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This paper investigates the pinning and de-pinning phenomena of some evolutionary partial
differential equations which arise in the modelling of the propagation of phase boundaries in
materials under the combined effects of an external driving féraed an underlying heterogeneous
environment. The phenomenology is the existence of pinning states—stationary solutions—for small
values of F, and the appearance of genuine motion wifers above some threshold value. In the
case of a periodic medium, we characterise quantitatively, near the transition regime, the scaling
behaviour of the interface velocity as a functionfafThe results are proved for a class of semilinear
and reaction-diffusion equations.

1. Introduction

In this paper we consider the dynamical behaviour of the solutions of two examples of partial
differential equations which arise in the modelling of front propagations in a heterogeneous medium.
The first example is a semilinear parabolic equation.d(et r) : R" x Ry — R solve

u; = Au+ f(x,u)+ F whereu is Z"-periodic inx for all r > 0. (1)

Heref (., -) is 1-periodic in both variables, and sufficiently regular, but not constant in the vasiable
The constan¥ > 0 is called theexternal driving force
The second is the Allen—Cahn equation with spatially periodic forcinguletr) : R x Ry —
R solve
v =v — W) +8gx) +F), xeR 2

Here W (v) is a double-well potential, i.e. a function with (1) = W(—1) = 0 andW (v) > O for

[v| # 1. It usually takes the form o (v) = (1 — v%)2. The functiong(-) is 1-periodic with mean
zero. The constardtis taken to be positive and sufficiently small. We will concentrate on solutions
v(x, t) which have dront structure in the sense that they connect two “different end statef} of (2)
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asx — =£oo. The end states are stationary solutions closel@and—1. These conditions will be
specified later.

The solutions of[(fl) and [2) we are interested in are stationary solutions on one hand and
pulsating waves on the other. The latter are solutions which, up to spatial translatispaesdime
periodic—the analogue of travelling waves in the case of constant coefficients. We are particularly
interested in thdransition between these two types of solutions Asvaries (increases). More
precisely, we will show that for both of the above equations, generically, there exiBis-agritical
forcing—such that for 0< F < Fi, the equations have stationary solutions, whileFos F,, they
have solutions presenting fronts propagating in space with an average vélpcitye also show
that in the case of periodic spatial heterogeneity, the velocity satisfies the following scaling law:

Vg~ (F—F)Y? for0<F — F, < 1. ©)

The above described dynamical behaviour should be contrasted with the sitfiatiol® or
g = 0 in which it can be shown (in fact it is obvious fdr] (1)) that there exists for Bny 0 a
solution which moves with constant speed: the linear soluiion 1) = Ug + F't in the case of
(I) and the travelling wave(x, t) = U(x — ct) in the case of[ (2). So the pinning and de-pinning
transition is caused by thascillatory nature of the spatial heterogeneity.

1.1 Motivations and applications

Both equationd (1) anfl|(2) are simplified models for the motion of an interface in a material under the
combined effect of the spatially heterogeneous environment, givef(byu) or g(x), the surface
tension and the external driving fiefd The interface could for example be a domain boundary in

a magnetic material with impurities|[5, Chapter 13], the interface between immiscible fluids in a
porous medium [23], or a dislocation line in a solidI[16} 17]. The impurities can in general impede
or accelerate the motion of the interface, but they are soft obstacles in the sense that the interface
can pass through them. The motions of the interface are characterised by the interaction between
an interfacial energy, which keeps the interface flat or straight, and the influence of the impurities,
which force the interface to deviate from a flat shape, and the driving field, which makes the interface
move one way or the other. For an introduction from the physical point of view, we referlto [11]

or [17]. Note that in many of the above applications, the driving forces derived from the interfacial
energy, the spatial heterogeneity and the external field can all take the form of nonlocal operators.

Another important ingredient in the modelling is the consideration of random impurities. For
an overview of models which are characterised by the competition between a surface energy and
a random field, we refer td_[21]. For rigorous mathematical results on a one-dimensional model,
see [14].

In the dynamic case, the motion of an interface in such a model decomposes into periods of
slow motion and sudden jerks, called avalanches [11]. In the specific c@se of (1) with random spatial
forcing f (x, u), the model is known in the physics literature as the quenched Edwards—Wilkinson
model which is studied extensively (see for example [4]).

While we see the case of periodic impurities treated in this paper mainly as a first step towards
a rigorous mathematical analysis of such models for random media, we would like to point out that
the periodicity is fully justified from a modelling point of view if the impurity is related to a periodic
crystal structure of an underlying substrate.

Already in the periodic case, the relationship between the mean velocity and the driving force is
expected to be a power lamear the transition regimewhich is due to the interplay between some
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slowmotionnearthe stationary solutions & = F, and fastmotion with speed of order oravay
from the stationary states.

In order to keep the mathematical treatment simple, we consider spatially localised driving
forces. As the mean curvature is the first variation of the length or area of the interface which is
a simple form of the interfacial energy, one way to model the above phenomenology is by means of
the mean curvature flow with a driving force: the normal velodityat any point on the interface
I"(¢) is given by the following motion law:

Vi=k— f(x)+F forxe (). (4)

Herex is the mean curvature of the interfag&x) is some spatial function anél is a constant.

Even in this case, the geometry of the interface can become quite complicated because self-
intersection can occur. In addition, the graph representation of the interface might not be preserved
under the dynamics. One reason equatiphs (1)[dnd (2) are used is to avoid this technical difficulty.
For (1), a linearised version of the curvature operatds used and the interface is given by the
graph of the function«(x, 7). In this way, the graph representation is preserved for all time and
estimates of the solutions are easier to obtain.

The second equatiop|(2) (whén= 0) is a gradient flow of a Ginzburg—Landau type free energy
for a physical system with a nonconserved order parameter and two stable phases corresponding
to the two “wells” £1 of W [2]. It is well known that under large space-time diffusive rescaling,
i.e.t — €2t andx — ex, the zero level set of suitable solutions converges to an interface moving
by its mean curvaturé [22]. Thus equatiph (2) is an approximation] of (4) on some large spatial and
temporal scale, while it is a model in its own right on a smaller scale, usually called the mesoscopic
scale.

Of course, in the one-dimensional case studied here the limiting motion is the motion of a point
in a spatial potential. Le¢ be a function of period one. Then under the above mentioned space-
time scaling, the zer®(¢) of v(x, ) which represents the front location, evolves according to the
following ODE:

1R = —@'(R) (5)

where®(R) = —RF — G(R), andG(R) is a 1-periodic potential such th&t(R) = g(R). The
constantu is usually called the mobility. In essence, equat{dn (5) describes the negative gradient
flow of a particle in atilted periodic potential. This simple ODE already shows some of the
qualitative features of the more complex PDEs sucH @s (1)[dnd (2). Thus it is advantageous to
briefly describe its behaviour here.

For F = 0 the functionG (R) is assumed to have global minima periodically spaced leading to
stable stationary solutions. Whéfi = F, = —g(R,), whereg(R,) = infjp 1 g(x), a stationary
solution R(r) = R, still exists. Note that at this poing'(R,) = 0. Now let F = F, + y, and
y = R — R,. If we further assume the nondegeneracy conditica g” (R,) > O, then

y~ay’+y forynearOand <y < 1. (6)

The explicit solution is given by (r) = (y /a)Y?tan((ay)¥/?r). Thus it takes the solution a time of
ordery ~1/2 to leave the region of slow motion and to reach a region of fast motion where the speed
becomes independent pf

The above type of argument is also used[ih [8] in the study of the pinning and de-pinning
phenomena for some discrete reaction-diffusion equations. Equafion (6) in fact describes the
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dynamics along the centre manifold at the critical pgirt 0. The work[[1] also uses an equation
similar to [B) in the investigation of the dynamics of some martensitic phase transformations.

1.2 Statement of theorems

Here we state precisely the definitions and theorems to be shown in this paper.
For the semilinear equatioﬁ](l), we first introduce the linearised opekaian at a function
u(x):
L) = A+ 0, f(x,ulx))e foranyZ*-periodice. (7

The functionf (x, u) : R x R — R satisfies the following conditions:

Al e fisZ"-periodic inx and and 1-periodic in, i.e.
fx,u+1) = f(x,u)andf(x +e,u) = f(x,u) forall (x,u) e R" xR,

wheree is the unit vector along any coordinate axis.
e f(x,u) is twice continuously differentiable in both variables an:, -) || c2qrn x ) < o©-
A2 At F =0, equation[([L) has a stationary periodic solutigtir) which isstablein the sense that
the principal eigenvalue of the linearised operdig(ug) is negative.

Note that the mere existence of a stationary solutiorFat= 0 is nothing more than a
normalisation and follows e.g. if the average ffx, u) is zero (see Lemmp] 4). The stability
condition is indeed an assumption and excludes for examplef ény) which is constant in the
variableu. The regularity assumption on the nonlinearity serves to keep the technical effort at a
minimum. We expect that it can be relaxed.

THEOREM1 AssumeAl andA2. Then the following statements hold.

