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Slow translational instabilities of spike patterns in the one-dimensional
Gray—Scott model
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Slow translational instabilities of symmetricspike equilibria for the one-dimensional singularly
perturbed two-component Gray—Scott (GS) model are analyzed. These symmetric spike patterns
are characterized by a common value of the spike amplitude. The GS model is studied on a finite
interval in the semi-strong spike-interaction regime, where the diffusion coefficient of only one of
the two chemical species is asymptotically small. Two distinguished limits for the GS model are
considered: the low feed-rate regime and the intermediate regime. In the low feed-rate regime it is
shown analytically that—1 small eigenvalues, governing the translational stability of a symmietric
spike pattern, simultaneously cross through zero at precisely the same parameter value/atvthich
different asymmetrick-spike equilibria bifurcate off of the symmetricspike equilibrium branch.
These asymmetric equilibria have the general f6iBB . .. BS (neglecting the positioning of the

andS spikes in the overall spike sequence). For a one-spike equilibrium solution in the intermediate
regime it is shown that a translational, or drift, instability can occur from a Hopf bifurcation in the
spike-layer location when a reaction-time parametisrasymptotically large as— 0. Locally, this
instability leads to small-scale oscillations in the spike-layer location. For a certain parameter range
within the intermediate regime such a drift instability for the GS model is shown to be the dominant
instability mechanism. Numerical experiments are performed to validate the asymptotic theory.

1. Introduction

We study the translational stability of equilibrium spike solutions in the one-dimensional Gray—Scott
(GS) model in particular parameter regimes. The GS system, introduced for continuously stirred
systems in[[14], models an irreversible reaction involving two reactants in a gel reactor, where the
reactor is maintained in contact with a reservoir of one of the chemical species. The dimensionless
GS model is (cf.[[30],[121])

U = Uyy — U 4 Auv?, —1<x<1,t>0 v (£l =0, (1.1a)
Ty = Duyy + (1 —u) — w?, —l<x<1, t>0; uy(£1,t) =0. (1.1b)

Here A > 0 is the feed-rate parametd), > 0,7 > 1, and O< ¢ « 1. Fore « 1, there are
equilibrium solutions fow, called spike patterns, that are localized near certain points in the domain.
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The parameteD measures the strength of the inter-spike interactions. The resulting spike patterns
can be classified into two main categories. The semi-strong spike interaction regime corresponds to
the limite2 « 1 andD = O(1). The weak-interaction regime, where both thendv components

are localized, corresponds to the parameter rdhge O(¢2) < 1. In this paper we will focus on

the semi-strong regime.

The numerical study ofi [38] for the GS model in the weak-interaction regime in a two-
dimensional domain showed a plethora of spike-type patterns in certain parameter ranges,
including time-dependent oscillating spikes, spike death due to over-crowding, spike-replication
behavior, spatio-temporal chaos, labyrinthine patterns and zigzag instabilities, etc. The similarities
between these behaviors and chemical patterns arising in certain physical experiments are striking
(cf. [24], [25]). These numerical and experimental studies have stimulated much theoretical work
to classify steady-state and time-dependent spike behavior in the simpler case of one spatial
dimension, including: spike-replication and dynamics in the weak-interaction regime (tf. [39],
[41], [36], [44]); spatio-temporal chaos in the weak-interaction regime [(ci. [37]); the existence
and stability of equilibrium solutions in the semi-strong interaction regime [(ci. [11], [7], [8],
[28], [29], [30], [21], [22]), and the dynamics of solutions in the semi-strong interaction regime
(cf. [5], [6], [43]).

For (1.1) in the semi-strong interaction limit, there are three distinguished limitd fohere
different behavior is observed: Thew feed-rate regimet = 0(g1/?), the intermediate regime
0(Y?) « A « 1, and thehigh feed-rate regimet = O(1). The high feed-rate regime is
associated with pulse-splitting behavior (¢fl. [7].[301,1[22]). In the low feed-rate regime, we intro-
duce new variablegl andv defined by

A=A v=¢"Y?%, 1.2)
In terms of [1.R),[(T]1) is transformed to

v = 205 — v + Auv?, —1<x<1 t>0 v (£l =0, (1.33a)
Ty = Duyy + (1 —u) — e lu?, —1<x<1 t>0; uy(£l1l,1)=0. (1.3b)

In [21] symmetrick-spike equilibrium solutions td (1].3), where the spikes have a common
amplitude, were constructed asymptotically in the low feed-rate regime. A construction of similar
solutions using the geometric theory of singular perturbations is given in [11] for a special scaling
of the GS model. IN]21] the stability @fspike patterns on a@ (1) time-scale was analyzed by first
formally deriving a nonlocal eigenvalue problem (NLEP). From a rigorous analysis of this NLEP,
two fast instability mechanisms were identified: synchronous oscillatory instabilities of the spike
amplitudes, and competition, or overcrowding, instabilities leading to the spike annihilation events.
In the intermediate regim@ (1) « A <« 0(s~1/?), the existence and stability éfspike patterns
was first analyzed in_[7] (see also 84 bf [21] for a different approach). A stability analysis for a
one-spike solution on the infinite line was given[inl[29] in both the low and intermediate feed-rate
regimes. In 82 and Appendix A we briefly summarize those previous results for fast instabilities that
are important for an understanding of the new results derived herein.

The goal here is to study slow translational instabilities of equilibrium spike solutions for the
GS model in the low and intermediate feed-rate regimes. A related analysis for stripe and ring-type
solutions to the GS model is given [n]23]. For the low feed-rate regime O (1), in §3 we analyze
the stability of symmetrig-spike equilibrium solutions with respect to the small eigenvalues of
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(a) Symmetric and asymmetric branch&s= 0.75 (b) Stability of symmetric branche® = 0.75

FiG. 1. Left figure:|v|, versusA for the symmetric (solid curves) and asymmetric (dotted curves) solution branches when
A=0(1), D =075andk =1, 2, 3, 4. The saddle-node valuesy, increase withk. Right figure:|v|, versusA stability

plot. The smooth curve for each symmetric solution branch has three portions with different stability properties. The curves
with widely spaced dots are unstable o2 0. The heavy solid curves are stable only with respect to the large eigenvalues
whent < t,7. The solid curves are stable with respect to both the large and small eigenvalues wher),; . The
asymmetric branches, shown as the dotted curves, bifurcate at the point where the solid and heavy solid curves meet.

order O(¢?) that govern translational instabilities of the spike profile. Using a formal asymptotic
analysis, in Principal Result 3.1 we obtain a certain auxiliary problem that the small eigenvalues
satisfy. By solving this problem exactly, we give explicit formulae for the small eigenvalues in
Proposition 3.2 and explicit stability thresholds with respeddtand.A in Propositions 3.3 and 3.4,
respectively. In particular, in Proposition 3.4 we show for any O(1), k > 1, and fixedD > 0,

that thek-spike pattern is stable with respect to translations only when A, for some explicit
thresholdA4,s. As A decreases below; s, and fork > 1, there ar&k — 1 small eigenvalues that
simultaneously cross into the unstable right half-plané\Re- 0 along the real axis. Furthermore,

for T below some threshold arkd> 1, we show there is a range of values4fvhere a symmetric
k-spike equilibrium pattern is unstable with respect to translations but is stable with respect to the
large eigenvalues of the NLEP that govern fasil) instabilities. ForD = 0.75, this range of4 is
illustrated in Fig[ I(). In §3.1 we perform numerical computations to illustrate spike dynamics for
(L.3) in this range ofA.

In 84 we use a formal asymptotic analysis to study the existence of asymmiapike patterns
where the spikes have different heights. In Principal Result 4.2 we show that the resulting spike
patterns have the for§iBB ... BS, where there aré; > 0 small spikesS andk, = k — k1 > 0
large spikesB arranged in any order across the interval. Neglecting the positioning of large and
small spikes in a spike sequence, we show in Principal Result 4.3 that$od there arek — 1
asymmetricgk-spike equilibrium patterns that bifurcate from the symmétrgpike solution branch
at precisely the threshold valué = A;s wherek — 1 small eigenvalues for the symmetkiespike
solution branch simultaneously cross through zero. Ahel bifurcating branches correspond to
the number of small spikesin a spike sequenc&BB ... BS.

For D = 0.75, in Fig.[I(d) we plot a bifurcation diagram of the normvoversusA for the
symmetrick-spike solution branches far = 1, ..., 4. The dotted curves in Fi. I{a) show the
asymmetrig-spike patterns that bifurcate off of the symmetrispike solution branch ad = A;s.

In Fig.[I(b) we illustrate the stability properties of the symmetric solution branches wisdrelow
the Hopf bifurcation threshold, . In this figure, we show the range iwhere the pattern is stable
with respect to the large eigenvalues but not the small eigenvalues. [n Fig. 2(a) we plot a symmetric
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(a) Symmetric three-spike pattern (b) Asymmetric three-spike pattern

FIG. 2. Left figure: symmetric three-spike solution on the upper branch of the bifurcation diagranDvheéh75, A = 9.0,
ande = 0.02. Right figure: a three-spike BSB asymmetric pattern Wit 0.75, .4 = 10.5, ande = 0.02. In these plots;
are the solid curves andare the dotted curves.

three-spike solution at a particular point on the upper branch. An asymmetric three-spike solution
of the form BSB is shown in Fig. 2(b).

Similar analyses of the existence and stability ke§pike patterns have been previously
performed for the Gierer—Meinhardt (GM) model (¢f. [13]), widely used to model localization in
biological pattern formation (cf.[26]). This system can be written in dimensionless form as {(cf. [17])

m
thy = Dhy, —h + e—lc;l—s, x| <1 a (£l 1) =h(+1,1) = 0.
1.4
Here O< s2 <« 1, D > 0, andr > 0 are constants. The GM exponents g, m, s) are assumed to
satisfy

ar =¢&a a
t XX hqy

qm
(r—D
The stability of symmetrig-spike equilibrium solutions t¢ (1.4) was analyzedlinl[17] for the case
7 = 0and in[46] forr > 0. Asymmetrick-spike equilibria were constructed [n [45] and][10], and a
partial stability analysis for asymmetric patterns was giveh in [45]. 1h [47] asymmetric spike patterns
for the GM model in two spatial dimensions were analyzed rigorously. However, the rigorous proofs
given in [47] do not directly carry over to the one-dimensional situation for the GS model studied
here. The stability of a one-spike solution fo {1.4) on the infinite line was studiéd in [9], and the
dynamics of spikes was studied In[16], [42], and [43]. For the GM model, the relationship between
translational instabilities of symmetricspike patterns and the emergence of asymmetric spike
patterns is emphasized in_[45] and [47]. The results in this study show that there is a rather close
spectral equivalence between translational instabilities in the GM model and the GS model in the
low feed-rate regime.

The method that we use to study translational instabilities for the GS model is related to
the SLEP (singular limit eigenvalue problem) method developed and applied|in([32]-[34], in the
context of analyzing the translational stability of hyperbolic-tangent type interface solutions to
singularly perturbed two-component systems in the semi-strong interaction limit. For these class
of systems, where the nonlinearity associated with the fast variable is bistable, each transition layer
is closely approximated by a heteroclinic connection. The resulting spectral problem has only small
eigenvalues, also called critical spectra, that tend to zero linearly with the thickoEte interface.

p>1 ¢g>0  m>1 s>0 with ¢=

—(+1)>0. (1.5)
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Under certain reasonable hypotheses, it was proved in [32] that a one-layer solution is stable. Under
the same conditions, the stability of arlayer solution was proved in_[33] by first reducing the
spectral problem to a certain matrix eigenvalue problem. Similar problems involving only critical
spectra occur in certain phase separation models with an associated variational principle including
the Cahn—Hilliard, Allen—Cahn, and phase-field models [(cf. [1]-[4]), and the analysis of lamellar
states for Diblock copolymers (cf. [40]). The stability problem for these transition layer structures
is in marked contrast to the study of the stability of homoclinic-type spike patterns for the GS or
GM models where there is no variational structure, and where there are both large eigenvalues, with
A = 0(1), and small eigenvalues in the spectrum of the linearization.

