj , j = 1, . . . , k, for which gj (λ) = 0, j = 1, . . . , k, has complex conjugate roots on the
imaginary axis. Letλ = ±iλh be the corresponding value ofλ. Then, as was shown in [21], the
unstable eigenfunction most typically has the form of asynchronous oscillatory instabilitywith

ν ∼ ν− + δeiλhtφ + c.c, φ(x) =

k∑
l=1

blΦ[ε−1(x − xl)], bl = 1, l = 1, . . . , k. (A.5)

Here c.c denotes complex conjugate andδ � 1. This eigenfunction corresponds tobt
1 in (A.2)

Alternatively, suppose thatAke < A < AkL. Then, for anyτ > 0, the dominant initial
instability was shown in [21] to have the form

ν ∼ ν− + δeλRk tφ,

φ(x) =

k∑
l=1

bl,kΦ[ε−1(x − xl)], bl,k = cos

(
π(k − 1)

k
(l − 1/2)

)
, l = 1, . . . , k.

(A.6a)

Hereδ � 1, andλRk > 0 is the unique root ofgk(λR) = 0. This form corresponds to the choice
bk in (A.2). Since

∑k
l=1 bl,k = 0, this instability locally conserves the sum of the heights of the

spikes. Hence, it is referred to as acompetition instability. The numerical experiments in §3.3 of
[21] show that this instability leads to a spike competition process whereby certain spikes in a spike
sequence are ultimately annihilated. The first qualitative discussion of competition instabilities for
other systems, referred to there as activator re-pumping, was given in [19] and [18] (see Sections
14.4.8, 15.3, Fig. 14.13, and Fig. 14.16 of [18]).
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In the intermediate regimeO(1) � A � O(ε−1/2), corresponding tos → ∞ in (2.11), the
stability results for symmetrick-spike patterns simplify considerably. By lettings → ∞ in (A.1),
an instability occurs only whenτ � 1. In this way, the following result can be obtained:

PRINCIPAL RESULT A.3 (from [21]) Letε � 1, D = O(1), andO(1) � A � O(ε−1/2). Then
thek-spike equilibrium large solutionu−, ν− is stable on anO(1) time-scale whenτ < τH , where
τH = O(A4) is given by

τH ∼
A4D

9
tanh4(θ0/k)τ0h

(
1 −

6θ0

A2 tanh(θ0/k)

)2

+ o(1), (A.7)

andτ0h = 1.748. Asτ increases pastτH , stability is lost due to a Hopf bifurcation. The critical
value forτ0h is the minimum value ofτ0 for which the following NLEP has eigenvalues on the
imaginary axis:

L0Φ −
2w2

1 +
√

τ0λ

(∫∞

−∞
wΦ dy∫

∞

−∞
w dy

)
= λΦ, −∞ < y < ∞; Φ → 0 as|y| → ∞. 2 (A.8)

The result (A.7) is asymptotically equivalent to the stability result in the intermediate regime first
derived in equation (5.16) of [7] in terms of an alternative dimensionless form of the GS model.
In the form (A.7), this result was reported in Principal Result 4.2 and Proposition 4.3 of [21].
A rigorous analysis of (A.8) was given in [8], with an alternative analysis given in §4 of [21]. In the
intermediate regime, competition instabilities for multi-spike solutions can only occur ifD � 1, or
equivalently if the inter-spike separation distanceL = 2/k is too small. The result, as obtained in
§4 of [21], is given in (3.42) above.

Appendix B. Matrix calculations of the small eigenvalues

In this appendix we give a brief outline of the derivation of the explicit formulae in Proposition 3.2
for the small eigenvalues. The solution to (3.25) is decomposed as

η̃0(x) =
1

ag

( k∑
j=1

cjg(x; xj ) +

k∑
j=1

mjG(x; xj )
)
, (B.1)

for some unknown coefficientsmj , for j = 1, . . . , k. Here G(x; xj ) is the Green’s function
satisfying (2.5), whileg(x; xj ) is the dipole Green’s function satisfying

Dgxx − g = −δ′(x − xj ), −1 < x < 1; gx(±1; xj ) = 0. (B.2)

Define the vectorsmt
≡ (m1, . . . , mk) andct

≡ (c1, . . . , ck), wheret denotes transpose. Then, by
satisfying the jump conditions in (3.25b), we get a matrix problem form in terms ofc of the form(

−
s

ag

G + I

)
m =

s

ag

Pgc. (B.3)

HereG andPg are matrices associated withG andg, defined by

G ≡

G(x1; x1) · · · G(x1; xk)
...