1. There exists af, > 0 such that for 6< F < F, (1)) has a stationary solutidiir (x).

2. Assume in addition the conditioh3 (given right afterward), or that there exist only finitely
many stationary solutions (up to translationyfat F,. Then, forF > F,, there exists a unique
0 < Tr < oo and a solutiorU (x, ) of (1) satisfying

Up(x+é,-)=Up(x,) and Up(,t+Tp)=Up(, 1)+ 1. (8)

The conditionA3 is as follows:

A3 For any stationary solutiom, at F, we have
[ 32 X, U dx ;ﬁ 0
p uf( ’ *(-x)) ’

whereQ = [0, 1]" andg, is the principal eigenfunction df ¢ (u.).

The above is reminiscent of some nondegeneracy condition. It corresponds to the febtRhatA

0 for the ODE examplg {5). (In fact, this assumption implies that the above quantity is automatically

positive. See Claim | on pa@e]90.) In addition, it is also used to give the precise asymptotics of the

dynamics forF > F,. Otherwise, some higher (for example, fourth) order information is needed.
Now we are ready to present the asymptotics of the propagating velocity:
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THEOREM2 AssumeAl, A2 andA3. Then there is a constant (see[(3D) for its formula) such
that the average velocityr defined as’, ! has the following asymptotics:

Vi = A(F — F)Y? + o(|F — Fu|Y?) forO< F — F, < 1. (9)

REMARK. Note that even though we only consider solutions which are periodic in the spatial
variable, this is not as restrictive as it seems because the comparison principle implies that the
periodic solutions can already determine the pinning and de-pinning behaviour of arbitrary solutions
which are bounded in the* norm.

In addition, in Sectiorj 2]4, we can actually show that there are lots of functigmsu)
satisfyingA1-A3. See also Sectign 4.1 for an explicit example. |

For the inhomogeneous Allen—-Cahn equatiph (2), we consider the regimeeak spatial
heterogeneity. In this case, it turns out that we can obtain quite explicit quantitative information
on the speed of the pulsating wave. First we introduce the standing wave selgiip(for § = 0):

Mey — W (m) =0
such that for some constafitit satisfies the estimates
lIm(x)| — 1] < Ce™ ! and |m,(x)| < Ce~ forall —co < x < o0

wherea is any positive number less that” (£1). (The existence ofz(x) and its properties are
well known [10].) We next introduce the 1-periodic function

h(a) = —/ gz +aym,(z) dz.

—00

Without loss of generality, assume that the minimum valug, afenoted by:,, is attained ab =
0,+1, £2,.... Assume further thai”(0) > 0. We first define the following quantities:

B 2 " (0)

Fo=—"F, a=—>, B=
* 2 NE NE

(10)

where|m, |12 = [°_m.(x)?dx. Then we have:

THEOREM3 For anyo > 0, there exis8,, C1, C2 > 0 such that for any < §, and anyF in the
range
0<Ci1§ < F—F, < (o, (1)

there exists a constafiy and a solutiorUr (x, ¢) of (2) satisfying
Urp(x,t +Tr) =Ur(x — 1,1). (12)

In addition, the velocity of the front, defined &g = T;l, satisfies

1- o)w < Vrp < (1—{—0)@. (13)
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1.3 Structure of the paper and outline of proofs

The dynamics of (1) andl(2) is analysed in Sectjdns 2 &nd 3 respectively. In §¢ction 4, we provide
some explicit examples of the pinning phenomena. These examples are illustrative in the sense that
they clearly demonstrate the existence of a nontrivial pinning state. Furthermore, the constants in
the abstract formulation can be computed analytically. In Appendix B, for the reader’s convenience,
the spectral estimates for the linearised Allen—Cahn operator are provided.

Here we briefly describe the method of the proof. For the semilinear case, we first show the
existence of a threshold force and some properties of the stationary solutions. In particular, we prove
that the threshold valug, is characterised by the fact that the principal eigenvalue of the linearised
operator at any stationary solution must be zero. The principal eigenfunction and the nondegeneracy
condition A3 are then used to construct sub- and supersolutions near the critical solution. In this
way, we can deduce the time a solution spends near a pinned statesfightly larger thanf,.

This is reminiscent of the analysis of the dynamics on the centre-manifold of a stationary solution.

Sharp asymptotic estimates for the period of the pulsating wave are also available. The overall
phenomenology is very similar to the behaviour already revealed in the simple ODE frjodel (5) and

its analysis[(p). The existence of pulsating wave solutions is then obtained by the Schauder fixed
point theorem. The contracting property of the heat semigroup is crucial in setting up the nonlinear
map used in the fixed point theorem.

In Section[B, we obtain the existence of pulsating wave solutions]for (2) and quantitative
information about their speed of propagation. We work in the weakly spatial heterogeneity regime
(0 < 8 « 1) so that we can employ the techniques of perturbation theory. We heavily use the
spectral properties of a one-parameter manifold of stationary solutions of the unperturbed equation
(6 = 0). Even though it is conceivable that a proof similar to the one in the semilinear case is
also available for the reaction-diffusion case so thanight not be constrained to be small, we
believe that the strategy employed here provides a different perspective and most importantly, it
gives explicit quantitative information about the threshold valyend the speed of the propagating
front.

Here we also mention some related results. The work [20] studies similar equatiphs to (1) but
their spatial forcing is required to be positive everywhere. In the sequence of wolks [26] 27, 28],
the pinning phenomena is investigated for the spatially forced Allen—Cahn eqydtion (2). This is
commonly referred to as thai-stable caseThe existence of pulsating waves is also proved. The
inhomogeneity in[[26, 27, 28] is different from the case studied in this paper. Recently, [6, 7], and,
within a more general framework, [118], analyse similar front propagating phenomena and establish
some homogenisation results in the setting of Hamilton—Jacobi and degenerate parabolic differential
equations. However, in all of these works, the pinning and de-pinning transition is not studied which
is the main emphasis here.

2. The semilinear equation: Proofs

In this section we prove Theoreing 1 4nid 2 for the semilinear equétion (1). They are consequences
of several propositions.

As the analysis of the dynamics relies very much on the properties of the stationary solutions,
we state here the static version of equatjdn (1):

0= Au+ f(x,u)+ F, whereu isZ"-periodic inx € R". (14)
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Recall thatF is a constant and that(., -) fulfills Al. An important role will be played by the
linearised operatof [7) at a functiafix), which is stated here again for convenience:

L) = Ap+ 8, f (x,u)p, wherep € HY(R") is Z"-periodic. €}
The eigenvalue problem fdry (u) is given by
L)y =rp forp € HY(R") andZ"-periodic. (15)

First we show a proposition which makes assump#fi@more natural.

PrROPOSITION4 If f(x,u) satisfiesAl and

1
//f(u,x)dxdu:O,
0 Jo

then equatior{ (14) has a solution f&r= 0.

Proof. Note that the energy functional
1 2 u
E() = E/ |Vu|dx —/ H(u,x)dx, where H(u,x) =/ f(u, x)du, (16)
0 0 0
is lower semicontinuous if, — u strongly andVu,, — Vu weakly in L2. In addition, because of
‘/H(x,u(X))dX‘ < Clluliza,

the energy is bounded from below. Th&gx) has a minimiser in the clasd! of all periodic
H-functions with [, u(x) dx = s.

Let G(s) = minH3 E(u). Note that asf has zero average, we ha}fg Hu+ 1, x)dx =
fQ H (u, x) dx. HenceG (s +1) = G(s). ComparingE (u) andE (1 +¢), we see thag is Lipschitz,
S0 G assumes its minimum for somg. This minimum is attained at some functiag. Therefore
a minimiser ofE in the class of periodi¢Z® functions exists. This functiong solves the Euler—
Lagrange equation associated wkhwhich is [I4) withF = 0. |

REMARK. Theug from the above proof is stable in the sense of minimisation. It can further be
made stable in the senseA&? upon changing’ to

1
f(x,u) +€Ru — uo(x)) — 6/ / R(u — uog(x)) dx du
0 Jo
(and extended periodically im andu), where O< ¢ <« 1 andR is a smooth function such that
R(s) = —s for |s] < 1/8 andR(s) = O for |s| > 1/4. (|

The proof of Theorerfi]1 is divided into several propositions. For convenience, we use the notation
(1)~ and [I4)- to denote the dependence of the equationg on
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ProPOsSITIONS (Existence of threshold force) Assurh& andA2.

1. There exists a, > 0 such that{(I4) has a classical solution forQ F < F, while it has no
solution forF > F,.

2. At F = F,, the collection of the stationary solutions is well ordered in the sense thatifd
u- are two solutions 0{_(_'1]41, then eithew1 < u2 orus < uj.

3. Letu be a solution of[ (T4, . Then the principal eigenvalue of the linearised operatau) (7)
is zero and simple and the corresponding eigenvegioy is strictly positive.