In 85 we investigate translational instabilities for the GS model in the intermediate regime when
T is asymptotically large as — 0. For ak-spike equilibrium solution in this regime it was shown
in [[7] and [21] that the NLEP governing instabilities on @ril) time-scale has a Hopf bifurcation
whent = 0(A% > 1 (see Principal Result A.3 below). Therefore, in the intermediate regime,
this suggests that for some asymptotic range whese 1 an instability with respect to the small
eigenvalues may be possibbeforethe onset of the Hopf bifurcation in the spike profile. This
exchange in the dominant instability mechanism &sincreased, which has no known counterpart
in the GM model[(T.]4), was suggested [in][28] and| [29] in the context of a one-spike solution for
the infinite-line problem. For a one-spike equilibrium solution on a finite interval, we use a formal
asymptotic analysis to obtain an auxiliary problem in Principal Result 5.1 that the small eigenvalue
satisfies. By studying this problem rigorously, in Proposition 5.2 we show thatrageases past
some critical value there is a drift instability due to a Hopf bifurcation, which leads to small-scale
oscillations in the spike-layer location. Asis increased even further, a pair of unstable complex
conjugate eigenvalues merge onto the positive real axis, which results in a slow monotonic drift of
the spike layer location. The critical value for the onset of an oscillatory drift instability occurs on the
asymptotic range = O(A2¢72). A related type of Hopf bifurcation, followed by a monotonic
drift instability as a reaction-time constant is increased, has been analyzed in [15] and [27] for
hyperbolic tangent-type interfaces associated with a two-component reaction-diffusion system with
bistable nonlinearities. Alternatively, for a three-component reaction-diffusion system it was shown
numerically in [35%] that the Hopf bifurcation occuater the onset of a monotonic drift instability
as a reaction-time parameter is increased.

In 86 we make a few remarks and suggest a few open problems for further study.

Finally, we remark on the mathematical rigor of our approach. The key results of formal
asymptotic derivations are labeled as Principal Results. Rigorous results based either on exact
calculations or mathematical theory are labeled as Propositions. More specifically, in 83 we use
a formal asymptotic analysis to construct equilibrikrspike solutions and to derive the auxiliary
problem in Principal Result 3.1 for the small eigenvalues. The results in Propositions 3.2-3.6 follow
from exact calculations involving this problem. The construction of asymmetric patterns in 84 is
done using formal asymptotics. In 85 we present a formal derivation of the auxiliary problem for
drift instabilities leading to Principal Result 5.1. The existence of a drift instability threshold in
Proposition 5.2 follows from a rigorous analysis of this problem.

2. Symmetrick-spike equilibria: the stability problem

In this section and in Appendix A we summarize some previous results for the existence and
stability, on anO (1) time-scale, of symmetri¢-spike patterns to the GS model (1.3) in the low
feed-rate regimed = O(1) and in the intermediate regim@(1) <« A < 0(¢~*?). In the low
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feed-rate regime, a symmetitespike equilibrium solution td (1}3) was constructed in §2[of [21]
using the method of matched asymptotic expansions. We now briefly outline this derivation, as many
of the formulae are needed below in §3-85.
For a symmetric spike pattern the spikes have equal height settjat= U for j = 1,.. ., k,

where
2j—-1

P
In the inner region near thg" spike, we lety = e~ 1(x — xj). In each inner region, we find that
u ~ U + O(e). Therefore, from[(1.3a), the leading-order inner solutionifas v ~ w/(AU),
wherew(y) = 3 secif(y/2) is the homoclinic solution to

xj=—-1+ j=1...k (2.1)

w' —w+w?=0, —co<y<oo; w—>0 asly]— oo, w(0) =0 wO >0 (2.2)

In the outer region, defined away from @) region near each spike,is exponentially small
and the termz~1uv? in (1.3h) can be approximated by a Dirac mass. Thus, the outer solutian for
satisfies

6 k
Duyy + (1 —u) — 0 ;S(x —x) =0, —l<x<1 ul(+l=0. (2.3)
j:
In obtaining ), we useyﬁlﬁ’oOO w?dy = 6. The solution t3) is

6 k
ux) =1-— m;G(x;xj), (2.4)
j=

whereG (x; x;) is the Green’s function, satisfying
DGy —G=-0(x—xj), -1<x<1; Gi(xlx)=0. (2.5)

We definez, = Zf.‘zl G(x;; x;), where the spike locations satis@z.l). From an explicit calculation
of G(x; x;), we deduce that, is independent of, and is given by

k
ag =Y G(xj: x;) = [2¥/Dtanh@o/ k)] . (2.6)
i=1
Evaluating[(2.4) at = x;, whereu(x;) = U, we obtain a quadratic equation for,
6ag
Ulu -1 = 2
In this way, the following formal result for symmetricspike equilibrium solutions tq (7].3) was

obtained in Principal Result 2.1 of [21]:

PRINCIPAL RESULT 2.1 (from [21]) Lete — 0, with. A = O(1) andD = O(1) in (L.3). Then,
whenA > Ay, there are two symmetricspike equilibrium solutions t¢ (I.3) given asymptotically
by

@2.7)

1 K 1-Up &
~ —x)], ~1— G(x;x;i). 2.8
vy (x) YA ; wle™ (x —x)],  ux(x) o ; (x5 x)) (2.8)
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We refer touy, vy andu_, v_ as the small and large solution, respectively] In|(2:83ndG satisfy
(2.2) and[(2.p), respectively. In additioti,. are the roots of (2]7) given by

1 A2 126
Up==|14,1-F |, v=|——— 9o=DY2. 0O 2.9
72 V" a2 A tanhGo/k)’  ° (2:9)

Although we have only sketched the formal derivation of equilibrium solutions in the low feed-
rate regime, there are several methods that can be used to construct these solutions rigorously. In
[11] a rigorous geometric singular perturbation approach was used to establish the existence of
a one-spike solution and a periodic solution to a different dimensionless form of the infinite-line
GS model (cf. Theorem 4.3 of [11]). For a one-spike solution on the infinite line, the threshold
% = J/12D~Y4 for the low feed-rate regime is equivalent to that given in Theorem 4.3 of [11].

This infinite-line threshold can be recovered by setting 1 and then lettind> — 0 in the formula
for Ag. in (2.9).

In Fig.[I(a) we plot the bifurcation diagram of tlie norm |v|> versusA for D = 0.75, and
k=1,...,4. These are the solid curves in Hig. 1(a). Us[ng](2.8) (2.9), we obtain

-1
lv]p = <sl/_1v2dx> ~ @ 11,/1_ Ak; . (2.10)

The existence thresholdd;. are the saddle-node points in Fjg. 1(a). For the valdes= 9.0,

D = 0.75, ande = 0.02, a symmetric three-spike solution is shown in Fig.]2(a). The classification

of small and large solution refers to low and high concentrations iof the core of the spike.
Smaller concentrations af in the core of the spike generate larger amplitudes fddence, each

upper branch (upper solid curve) in Fg. 1(a) corresponds to the large solution, while each lower
branch corresponds to the small solution. A convenient way to parametrize these solution branches
is to introduce a parametedefined bys = (1 — U+)/U+. Then, from[(2.P), we get

1+ 1-U
e
2/s Uy
The large solutionx_, v_ corresponds to the range<d s < oo, while the small solution ., v
corresponds to & s < 1. The existence threshald, is ats = 1.
To analyze the stability of symmetrikespike equilibrium solutions we let

, O<s<oo. (2.11)

u(x,t) = us(x) +Mnx),  vx, 1) =vix) + Mo x), (2.12)

wheren <« 1 and¢ < 1. Substituting[(2.7]2) intq (1].3), and linearizing, we obtain the eigenvalue
problem

2ppx — +2Ausvidp + A2 =rp, —l<x<1; ¢ (1) =0, (2.13a)
Dy — 1 — eflvin — 287luivi¢ =1An, —-l<x<1; n(£l) =0 (2.13b)

There are two classes of eigenvalues and eigenfunctiofis of (2.13); the large eigenvalues for which
A = 0(1) ase — 0, and the small eigenvalues for whith= O (£?) ase — 0.
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For the large eigenvalues with= 0(1) ase — 0, which determine the stability of/aspike
equilibrium solution on arD (1) time-scale, the corresponding eigenfunction has the form

k
p(x) ~ Y bidle x — x))], (2.14)
—

J

whereffooo w(y)®(y)dy # 0. Here the coefficients;, for j =1, ..., k, are found to be related to
the eigenvectors of a certain matrix eigenvalue problem. This stability problem, which involves the
analysis of a nonlocal eigenvalue problem, was studied in[7],18], [21].[and [29]. Spectral results for
this problem in the low feed-rate and intermediate regimes of the GS njodel (1.3) are summarized
in Appendix A.

In this paper we study the small eigenvalueg of (2.13) that lead to slow translational instabilities.
In contrast to[(2.14), for — 0 the corresponding eigenfunction in §3 has the form

k

$(x) ~ Y (cjw'eHx — xp] + el x — x)D). (2.15)

j=1

The leading term in(2.15) is simply the translation mode associated with the spike profitee
correction termpy; in (2.15) is shown below i (3.11) (see al$o (3.27) of Proposition 3.2) to be
proportional to the spike profile[e~1(x — xj)] of the j spike. In §3 we will derive explicit
formulae for the coefficients; in terms of a matrix eigenvalue problem, and we will calculate the
small eigenvalues; = 0(£?) precisely.

Our method to analyze translational instabilities is related to the SLEP method, originally
developed and analyzed rigorously for the study of transition-layer stability associated with two-
component reaction-diffusion systems in the semi-strong limit[(cf. [B2]-[34]). In these systems, the
nonlinearity in the fast variable is of bistable type. In these works, the study of the critical spectrum
is also reduced to the study of the spectrum of a matrix eigenvalue problem. However, since the
leading term in[(2.1I5) is a monopole when the profilés a transition layer, only the first term
in (2.15) is sufficient for calculating the spectrum. For the transition layer case, the critical spectra
are O(¢) ase — 0, and the matrix manipulations required to calculate the critical spectrum are
relatively straightforward. In addition, it was shown [n[33], under reasonable hypotheses, that the
critical spectra are all negative for adayer solution. Therefore, such a solution is stable and there
are no bifurcations to other patterns. Alternatively, in our analysis of spike stability, since the leading
term in [2.15) is a dipole and the(¢) term in [2.15) is found to be a monopole, these two terms
have the same effective orderas> 0 in our analysis of the critical spectrum of(s2) for ).

In addition, in contrast to the critical spectrum for transition layers, the critical spectrum for spikes
in the GS model can have bifurcations.

3. Slow translational instabilities for a symmetric k-spike pattern

Fore « 1, we now study the stability of the symmetkiespike equilibrium solutions of Principal
Result 2.1 with respect to the small eigenvalues] of (2.13) of ocer). The first part of the
analysis is to reducé (2]13) to the study of a matrix eigenvalue problem. We begin by Vjriting (2.13)
in the form

Lot + Anv2 = 1¢, —l<x<1 ¢ (1) =0, (3.1a)

Doy —(A4+trh4+e 2y =207 usvig, —1<x<1; no(£1) =0, (3.1b)
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whereu . andv. are given in[(2B) of Principal Result 2.1. Here the operatois defined by
Le¢p = 6% — ¢ + 2Ausvig. (3.1¢)

Sincex = 0(¢?), (3.18) yieldsr « 1 unless = 0(¢2). In the derivation below, we will assume
thatr = O(1) so that the small eigenvalues are asymptotically independentlbis important to
emphasize here that we cannot naively replagdy the noninvertible Fisher operatég of the
NLEP problem of Principal Result A.1. Although the coefficients in these two operatorg @ie
close near a spike, the small spatial variations in the coefficierts afe important for estimating
the small eigenvalues fer<« 1.