. . .
...

G(xk; x1) · · · G(xk; xk)

 , Pg ≡

 〈g(x1; x1)〉1 · · · g(x1; xk)
...

. . .
...

g(xk; x1) · · · 〈g(xk; xk)〉k

 . (B.4)

As in §3, the angle brackets in (B.4) again denote the average of the right and left-sided limits.
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In (3.24) we must calculate〈η̃0x〉
t
≡ (〈η̃0x〉1, . . . , 〈η̃0x〉k). To do so, we use (B.1) to get

〈η̃0x〉 =
1

ag

(Ggc + Pm), (B.5)

whereGg andP are two additional Green’s function matrices defined by

Gg ≡

gx(x1; x1) · · · gx(x1; xk)
...

. . .
...

gx(xk; x1) · · · gx(xk; xk)

 , P ≡

 〈Gx(x1; x1)〉1 · · · Gx(x1; xk)
...

. . .
...

Gx(xk; x1) · · · 〈Gx(xk; xk)〉k

 .

(B.6)
Next, we define a new eigenvalue variableσ in terms ofλ by

λ =
2ε2s

ag

σ. (B.7)

Combining (3.24), (B.5), and (B.7), we obtain a matrix eigenvalue problem forσ andc given by

Ggc + Pm =

(
σ +

ag

D

)
c, (B.8)

wherem is determined in terms ofc by (B.3).
In Appendices A and C of [17] it was shown that the inverses ofG andGg are tridiagonal

matrices, which are given explicitly by

G =
B−1

√
D

, Gg =
B−1

g

D3/2
. (B.9)

HereB is a tridiagonal matrix defined by

B ≡



d f 0 · · · 0 0 0
f e f · · · 0 0 0

0 f e
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...

0 0 0
. . . e f 0

0 0 0 · · · f e f

0 0 0 · · · 0 f d


, (B.10a)

with matrix entries

d ≡ coth(2θ0/k) + tanh(θ0/k), e ≡ 2 coth(2θ0/k), f ≡ − csch(2θ0/k). (B.10b)

Hereθ0 ≡ D−1/2. The matrixBg has exactly the same tridiagonal form as in (B.10a), except that
the coefficientsd, e, andf in (B.10b) are to be replaced withdg, eg, andfg, respectively, where

dg ≡ coth(2θ0/k) + coth(θ0/k), eg ≡ 2 coth(2θ0/k), fg ≡ − csch(2θ0/k). (B.11)



SPIKE PATTERNS IN GRAY–SCOTT MODEL 219

A key condition is that we can solve (B.3) form in terms ofc. This requires that the matrix in
(B.3) is invertible. Using (2.6) forag and (B.9) forG, we can write this invertibility condition as

sγ − κj 6= 0, j = 1, . . . , k, γ ≡ [ag

√
D]−1

= 2 tanh(θ0/k). (B.12)

Hereκj is an eigenvalue ofB. The spectraκj andqj of B were calculated in Proposition 2 of [17]
as

κj = 2 tanh(θ0/k) + 2

[
1 − cos

(
π(j − 1)

k

)]
csch(2θ0/k), j = 1, . . . , k, (B.13a)

qt
1 =

1
√

k
(1, . . . , 1); ql,j =

√
2

k
cos

(
π(j − 1)

k
(l − 1/2)

)
, j = 2, . . . , k. (B.13b)

Hereqt
j = (q1,j , . . . , qk,j ). The invertibility condition (B.12) has an interpretation in terms of the

large eigenvalues of Appendix A. To see this, we writeCj (0) in (A.3) and (A.1b) in terms ofκj as

