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This paper investigates the pinning and de-pinning phenomena of some evolutionary partial
differential equations which arise in the modelling of the propagation of phase boundaries in
materials under the combined effects of an external driving forceF and an underlying heterogeneous
environment. The phenomenology is the existence of pinning states—stationary solutions—for small
values ofF, and the appearance of genuine motion whenF is above some threshold value. In the
case of a periodic medium, we characterise quantitatively, near the transition regime, the scaling
behaviour of the interface velocity as a function ofF . The results are proved for a class of semilinear
and reaction-diffusion equations.

1. Introduction

In this paper we consider the dynamical behaviour of the solutions of two examples of partial
differential equations which arise in the modelling of front propagations in a heterogeneous medium.
The first example is a semilinear parabolic equation. Letu(x, t) : Rn × R+ → R solve

ut = ∆u+ f (x, u)+ F whereu is ZN -periodic inx for all t > 0. (1)

Heref (·, ·) is 1-periodic in both variables, and sufficiently regular, but not constant in the variableu.
The constantF > 0 is called theexternal driving force.

The second is the Allen–Cahn equation with spatially periodic forcing. Letv(x, t) : R × R+ →

R solve
vt = vxx −W ′(v)+ δ(g(x)+ F), x ∈ R. (2)

HereW(v) is a double-well potential, i.e. a function withW(1) = W(−1) = 0 andW(v) > 0 for
|v| 6= 1. It usually takes the form ofW(v) = (1 − v2)2. The functiong(·) is 1-periodic with mean
zero. The constantδ is taken to be positive and sufficiently small. We will concentrate on solutions
v(x, t) which have afront structure in the sense that they connect two “different end states” of (2)
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asx → ±∞. The end states are stationary solutions close to+1 and−1. These conditions will be
specified later.

The solutions of (1) and (2) we are interested in are stationary solutions on one hand and
pulsating waves on the other. The latter are solutions which, up to spatial translations, arespace-time
periodic—the analogue of travelling waves in the case of constant coefficients. We are particularly
interested in thetransition between these two types of solutions asF varies (increases). More
precisely, we will show that for both of the above equations, generically, there exists anF∗—critical
forcing—such that for 06 F 6 F∗, the equations have stationary solutions, while forF > F∗, they
have solutions presenting fronts propagating in space with an average velocityVF . We also show
that in the case of periodic spatial heterogeneity, the velocity satisfies the following scaling law:

VF ∼ (F − F∗)
1/2 for 0< F − F∗ � 1. (3)

The above described dynamical behaviour should be contrasted with the situationf ≡ 0 or
g ≡ 0 in which it can be shown (in fact it is obvious for (1)) that there exists for anyF 6= 0 a
solution which moves with constant speed: the linear solutionu(x, t) = U0 + F t in the case of
(1) and the travelling waveu(x, t) = U(x − ct) in the case of (2). So the pinning and de-pinning
transition is caused by theoscillatorynature of the spatial heterogeneity.

1.1 Motivations and applications

Both equations (1) and (2) are simplified models for the motion of an interface in a material under the
combined effect of the spatially heterogeneous environment, given byf (x, u) or g(x), the surface
tension and the external driving fieldF. The interface could for example be a domain boundary in
a magnetic material with impurities [5, Chapter 13], the interface between immiscible fluids in a
porous medium [23], or a dislocation line in a solid [16, 17]. The impurities can in general impede
or accelerate the motion of the interface, but they are soft obstacles in the sense that the interface
can pass through them. The motions of the interface are characterised by the interaction between
an interfacial energy, which keeps the interface flat or straight, and the influence of the impurities,
which force the interface to deviate from a flat shape, and the driving field, which makes the interface
move one way or the other. For an introduction from the physical point of view, we refer to [11]
or [17]. Note that in many of the above applications, the driving forces derived from the interfacial
energy, the spatial heterogeneity and the external field can all take the form of nonlocal operators.

Another important ingredient in the modelling is the consideration of random impurities. For
an overview of models which are characterised by the competition between a surface energy and
a random field, we refer to [21]. For rigorous mathematical results on a one-dimensional model,
see [14].

In the dynamic case, the motion of an interface in such a model decomposes into periods of
slow motion and sudden jerks, called avalanches [11]. In the specific case of (1) with random spatial
forcing f (x, u), the model is known in the physics literature as the quenched Edwards–Wilkinson
model which is studied extensively (see for example [4]).