Sincevy is localized near each spikg, the spike pattern is nearly translationally invariant. To
show this, we differentiate the equilibrium problem for (1.3a) with respegt to get

Levi, = —Auixvi. (3.2)

Definingw; = w;(y;) = wle1(x — x;)], wherew satisfies[(2]2), we calculate frofn (p.8) that for
X nearx;,

1 et
mlﬂj, V4x

Substituting[(3.8) intq (3]2), for nearx; we obtain

wh. (3.3)

vy ~ ~
AUy

Lew) ~ —eUi M uz,w? = O(e). (3.4)

This suggests that we look for an eigenfunctior{ t0](3.1) in the form

d=do+epr+---, nlx)=eno(x)+---, (3.52)
where, for some coefficientg, with j =1, ..., k, to be determined, we have
k k
o = Z cj w}[e_l(x —-xp)], ¢1= Z ch‘)lj[s_l(x —x)]. (3.5b)
j=1 j=1

Here and below we have defineéd); = (((xj4) +¢(xj-))/2 and k]; = ¢(xj4) — £(xj-),
where¢ (x;+) are the one-sided limits @f(x) asx — x;+. In particular, by differentiating the outer
solutionu. given in [2.8), it follows that the equilibrium positions fer of (2.1) satisfy

(u+x); =0, j=1,... k. (3.6)
We substituta) inta) with= 0(¢?) « 1, and we us4). Farnearx;, we find

thatgy;(y) satisfies

cjuse(x) o)

. 3.7
Ut AU2 @7

ciLegn; ~ f(xj +eypuw?,  f(x) =

Substituting[(3.5a) intd (3.1b), we deduce thatatisfies

Dnoey — (L4 220 ~ 26 2ugvi(go+ed1), —1l<x <1, no(£l) =0  (3.8)



194 T. KOLOKOLNIKOV ET AL .

Sincedyo is proportional to the odd functiom’ nearx = x;, the term multiplied bypo in )
behaves like a dipole near = x;. Hence, fore <« 1 andx nearx;, this term is proportional to
§'(x —xj) for j = 1,...,k, whered(x) is the delta function. Thusyo is discontinuous across
X = Xj.

Si]nceno is discontinuous across= x;, it would suggest thaf (x) in (3.7) is also discontinuous
acrosst = x;. However, this is not the case, as we find that the first term on the right-hand side of
f(x) in 3.7) exactly cancels this singularity. To see this, we differentiate the equilibrium problem
for u in (I.3B) with respect tar, and subtract appropriate multiples of the resulting equation and
(3.9) to find that the dipole term proportional¢g cancels exactly. In this way, we find fernear
xj that f (x) satisfies

28_1Cj
AU?2

Dfix — (A4 h2)f =~ prjusve, —-l<x<1i fo(£l)=

Cjutyx(£1) (3.9)
. .

Assume for the moment tha; is an even function. Then the right-hand sidg of|(3.9) is a monopole
term. Therefore, we would conclude thfitx) is continuous across = x;, and consequently

(f)j = f(xj). Since(u,); = 0 from (3.6), [3.7) reduces fer« 1 to

(no);

—_— 3.10
¥ (3.10)

¢jLegn; ~ fxpw?,  f(xj) = —

SinceL,w; = w? + 0(¢), andL, is uniformly invertible on function spaces of even functions, we
can solve[@oﬁ uniquely as

Cj(]ﬁlj ~ f(xj)wj. (3.11)

Sincew; is even, so iy, and the calculation is self-consistent. Alternatively, if we had initially
assumed thag;; was odd in@) we would reach a contradictionpf is an odd function, then the
right-hand side 09) is a dipole term and for> O can be represented &’ (x — x;) for some
O (1) constantl. Therefore, for « 1, the leading order behavior g¢f(x) is still continuous across
x = x;j. Hence, [(3.10) still holds, and the resulting fofm (3.11) contradicts the assumed oddness
of ¢y;.

This discussion shows that the term[in {3.8) proportionghtbehaves like a linear combination
of §(x — x;). Most importantly, this shows iff (3.].2) below that the effect of the monopole term
for ¢1 is of the same ordein ¢ as the dipole term proportional ty. Therefore, to calculate an
eigenvalue of ordep (¢2), we need to determine the asymptotic eigenfunctiongfdn ) to
both theO (1) andO(¢) terms.

Next, in the sense of distributions, we calculate the strengths of the dipole and monopole terms
appearing on the right-hand side pf (3.8). Usipg|(3.3)ferandu+ ~ UL for x nearx;, we

calculate from[(3.5b)[ (3.10), ar{d (3|11) that, fonearx;,

6c; 6
262U v — %Mx —x). e h2 o YT (3.12a)
121 (xj) 12(no);

2871u:|:v:|:¢1 —

8(x —xj) =

5(x —x;). (3.12h)

A 422
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Here we have usef® w?dy = 6. SubstitutingZ) int.8), we see thatsatisfies

Dnoxx — |: AzUi 25(?5 Xj i|770 = 4 ZCJ‘S (x —xj) — A2U2 Z 10)j8(x —x;), (3.13)

with no, (£1) = 0. Using [2.T) forU, and the definition of in (2.11), we can write

6 1-U
s = - (3.14)
.AZUi dg U:I:
whereq, is given in [2.6). Substituting (3.14) intp (3]13), we conclude that {3.13) is equivalent to
Dnoyx —m0=0, —-1<x<1, 1no(xl =0, (3.15a)
6c¢; —s .
[Dnol; = —L;  [Dnodj = —(mo)j, Jj=1....k (3.15b)
A ag

Next, we estimate the small eigenvalue. We substifuté (3.5)[into| (3.1a) and then muiltiply both
sides of ) byv. By integrating the resulting equation across the domain, we get

k k k
D Wi eiLew)) + eA(ovE, w)) +& > (Wi, eiLegni) ~ A Y ci(w, w)). (3.16)
i=1 i=1 i=1

Here we have defined, g) = f_ll f(x)g(x) dx. Sincew’. is exponentially small away from = x;,
it follows that to within negligible exponentially small terms the dominant contribution to the sums
in (3.1§) arises from = j. Thus, [[3.1p) reduces asymptotically to

¢j (wJ’-, Lgu)j/») + e A(nov3, w]’-) + s(w]’-, cjLe1j) ~ kcj(wj’-, w}). (3.17)

We then integrate the third term on the left-hand sid¢ of {3.17) by parts. Siniseself-adjoint, we
can then us.4) fdrgwj’. and ) for1. Since the integrands are localized nea# x;, we can

write the resulting integrals in terms of= ¢~ 1(x — xj) to get

EZCJ' 00 ) 82 00 5, 836‘j 00 5
- — wwus, dy + — / wwnody——/ ¢1jwus, dy
Us J-oo ! AUZ Us Jooo 7

o0
~ eAC; ([ w'? dy) ,  (3.18)
—0o0

wherew satisfies@Z). In this expression we have labe@leet no(x;j+ey) anduty = ui.(xj+ey).
Using [3.11) forgy;, and [3.7) forf (x), we can write[(3.118) more compactly as

00 3 X 00
—82/ u/wzf(Xj +ey)dy — m/ wguix(xj +ey)dy ~ eicj </
o0 Ux o0

—0o0

[e.e]

w'? dy>. (3.19)

The second integral on the left-hand side[of (B.199is*) sincew is even andu.); = 0 from

B8).
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From [3.9) and[(3.11), it follows that(x) is continuous but not differentiable across= x;.
Therefore, we must calculate the first term on the left-hand sid¢ of](3.19) by first expanding
f(xj + ey) in one-sided Taylor series. After doing so, we then integrate the resulting equation
by parts. This yields

o & o
/ ww? f(x; + ey) dy ~ —§<f/>4,~[ widy. (3.20)

—0o0 —00

Using [3.7) forf (x), and(u+yx); = (Ux — 1)/ D from (2.3), we calculate

¢j(Ux =1 (nox);

= . 3.21
Y UiD AUZ (3.21)
Then we substituté (3.21) ar{d (3] 20) irfto (3.19), to obtain
271 .. _1 . > 34
Aej ~ 8—[C](Ui ) (ﬂoﬁ;}(fgooo w, y). (3.22)
3 UtD AUi f_oo w'2 dy
Here (noy); is to be found from[(3.15). Finally, we writg (3]22) and (3.15) in termgoadefined by
6a, _
no = —Tgno- (3.23)

In addition, we calculate the ratio of the two integral.22) usirig) = % secl(y/2). In this
way, we formally obtain the following problem that determines the small eigenvalues:

PRINCIPAL RESULT 3.1 Lete < 1andr = O(1). Then the eigenvalues ¢f (2]13) of ordetz?)
satisfy

aej ~ 282S|:(ﬁ0x)j — %} j=1... .k (3.24)
where(7jo); is obtained from the solution to the following auxiliary problem:
Dijoxx —110=0, —1l<x<1 fo(£1) =0, (3.253)
[Dio); = —2—2: [Diio]; = ;—:mon, j=1.. .k (3.25b)
Heres, which parametrizes the equilibrium solution branches, is defingd in| (2.11). O

A problem similar to[(3.25) was formally derived in Proposition 8/0of|[17] in the context of the GM
model [1.4) with exponent s€p, ¢, m, s), where¢ = gm/(p — 1) — (1 +s) > 0. By comparing
Proposition 8 of[[1[7] with Principal Result 3.1 above, we conclude fhat}(3.25) for the GS model is
equivalent to the corresponding problem for the small eigenvalues of a GM model with exponent
set(p,q,m,s) = (2,5,2,5), wheres = (1-Uy)/U+. A similar spectral equivalence principle for
the large eigenvalues of the GM model and the GS model in the low feed-rate regime was derived
in Proposition 3.3 of[[21].

To calculate explicit formulae for the small eigenvalues, we must first (3.25) to calculate
(flox); for j = 1,..., k. By substituting the resulting expressions ifito (8.24) we findihdor j =
1, ..., k, are the real eigenvalues of a certain generalized symmetric matrix eigenvalue problem.
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Each eigenvector of this problem generates a set of coefficiefis j = 1, ..., k. The eigenvalues

and eigenvectors of this matrix can be calculated analytically. Since the details of this exact, but
lengthy, calculation parallel that given in §4.2 bf [17] for the GM mogel](1.4), we only outline the
key steps in this derivation in Appendix B. In this way, the following rigorous result is obtained for
the small eigenvalues of Principal Result 3.1.

PROPOSITION3.2 Lete < 1andr = O(1). Assume that the invertibility conditiop (B.JL2) holds.
Then the eigenvalues df (2]13) of orders?) are given explicitly by

2% [1 — cos(j/k) — zj(cosh26p/ k) — 1)}

D cosh26p/ k) — cos( j/k) =1....k (3.26a)

Aj o~

Herez; is defined in terms of the parametrization= (1 — U)/U+ of eachk-spike equilibrium
solution branch as

26 . j 0
7 = d cscl‘?(f) smz(ﬂ), i=1...k y= 2tan|-<£>, 6o = D2,

sy — & k
(3.26b)
Forj=1,...,k,&; is defined in[(B.20a) of Appendix B. The corresponding eigenfuncgiftom
@9is

k
$() ~ D (caw'[e7Hx — x)] + es(Fo)nwle ™ x — xa))), (3.27a)

n=1

where(7jo),, is then™ component of#,) given by
(i) = y~/'DI + sy (B — sy ) Pge. (3.27b)

Here the matriced3 and P, are defined in[(B.10) and (B.4), respectively. Finally, there fare
independent choices for the vector of coefficieats= (c1, ..., cx), given explicitly by c; =
(c1,j, ...,k j) Where

1 2 . (nj
ch = ﬁ(l,—l, ..., (=D ¢ =\/;sm(7;—](l—l/2)>, j=1...,k—1 (3.28)

Herec;., for j =1,...,k, are the eigenvectors of the matif defined in|(B.20p). |

As shown in Appendix B, the invertibility conditiofi (B.[L2) holds when the parameters are such that
A = 0is not an eigenvalue of the NLEP problgm (A.1) of Appendix A for the large eigenvalues.