Proof of[§[1). ConsiderF = {F > 0 : equation[(I4) has a solutioh By assumption, Oc F
# . On the other hand, if > | f|l«, then [I4) has no solution. Hence we can defifig =
SUAF € F} < oo. We claim thatF, € F. For if not, there exists a sequencefGf converging to
F, and also a sequence of functions(x) satisfying [I#),: Au, + f(x,u,) + F, = 0. Sincef
satisfiesAl and theF,’s are uniformly bounded, by elliptic regularity, the collection{af,}’s is
compact and hence has a subsequence converging tasaatsfyingAu, + f(x, us) + Fx = 0.
ThusF, € F.

According toA2, the linearised operatdry (uo) at a solutiong of (I4) has negative principal
eigenvalue. Thus ¢ (uo) is invertible. A straightforward application of the implicit function theorem
(see for examplée [3]) implies that (LA RlIso has a solution for any which is slightly larger than 0.
HenceF, > 0.

Next we show tha{ (14) has a solution for any & F < F,. Consider the solution, of (14)r,
andug of (I4). Then they are also super- and subsolutiong dff1#8spectively. By the periodicity
of f(x,u) in theu variable, we can assume thaf < u, + N for some large enough integaf.
Hence[(I#) must have a solution for ang in (0, Fy).

Proof of[3{2). Letu; anduz be two solutions of (14, . Suppose the graphs corresponding to
anduy cross each other. Consider

U(x) = minfu(x), u2(x)} and V(x) = maxui(x), u2(x)}.

Now U (x) andV (x) are sub- and supersolutions [pf{ 4)but not solutions. Again, by translating
U or V in theu-direction, we can assume without loss of generality that U. The idea next is to
show that they are still super- and subsolutions@h(all) for some small enough and positiye
Thus a stationary solution fdr](&),, exists, contradicting the definition ..

This is made precise as follows. Consider the solutién ¢) of the evolution equatior[p:)
with initial dataU (x). Thenu(x, h) < u(x, 0) for anyh > 0. The regularity assumptions satisfied
by f(x, u) imply that for 0< i « 1 the functionv, (x, t) := u(x, t) — u(x, t + h) solves the linear
equation

(vn)r = Avp +c(x, v, v(x,0) >0,

with a uniformly bounded potential(x, 7). As a consequencey, (x, r) cannot attain a negative
minimum, which leads tou(x,t + h) < u(x,t) and henceay(x,t) < 0 but# 0 forz > O.
Differentiating (1), with respect ta shows that the functiom, solves a linear parabolic differential
equation with bounded coefficients. By the strong maximum principle, there exists & andc
such thatu; (-, 1) < —c¢ < 0. Now consider[’_(]:l,:)*w for 0 < y < ¢ and the initial data«(x, #1).
Its solutionux(x, ¢t) will decrease monotonicaliy time. On the other hand, usirig(x) we can
construct in a similar way a solutiary(x, ¢) of @)Fm, which will increase monotonicallin time.
Hence there must be a stationary solutior{ of £14) leading to the desired contradiction.
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Proof of[3(3). Letu, be a solution of[(T14,. By the spectral theorem for compact self-adjoint
operators, the spectrum éfr (u,) consists of discrete eigenvalueés; > 11 > --- - —oo. The
variational characterisation of,, using the Rayleigh quotient, implies thiaj is simple, i.e. of
multiplicity one, and its eigenfunctiap, is nonnegative. The fact thay, is strictly positive follows
from the strong maximum principle. Now suppdsg# 0. Again, the idea is to construct sub- and
supersolutions of (14)+,, for some small but positive. Let 0 < € « 1. Consider the function

vE(x, 1) = u(x, 1) + €@, (x).
By linearising the nonlinearity (1, x) up to second order, we obtain
AWE) + f( D) + Faty = £e0ppp + 0() + 7.

Assumei, > 0. Asg,(x) is strictly positive, we can first choose arand then & > 0 such that

=+ H J— - .
v is a supersolution 04)+,,, whereasy_ is a subsolution. Hence, by reasoning as before, we
see that there must be a stationary solutionFér+ y betweemnv} andv. + N for some large
integerN, which again contradicts the definition 8f. The case of, < 0 follows similarly. U

PROPOSITIONG (Uniqueness of space-time periodic solution) Egtbe as in Propositign|5. Then
forany F > F,, if a space-time periodic solution satisfyifjg (8) exists, then the time péfiod
unique. In addition, the solution is unique up to a time shift, i.él.ﬁ,f, U}% are two such solutions,
then for somey,

Ut(x,1) = U2(x, 1 — 1g).

Proof. Let Ui(x, r) andUz(x, t) be two space-time periodic solutions pf £1yvith time-periods
oo > T1 > T» > 0. Now consider solutions; (x, r) anduz(x, ¢) of () with initial datalU1 (x, 0) +
N andUz(x, 0) whereN is a large enough positive integer such thatx, 0) + N > Ux(x, 0).
By (8), there must be a andx; such thatup(x1, 1) = u1(x1, 11), contradicting the comparison
principle. Thusly = T = Tp.

Now consider again the solutidip(x, t). There must be a time andx, such that/z(x2, r2) =
Ui(x2, 0) + N andUx(-, 1) < Us(-, 0) + N for some large positive integ@f. Now solve (1) with
initial dataUj (x, 0) + N andUa(x, t2). By time periodicity, after a tim&, the two solutions will
touch again—contradicting the comparison principle, unléss= U, (up to an additive integer).
Thus the space-time periodic solution must be unique in the sense stated in the propositich.

PROPOSITION7 (Existence of space-time periodic solution) For edch> F,, there exists a
number O< Tr < oo and a functiorU (x, 1) satisfying 1) and ).

Proof. Itis easy to show that under assumptidh, the initial value probleny {1y is well-posed in
L? and a solution exists globally in time. We will employ the Schauder fixed point theorem to prove
the existence of a solution satisfyirjg (8).
Let u(x, 1) be a solution of[(13. It can be decomposed agx,t) = p(r) + &(x, 1) with
(E(-, 1)) =0, where(g(-)) = fQ g(x)dx. Thenp(z) andé(., r) satisfy

p0)={fC.p@)+&()+ F),
E(x, 1) — Af(x, 1) = f(x, p() + 50, 1)) = (f (. p() + £, 1)), 17)
(¢ 0)=0.
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Let &9(-) = &(-,0) and assume as a normalisation condition th@l) = (u.(x)). Furthermore,
let ||&ollL> < A for some constanii. We claim that for anyF > F,, there exists a unique time
T = T (&) such thatp(T (¢0)) = p(0) + 1 and constants @ 71 < 12 independent o€p such that

O<t1<T(p) <12 < 0. (18)

An obvious lower bound fof" (§g) can of course be obtained from| < || f|l L~ SO that||f||zolo <
T (&p). But an upper bound follows from the centre manifold type analysis as described in Theorem
[17] (which also gives much more precise estimates).

Now let S(¢) be the solution operator for the heat equatipn= Av on Q = [0, 1]* with
periodic boundary condition. Let algb(x, t) = f(x, p(t) + &(x, 1)) — {(f(, p(t) + (-, 1))). We
introduce the nonlinear map

T (é0)
T (§0) = &(x, T'(§0)) which equals S(T'(¢0))éo + /0 S(T' (o) = )Y (,s)ds.  (19)

The existence of a space-time periodic solution is equivalent to findjpg)esuch thaty = 7 (&o).
To analyse the ma@, we introduce the closed subseticf(Q),

Ba={v:|vlre <A, (v) =0}

whereA is to be determined. First note thatis a continuous function o. This follows from the
continuous dependence &f-, t) ont and T (&g) on &. Note that we only need to consider those
timest satisfying [18). Next, we claim the following property f6¢) (which is proved immediately
afterwards):

For eachr > 0, there exists & < C1(r) < 1 such that for allv(-), 1-periodic with(v) = O,
[S(T)vllLe < Cr()llv]lLo0 (20)
and there are constant® and N such that
IS@vlize < Me™™ vl fors > 0. (21)

With the above estimates and the lower boundifee T (&), we have

T
17 o)z < I1S(T)éoll L +/0 IS(T — $)¥ (x, $)ll Lo ds

T

T-1
< C(m) ol o +/O IS(T = )% (x, )l ds+/T IS =)l ds

T-1
< C1(e) ol + / MeNT) (., )l ds + C
0
< Ci(m)lléollLe + C3

for some O< C3 < oo. In the above, we have used the fact thét(-, s)|| 2o < 2| f|lL= < oo.
Now let A = C3/(1 — C1(11)). Then| &l < A implies that||7 (§)]z~ < A. Thus7 (-) maps
B4 into itself. The lower bound foF together with parabolic regularity leads to the compactness of
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the map7 in L2. Hence the Schauder fixed point theorem (5ek [13, Corollary 11.2]) implie% that
has a fixed point. O

Proof of [20). First, by maximum principle|| S(t)v||z~ < |lv]z~ for all z > 0. Without loss of
generality, assumiv ||z~ = 1. Using the heat kernel, it is easily seen that there is a conSiant
such that

ID2S(z/2)vll~ < C(r) < 0. (22)

Now introduce the periodically extended version of the functitix) := min(C(t)||x||%, 1). Let

x4 be a point such that
(S(T/2Qv))(xs) = I = iﬂgnf(S(r/Z)v)(-).