While we see the case of periodic impurities treated in this paper mainly as a first step towards
a rigorous mathematical analysis of such models for random media, we would like to point out that
the periodicity is fully justified from a modelling point of view if the impurity is related to a periodic
crystal structure of an underlying substrate.

Already in the periodic case, the relationship between the mean velocity and the driving force is
expected to be a power lawnear the transition regime, which is due to the interplay between some
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slowmotionnearthe stationary solutions atF = F∗ and fastmotion with speed of order oneaway
from the stationary states.

In order to keep the mathematical treatment simple, we consider spatially localised driving
forces. As the mean curvature is the first variation of the length or area of the interface which is
a simple form of the interfacial energy, one way to model the above phenomenology is by means of
the mean curvature flow with a driving force: the normal velocityVn at any point on the interface
Γ (t) is given by the following motion law:

Vn = κ − f (x)+ F for x ∈ Γ (t). (4)

Hereκ is the mean curvature of the interface,f (x) is some spatial function andF is a constant.
Even in this case, the geometry of the interface can become quite complicated because self-

intersection can occur. In addition, the graph representation of the interface might not be preserved
under the dynamics. One reason equations (1) and (2) are used is to avoid this technical difficulty.
For (1), a linearised version of the curvature operatorκ is used and the interface is given by the
graph of the functionu(x, t). In this way, the graph representation is preserved for all time and
estimates of the solutions are easier to obtain.

The second equation (2) (whenδ = 0) is a gradient flow of a Ginzburg–Landau type free energy
for a physical system with a nonconserved order parameter and two stable phases corresponding
to the two “wells”±1 of W [2]. It is well known that under large space-time diffusive rescaling,
i.e. t → ε2t andx → εx, the zero level set of suitable solutions converges to an interface moving
by its mean curvature [22]. Thus equation (2) is an approximation of (4) on some large spatial and
temporal scale, while it is a model in its own right on a smaller scale, usually called the mesoscopic
scale.

Of course, in the one-dimensional case studied here the limiting motion is the motion of a point
in a spatial potential. Letg be a function of period one. Then under the above mentioned space-
time scaling, the zeroR(t) of v(x, t) which represents the front location, evolves according to the
following ODE:

µṘ = −Φ ′(R) (5)

whereΦ(R) = −RF − G(R), andG(R) is a 1-periodic potential such thatG′(R) = g(R). The
constantµ is usually called the mobility. In essence, equation (5) describes the negative gradient
flow of a particle in atilted periodic potential. This simple ODE already shows some of the
qualitative features of the more complex PDEs such as (1) and (2). Thus it is advantageous to
briefly describe its behaviour here.

ForF = 0 the functionG(R) is assumed to have global minima periodically spaced leading to
stable stationary solutions. WhenF = F∗ = −g(R∗), whereg(R∗) = inf[0,1] g(x), a stationary
solutionR(t) ≡ R∗ still exists. Note that at this point,g′(R∗) = 0. Now let F = F∗ + γ, and
y = R − R∗. If we further assume the nondegeneracy conditionα = g′′(R∗) > 0, then

ẏ ∼ αy2
+ γ for y near 0 and 0< γ � 1. (6)

The explicit solution is given byy(t) = (γ /α)1/2 tan((αγ )1/2t). Thus it takes the solution a time of
orderγ−1/2 to leave the region of slow motion and to reach a region of fast motion where the speed
becomes independent ofγ .

The above type of argument is also used in [8] in the study of the pinning and de-pinning
phenomena for some discrete reaction-diffusion equations. Equation (6) in fact describes the
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dynamics along the centre manifold at the critical pointy = 0. The work [1] also uses an equation
similar to (5) in the investigation of the dynamics of some martensitic phase transformations.

1.2 Statement of theorems

Here we state precisely the definitions and theorems to be shown in this paper.
For the semilinear equation (1), we first introduce the linearised operatorLf (u) at a function

u(x):
Lf (u)ϕ := ∆ϕ + ∂uf (x, u(x))ϕ for anyZn-periodicϕ. (7)

The functionf (x, u) : R × R → R satisfies the following conditions:

A1 • f is Zn-periodic inx and and 1-periodic inu, i.e.

f (x, u+ 1) = f (x, u) andf (x + ê, u) = f (x, u) for all (x, u) ∈ Rn × R,

whereê is the unit vector along any coordinate axis.
• f (x, u) is twice continuously differentiable in both variables and‖f (·, ·)‖C2(Rn×R) < ∞.