Next, we determine the sign @f with respect to the parameters. Singe= 0 in (3.26b), it
follows thatry < O for anyk, D and.A. Therefore, there is always one negative eigenvalue and one
stable direction, given by; in (3.28) and[(3.27a), for translational perturbations of the equilibrium
solution. From|[(3.28a) we infer thag < Oforj = 1,...,k — 1ifand only if

i . %
1— c05(72—1> —2; S|nhz<£> >0, j=1,... .,k (3.29)
Using [3.26b) forz;, we can write[(3.29) as

& 7Tj o .
= <S_SC052<§> secﬁ(;), ji=1... k (3.30)
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Finally, by (B.204) forg;, a short calculation shows that we can write the stability condifion|(3.30)

(1 — s+ cscﬁ(%)) (1 - co§(%)secﬁ<%>) <0, j=1,... k. (3.31)

Since the second bracketed term on the left-hand side of| (3.31) is always positive, we conclude that
Aj <Oforj=1,...,k—1ifand only if

1—s+ cscf?(ek—o) <0. (3.32)

Since [3.3P) is independent ¢f it follows that any zero-crossing of the small eigenvalugsfor
j=1,...,k—1, must be simultaneous.

For the small solutiom ., v, where O< s < 1, the left-hand side of (3.B2) is always positive,
and so there arke — 1 positive small eigenvalues, for j = 1,...,k — 1. For the large solution
wheres > 1, we can calculate stability thresholds frqm (3.32). The threshold condition (3.32)
can be written as

sin?( %) = ——, Gg=DY2 (3.33)
k s—1

This can be solved in the form
-2

4 s+1 s+ 1\?
D=—]I -1 . 3.34
2|\ " <s—1)+ (s—l> (3.34)

In (3.34), we then us¢ (2.111) ferto write D in terms of A. This yields the following main result:

PROPOSITION3.3 Lete « 1, andt = O(1). Fork = 1, both the large and small solutions
u4, v+ are always stable with respect to the small eigenvaluek Forl, and for the small solution
u., vy, there are alwayk — 1 positive small eigenvalues and one negative eigenvalugimilarly,
for k > 1, we also have,; < O for the large solutiom_, v_. However, the other small eigenvalues

Aj,forj=1,...,k— 1, are negative at a fixed value 4f Ay, if and only if D satisfies
4 A2 77172
D < Dys = , rz|:1— ke] . 3.35
> K2[In(r + vr2 — 1)]? A? (3.35)
If D = Dyg, theny = 0 is an eigenvalue of algebraic multipliciky— 1. O

The criterion[(3.3p) expressé s in terms of the ratia4./A. However, since4,, also depends
on D, the criterion [(3.3p) is a transcendental equation /ipk. Below, we solve this equation
asymptotically in the intermediate regime to obtain a certain scaling law.

A similar criterion can be found with respect th We substitute the stability condition (3]|32)
into (2.11) to obtain the stability threshold

A 14s  2+csci(o/k) (3.36)

Ae 25 2 1+cscﬁz(00/k).

By simplifying (3.36), we obtain the next result.
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PrOPOSITION3.4 Lete « 1,7 = O(1), andk > 1. For the large solution_, v_, the small

eigenvalues,;, for j = 1,..., k — 1, are negative at a fixed value Bfif and only if A satisfies
290 -1 _1/2
A > Ars, Aks = Age[tan a , 6Bo=D . (3.37)
Here Ay, is the existence threshold ¢f (.9). Notice thlaty — A, — 0t asD — 0. O

Propositions 3.3 and 3.4 show that- 1 small eigenvalues simultaneously cross through zero as
either D crosses througlb, s or as.A crosses throughl,s. Therefore, there must be a bifurcation
at these critical values. In 84, this bifurcation is shown to be related to the emergence of asymmetric
solution branches.

Next, we compareD;s and Ais with the large eigenvalue stability thresholfds; and Ay
of Principal Result A.2, which hold when is below the Hopf bifurcation threshold. A simple
calculation shows that

Ars > AiL, Dys < Dygp. (3.38)

Therefore, the stability thresholds with respect to the small eigenvalues are more stringent than
those for the large eigenvalues. The next result summarizes the main stability conclusion for the
large solution branch_ andv_ with respect to both the small and the large eigenvalues.

PRINCIPAL RESULT 3.5 Lete « 1, and consider the large solution branch, v_ of Principal

Result 2.1. Suppose that< t;,;, wheret,;, is the Hopf bifurcation value of the NLEP problem of
Principal Result A.1 for the large eigenvalues. Thenktspike symmetric solution branch is stable
with respect to both the large and the small eigenvalues when éitheD, g, or equivalently when

A > As. Fort < 1,1 whereD satisfiesDys < D < Dy, or whend;, < A < Ags, the large
solution is stable with respect to the large eigenvalues but is not stable with respect to the small
eigenvalues. |

To illustrate our main stability result graphically, in Hig. J(b) of §1 we plotted the rjofprdefined

in (2.10) versusA for the parameter value® = 0.75 andk = 1, ..., 4. The stability information

of Principal Result 3.5 is shown by different shadings of different portions of these branches. For
smaller values oD, we still have Ay, < Air < Ags for k > 2, but in this cased;s is close to

Ake.

Next, we derive a scaling law for the small eigenvalues that is valid in the intermediate parameter
regime0(1) < A <« 0(e~Y?). In this regime, we know frol) that to leading order-
4A2/A,fe > 1. Lettings — oo in ) we obtain the following limiting result for the small
eigenvalues:

PROPOSITION3.6 Lete < 1, D = O(1), t = O(1), and assume tha? (1) <« A « 0(e~Y?).
Then, for the large solutiom_, v_, the small eigenvalues gf (Z]13) are given asymptotically by

A~ —

4¢2 A%0, 60\ . o(7j\1— sect(bo/k)cof(xj/(2k)) ) ,
3 tanf(;) S|n2<2—k) cos2h0/ k) = Cosn ] /) +0@¢%, j=1,...,k.0
(3.39)
From @), we conclude thaj < Ofor j =1,...,k whenD = O(1) andr = O(1). Therefore,
whenD = O(1) andt = O(1), we always have stability with respect to the small eigenvalues in

the intermediate regime fod. However, stability can be lost whed is asymptotically large. To
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show this we use ~ 4.42/.42, in (3.38) to conclude that/spike pattern is stable with respect to
translations whe < Dg5, whereD(s for k > 1 is the unique root of

A2 1
VD = %2 tanf(m) (3.40)

In the intermediate regim¢, (3J40) can be solved asymptotically to predict a minimum inter-spike
distanceL,,s for the translational stability of a spike pattern. Faot-apike pattern on a domain of
length 2, the inter-spike separationZis= 2/k. For A > 1, the root of[(3.40) satisfie® >> 1. For

D > 1, we solve[(3.40) fok with A = £~1/2A to conclude that &-spike pattern is translationally
stable when

24D¢
L>L,s~ 12

Since L,,s > O(g), the calculation is self-consistent. A similar scaling law for competition
instabilities in the intermediate regime, associated with the large eigenvalues, was derived in 84
of [21]]. For t below the Hopf bifurcation threshold,;, it was shown in[[211] that there are no
positive real eigenvalues when

1/3
) , 0EYH <A< 0. (3.41)

12y De
A2

1/3
L > Lyc~ ( > ., 0EY) <A< OQ); i =1+cogr/k). (3.42)
Clearly L,,c < L,s. Therefore, as the inter-spike separation distahde decreased below,,,
instability is first lost due tok — 1 independent slow translational instabilities. Asis further
decreased below,, ¢, there are faso (1) instabilities leading to spike annihilation events.

Finally, we comment on the uniformity of our results jn (3.26) gnd (3.39) with respect to the
diffusivity D, which measures the inter-spike interaction strength. First, we consider a one-spike
solution with D > 1. From 3.2), we obtain; ~ —2:2s/D < 0 for D > 1. This suggests that a
one-spike solution to the GS model is stable witer> 1. However, for the shadow problem where
D = oo, it is well known for the corresponding GM mod¢l ([L.4) that a spike is translationally
unstable fore « 1 due to a positive exponentially small eigenvalue, which leads to dynamic
metastability of the spike (cf[_[17]/_[20]). Therefore, with the close relationship between the GS
and GM models[(3.26) for the GS model is not expected to be uniformly valial-as co. In fact,
for D = 0(e“/#) an extra term must be added to the expression —2¢2s/D, which arises from
analyzing exponentially weak boundary layer effectsgfarearx = +1. The resulting formula for
A1 leads to a bifurcation of a one-spike equilibrium on the rafge= O (e/¢), for somec > 0.

We do not study this problem in detail here, since a very similar issue for the GM rjodel (1.4) was
studied in detail in[[20] (see also 85.2 bf [17]).
For the GS model in the other limit where — 0, we summarize our comments as follows:

REMARK 3.1 The analysis leading tp (326) afid (3.39) is valid provided fhap O (2). This
is needed to ensure a decoupling of the slow and fast variables in the core of the spike. However, if
we did letD — 0in (3.26), but withD > 0(2), after a short calculation we obtain

8¢2 8¢2 . '
b~ e 2 WYD) g ZE (Y si? ()DL k-1 (3.43)
D D \s—-1 k

Therefore, forD « 1, there arek exponentially small eigenvalues, with— 1 of them being
positive for the large solution branch where- 1. However, in the weak interaction reginie =
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0(g?), where both variables are localizedk@pike pattern with arO (1) inter-spike separation
distance is essentially equivalent to a periodic, near-homoclinic, pattern of an asymptotically large
period. For such long-wavelength periodic patterns, with a sufficiently large wavelength, it was
proved in [12] that there is a continuous loop of spectra in the neighborhood of each isolated
eigenvalue of the infinite-period homoclinic connection. Although the result](3.43) was derived
for Neumann boundary conditions rather than periodic conditions, the discrete spe€frajin (3.43)
should presumably be related to the breaking of the spectral loop near the origin resulting from the
transition from the weak to the semi-strong interaction regime. A potential parametrization for this
transition is to takeD = 27 with 0 < p < 2. O

3.1 Slow translational instabilities: dynamics

We now perform a few numerical experiments to illustrate the theory and to show the significance of
the small eigenvalues for the dynamics of spike patterns. The computational results shown below for
(1.3) have been computed using the routine DO3PCF of the NAG lidrary [31] with 1500 uniformly
spaced meshpoints.

For (1.3) we takeD = 0.75,k = 2, ¢ = 0.03, andr = 2.0. For this two-spike equilibrium
solution, the stability thresholds for the small and large eigenvalues, obtainedfroin (3.37) dnd (A.4),
respectively, arelos = 6.296 andA,;, = 5.633. Sincer is below the stability threshole,; , there
is no Hopf bifurcation for the equilibrium profile. For the initial condition fpr {1.3), we take the
equilibrium solution of Principal Result 2.1, with initial spike locatiorg0) slightly offset from
their equilibrium values of:1/2.

We first taked = 6.5 > Ayg, andx1(0) = 0.52, x2(0) = —0.48. For this value of4, the two
small eigenvalues are negative. Therefore, the equilibrium solution should be stable with respect to
translations of the profile. In Fif. 3{a) we plot the spike amplitugg®) = v_(x;, 1), for j = 1,2,
versust showing the convergence towards a symmetric two-spike equilibrium solution over a long
time-scale. In Fig._3(b) we plot, versust, which shows that, — 1/2 ast increases. A similar
plot can be made far;.