Cj (0) = 1 −
1

2sγ
(sγ − κj ). (B.14)

In Appendix A it was shown thatCj (0) = 1 implies that the NLEP problem of Principal Result A.1
has a zero eigenvalue. Therefore, (B.12) is equivalent to the condition that the parameterss, k, and
D do not correspond to a zero large eigenvalue. Assuming that (B.12) holds, we can combine (B.3)
and (B.8) to get

Ggc +
s

ag

P
(

−
s

ag

G + I

)−1

Pgc =

(
σ +

ag

D

)
c. (B.15)

To calculateσ in (B.15) explicitly, we first introduce the spectral decomposition ofB,

B = QKQt . (B.16)

HereQ is the orthogonal matrix of eigenvectorsqj of B, andK is the diagonal matrix of eigenvalues
κj . In addition, we use the following key identity of equation (4.37c) of [17]:

PB = −(PgBg)
t . (B.17)

By substituting (B.9), (B.16), and (B.17), into (B.15), and assuming that the invertibility condition
(B.12) holds, we can derive the following generalized symmetric eigenvalue problem:

Bgu = ω(I +R)u. (B.18a)

Here the symmetric matrixR is defined in terms of a diagonal matrixD by

R ≡ (PgBg)
tQDQtPgBg, Djj =

sD2γ

sγ − κj

, j = 1, . . . , k, γ ≡ 2 tanh

(
θ0

k

)
. (B.18b)

The spectra of (B.18) and (B.15) are related by

σ =
1

D3/2

(
1

ω
−

1

γ

)
, c = Bgu. (B.19)

SinceBg is invertible,ω = 0 is not an eigenvalue.
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In §4.2 of [17] (see equations (4.47)–(4.57) of [17]) it was shown thatR andBg are related by
a similarity transformation, and so have a common set of eigenvectors. In Proposition 9 of [17] the
eigenvaluesξj and eigenvectorsuj of Bg were calculated explicitly as

ξj = 2 coth

(
2θ0

k

)
− 2 csch

(
2θ0

k

)
cos

(
πj

k

)
, j = 1, . . . , k, (B.20a)

ut
k =

1
√

k
(1, −1, 1, . . . , (−1)k+1); ul,j =

√
2

k
sin

(
πj

k
(l − 1/2)

)
, j = 1, . . . , k − 1.

(B.20b)

Hereut
j = (u1,j , . . . , uk,j ). The matrixR has the same eigenvectors asBg and its eigenvalueszj

for j = 1, . . . , k can be calculated explicitly as (see equation (4.56) of [17])

zj =
sγ

sγ − ξj
csch2

(
2θ0

k

)
sin2

(
πj

k

)
, j = 1, . . . , k. (B.21)

Therefore,uj is an eigenvector of (B.18a), with eigenvalue

ωj = ξj/(1 + zj ), j = 1, . . . , k, (B.22)

Next, we substitute (B.20a) and (B.21) into (B.22). Then, from (B.19), we can determineλj in (B.7).
The result is given in (3.26a) of Proposition 3.2.

Since cj = Bguj = ξjuj , the components of each eigenvector ofBg generate a set of
coefficientsc1, . . . , ck in (3.5b). This is expressed in (3.27a). Finally, we calculate theO(ε) term in
the eigenfunction of (3.27a). From (3.10), (3.11), (3.14), and (3.23), we obtain

cjφ1j ∼ f (xj )wj =
〈η0〉j

AU2
±

=
6ag

A2U2
±

〈η̃0〉j = s〈η̃0〉j , j = 1, . . . , k. (B.23)

We then use (B.1) and (B.3) to write〈η̃0〉
t
= (〈η̃0〉1, . . . , 〈η̃0〉k) as

〈η̃0〉 =
1

ag

(Pgc + Gm) =
1

ag

(
I +

s

ag

G
(

−
s

ag

G + I

)−1)
Pgc. (B.24)

Then, by using (B.9), we can write〈η̃0〉 as in (3.27b).
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