Since(S(r/2)v) = 0, we havel, < 0. ConsiderQ(x) = U (x —x,). Then [22) and the definition of
U imply that(S(z/2)v)) < Q(x). Hence by the strong maximum principle, for al- 0 we have

sup (S(r + 7/2)v)(x) < sup (S(1)Q)(x) = C1(7) < 1,

xeR” xeR”
which leads to[(20). O
Proof of [2]). This follows immediately fron{(J0) once we observe that for amykz, (k+1)7],

IS vz < ISKT)V]|ze < CL(T)K 0]l = e HINCLEN )y o
< eINCLO =1 INCLON/T ||
so that we can se¥ = [In(C1(7))|/t andM = M€, O

What is left is proving the asymptotic statemgrt (9) in Thedrém 2 about the propagating velocity.
The strategy is to construct sub- and supersolutiong]ef {@)provide sharp bounds fdfr. For

this, we need to make use of the nondegeneracy assurd®idn particular, this implies that there

are only dinite numbeiof stationary solution(su(i)}f\’:l of )F*. Now, the key observation is that
neareach of the:?)’s, the dynamical behaviour of the solution of £1)s well-approximated by the
dynamics on the centre-manifold whaevay fromthe stationary point, the velocity of the evolving
graph is uniformly positive anithdependent ahe additional forcing above the critical value. These
are made precise by the following definitions and constructions.

2.1 Construction of sub- and supersolutions near a stationary point

Let u, be one of the solutions of (IL4). By Proposition §(B), the principal eigenvalug of
the linearised operato[](?) is zero and simple with positive eigenfungtigm). The following
construction is motivated by the centre-manifold theory[for.(1) nearu. (see[[15, pp. 173]). We
make the following ansatz:

v(x, 1) = ux(x) + (Ro(x) + s(t)pp(x) + R(x, 1)) (23)
and compute:

v —Av— f(x,v) — Fe—y =5(0gp + R,
—{Ly(u)Ro+ ¥ + 3 fuu(x, u)(Ro+ s()@p + R)? + Ly (uy) R + E3(Ro, s(1), R)}
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where
IE3lloe < (Is] + | Rolloo + IR Ilso)?@(Is| + | Rolloo + | Rlloo) (24)

for some continuous and increasing functie-) such thatw(0) = 0. For simplicity, ¢, is
normalised to have norm ongg, || = 1. To construct theupersolutiorv™ (x, ), we defineRy, s,
andR1 by

Ly(u)Ro = —y + (v, 9p)¥p, (25)
s@) = A+o){(y, ¥p) + (%fuu(x, u*)(S(Pp + Ro + R)Zv (pp>}s (26)
R, =Liw* R+¥, R(0) =0, 27)

W =1 fuu(x, ) (s¢p + Ro+ R)? — (3 fuu(x, u*) (s¢p + Ro+ R)?, 0p)0p,  (28)

where 0< o « 1. The initial condition fors is to be determined. With the above choices,will
be a supersolution if for aM, ¢,

|E3(x, )] < 301, 9p)0p(0) + (3 fuu (x, ) (Ro(x) + 5(0)p(x) + R(x, )%, 9p (). (29)

Note thatgp), is uniformly positive in the sense tha},(x) > C, > 0. To proceed further, we
state the following two claims which are proved in Secfior} 2.3:

CLAIM | AssumeA3. Then
fQ Fuu (%, s ()@ (1) dx > 0. (30)

CLAIM |l Let

Buor ={(s,R):[0,T] > R x L¥(Q): S[(l)Jp](IS(t)I +IR®) L) < M}.
tel0, T

1. There exist€g > 0 such that
[ Rollo < Coy.

2. There exist O< yp, C1 < 1 andC, T, > 0 such that for all < y < yp, there exists a solution
(s(2), R(1)) € Bcy.0.1, of (26)-28) and

IR(M)lloe < C( sUp s(r)?>+y?) for0O<r<T. (31)
rel0,]

Furthermore7, can be chosen to be
T, =inf{t > 0:[s(t)| > Cy}
The above two claims imply that for ands small enough, we have
(3 fuu (X, w)[(Ro + s9p + R)? = (s9p)°], 0p)| < oDy, 9p) + (3 fuu (x, )95, 9p)s%).
This leads to the validity of (29) for the same range-ainds. Furthermore, we have

A+ 0/2(y. @p) + (3 fuu(x. 4@, 9p)s (1))
<E() < A+ 30/2)(y. 0p) + (3 fuu(x. )95, 9p)s* (1)), (32)
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which in particular implies thai(z) > 0 for 0 < ¢ < Ty. Finally, by Claim I, there exists & K
< C; independent of such that for O< y < yp we have

2K @p(x) > |Ro(x) + R(x,1)]| (33)

for all  as long ag (31) holds.
DEFINITION8 Given 0 < y,0 « 1, the supersolutiomi“;(x, t) near a stationary point, is
defined by[(ZB), together with (P5)—(28):

s(t):0<t <Tyn, wheres(0)=—K ands(Tin) =K. (34)

The subsolution; (x, t) is defined in the same way except with the factard.in ) replaced by
1 - 0. (By abuse of notation, we use the safjgefor both the sub- and supersolutions, even though
they can be two different values.)

Note that in both cases,

v (x,0) <us(x) — 3KC, and vi(x, Tin) > us(x) + 3K Cp. (35)

2.2 Construction of sub- and supersolution away from a stationary point

Now, by assumption, we have only finitely many (up to vertical translations) periodic solutions of
(., ..., u™. By Propositiod (p), they can be well-ordered” < - < u{™.

We now describe the construction of subsolutions between any two stationary sodaiﬂcmﬂj
uf“). (Supersolution can be trivially constructed upon the introduction of discontinuous jumps.)
Let v, ; be the subsolutions near thg)’s constructed in the previous section. Let alspT[ ;] be

the time interval defined ifi (34) for!” . Denote bysg , (v) the solution at time of (1), with initial
datumv at time 0. It has the following property which will be proved in Secfiorj 2.3:

CLAIM 1l There exists a timd’ > 0 bounded independently gfando such that

ultY — 3KCp < 8§57y 1 (Tini)) < ul™P

wherek, C, are the constants for thd” as in ).

We now give the following definition:

- i i+1) - .
DEFINITION 9 The subsolutiomg,; ;. 1 between:” andu™ is given by
Voutiit1 (s ) i= 85, (i ;. Tini)) - for 0 <t < Touti,it1 (36)
where
Tout,i,i+1 = inf{t : v(;ut,i,i-q—l(" t) — UiRH_]_(‘v 0) > 0}. (37)

Note that thevoiumJrl andToyt;.i+1 do not dependn y.

With the above construction, we can define the following sub- and supersolutionsffﬁm)
to uil) (x) + 1, i.e. they evolve vertically through one spatial period. They are used to provide upper
and lower bounds for the propagating speed of the front.
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DEFINITION 10 The subsolutiotV —(¢) is given by

Vi ;(Pic1+1) forO <t < Tin,,

V=) = { 0
vOuti,iJrl(Pi_l + Tin’i + 1) forO<t < TOUL[,H—L

wherePy = 0 andP; = Z§=1(ﬂn,j + Tout j,j+1)-

The supersolutio ™ (¢) is given by

Vi) =vt (Qii1+1) forO<t<Tn;,i=1...N,

in,i
whereQop = 0 andQ; = Zj.:l Tin, ;-
REMARK. Note that we do not need the construction of the supersolution in between two

stationary solutionSUCj“utii+1 as we introduce the upward discontinuous jumps at hés.

The above sub- and supersolutions are piecewise continuous in time, the subsolution is upper
semicontinuous and the supersolution lower semicontinuous. In such a case a comparison theorem
between solutions and, respectively, sub- and supersolutions holds. For such a comparison theorem

see e.g.[25].
The following statement gives the sharp asymptotic value for the propagation speed.