Next, we taked = 6.0, so thatdy; < A < Azs. We again choose;(0) = 0.52, x2(0) =
—0.48. In Fig.[4(a) we plot the locations of the two spikes as a function of time showing the

1.3

Vi 1.2 L—\ T3 050 ,
L////J 0.48 - B

1.1 I I I 1 1 I
0 500 1000 1500 2000 0 500 1000 1500 2000

t t
(a) v, versus (b) x; versug

FiG. 3. Numerical solution td (1}3) witl> = 0.75,k = 2,¢ = 0.03,7 = 2.0, and.A = 6.5. Left figure: plot of the spike
amplitudesy,, of v_ versug. Right figure: plot of the spike locatiorp versus.
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FiG. 4. Numerical solution td (1]3) witl> = 0.75,k = 2,¢ = 0.03,7 = 2.0, and.A = 6.0. Left figure: plot of the spike
locations; versus. Right figure: plot of the spike amplitudes, versus.

v T2 0.50 [ B
0.8 - 4
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T t
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FiG. 5. Left figure: plot of numerical solution t§ (3.3) at different times for the parameter values ¢f|Fig. 4. The clustered
solid curves correspond to= 0, 150, 300, and the heavy solid curve corresponds te 500. Only one spike remains at

+ = 500. Right figure: plot of the spike location versust for the parameter values of F[g. 4, except now with symmetric
initial locationsxy (0) = 0.52 andx(0) = —0.52.

divergence away from the two-spike equilibrium locatietiy' 2. In Fig [4(b) we plot the amplitudes

v, of the two spikes versus The numerical solution for versusr is shown in Fig[ 5(a) at different

times. This example suggests the following scenario: For this valde-616.0, the equilibrium two-

spike solution is stable with respect to profile instabilities (large eigenvalues), but is unstable with

respect to translations (small eigenvalues). Therefore, the locations of the two spikes diverge away

from £1/2. During their evolution, a competition instability occurs on a fasfl) time-scale as

a result of a large eigenvalue crossing into the right half-plane. Recall that the results in §2 and

Appendix A pertain only to profile instabilities associated vatjuilibriumspike solutions, and not

the quasi-equilibrium solutions where the spike locations are not at their equilibrium positions. This

competition instability annihilates one of the spikes at approximatety500, and the other spike

then slowly drifts to the stable one-spike equilibrium solution centered at the origin. Gineed

in Proposition 3.3, a one-spike equilibrium solution is always stable with respect to translations.
Finally, we takeA = 6.0, but we now introduce a symmetric perturbation in the initial spike

locations so that;(0) = —0.52 andx2(0) = 0.52. Although, the equilibrium solution is unstable
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with respect to translations, the spike locatignis shown in Fig[ 5() to approach its equilibrium
value. An identical convergence occurs far To explain this, we recall from Proposition 3.3 that,
althoughi; > 0 for A = 6.0, we always have., < 0. Therefore, there is a saddle-structure
for the two-spike equilibrium solution. From Proposition 3.3, and from the form of the stable
eigenvectorey, given in [3.28) withk = 2, it follows that symmetric perturbations of the initial
spike locations are, locally, on the stable manifold of the saddle point. Therefore, with sufficient
numerical resolution it may be possible that we can approach the saddle pointeesases. This is
what is observed in Fif. 5(b).

4. Asymmetric k-spike equilibria

We now construct asymmetric equilibrium spike patterns, where the spikes have different heights.
We follow a similar approach as in [45] for the GM model {1.4) by first constructing a one-spike
solution centered at the origin fdr (1.3) posed-eh < x < [, with u, () = v, (£l) = 0. For
& < 1, such a solution for andu is even,v(l) is exponentially small, and(/) = 0(1). We
determine all values df labeled byiy, ..., /,, such that:(l1) = - - - = u(l,,). For a certain range of
the parameters, as found below, there are exactly two such valde$tadse “local” solutions are
then used to construct a global asymmetric equilibriuapike pattern for (1]3) on{1, 1].

To construct a solution t¢ (1.3) orl < x < [ with a spike at the origin, we proceed as in §2
for a symmetric spike pattern. We obtain

1 6
v(x) ~ A—Uw(x/e), ulx) ~1-— mGl(x; 0). (4.2)

Herew(y) satisfies[(Z2.2), and;(x; 0) is the Green'’s function or! < x < [ satisfying

9 hil — x@
DGy — Gy = —8(x), —l<x <I: Gpe(&l: 0) = O: Gl()c;0)=<—°)M

2 sinh(l6g)
(4.2

wherefy = D~Y2. The constanU in ), representing the leading-order approximationufor
in the inner region, is obtained by settingd) = U in (4.1)). By solving the resulting quadratic
equation we get

U= % <1j: /1- %) . A=124, 69= D712 (4.3)

To construct asymmetric patterns, we must calculate Using [4.1) and (4]2), we get

u) -1 Gi(;0)
U-1  G(0;0

Combining [[4.4) and (4]3), we obtain a key formula &a):

1 / th
uh)=E+(x) =1+ ESGCKZ) |:—1:|: 1-— Ci{zz i| , z=6ol. (4.5)

= sechi6p). (4.4)
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The minus and plus signs in (3.5) refer to the large and small solutions, respectiviely] IE(4(5),
is defined only whed? > cothz > 1. This yields; > zo, where

1 (A4
0= In<—A2 — 1). (4.6)

Clearly E+(z) > 0 forz > zg. Forz > zg, we readily derive some key propertiesiof (z).

LEMMA 4.1 LetA > 1. Then, forz > zo, E' (z) > Owith E4(z0) < 1, andE,(z) — 1as
z — oo. Alternatively, E_(zg) < 1 with E’ (z) < 0forzg < z < zm, andE’ (z) > 0forz > z,.
Moreover,E_(z) — 1 asz — oo. The pointz,, whereE_(z) has its minimum value is the unique
root of

A = [tanhz] ~Y?[tanh(2z)] L. 4.7)

Proof. Clearly E+(z0) < 1 andE+(z) — 1 asz — oo. In addition, by differentiating[ (4]5) it
follows readily thatt”, (z) > 0 for z > zo. For E_(z), we calculate

£ o) — sinhz 1 co}hz B sef:hz cscif z ‘ .8)
2 cos z A2 A2 [1 _ coth
AZ
Therefore,E’ (z) < 0 only when
- th th
242 tanhz |: -, Z:| > cscif z. (4.9)
A2 A2
By manipulating[(4.9), we find tha’ (z) < 0 if and only if
th
g cothe  cost2d) 1 (4.10)

A? 242 sink? z

It is easy to see fronj (4.FLO) that there exists,asuch thate’ (z) < 0 forzgp < z < zm, and
E’ (z) > Oforz > z,. To determine wher&’ (z) = 0, we square both sides ¢f (4/10) to obtain

1—t=

2 2 h
<ICOS|‘(1) 1>’ , cothz (4.11)

2sintfz A2

By solving [4.11) forr > 0 we find that = tani?(22). SinceA? = (cothz)/1, we obtain[(4.f7)
for A. O

Therefore, whend > 1, it follows that for anyz in zo < z < z,, there exists a uniqug with
Z > zm,suchthatt_(z) = E_(2).In Fig.@ we plotE_(z) versus; whenA = 3. Sincez = 6ol and
% = 6ol, the implication of this result is that given ahwith zg < 16y < z,,, there exists a unique
with 160 > z,,, such thau(/) = u(l). This implies that in any asymmetric pattern generated using
E_(z) there are only two distinct types of spikes. Furthermore, siicg) is increasing we cannot
construct asymmetric patterns for the small solution.

For E_(z), solutions of lengtt and/ are calledsS-typeand B-typespikes, respectively. We now
construct asymmetrig-spike patterns to the global problem (1.3) enl[ 1] with k&1 > 0 S-type
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FiG. 6. Plot of E_ versus; for z > zg whenA = 3.

spikes and; = k — k1 > 0 B-type spikes arranged in any sequence from left to right across the
interval as

SBSSB...B, ki S's, kB's. (4.12)

To do so, we use translation invariance and the conditién = (/) to glue S-type andB-type
spikes together to obtain differentiability for the global functioon [—1, 1]. The global functiorn
is asymptotically differentiable since the local function is such thiitandv (/) are exponentially
small where « 1.

Since the supports of astspike and aB-spike are 2and 2, respectively, we get the length
constraint 21/ + 2kol = 2. The other condition, which ensures thats differentiable, is that
E_(z) = E_(%). Usingl = z6p and] = Z6, we obtain a nonlinear coupled algebraic systemfor
andz:

kiz+koZ =60, E_(z)=E_(2); [=2z605% [=3%0," 6o=DY2 (4.13)

Here E_(z) is defined in ). In terms of the half-lengthand! of the supports of the spikes as
given in [4.1B), we formally obtain the following result for asymmetrispike patterns:

PRINCIPAL RESULT 4.2 LetA > 1andD > 0. Then, fore — 0, an asymmetric equilibrium
k-spike pattern for (I]3) witt; spikes of type S ankh = k — k1 spikes of typeB is characterized
by

k 1 B 1 coth(6ol;) ~
”‘(X)N,;AU(Z/)'U[S Yoo —x)], U(lj)Eé(l— 1-—— |, A= /124,

A2

(4.14a)
wherew(y) satisfies). Here for each /; = [ or[; = I, wherel and are determined in
terms ofk1, k2, 6, and A by d4.1:). The valué; = [ occursky > O times, whilel; = [ occurs

ko = k — k1 > 0 times. The small and large spikes are arranged in any sequence<&dr, the
leading-order outer solution is

_ L-Udy] .,
ux)=1- Zeocoth(eol)G(x’x’)’ (4.14b)
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Here G(x; x;) is the (global) Green’s function satisfyin@.S). The spike locatignare found
from

x1=h-1 xx=1-Uk, xj11=xj+l1+I, j=1...,k—=20 (4.14¢)

To recover the symmetrik-spike equilibrium solutions constructed earlier in 82, wezset 7 =
6o/ k, which solves[(4.73). Thef (4]13) has a solution only whes Z = z,,. Therefore, setting

z = 6o/ k in (4.7) we obtain the critical value of for the emergence of the asymmetric branch. By
comparing this critical value with that in Proposition 3.4 of 83, we obtain the following bifurcation
result:

PRINCIPAL RESULT 4.3 Letk > 1 ande « 1. For a fixedD > 0 the asymmetrigk-spike
equilibrium solutions bifurcate from thie-spike symmetric large equilibrium solution branch of
Principal Result 2.1 at the valué = Ay in (3.37) of Proposition 3.4. Alternatively, for a fixed ratio
A/ Ak > 1, the asymmetrié-spike branches bifurcate from the large symmeétrgpike solution
branch at the valu® = Dy in (3.38) of Proposition 3.3. These critical values are precisely the
thresholds wheré — 1 small eigenvalues associated with the translational stability of the large
symmetric solution simultaneously cross through zero. |

Neglecting the positioning of the small and large spikes inspike sequence, there ate— 1
possible asymmetric patterns fokaspike solution. Principal Result 4.3 shows that these patterns
emerge at the simultaneous zero-crossings of 1 small eigenvalues for the symmetfkiespike
solution branch.

This result was illustrated graphically in Fjg. J(a) of §1. To display the bifurcation diagram for
the asymmetric branches we use (4]14a) to calculaté th@rm|v|, as

1 1/2 1 -
vl = (e‘l f lvzdx) ~ Z[(ekl/[Ua)]Z) + (Bko/[U(D]D]Y2. (4.15)

In Fig.[I(a) we plottedv|> versusA for the symmetric and asymmetric solution brancheskfer
1,...,4 whenD = 0.75. The dashed lines in Fig. I(a) of §1 correspond to plotf of|(4.15) versus
A for all of the asymmetric branches that emerge from the symmetric branches at the bifurcation
valuesA = Aig, fork = 1, ..., 4. In this bifurcation diagram, the ordering of spikes on the interval

is invisible to the norm[(4.15). Frorh (4]13), (4115), and Fig.]1(a), it can be seen that an asymmetric
branch withk; small spikes asymptotes to the symmetric branch withk; spikes asd — oo.

In Fig.[q we plot a few of the asymmetric patterns fowhen D = 0.75,¢ = 0.02, and
k =1,...,4. These parameters correspond to those in the bifurcation diagram ¢f Flg. 1(a). The
plots in Fig[T are obtained by first solvirg (413) using Newton’s method with different numbers
k1 of small spikes on the interval and for different values4ofThe different patterns faor are then
obtained from[(4.14).

Finally, we comment on the stability of the asymmetric solutions. Although we do not analyze
this problem here, we expect that these branches are all unstable with respect to the small
eigenvalues. From numerical computations of a certain matrix eigenvalue problem, it was shown
in [45] that the asymmetric spike patterns for the GM moflel](1.4) are unstable with respect to
translations. However, since the asymmetric patterns emerge at thedpeintl,s > Axz, where
the NLEP problem[(A]1) has no unstable eigenvalues fer 7, we would expect by continuity
that the asymmetric branches are stable with respect to the large eigenvaldesdgg sufficiently
small and wherr is below some threshold.
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FIG. 7. Asymmetric patterns fob = 0.75 ande = 0.02. The thresholds ardyg = 6.296,.435 = 9.500, andAss =

13.487. Top left:SB: A = Apg (heavy solid), A = 6.60 (solid),.A = 6.90 (dotted), andd = 7.20 (widely spaced dots).
Top right: SBB: A = Agg (heavy solid), A = 9.90 (solid),.A = 10.40 (dotted), and4d = 11.10 (widely spaced dots).
Middle left: SSB: A = A3zg (heavy solid).4 = 9.020 (solid),.A = 8.90 (dotted), and4d = 9.04 (widely spaced dots).
Middle right: SBBB: A = Ayg (heavy solid),A = 15.30 (solid),.A = 16.43 (dotted), andd = 17.83 (widely spaced dots).
Bottom left: SSBB: A = Ayg (heavy solid), A = 13.60 (solid),.A = 13.95 (dotted), and4d = 14.37 (widely spaced dots).
Bottom right:SSSB: A = Agg (heavy solid),A = 12.34 (solid),.A = 11.30 (dotted), andd = 11.12 (widely spaced dots).

5. Atraveling-wave, or drift, instability for r = 0(¢~2)

In §3 we analyzed the small eigenvalues fo= O(1). In this section, we study the initiation of
a traveling-wave, or drift, instability for a one-spike large equilibrium solutionv_ centered at
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the origin for the regime where > 1. For this solution, we show that a small eigenvalue can
become complex when > 1. In addition, we derive a formula for the critical valugy of z,
with 7 > 1, where a traveling-wave instability occurs as a result of a pair of complex small
eigenvalues entering the unstable right half-plane through a Hopf bifurcation. The path of these
small eigenvalues as a function offor t > 7y is analyzed. This instability with respect to
translations in the spike profile leads to oscillations in the spike location, and is distinct from the
Hopf bifurcation of 82 for the amplitude of the spike profile. The thresholds for drift and profile
instabilities are compared, and it is shown that a drift instability is the dominant instability on the
asymptotic subrang® (¢ 1/3) « A « 0(e~1/2) of the intermediate regime, and is subdominant
to the profile instability whero (1) « A <« 0(¢~1/3). In the context of the infinite-line problem
this interchange in the dominant instability mechanism was explorédin [28].

Fort = O(e~2), we now derive a formula for the small eigenvalue associated with a one-spike
solution. By repeating the analysis leading to Principal Result 3.1, we obtain the following result:

PRINCIPAL RESULT 5.1 Letse « 1 andr = O(s~2). Then the small eigenvalue of (2|13) for a
one-spike large solution satisfies

1
A~ 282S[(ﬁ0x>0 — 5] (5.1)

Here (7o, )0 is to be calculated from the auxiliary problem

Df)Oxx - [1 + T)»]ﬁo =0, -l<x<1 ﬁOx(:tl) =0, (5.28)
- 1 - -5 .
[Diiolo = ——;  [Diox]Jo = —(fjo)o- (5.2b)
dg dg

Here(z)o = 5(2(0M)+¢(07)), [¢lo=£(01) —£(07), s = (1— U-)/U-,ag = [2V/Dtanhg] 7,
andU_ is given in [2.9). O

An eigenvalue with R@.) > 0 yields a drift instability since, fronj (3.5), the perturbatiorvirs

1 1
V_(x) ~ m[w(s—lx) + 8w/ (67 1x)] ~ mw(a_l[x —x0(0]), xo~ —ede™, (5.3)

where§ « 1. An instability withA > O real leads to a monotonic drift of the spike away from
x = 0. An instability withA = +iA; andi; > 0 leads to the onset of small-scale oscillations
aroundx = 0.

To determine an explicit formula for in (5.1), we must calculatéjo, )o. By solving [5.2) we
obtain

(Nox)o = %tanf{@oﬁ) tanhdg, B=+1+TA. (5.4)

Substituting[(5.}4) intd (5]1), we get

2
A~ %{ﬁ tanhBop) tanhdo — 1. (5.5)

To analyze[(5)5), it is convenient to introduce the new variahles, andé, defined by

D 2562
T = <@)Ta’, A= <T>0), g =T4w = TA. (56)
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Substituting[(5.p) intd (5]5), we find thatsatisfiesF (§) = 0, where

F() = f_d —GE), G(&) = Btanhgotanhbop) — 1, B=+/1+&, 6g=DY? (5.7)

In (5.7), the principal value of the square root is taken. In terms of the @@ty = 0, the scaled
eigenvalues are recovered from = §/1,.

We seek complex roots= &z +i&; to F(§) = 0. For eachD > 0, we will show thatF'(§) = 0
has a pair of complex conjugate roots on the imaginary gxis= 0 whent; = 4. Increasing
T4 pastzy,, this complex conjugate pair of roots merges onto the positive real axis i plene
whent; = 74, At this value ofty, (5.7) has a double real root. For > 74, (5.7) always has two
positive real roots.

Before analyzing the zeros @ (&) in (5.7), we discuss the implications for the stability of a
one-spike solution in the intermediate regimél) <« A <« O(¢Y2) ast is increased. Since
s = 0(A?) in this regime,) shows that a traveling-wave instability occurs whentry =
0(A~2¢72). In contrast, from|(A.[7) a Hopf bifurcation in the spike profile will occur whee=
ty = O(A%. Comparing the asymptotic orders of these two scales, we conclude that

<Lty forl« A< o0E 3, gy foroEe ) <« A< oE 3. (5.8)

For the infinite-line problem[(58) was also observed(in [28]. Therefore, there is some scaling
regime within the intermediate rang®(1) <« A <« O(¢~Y/2) where, ag is increased, a traveling-
wave instability will occur before the onset of the Hopf bifurcation associated with the spike profile.
We first look for roots of F(§) = O along the real axis. These roots correspond to the
intersections points of the ling/z; with G (¢). A simple calculation using (5.7) shows that

ta;;‘% [tanh(6o8) + B6o seck (oB)], (5.92)
2

tanhg 9
Ges(8) = %{(eoﬂ)secﬁ(eoﬂ) — tanh@opB)] — ﬁ tanhéo tanh6oB) secR(6of).  (5.9b)

Ge(§) =

Sincez secl z — tanhz < 0 for all z > 0, it follows thatG(£) is an increasing, and concave,
function for& > 0. In addition,G(0) = — seclf 6y < 0. Therefore, there are exactly two real roots
to F(¢) = 0 whent; > 14, and no such roots when @ t; < 14,. Herezy, is the value ofty;

for which the straight line& /z; intersectsG (§) tangentially at some poird,,. By combining the
equationsF’ = F¢ = 0 for the double root at; = 74, and¢ = &,, we find, after a little algebra,
that¢,, is the unique root of

tanhéoB) o .
o8 (B*—1 secr?(eoﬂ)——eotanmo,

B=1+¢. (5.10)

This yieldsg,, as a function obg = D~1/2, which can be computed numerically using Newton’s
method. In terms of,,, we then calculate;,, and the eigenvalue,, from z,,, = &,,/G(&,) and
Om = Em /[ Tdm-

In Fig.[8(a) we plot the numerical results fof, andw,, versusD. For D = 0.75 andD = 0.1,
we get

B2+

D =075 11, =4914 w,=0717, D=01 1,=2229 w,=0116 (5.11)



210 T. KOLOKOLNIKOV ET AL .

8.0

6.0

4.0
Tdm, Wm

Ta’

2.0

0

0 ] s ‘ .

0.00 0.25 0.50 0.75 1.00 1.25 1.50
D &

(@) tgm andwy, (b) G versuss

FIG. 8. Leftfigure:zy, (heavy solid curve) and,, (solid curve) versu®. Right figure: graphical determination of real roots
to F = 0whenD = 0.75; hereG (§) (heavy solid curve), angl/z; are shown for; = 2.0 (dotted curve)ry = 14, ~ 4.91
(solid curve), and,; = 6.0 (widely spaced dots).

For D = 0.75, in Fig.[8(B) we plotG (&) together with the straight ling/z, for three different
values ofz,, one of which is the double root valug = ,,. From this figure we see that there
are two real roots t@(§) = 0 whent; > 14, and none when & t; < 74,. Fig.[8(a) suggests
that 74, andw,, have limiting values a® — 0 andD — oo, respectively. LetD — 0 so that
6o — oc. In this limit, £, — 0 from (5.10). Therefore, fob — 0, 74, corresponds to the value of
74 for which F(§) = 0 has a double root at the origin. Usifg (5.7), we B€d) = F:(0) = 0, and
let 09 — oo to obtain

1 1 1
— = Z[tan? 6o + Hptanhdp secf 6g] — =  asby — . (5.12)
Tdm 2 2

Hence,zq, — 2 asD — 0, which is consistent with Fif). 8(a). To determine the limiting behavior
of wy, asD — oo, we letdp — 0in (5.10) to conclude thd, — oo. Sincep ~ /& whené > 1,

the double root condition foF can be written asymptotically as

1 1
LI VEbotanh/€6p) — 1,  — ~ ——[fotanhy/£60) + VE03 secR(\E6p)].  (5.13)
T4 T4 2\/5

Assuming that/Z6y — u asfy — 0 for someu = O(1), we can combine the equations.13)
to get
w tanhp — 2 = pu? sech u. (5.14)

The unique root of| (5.14) i = 2.2649. Then, since,, = &,/tam andg, ~ Du?, we conclude
that

wm ~ ptanhy — 1~ 1.2166 &, ~ 5.1298D, t4m ~ 4.2165D asD — co.  (5.15)

Hence forD >> 1, 14, is linear inD. The limiting behavior fow,, is clearly seen in Fig. 8(g).
Next, we look for roots ofF(§) = 0 on the positive imaginary axis = i&; with & > 0.
Separating[(5]7) into real and imaginary parts, we obtain

Fr(r) = =Gr¢n, Fi1ép) = i—; -GG, (5.16)
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where Fr(&1) = Re[F(i§))], Fi(§) = Im[F@&)], Grér) = Re[G@&))], and G, (&) =
Re[G(i&))].

Using ), we readily see that for eath > 0 we haveGr(0) = —seclH oy < 0 and that
Gr(&p) is increasing withGg — +o0o asé; — oo. Therefore,Fr(§;) = 0 has a unique root,
which we label byg;,. Then, settingr; (§;,) = 0, we determine the Hopf bifurcation valuemfas

Tan = ( i ) i 2=00v/1+ & (5.17)

tanhdg / Im(z tanhz)’

The corresponding value @ for the frequency of small-scale oscillationsdg = &/t In
Fig.[9(a) we plot the numerical results fay, andw,, versusD. For D = 0.75 andD = 0.1, we
get

D =075 1t =2617 w,=0772 D=01 1;,=1986 w;,=0.115 (5.18)

Clearly,zgy ~ tgm ~ 2 asD — 0.
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0.25 0.50 0.75 1.00 1.25 1.50 0.00 0.25 0.50 0.75 1.00

D Wr
(a) t4p andwy, (b) Eigenvalues in right half-plane

FIG. 9. Left figure: The Hopf bifurcation valuesy; (heavy solid curve) andy, (solid curve) versud. Right figure:
eigenvaluess = wg + iwy in the right half-plane for > t;, whenD = 0.75 (heavy solid curve) an®) = 0.1 (solid
curve).