THEOREM 11 LetTiot be the time it takes for the solution to travel one period in space. Then for
eacho > 0, there exists (o) such that for O< y < yp(o), we have

1-0)Ay V2 < Tir < A4 0)Ay Y2 (38)

where
N

_ 2
A =nz{( /Q w;,’><x>dx)<%ﬁm<x,ui”)(go;‘))% go;,’>>} : (39)

i=1
Proof. This is a simple consequence WBZ) and the uniform bound foff§teg ;+1's which is
independent of . Consider the supersolutioR, " (¢). Let
Ay = / P () dx and Az = (3 fuu(x, u) (@)% o).
o

Then upon integrating (32), we have

1 {tan‘l( Az s(t)) — tan‘l( Az s(0)>}
1+ 30/2)/A1A2y Ary Ary
1 _1 A2 . _1 A2
S'S AT o/ A {tan (\/ Avy m) @n (\/ Auy S(O)>} '

Choosings(0) = —K, s(Tin,;) = K asin Definitiorﬂ}, for 0< y « 1 we have

T 4
< Tini < .
(1+30/2VAAy ~ "™ T (1+0/2)/ATAzy
A similar estimate applies tfi, ; for the case of subsolution.
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Estimate[(3B) then follows immediately upon summing overite

N

N
Z Tini < Trot < Z Tini + Touti,i+1- 0
i=1 i=1

REMARK. AssumptionA3 is needed for the precise time asymptotics. If we are only interested in
the existence of a piecewise subsolution without further information, then we can simply use

VX, 1) 1= us(x) + @p(x)
' 2lgplioc”
for |t|] < Ti(y), and continue this solution away from the stationary points by the evolutiéh at
as in [36). O
2.3 Proof of Claims |, II, and 11l

Proof of Claim I. We argue by contradiction. Consider fo0s <« 1 the functions

W= Uy +5Qp — s2R, (40)
R = (L)) G fuu . w93 — (3 fuu (¥, )05 0p)p)-

Clearlyu, is a supersolution of (14),, for anyy > 0, andu, < w for s small enough. If we can
show thatw is a subsolution, then there exists a stationary solutiorFfo# , which contradicts
the assumption thdf, is critical.

By expanding the nonlinearity up to second order we obtain

Aw + f(x, w) + Fi +y = 523 fuu(x. 4292, 9p) + 0(s%) + .,

which can be made negative by first choosirgp small that the(s2)-terms are dominated by the
second order terms, and then choosinp be sufficiently small. d

Proof of Claim II. 1. The right hand side of (25) is orthogonaktp. Hence there exists> 0 such
that|| Roll2 < cy. The regularity assumptiofl for the nonlinearity implies further th@iRo || 2.2 <
c”y. The claim follows directly (fom < 4) or from||Roll, < ¢’y for somep > 0. We can then
conclude by a standard bootstrapping procedure.

2. The local existence faR(-, 1) € L?(0, 1) follows from a Banach fixed point type argument.
To prove[31), let be as in[(ZB). Then by Step 1, we can finet and(s, R) € B¢, 0,7 foranyCy,
provided the initial datum satisfiglR (0)|| + |s| < C1/2. Given a small constant, we can choose
C1 sufficiently small in order to ensure that there exists a large conStap) such that

W (x,1)| < pR(x, 1) + C(y% +5(1)?).
Moreover, there exist > 0 andb > 0 such that iR, ¢,) = 0, then
e ) Rl oo < Ae™||R]| oo (41)

The above is proved by first establishing thaf’“ R < M||R||;2 for someM > 0. As
standard regularity theory for the periodic Laplacian implies thats at leastC?, this follows
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from short time regularity estimates for parabolic equations (see for example [12, Chapter 1.6, Thm.
11], adapted to the periodic case, fodlHer continuous coefficients, or for an alternative approach
[15, Chapter 3.5, Exercise 4] which requires less regularity assumption for the potential)l Then (41)
follows from theL2-exponential decay in time due to the spectral gapgfofu..).

Hence we can estimate

t
IR()lloo < / Ae D (| R() oo + C(y2 + s(t)?) dt’
0

A ’ l 2
< Z(p sup |R(, 1)l + SUP [s@)]+ ¥9).

t'€[0,1] t'€[0,7]
The claim follows ifp is chosen so small thatb—1p < 1/2. |
Proof of Claim Ill. Letv(x) := Vin.; (X Tin). Consider the sequence of functions

vn = (S5, ().

As uf,f) < v, < uf,f“), the sequence is bounded It?°; then parabolic regularity (recall the
regularity assumptiom1) implies that it is bounded ir€%® for somea > 0. Hence it has a
convergent subsequencedf. This sequence converges to eithét or ufk”l).

It remains to show that, cannot converge taf,f). Let w be as in[(4D). By expanding the
nonlinearity as in the proof of Claim I, we conclude thatis a supersolution of (14) for s
sufficiently small. Moreover we can choosein such a way that!’ < w < v. Therefore,
convergence of, to uf) contradicts the comparison principle.

By the same reasoningsat)(w) will converge t0u§f+1). This behaviour does not dependpn
ando and hence the time it takes farto evolve frormff) +%KC,, to uii+1) — %KC,, is independent
of them. The claim follows asg , (w) < Sg,(v). O

2.4 Nondegeneracy conditioh3

This section demonstrates that there are “abundant” examples of nonlinear fungtions)
satisfying the nondegeneracy conditid8. See also Sectign 4.1 for an explicit example.

PROPOSITION12 Given anyf (x, u) satisfyingAl andA2 and anye > 0, there exists a function
g(x, u) satisfyingA1-A3 with ||g — fllc < €. Moreover,g can be chosen such that:

1. The critical forces forf andg are the same.

2. The sefu : Au + g(x,u) + F, = 0} can be taken to be any finite subset of
{u:Au+ f(x,u)+ F, =0}.

3. Instead of property 1 above, we can require that

1 1
f / g(x,u)d.xdu:/ / f(x, u)dx du
0 J[o,ap 0 J[o,1]"

(so that Lemm@]4 can be appliedgp In this case, the critical forces fgrand f can differ by
at most ordee.
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Proof. Given any finite subset dfi : Au + f(x,u) + F, = 0} = {u® < ... <™} (and setting
ul N (x) = u(x) 4+ 1 for j € Z) we introduce

> u —u(x)
(x,u) = f(x,u) +e Q( , . ‘ )
¢ ! j:Uoo g min; 0+ —ul o

whereQ is a smooth even function having the form

2r2 for|r| <1,

and is an increasing function, 42
1 for |r| > 2 odrD g (42)

Q(r) =

so thatQ(0) = Q’(0) = 0 andQ”(0) > 0.
Let F, be the critical force forf. Asg > f, the critical force forg is no greater thaifr,. On the
other hand, it is immediate that
{u(j)}]?’ifOO Clu:Au—+g(x,u)+ F, =0}.
Thusg and f have the same critical force value.
Analogous to[([7), consider the linearised operator
Lew)p = Ap + dug(x, u)g,

Let<p(’)(x) (> 0) be the principal eigenfunction df; (u")). Note that

_ ’
L (u(l))(p(’) _ Lf(M(l))gﬁ(l)—i-E{ 1—[ Q( u—u'(x) )}

i) —
o)) =0.
= 5 min; lu+D —u |

u=u

Hence it is also the principal eigenfunctionbéf(u(i)) with eigenvalue 0. Moreover,
/ 02g(x, u” (x))gp (1) dx = / 02 f (x, u® () (1) dx + € / ¢p(x)>dx > 0,
0] 0] o

ThusA3 is satisfied forg at anyu . ‘
To continue, supposav + g(x, v) + F, = 0 andv is not equal to any of the”’s. Then we
must havedv + f(x, v) + F, < 0 butnot identically zeroNow, similar to the proof of Proposition

[B(2), consider
uy=Au+ f(x,u)+ Fy, u(x,0) =v(x).

There exist, t, > 0 suchthatAu(x, #.)+ f(x, u(x, t,))+ Fx+y < 0, i.e.u(x, t*) is a subsolution
of (L4)r,+,. Combining this with the fact that eaeh” is a supersolution of (14)..,, we get a
contradiction with the definition of.. Thus{u : Au + g(x, u) + F, = 0} C {uV }°°

Finally, by assumption, fof (x, u), there is a stable solution ¢f (kdin the sense okZ By the
implicit function theorem, for any small enough> 0, the same condition also holds fgfx, u).

Statement 3 follows simply by changirgo g(x, u) — fol f[o,l]n g(x, u) dx du. O

PROPOSITION13 Given any collectiofu® < ... < u™} of Z"—periodic functions (and setting

ultN (x) = uP(x) + 1 for j € Z), there exists arf (x, u) satlsfylngf0 Joap £, w) dx du =
and conditionA1-A3 such that at its critical forcing,, we have

{u:Au+f(x,u)+F*:O}:{u(l) < e <u(N)}.
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Proof. The proof is similar to that of the previous proposition once we tfk® be f(x, u) —
Iy Jio.ap f dx du where

- 00 . — W
Foow=-T]J Au(f)(x)P<l v ) )
=0 5 min; luU+D — y (D]

_ (/)( )

u u X

+A

l_[ ( min; | |u<f+1>—u<”||oo)

17—00

and

o A {max [ Au®|eo);
e P is a smooth positive even function such titat) = 1 for |[r| < 1 andP(r) = O for |r| > 2;
e Qisasin[4p).