By calculating the roots of' (¢§) = 0 with & = &g + i&; numerically on the rangey;, < t; <
T4, We obtain a path in the compléxplane. In Fig[ 9(§) we plot this path in terms @f= £ /74
for both D = 0.75 andD = 0.1. These numerical results suggest that for egch 1, there are
exactly two small eigenvalues in the right half-plane.

To prove that, for eacld > 0, there are exactly two small eigenvalues in the right half-plane
whent; > 15, we must show thaF(¢) = 0 has exactly two roots in Re) > 0 whent; >
tq5- This is done by calculating the winding number B€£) over the counterclockwise contour
composed of the imaginary axis R < Im(§) < i R and the semi-circlég, given by|&é| = R > 0,
for Re(¢) > 0. For anyz; > 0, (5.7) shows thafF (¢) ~ (£/t0)[1 + O3] as|¢| — oo in
Re¢) > 0. Therefore, the change in the argumen#a§) over 'y asR — oo is . SinceF (&)
is analytic in R&£) > 0, we then use the argument principle, together With) = F(£), to show
that the numbeM of zeros of F(§) in Re(¢) > O is

1 1
M= -+ —[argF]r,. (5.19)
2 7
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Here [argF], denotes the change in the argumenf@f) along the semi-infinite imaginary axis
I'' =i&;,0< & < oo, traversed in the downwards direction.

To calculateM we note thatF; = O(&;) andFgr = O(/&) as&; — oo, and thatF; (0) = 0
with Fg(0) > 0. Therefore, arg’ = 7/2 as&; — +oo, and argk = 0 at&; = 0. Since the root
to Fr(&r) = 0is unique, we conclude that [aF] 1, is either 3r/2 or — /2 wheneverF;(§;) < 0
or Fr(&;) > 0, respectively, at the unique root 6% (¢;) = 0. ThereforeM = 0 or M = 2 from
(5.19). Finally, since the rod, to Fr(£;) = O is independent of,, we conclude thaf; (&) < O
whent,; > 14, andFy(&;) > 0 whent, < 14;. This leads to a strict transversal crossing condition
at the Hopf bifurcation point. This result is illustrated in Fig. ID(a) and[Fig. 10(b) where we show a
graphical determination of the roots B (&;) = 0 andF;(&;) = 0.

| m() /

~04 ‘ ‘ ‘ ‘ 00l : : :
0.0 10 20 3.0 10 5.0 0.0 10 2.0 3.0 40 5.0

& &
(a) R&G(i&))) versusty (b) IM(G(i&))) versusy

—0.2

FIG. 10. Graphical determination of the roots Bfi§;) = 0 whenD = 0.75. Left figure: Re(5 (i£;)] versusé;. Right
figure: Im[G (i&;)] versusg; (heavy solid curve). We also pléf /t; for r; = 1.5 (dotted curve)r; = 1y, = 2.6169 (solid
curve), andr; = 4.0 (widely spaced dots).

We summarize our results as follows:

PROPOSITION5.2 Lete « 1 andr = O(¢~?), and consider the small eigenvalue with=

0 (£2) for the large one-spike solution. Then there is a complex conjugate pair of pure imaginary
eigenvalues whemny = 145,. For anyzr; > 14, there are exactly two eigenvalues in the right half-
plane. These eigenvalues have nonzero imaginary partswhen t; < t4,, and they merge onto

the positive real axis af; = t4,,. They remain on the positive real axis for ajl > ;. O

We now compare the two thresholds of instability for a one-spike solution in the intermediate
regime. Letry denote the Hopf bifurcation threshold of the spike amplitude, and/lgtdenote
the drift stability threshold for a spike-layer oscillation. Then, frdm {A.7) (5.6), we obtain

D

ty = 1.748tanl(60)s®, trw = —an, (5.20a)
2582

1-U- 1 Az 1 1240
= , U_=Z|1-,1-L |, =124, . = , (5.20b
ST 2 V' A2 A=e Ar =\ enheg &2

anddp = DY2 ForD = 0.1 andD = 0.75, we plot logg(tx) and logq(trw) in Fig.|11(a)
and Fig/ 11(k), respectively, for two values ©bn the parameter rangé/? A1, < A < 1. We
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(a) logyg(z) for D = 0.1 (b) logyo(7) for D = 0.75

Fic.11. Plots of logg(ry) (increasing curves) and lgg(zrw) (decreasing curves) as a function #fon the range
sl/z.Alé < A < 1. The left figure and right figure are f@ar = 0.1 andD = 0.75, respectively. The heavy solid curves are
for ¢ = 0.005 and the solid curves are for= 0.01.

observe that whean is sufficiently small, the curvesy andzrw will cross at some point in the
intermediate parameter regime. To determine this crossing point, wg setrry and solve forA.
Using [5.20) and ~ 4:7142/.42 , we find that the de-stabilization of a one-spike solution occurs
by a traveling-wave instability when

1/6

D

A>Asw~< & tdh ) Ag. O (5.21)
223744 tank(6o)

Alternatively, a de-stabilization by a Hopf bifurcation in the spike amplitude occurs vhem,,.
This interchange in the instability mechanism from profile to drift instabilities &s increased
suggests that drift instabilities will be the dominant instabilities withy = O (¢~1) in the pulse-
splitting regime wheret = O (1). These instabilities are indeed found to play an important role in
this regime (see [22]).

We now recover the result of [29] (see Section 2.6 of [29]) for the infinite-line problem by letting
D — 0.1In (5.21) we letiy — oo, 744 — 2, and we sef = £/+/D and A1, = +/I2. Then [5.2]1)
becomes

Agw = 15788, §=¢/VD, (5.22)

which agrees with the result derived In [29]. The redult (b.21) for the finite domain problem is new.
Qualitatively, the effect of the finite domain on the traveling-wave instability is to de-stabilize a
one-spike solution through a Hopf bifurcation leading to oscillations in the spike-layer location.
This will occur for any fixedD > 0. Alternatively, for the infinite-domain problem corresponding
to the limit D — 0, the unstable complex conjugate eigenvalues merge into the origin (spe Hig. 9(b)
for a plot whereD = 0.1). This leads to a monotonic drift instability of a one-spike solution for the
infinite-line problem.

To illustrate the analysis, we takle = 0.75, A = 0.96436, ancd = .005. ForD = 0.75, we
getry, = 2.617 from [5.18). Then, fronj (5.20), we calculatey ~ 935 andry ~ 2066 > 77y .
For four values ofr, we then compute the numerical solution[to [1.1) and output the spike location
xo as a function of. The initial condition forv in (L) was

v(x, 0) = 60sech[s1(x + .0D)], (5.23)
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FIG.12. Example 1D = 0.75, A = 0.96436, and = 0.005. Left figurexqg(¢) versust for t = 850 (heavy solid curve)
andr = 920 (solid curve). Right figurecg(¢) versus for t = 950 (solid curve) and = 1000 (heavy solid curve). In these
figuresxg(z) is the location of the maximum af(x, ).

which represents a layer initially located.af(0) = —0.01. In Fig.[12(d) we show that the spike
location has a decaying oscillation aroutid= 0 for t = 850 andr = 920 < =7y . Alternatively,

in Fig.[12(b), where = 950 > r7w andr = 1000, the oscillations are found to grow. The ultimate
fate of these large-scale oscillations in the spike-layer location is unknown.

6. Discussion and conclusion

We have analyzed slow translational instabilities for two parameter regimes of the GS ngdel (1.3).
In the low feed-rate regime, we have shown analytically that 1 small eigenvalues, governing

the translational stability of a symmetricspike pattern, simultaneously cross through zero at
precisely the same parameter value at which 1 different asymmetric equilibria of the form

BS ... SB (neglecting the positioning of the andS spikes in the spike sequence) bifurcate from the
symmetrick-spike solution branch. For a one-spike equilibrium solution{fof| (1.3) in the intermediate
regimeO (1) < A <« 0(s~Y?), we showed that a traveling-wave instability will result from a Hopf
bifurcation in the spike-layer location when= try, for some threshold;y > 1. Locally, this
instability yields small-scale oscillations in the spike-layer location.

There are some specific open problems that should be investigated. The first problem is
to determine the stability of asymmetricspike equilibria with respect to the large and small
eigenvalues. We expect that these equilibria are all unstable with respect to translational instabilities,
but that they should be stable with respect to the lafigd) eigenvalues sufficiently close to
the bifurcation points where they originate from the symmetric solution branches. Another open
problem is to study the large-scale oscillations of the spike-layer location seen in 85 after the onset
of the Hopf bifurcation that occurs when= t7y. The large-scale oscillations presumably arise
from a local spike motion coupled to memory effects of a time-dependent Green'’s function. Finally,
it would be interesting to study the transition between spectral properties in the weak interaction
regimeD = 0O(¢?) and those analyzed here in the semi-strong regime O(1). In particular,
for periodic waves of a sufficiently long wavelength it was proved_in [12] that there is a continuous
loop of spectra in the neighborhood of each isolated eigenvalue of the infinite-period homoclinic
connection. For the GS modgl ([L.3), this result pertainsit@pike solution in the weak interaction
regimeD = O(s?), where the spikes are separated®yl) distances. In Remark 3.1 of §3, we
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have shown that our discrete critical specdtfaj = 1, ..., k, for the Neumann problem, are all
exponentially small whe® « 1. However, our analysis is not valid whén= 0 (¢2). Therefore,

it would be interesting to see how the discrete critical spectra emerge from a loop spectrum in terms
of a homotopy parameter, such &= 27 with 0 < p < 2, which connects the weak and
semi-strong interaction regimes.

In a more general context, as discussed in 81 and 82, our method of analysis is related to the
SLEP method, originally developed and analyzed for transition-layer stability problems associated
with two-component reaction-diffusion systems in the semi-strong limit [(cf. [32]-[33]). In these
systems, where the nonlinearity in the fast variable is of bistable type, the study of the critical
spectrum is reduced to the study of the spectrum of a matrix eigenvalue problemJ(cf. [33]). Under
reasonable hypotheses, the critical spectra for these problems are all negative and there are no
bifurcations to other patterns (cf._[33]). In this sense, it would be worthwhile to extend the case-
study analyses presented here, and for the GM médegl (1.4)_in [17], [45],_ahd [47], in order to
develop a “SLEP method for spikes” for general two-component systems in the semi-strong regime,
where the fast component has a homoclinic connection. For this class of systems, in what sense is it
generic that the critical spectra will have simultaneous zero crossings leading to asymmetric spike
patterns? In this more general context, once we have derived an equivalent auxiliary problem as in
Principal Result 3.1, the matrix manipulations of Appendix B could then still be used to calculate
the critical spectrum explicitly.

Appendix A. The instabilities of the large eigenvalues

In this appendix we summarize some stability results for the large eigenvaldes df (2.13). For the
low feed-rate regime, a formal asymptotic analysis was used in 83/1 of [21] to derive a nonlocal
eigenvalue problem (NLEP), which determines the stability bfspike equilibrium solution on an

O(1) time-scale. The result in Principal Result 3.2[0f|[21] is as follows:

PRINCIPAL RESULTA.1 (from [21]) Lete <« 1andA = O(1). Then, with® = @(y), theO(1)
eigenvalues of (2.13) satisfy the NLEP

) ffooo w® dy
Lo® — xw <Oo—> =\AP, —-oco<y<oo; @®—0 aslyl— oo (A.1a)
S wdy
Here Lg is the local operatof.o® = &” — & + 2w® associated with Fisher’s equation. The
choices for the multipliefy = x;(z), and its reciprocal’; (z), for j = 1, ..., k, are given by
itz (1—cosfr(j —1/kD T\t
CiV] = x00) =25 —— " _|tanh®,/k . , (Alb
(€01 = 500 = 25(s+ ot S frant i+ C b T DIED )

wherez = 1A, 6, = 60v/1+2z, andy = D Y2 Heres is given in [2.11). There aré
independent choices for the vector of coefficiebits= (b1, ..., by) in (2.14), given explicitly by
b; = (b1, ..., bx j) where

b, — %(1,..., D by =\/§cos(@a _ 1/2)), i=2...k (A2

Herer denotes transpose. O



216 T. KOLOKOLNIKOV ET AL .

There is an equivalent formulation g¢f (A.1). A simple calculation shows that the eigenvalues of

with [°°_w® dy # 0 are the union of the zeros of the functigngx) = O for j = 1, ..., k,

where

[, w(Lo — »)"tw?dy
f_oooo w2dy

Since Low = w?, the conditionC;(0) = 1 implies that the NLEP problen@.l) has a zero
eigenvalue. From a rigorous analysis of the zerqg ¢f) in Re(A) > 0, the following main stability
result for multi-spike solutions in the low feed-rate regime was obtained in Propositions 3.10 and
3.13 of [21]:

M =C)—f), f)= (A.3)

PROPOSITIONA.2 (from [21]) The small solutiom ., v4 is unstable on a® (1) time-scale for
anyO< s < 1,k > 1, andD > 0. Next, lett > 1, and consider the multi-spike large solution
u_,v_,wheres > 1. ForD < Dy, or A > Ay, this solution will be stable on af1(1) time-scale
when O< t < 151, for somer;,;, > 0. Alternatively, suppose th@ > Dy, or Age < A < Air.
Then this solution is unstable for amy> 0. The thresholdsl;; and Dy, are given explicitly by

4 ((v/2) + 2sintP(6o/ k))
Dy = , Ak = Age - , A.4
. K2[IN(ry +/rZ — 1)]2 = i) + 25N B0/ D12 — (/222 B4
wherey, = 1+ coqn/k) andry = 1+ yi /(s — 1). O

Suppose thatl satisfies4d > A,.. Then, ag increases beyond,; , a Hopf bifurcation in the spike
amplitudes was computed numericallylin[21]. The threshgldis given by theminimum valuef
the setr;, j = 1,...,k, forwhichg;(2) = 0, j = 1,..., k, has complex conjugate roots on the
imaginary axis. Lel. = i), be the corresponding value af Then, as was shown in_[21], the
unstable eigenfunction most typically has the form af/achronous oscillatory instabilityith

k
v~v My tea ¢ =) bdleMx—x)]. b=1 [=1...k (A5)
=1

Here c.c denotes complex conjugate dngt 1. This eigenfunction correspondstipin (A.2)
Alternatively, suppose thatl;, < A < Air. Then, for anyr > 0, the dominant initial
instability was shown in [21] to have the form

v~ u_ + SR

k _ A.6
d(x) = Zbl,k¢[8_l(x -x)], bk = COS(@(Z — 1/2)>, I=1,... k. (A62)
=1

Hered « 1, andig, > 0 is the unique root 0§ (Ag) = 0. This form corresponds to the choice

by in . Sincer‘:1 b x = 0, this instability locally conserves the sum of the heights of the
spikes. Hence, it is referred to asampetition instability The numerical experiments in 83.3 of

[21] show that this instability leads to a spike competition process whereby certain spikes in a spike
sequence are ultimately annihilated. The first qualitative discussion of competition instabilities for
other systems, referred to there as activator re-pumping, was givenl in [19] and [18] (see Sections
14.4.8, 15.3, Fig. 14.13, and Fig. 14.16[0f|[18]).
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In the intermediate regim® (1) < A <« O(s~Y/?), corresponding t8 — oo in (2.11), the
stability results for symmetrig-spike patterns simplify considerably. By letting— oo in (A.J),
an instability occurs only when >> 1. In this way, the following result can be obtained:

PRINCIPAL RESULT A.3 (from [21]) Lete < 1,D = 0(1), andO(1) « A « O(¢~Y?). Then
thek-spike equilibrium large solution_, v_ is stable on ar0 (1) time-scale when < 1y, where
i = O(A% is given by

A*D 6% 2
~ Z tantf(0p/ k 1—- —5—— 1), A7
g (6o/ )TOh< Aztanl"(eo/k)> +o(1) (A7)
andtg, = 1.748. Ast increases pasty, stability is lost due to a Hopf bifurcation. The critical
value forzg;, is the minimum value otg for which the following NLEP has eigenvalues on the
imaginary axis:

2w? <ffooo w® dy
1+ /toh f_oooowdy

The result[(A.Y) is asymptotically equivalent to the stability result in the intermediate regime first
derived in equation (5.16) of [7] in terms of an alternative dimensionless form of the GS model.
In the form [A.7), this result was reported in Principal Result 4.2 and Proposition 4[3 lof [21].
Arigorous analysis of (A]8) was given inl[8], with an alternative analysis given in §4 of [21]. In the
intermediate regime, competition instabilities for multi-spike solutions can only océucsif 1, or
equivalently if the inter-spike separation distarice= 2/k is too small. The result, as obtained in

84 of [21], is given in[(3.4R) above.

Lo®

):MD, —c0o<y<oo; @ —0 as|y|—oco.0 (A8)

Appendix B. Matrix calculations of the small eigenvalues

In this appendix we give a brief outline of the derivation of the explicit formulae in Proposition 3.2
for the small eigenvalues. The solution|to (3.25) is decomposed as

i 1,k k
o) = — (Y ergxix) + Y- mGlaixy)). (B.1)
8 j=1 j=1
for some unknown coefficients;, for j = 1,...,k. Here G(x; x;) is the Green’s function
satisfying [2.5), whileg (x; x;) is the dipole Green’s function satisfying
Dgiy —g=-8x—x), —-l<x<l g(£Lx;)=0. (B.2)
Define the vectorsn! = (my, ..., my) andce’ = (c1, ..., c;), wherer denotes transpose. Then, by
satisfying the jump conditions ifi (3.26b), we get a matrix problemmfoin terms ofc of the form
(—ig + I)m = 2P (B.3)
ag ag
HereG andP, are matrices associated withandg, defined by
G(x1;x1) -+ G(xwsxg) (gCxisx))r -+ gl xp)
G= : - : o Pg= : . : (B.4)
G(xk;x1) -+ G xe) gxkyx1) oo (g X))k

As in §3, the angle brackets in (B.4) again denote the average of the right and left-sided limits.



218 T. KOLOKOLNIKOV ET AL .
In (3.24) we must calculat@jg, )’ = ((fjox)1, - - -, (flox)x)- To do so, we usg (B|1) to get
- 1
(Mox) = a—(gg6+7’m), (B.5)
8

wheregG, andP are two additional Green’s function matrices defined by

gx(x13x1) - gx (X3 Xg) (Gr(xisx))r -+ Gy(xa; xk)
Ge = : : , P= : . :
8r(xisx1)  --- g (X3 Xk) Galxksxy) oo (Gl X))k
(B.6)
Next, we define a new eigenvalue variablén terms ofi by
2 2
=225 (B.7)
ag

Combining [3.214)[(BJ5), andl (B.7), we obtain a matrix eigenvalue problem &ondc given by

Gec+Pm = (0 + %)c, (B.8)
wherem is determined in terms af by (B.3).

In Appendices A and C of [17] it was shown that the inversesjaind G, are tridiagonal
matrices, which are given explicitly by

Bt Bt
g= «/_5’ Gg = D2 (B.9)
HereB is a tridiagonal matrix defined by
d f O 0 0 O
f e f 0 0 O
0 f e . 0 0 O
B=| ‘& N (B.10a)
0 0 O e f O
0 0 O f e f
0 0 O 0 f d
with matrix entries
d = coth(20p/ k) + tanh(6p/ k), e =2coth20p/k), f = —csch26p/k). (B.10b)

Heredp = D~/2. The matrix3, has exactly the same tridiagonal form as{in (B]10a), except that
the coefficients!, ¢, and f in (B.10R) are to be replaced with, e¢, and f,, respectively, where

d, = coth(200/k) + cothfp/k), e, = 2cOth(260/k),  f, = —Csch200/k).  (B.11)
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A key condition is that we can solve (B.3) far in terms ofc. This requires that the matrix in
(B.3) is invertible. Using[(2]6) foa, and [B.9) forG, we can write this invertibility condition as

sy —kj #0, j=1....k y=[a,V/D]! = 2tanho/k). (B.12)

Herex; is an eigenvalue oB. The spectra; andq; of B were calculated in Proposition 2 of [17]
as

K; = 2tanh@o/ k) + 2[1 - cos(n(]T_l)ﬂ csch200/k), j=1,... k, (B.13a)
1 2 i—1
q, = ﬁ(l,...,l); qr.j :/%cos(%(l—lp)), j=2... k. (B.13Db)

Hereq’ = (q1,j. ..., gk, j). The invertibility condition ) has an interpretation in terms of the
large eigenvalues of Appendix A. To see this, we weat€0) in (A.3) and [(A.Ih) in terms of; as

1
Cj(O) =1—2S—y(S)/—Kj). (B.14)

In Appendix A it was shown that’; (0) = 1 implies that the NLEP problem of Principal Result A.1
has a zero eigenvalue. Therefofe, (B.12) is equivalent to the condition that the parametarsd
D do not correspond to a zero large eigenvalue. Assuming[that|(B.12) holds, we can c¢mbine (B.3)

and [B.3) to get
-1
S S a
Goc+ a73(—# ; 1) Pec = (o ; Bg)c. (B.15)
To calculates in (B.15) explicitly, we first introduce the spectral decompositiofpf
B=QKQ'. (B.16)

HereQ is the orthogonal matrix of eigenvectaysof 3, andK is the diagonal matrix of eigenvalues
«j. In addition, we use the following key identity of equation (4.37c)of [17]:

PB = —(P,B,)". (B.17)

By substituting[(B.P),[(B.1]6), anfl (B.]L7), info (B]15), and assuming that the invertibility condition
(B.17) holds, we can derive the following generalized symmetric eigenvalue problem:

Beu = (I + R)u. (B.18a)

Here the symmetric matriR is defined in terms of a diagonal mattixby

D? o
R = (PBg) QDQ'P By, Djj = —1—  j=1...k y= 2tan)'<—o>. (B.18b)
Sy —K;j k
The spectra of (B.18) anfl (BJL5) are related by
1 /1 1
o= palyy) emte o

SinceB, is invertible,w = 0 is not an eigenvalue.
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In 84.2 of [17] (see equations (4.47)—(4.57)[ofl[17]) it was shown®aind 3, are related by

a similarity transformation, and so have a common set of eigenvectors. In Propositidn 9 of [17] the
eigenvalueg; and eigenvectora; of B, were calculated explicitly as

20 20 j
& = 2cotr-(7°> — chc)(TO) cos(%), j=1 ...k, (B.20a)

1 2 . j
uizﬁ(l’_la la "'7(_1)k+1); ul,] z\/;S|n<n];_J(l_l/2)>’ j=l""’k_l‘

(B.20b)
Herew} = (ua;, ..., uk ;). The matrixR has the same eigenvectorsfaisand its eigenvalues;
for j =1,..., k can be calculated explicitly as (see equation (4.56) of [17])
200\ . j
5= —7 cscr?<—°> sm2<”—’>, j=1... .k (B.21)
sy — Ej k k
Thereforeu; is an eigenvector of (B.1Ba), with eigenvalue
wj=&/A+z), j=1,....k, (B.22)

Next, we substituté (B.20a) arjd (B]21) irfto (B.22). Then, from (B.19), we can detekmiméB.7).

The resultis given ir] (3.26a) of Proposition 3.2.
Sincec; = B,u; = §u;j, the components of each eigenvector & generate a set of
coefficientscy, . .., ¢ in (3.5R). This is expressed in (3.27a). Finally, we calculatele) term in

the eigenfunction of (3.27a). From (3]10), (3.1[0), (B.14), and [3.23), we obtain

(no); 6a, . - .
cj1j ~ f(xpwj = A["é = Joyz ol = sty J=1Lo ik (B.23)
We then us€ (B]1) anfl (B.3) to writ&o)’ = ({(fio)1, - - - , (fio)x) as
1 1 -1
(o) = — (Pyc+ Gm) = —(1 + ig(—ig + 1) )pgc. (B.24)
dg dg ag ag

Then, by using[(B19), we can writg),) as in [3.27p).
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