With the abovef, for large enought, in fact, we haveF, = [ f dx du. First of all, it is simple to
check that ‘
W2 Clu: Au+ f(x,u)+ F, =0}

In addition, atF, and for each:«\"), the linearised operatdt(«‘") has the principal eigenvalue
A, = 0 and eigenfunctiop, = 1. Furthermore, a82f (x,u”) = 1/2 > 0, A3 is satisfied. Also,

the facts thau : Au + f(x,u) + F, = 0} C {u}2°___ andF, is indeed the critical force follow
from the following one-parameter family of supersolutlon@ ¢14joliating” the region between

anyu(]) andu(l+l)

u(x) +dx for0O <A <1,
v () =1 =MV @) +d)+ (- DUtV (x)—d) forl<air <2,
uUtD(x) —d@B =) for2 < <3,

whered = § min; [uV+D — 4| . (Recall that we have chosento be sufficiently large.)
Since [ f dx du = 0, we can apply Proposition 4 and the remark afterward to ensurédhat
is also satisfied. O

3. Forced Allen—Cahn equation in the perturbative regime

The equation studied in this section is the spatially inhomogeneous Allen—Cahn eduation (2) in the
regime O< § <« 1. We assume that(-) is aC?3 spatial 1-periodic functiong (x + 1) = g(x).

In order to study the front propagation in heterogeneous medium, we only consider solutions
resembling a front structure. For€§ « 1, the equatior] (2) has two end states close to 1-ahd
These are described by means of the functiefigx) which satisfy

dm(x) — W (d+38m™(x)) +8(g(x)+ F) =0,
Smf (x) = W' (=1+8m* (x)) +8(g(x) + F) = 0.

We now take the following ansatz for the solutiofx, ¢) of (2):

v(x,t) =m(z) +SE(z,t) + 8¢(z, t)
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wherez = x —8c(t), E(z, ) = a(z)m™ (x)+B(z)m™ (x) anda(z) andB(z) are two smooth positive
functions such that for some large but fixed positive conskgnt

@) = 1 forz < —K, () = 0 forz <K -1,
“=10 forz > —K + 1, =11 forz> K.

Note that the above ansatz fo¢x, r) connects—1 + dm™(x) asx — 400 and 1+ §m~(x) as
x — —oo. Now ¢(z, t) satisfies an equation of the form

@1 = @z +C(my +SE; + 8¢;) — E;

1

+ g(mzz +8E,, — W (m+8E + 8¢) + 8(g(z + 8c(t)) + F)) (43)

so that
o =@ — W' (mo + H(t, z,¢) (44)

where
H(t,z,9) = c¢(m; +8E; + d¢;) — E; (45)

1

+ g{mzz +8E,, — W (m+8E) +68(g(z+ 8c(t)) + F)} (46)

+ 01(89) + 02(5¢7).
We will work with the following weighted function spaces:

Boy = {f I fllos = SUIf(2)e" | : z € R} < o0}, (47)
Bip={f: Ifllne = I fllos + I los) (48)

where 0< b < W”(£1). The value ob will be chosen later according to the spectral estimgtes (83).
Expressiond (45) anfl (46) are estimated as follows.[F¢r (45),

(@8) = ¢(m; + 8E. + 8¢;) — E; = é{m; + 8('(2)m™ (x) + B'(2)m™ (x)) + 8¢.}
so that for some constadt,
1@3)o0. < Alc(I(X4+8ll@C, Dll1p)- (49)

For (48), it can be rewritten as

@5 = ;—L{mzz — W (m+38E)+ W (a(z) +8E — B(2)
+8E,, — W(a(@) +86E — B(2)) + 8(g(x) + F)}.

After some routine computation, it is easily verified that for some congtagain,

@B llo., < A.

Hence
IHC, Ollos < AL+ 1EDOIL+8ll9C, DllLp) + 8lellLs + Slelf ). (50)
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We now choose(r) to make [ ¢(z, 1)m,(z) dz = 0 for all 7 > 0. Such a choice can always be
made if [ ¢(z, 0)m(z) dz = 0 andc(r) satisfies

“o) = _ L(mgy +8E, — W(m +8E) +8(g(z + 8c(1) + F), m)
8 m P+ 8 @mm (x) + B @mT(x) + @mg)

(51)

The above expression is well defined provided that the denominator of the right hand side does not
vanish. In particular, there exist some positive const&nts such that

if C>Sélelis then [é()] < C = sleC 0y (52)
Such a choice of(r) also implies that
/H(z, tym,(z)dz =0 forallt > 0. (53)
Next we will make use of the decay properties of the linear operator
Ly = Yz — W (m()y (54)

to deduce some long time estimates flgr(-, #)||1,5. First we provide the following preliminary
result.

LEMMA 14 (Gronwall type estimate) Lef(z) (r > 0) be a continuous positive function such that
for some constant® > 1, O, R, w, ands > 0,

t
F(t) < Pe ™ £(0) + / e U7 (Q + R3f(s)) Us.
0

If further RS < w/2,thenf () < Pf(0) +2Q/w forall ¢t > 0.
Proof. Leth(t) = e® f(t). Then
Q t
h(t) < Ph(0) + = (e — 1) + RS/ h(s)ds
w 0

Gronwall’'s inequality implies that

t
h(t) < Ph(0) + g(ewf -1+ RS/ e”(f—”(Ph(O) + g(ews — 1)) ds
w 0 w
Q

< Ph(O) + = (e = 1) + Ph(O)("* 1) + — QRS jor _ jory  ©

=T = _ Rét
(@ — RY) o)

Hence switching back tg () and upon simplification, we get
f(@) < Pf(O)e*(wfRzS)t + L(l _ e*(wfR(S)t)’
w— RS

leading to the desired statement. O
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Now the solutionp(-, ¢) of (44) can be written as

t

o) = S(t)p0) + / St —s)H(s)ds (55)
0

where S(¢) is the solution operator for the linear equatipn = Ly ¢. We have the following
estimate forp(¢):

ProOPOSITION15 There exisD > 1 andw > 0 such that if SUpo,q dlles)llLe < C/2, then

! 2B
le@ s < De™ @Ol + fo Dew<’S>A{1+ < A+ 8le®lLp)
+ 8l + 5||go(s)||i,,} ds.

Proof. From [5%), we can write

t
lo@ s < I1S@@ollLy + /O 1SG — $)H($) 15 0.
The estimate fosS(¢) (from Theoren| 2b) givegS()¢(0)ll1s < De™“|lgoll1,5. To estimate the
remaining term, consider, forQ ¢ < 2,
t —w(t—s)
0 JE—S

where we have made use pf[80). For 2, consider

t
fo 1St = s)H (s)l|1,p ds < I1H (s)llop ds < Cll(O)ll1,p

t t—1 t
/0 IIS(t—S)H(S)Ill,de</O ||S(t—S)H(S)||1,de+/ 1IIS(t—S)H(S)Ill,bds
t_

/tl Defa)(lfs) t (1—s)
< ————1IH()llo» ds +/ De™ "V H(s) 1,5 As.
0 VAR ' -1

By (50) and [(5R), the first integral can be bounded by the term stated in the proposition. For the
second integral, an extension pf{50) and parabolic regularity &sjin (67) give
t
/ De= V| H(s)l|1,p ds
t—1

t
< / ) De DAL+ 16X+ 8ll@(9) l12.6) + 8ll@)ll26 + Slle(s)115,,} ds
t7

! 2B
</ 1D’e‘°(”)A{1+ F<1+a||<p(s—1>||1,b)+6||<p<s—1)||1,b+6||<p<s—1>||i,,}ds
t_

t—1 2B
<[ , D/e““(’_s)A{1+ F(1+5||(P(S)||l,b) + 8lle(s)llp +5I|§0(S)|Iib}ds,
l‘_

which can then be absorbed into the first integral. The stated conclusion is thus proved. [



100 N. DIRR AND N. K. YIP

From the above result, we see tifator someT > 0, ¢ satisfies SUR 77 lle() Il < M (with M
to be chosen later) then fér< C/2M, there are positive constants(independent oM) and Fy,
such that

t
le@ s < De™ @01 + /0 e *"NE + Fudllp(s)ll1p)ds  for0<:<T. (56)
The next two results provide some long time estimates for the solytion In all of the

following, the constantd, B, C, D, E, Fy, w are as in[(50)] (52) anfl (56).

PROPOSITION16 LetM > 8E/w ands < min{w/2F);, C/2M}. If the initial condition satisfies
leO s < M/AD, then|lo(t)]l1, < M/2forallt > 0.

Proof. Supposely, = inf{r : |l¢(t)[l1., = M} < oc. Then Lemmé T4 says
2E M M M
sup lle@®ll1e < DlleO)fley +— < — + — < —.
1€[0,Ty] 4 4 2
Then standard parabolic regularity implies thats) (|1, < M for¢ € [Ty, Ty +€] wheree is some
small enough number. This contradicts the definitiorf gt HenceTy = oo and so|le(#) |1, <
M/2forallt > 0. |

PROPOSITIONL17 LetM > 16DE/w ands < min{w/8DFy, C/2M}. If |l¢(0)|l1, < M/4D,
then|o(t)|l1., < M/4D forallt > w1 In(2D).

Proof. Note that under the current hypothesis, the assumptions of the previous Profogition 16 are
also satisfied. Hence we can legitimately write

t
o) l1s < De*wf||¢(0)||1,,+/0 w(rs><E+

M+ +F8M M+M+M_M .
8D 2w 8D 16D 16D 4D’

The next quantltatlve result implies that as long as the external forcisgear the threshold value,

it takes avery longtime for the front to travel across the heterogeneous spatial environment. Thus,
the condition of large time in Propositipn|17 is automatically satisfied. Recall the definitions given
in (Z0).

THEOREM 18 (Estimation of velocity) LetM > 16DE /w. Then for anyoc > 0, there exist O<

3« < min{w/8DF)y, C/2M} andC1, C2 > 0 such that for any G< § < 8, and|l¢oll1,, < M/4D

and the forcingF" within the range

FyoM M 1 1
M ds < —e @ + Z(E+ ZFysM
4 w 2

the velocityVr of the front satisfies the estimafe [13).
Proof. From [51), agle(r)|l1, < M/2 for allz, we see that

1(my +8E; — W(m) — W' (m)E + 0(8%) +8(g(z + 8c()) + F), —my)
lmelI + O(8)

c@t) = 3

(g +38c@) + F, —my)
B llm |2

+ 0(6)

where we have used the facts that — W'(m) = 0 andm_,, — W”(m)m, = 0.
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Using the notations of (10), we can write

(2F + hy) + (h(3c(1))) — hy)
llm 1%
=a(y + 0(8) + B(5c())?), wherey = F + hy/2.

ét) = + 0(8)

Now fix a positive constant & P <« 1 which isindependent of andé. Then the timep it takes
for the front locationsc(z) to travel from O toP can be computed as

1 [P de
IPZ—/ 5
aJo v+0@©)+BG)

Similar to the proof of Theorefn 11, by choosifg large enough anél, andC> small enough, we
can estimatep as

(1—0)7‘[<t <(1+0)n
e XXM x T

205/ By 205/ By
Again, the time it takes for the front to travel frol to 1 — P is some numbemdependent

of y and s. We conclude that the total timg, for the front to travel one period of the spatial
heterogeneity follows the same asymptoticsmgdeading to the assertion of the theorem. U

(57)

The previous results facilitate the use of the Schauder fixed point theorem to prove the existence of
a pulsating wave.

THEOREM 19 (Existence of fixed point) For anyf, § and F as in Theorer 18, there existspa
with [leoll1,» < M /4D and O< T (po) < oo such that

(T (p0)) = 9o (58)

whereg(t) is the solution of[(44) with initial datao.

Proof. Let (¢(t), c(r)) be the solution of( (44) andl (b1) with initial conditidpo, co). In addition,
let
T (po) = inf{z : c(t) = co + 1}.

Then [57) implies that O< T(¢o) < oo and it is uniformly boundedndependently ofgg.
Proposition 1) also implies that the $¢t : ||y ||, < M/4D} is mapped into itself by the nonlinear
map
S go = (T (90))-
Parabolic regularity (§7) implies that it is a continuous map.
Now consider the Banach spaB€ of bounded continuous functions & R with the uniform

norm. Since the s€i) : || |l1, < M/4D} is a compact convex subsetBE€, [13, Corollary 11.2]
gives the desired existence of a fixed pointSof O

4. Analytical examples

This section provides two analytical examples of the pinning and de-pinning behaviour, one in the
semilinear graph case and the other in the reaction-diffusion case.
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4.1 Semilinear graph case
Consider fors > 0 the equation

O=uyy +8SiN2ru(x))cox2rx) + F, u(0) =u(l). (59)
We have the following lemma:

LEMMA 20 1. LetO< & < 1/4x sothat 28/(1— 278) < 1. Then forF > 8227 /(1 — 276),
(59) does not have a solution.
2. LetO< § < 1/2. Then for O< F < §2(1/4 — 25%), (59) has a stable stationary solution.

REMARK. Statement 2 shows that there is pinning while statement 1 shows that the de-pinning is

nontrivial, i.e. it occurs befor&sin(2ru(x)) cog2r7 x) + F has a definite sign. Note that the ranges
of the parameters are not expected to be sharp $onall. O

Proof. For statement 1, the claim is obvioushf > §. Hence assumé& = (3§, 0 < f < 1. We
argue by contradiction and assume that there exists a stationary seluBgnstandard regularity
this solution is smooth, and because it is periodic, there existg an[0, 1] such that:'(xg) = O.
Hencelu'(x)| < 81+ f) and|u(x) — u(0)| < 8(L+ f).
Integrating[(5P) over [01] we obtain
1
0=45f+ 8/ sin(2ru(0)) co2rx) dx
0

1

1
+ 8/ (COS(an)(u(O) —u(x))2r / co927{(1 — s)u(0) + su(x)}) ds) dx
0 0
> 8f — 218 sup [u(0) — u(x)| = 8(f — 2781+ f)) > O,

O<x<1

which proves the first claim.

For statement 2, we will construct sub- and supersolutions. The comparison principle implies
that there exists a stable solution between the sub- and the supersolution. We wite? f,
0< f <1 Letp > 8% and choose* € (1/8, 3/8) such that

cog2nct) sin@ret) = —4n(f F p),
which is possible forf < (87)~1 — §3. Let
ut(x) = ¢t +8(2r) 2 sin2rct) cog2nx) — %(271)—252(]” T p) COL (2 x).
Then
ut = —§sin@rct) cog2rx) + 822(f F p) coS(2nx) — 82(f F p),

8 sin(2ru™) cos(anc; = §sin(2rc™) cog2nx) + 8%(2n) "L cog 2w ct) sin@ret) cof(2nx)
—§(2n)_1cos(2nci)(f F p) cos(27x) + 0(83).
Henceu®, + §sin(2ru®) cos2rx) + 82 f = £82p + 0(8°) so that

ul, +8sinru™) cos2rx) +8%f > 8%p — 0(5%) > 0,

uy, + 8sinru~) cos2rx) 4+ 82f < —82p 4+ 0(8%) <0,

i.e. the desired sub- and supersolutions exist. O
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4.2 Reaction-diffusion (Allen—Cahn) case

This example is not constrained by the heterogeneity being weak and yet the exact values of the
threshold force and the relevant constant in the time asymgi¢tic (9) can be found. The computations
are formal but yet illustrative. Consider the equation

w’ .
Uy = Uyy — 2(v) + Asm(%) + F (60)

where O< A, F « 1 andW (-) is chosen to be the the bilinear double-well potential

2(p—1) forp>0,

Wip) = (pl = 1)* sothat W/(”)={2(p+1) for p < 0.

We first look forstationary solution®f (60) with one transitional interface—there is one single
value ofz at whichv changes its sign. Under this assumption, the solutitakes the form

vxx—v+1~|—Asin<%)+F=0 forx < z,

vxx—v—l—i—Asin(%)—i—F:O forx > z,

v(z7), v(zh) =0,
v (z7) = Ux(Z+)~
In the above, we implicitly assume that- (<) 0 forx < (>) z. Now v is explicitly given by
2

_ . (X
- 4 1+L2Asm<z)+F+1 forx <z,
v(x) = 12 X
~(x-2) in[ = -
o2 +1+L2Asm<L>+F 1 forx >z

We also have the following expressions for the value ahd the slope of atz:

[z F1+L?
sinf - | =—— 61
| ( L) e (61)
AL Z

=-1 coy — ). 62
0@ = ~14 oo £) ©2)

From [61), we see that the threshold force is given by

AL?
Tre2 st

so that at the threshold, the spatial inhomogeneity still changes sign so that de-pinning is also
nontrivial.

The above value of, coincides with the forcing which makes the stationary solution just lose
its stability. This is illustrated as follows. The eigenvalue problem of the linearised operator for the
stationary solution of (§0) is written formally as

W//(v)
Pxx 2

© = Ap.
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If we assume without loss of generality that 0, the above problem takes the form

oxx —@ =Ap forx #0,

_ 2¢(0)
X 0+ - x(o ) =——,
eO e PAC)
9(07) = 9(07).
The principal eigenfunction, (x) (which is positive) and eigenvalue, are given by
e /l+)»,,x’ x < 07 1

o= Ay = ——— — 1.
(pp( ) = /l+)~px’ x>0, b |Ux(0)|2

Hencev is stable, i.ed, < 0 if and only if |v, (0)| > 1.
Next we will compute the constart of (9).

A. Short time regularity estimates

This section provides some finite time regularity estimates for semilinear parabolic differential
equations. The results are crude, but useful as an initial step to obtain more refined estimates. Here
we only give the properties relevant to this paper, in particular in the weighted spagé®m (4§).

PrRoOPOSITION21 Consider the equation
up =ty + fu,ux) +8(x, 1),  u(x,0) =uo(x). (63)

Assume f is a C! function satisfying| f(p, )| < C(|p| + Iql), sup, {1 fpl, 1fgl} < oo and
llg(:, Hllo,p < oo forallz. Then for allT > 0, there exists & (T') such that

lu(-, Dllop < C(T){lluollop, + sup llgC, H)llop}s (64)
t€[0,T]
luC, Dllas < C(T)lluollos/~'1 + S[»CI)JID] g Dllop}, (65)
tel0,T
lul Ollue < C(T)flluollsy + sup 18, Dllop}- (66)
t€[0,T]

If further, ||g(-, )|l1,» < oo, then

lux G O ll1p < C(T){luollrp/v1 + ng’p] lgC, )1} (67)
te€[0, T

REMARK. The proof is omitted as the technique of proof can be found in many standard texts
such as[[12, 19]. But we remark that sinfgds globally Lipschitz, the results can be obtained by
analysing the linear equation

ur = txx + AQx, Du + B(x, Duy + C(x, 1)

with L> coefficients. Standard iteration steps then produce the estimaleq (64)—(67) for the fully
nonlinear equatior (63).

The purpose of considering (63) is to analysg (44) which originates from (2). As the nonlinearity
W'(-) satisfiesuW’(u) > cu® for |u| large enough, it follows that with th&> source term
8(g(x) + F), the spacé|lull- < C} isinvariant under the flow of [2). In this setting, we can assume
without loss of generality that the nonlinear term is globally Lipschitz. O
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B. Spectral analysis of the Allen—Cahn operator

This section analyses the spectral and decay properties for the linear equation gikgn(bge
(54)). The approach adopted here is based on [24]. For simplicity, we will suppress the suliscript
LetVy = —W"(), V- = —W"(-1), andV, = maxVx. For a given complex number,
consider the linear equation
(L—M¢e=0. (68)

The parametex will be taken from
Qup={largr — V)| <7 —a}N{|x - Vi| > p} forsomeO<a <m/2andg >0. (69)

The expressiongy (1) = /A — V1 appear often in the analysis. They are taken to be single-valued
and analytic inf2g o.

Equation @) has solutiong (1, x) andy; (A, x) (i = 1,2) such thatt2gg > A — oo; they
satisfy (the primé refers to thec-derivative):

P1(h, x) = +WIX (L4 O(|a|7V?)),
e ) = e R (—p (1) + 0(D),
forx > 0: oah 1) = e+ D14 O(A-Y2)). (70)
Po(0, x) ="+ PX (L (W) + 0(D),
Y1(h, x) = e-PX( L+ 0(1A|7V?)),
] vonx) = =Py + 0(D)),
orx SO0 0 x) = e -0+ 0(A1-Y2)), (71)
Yh(h,x) = e "-WX(—y_(1) + 0 (D).
In addition, the functions; andv; can be related in the following way:
@i (h, x) = A;(DY1(A, x) + B (W P2(r, x), (72)
Vi, x) = Ci(M@1(x, X) + Di (W g2(r, x), (73)

where the coefficientd;, B;, C; andD; are analytic functions of € §29 ¢ and can all be shown to
be uniformly bounded a& 0 > A — oo.

Recall the definitiong (47) anfl (48) of the weighted function sp#ggsandB1 ,. We have the
following main estimates in these spaces.

LEMMA 22 Given O< o < /2,8 > 0 and the domai2, g, let

0 <b < Imin{hy, (1), Ry_-A) 1 & € 2y p). (74)
Then the following two statements hold.

() Foranyx € £2, g, if the Wronskian

W (1, Y1, &) = @a(x, Vg (x, ) — @3 (x, MPa(x, 1) # 0,

then the resolvent operatat — 1)1 exists as a bounded operator 81,
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() There exists a constadt(«, B) such that for any large enoughe $2, g, the resolvent operator
(L — 1)~ exists and the following estimates hold:

C )
1L =2 Ygllos < (f;f)ngno,b, (75)
. C(a. B)
L—n"1t < = , 76
I =2l < 2B glos (76)
C )
1L = 1) gl < (f;f)ngul,b. (77)

Proof. The proof relies on estimating the Green’s function of the resolvent:
1 Yi(y, Ve1(x, 1), x>y,
G ’ ’ )\‘ =, 5 <

) = {m(y, MY A), x <.
Note thatW is independent of. HenceG (x, y, A) is well defined ifW # 0. We will only prove
statement (IN[(7H, 16, 77), statement (I) follows immediately.

Using the estimates fagr andvr, it is possible to show that as— oo:
W(pr, ¥1. 1) = —(r+ () + y-(W) + 0(1) = 0(Wh)

Hence ifA € 2, g and is large enough¥ (1) does not vanish and thus is well defined. In this
case, the functiorf = (L — 1)~ g can be written as

fx) = / G(x,y,M)g(y)dy

—00

/ wl(x,k)wl(y,k)g(y)dwrf lﬁl(x,k)m(y,?»)g(y)dy}~ (78)

—00

1
W)
Suppose|gll1,, < oo. We will estimatel| f o, as follows. Letx > 0. The first term of[(7]8) is
bounded by

LA 0 , x ,
g";;’zk)) { / [y (y, Mg (e e | dy + f |x/f1<y,x)g<y>eb>e—”Y|dy}
0 0

< p1(x, )
W0

0 x
{/ 1y, e | dy +/o Y1y, Me | dy}llgllo,b

e~ My ()x 0 N X .
<Cl——— { f M-y dy 4 / Dy(n)e"+ DYty dy}ngno,b (by (73))
W) —o0 0
cc e—ﬂhur()\)x { 1 N e(ﬂiy+(A)—b)x _ }H ” - —bx ” ”
S 810,b X 8110,b
W) Ry-A) +0b Ry+ () —b [A]

where we have used the fact tHag()) is bounded. The second term pf|78) is estimated as

Y1(x, A) f o by —by Ranaal I — Ry 0)+b)
lp1(y, Mg(y)e?e | dy < C|l—7— e Ydyllgll,p
W) |k W) | Jx
Ce—bx

lIgllo.s-

~

|A]
Similar estimates can be obtained fok 0. Thus [[7}) is proved.



PINNING AND DE-PINNING PHENOMENA 107

Estimate ) is proved in exactly the same way. Taking the derivative brings dayii]a
Estimate[(7]7) is proved by the following observation:

(f)ax + VX)) +2) fr =g+ V/(x)f7

Cliglp Clglis  Cligllop _ Cliglis
=+ 1 fllop < * 2 < * 0
N Y Al T Al

Next we introduce the concept of eigenvalued.of

Il fellop <

DEFINITION 23 A complex numben is called aneigenvalueof L if there exists a bounded
functiong # 0 such thatL — A)¢ = 0.

A complex number is said to belong to theesolvent seof L if (L — A)~1 exists as a bounded
operator on the space of bounded functions Be.

With the above, we have the following lemma (which basically summarises the reslilts of [24,
Lemma 5.3 and Theorem 5.5]).

LEMMA 24 1. The eigenvalues of are real. Furthermore, those eigenvalues in the interval
(V,, 00) are discrete and actually confined(ii,, ||V ||~) and can only cluster at,.

2. Sincem’(x) > 0 is an eigenfunction with respect to = 0, the operatod. has no positive
eigenvalues. The previous statement then implies that there is a spectral gap, i.e. there is a positive
distance between the principal eigenvalue, 0, and the the second largest eigenvalue.

3. There are &< « < /2 andg > 0 such thatL — 1) ~! exists for allx € £24,p. Hence there exist
C(a, B) andb > 0 such that the estimatgs [75),(76) gnd (77) hold for &ll$2, s.

We now state and prove a linear decay estimate for the semigroup| of (54).

THEOREM 25 Letwv(x, t) be the solution of
V= Uy — W (m(x)v, v(x,0) = vg, (79)

wherevg € B andff‘;o vo(x)m’(x) dx = 0. Then there exisD > 1 andw > 0 such that for all
t >0,
—wt

: 80
i llvollo. (80)

lv@) s < De™llvollp- (81)

e
vl < D

Proof. From Lemmd Zi(3), we can find > 0 andn/2 < y < = such that the spectrum df
minus zero lies completely to the left of the complex curve

Coy=r=-0+ pet” 10 < p < o0}, (82)
Hence the solutiom(z) can be written as the following contour integral:
1 th -1
v(t) = — e'”"(A— L) “vgda.
2mi Coy

Chooséb with
0<b < Fmin{Ry (), Ry_() 1 x € Cuy . (83)
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We now estimate the solutian(r) as follows:

1 _ C(a, B) e |
vy < —/ le[Il(x — L) lvollo, 10| < (/ |dA] ) llvollo,p-
2r Je,, 2m Coy VI

The last integral is bounded by

le e~ elPCOSY g e~ e!PCOSY ()

o0 o0
Y N < 2/ < 2/
/cw.y 7 o [(pcosy — )2+ p?sir? y]/4 0 [w?2+ p?sir?y]V/4

00 ,1pCOSY g !
< D / P <D
0

Jpsiny T/t

M|

leading to[(8D).
Finally, by parabolic regularity, for any > 0, there exist€ (T') such that

lo@ley < C(Mllvolley, for0O<t <T.

Hence by choosing a largér and a smallew (depending orT’), the conclusior{ (81) also follows]
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