A2 At F = 0, equation (1) has a stationary periodic solutionu0(x) which isstablein the sense that
the principal eigenvalue of the linearised operatorLf (u0) is negative.

Note that the mere existence of a stationary solution atF = 0 is nothing more than a
normalisation and follows e.g. if the average off (x, u) is zero (see Lemma 4). The stability
condition is indeed an assumption and excludes for example anyf (x, u) which is constant in the
variableu. The regularity assumption on the nonlinearity serves to keep the technical effort at a
minimum. We expect that it can be relaxed.

THEOREM 1 AssumeA1 andA2. Then the following statements hold.

1. There exists anF∗ > 0 such that for 06 F 6 F∗, (1) has a stationary solutionUF (x).
2. Assume in addition the conditionA3 (given right afterward), or that there exist only finitely

many stationary solutions (up to translation) atF = F∗. Then, forF > F∗, there exists a unique
0< TF < ∞ and a solutionUF (x, t) of (1) satisfying

UF (x + ê, ·) = UF (x, ·) and UF (·, t + TF ) = UF (·, t)+ 1. (8)

The conditionA3 is as follows:

A3 For any stationary solutionu∗ atF∗ we have∫
Q

ϕ3
p∂

2
uf (x, u∗(x))dx 6= 0,

whereQ = [0,1]n andϕp is the principal eigenfunction ofLf (u∗).

The above is reminiscent of some nondegeneracy condition. It corresponds to the fact thatg′′(R∗) 6=

0 for the ODE example (5). (In fact, this assumption implies that the above quantity is automatically
positive. See Claim I on page 90.) In addition, it is also used to give the precise asymptotics of the
dynamics forF > F∗. Otherwise, some higher (for example, fourth) order information is needed.

Now we are ready to present the asymptotics of the propagating velocity:
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THEOREM 2 AssumeA1, A2 andA3. Then there is a constantA (see (39) for its formula) such
that the average velocityVF defined asT −1

F has the following asymptotics:

VF = A(F − F∗)
1/2

+ o(|F − F∗|
1/2) for 0< F − F∗ � 1. (9)

REMARK . Note that even though we only consider solutions which are periodic in the spatial
variable, this is not as restrictive as it seems because the comparison principle implies that the
periodic solutions can already determine the pinning and de-pinning behaviour of arbitrary solutions
which are bounded in theL∞ norm.

In addition, in Section 2.4, we can actually show that there are lots of functionsf (x, u)

satisfyingA1–A3. See also Section 4.1 for an explicit example. 2

For the inhomogeneous Allen–Cahn equation (2), we consider the regime ofweak spatial
heterogeneity. In this case, it turns out that we can obtain quite explicit quantitative information
on the speed of the pulsating wave. First we introduce the standing wave solutionm(x) (for δ = 0):

mxx −W ′(m) = 0

such that for some constantC it satisfies the estimates

||m(x)| − 1| 6 Ce−a|x| and |mx(x)| 6 Ce−a|x| for all −∞ < x < ∞

wherea is any positive number less thanW ′′(±1). (The existence ofm(x) and its properties are
well known [10].) We next introduce the 1-periodic function

h(a) = −

∫
∞

−∞

g(z+ a)mz(z)dz.

Without loss of generality, assume that the minimum value ofh, denoted byh∗, is attained ata =

0,±1, ±2, . . . . Assume further thath′′(0) > 0. We first define the following quantities:

F∗ = −
h∗

2
, α =

2

‖mx‖2
, β =

h′′(0)

4‖mx‖2
(10)

where‖mx‖
2

=
∫

∞

−∞
mx(x)

2 dx. Then we have:

THEOREM 3 For anyσ > 0, there existδ∗, C1, C2 > 0 such that for anyδ < δ∗ and anyF in the
range

0< C1δ 6 F − F∗ 6 C2, (11)

there exists a constantTF and a solutionUF (x, t) of (2) satisfying

UF (x, t + TF ) = UF (x − 1, t). (12)

In addition, the velocity of the front, defined asVF = T −1
F , satisfies

(1 − σ)
αδ

√
β(F − F∗)

π
6 VF 6 (1 + σ)

αδ
√
β(F − F∗)

π
. (13)
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1.3 Structure of the paper and outline of proofs

The dynamics of (1) and (2) is analysed in Sections 2 and 3 respectively. In Section 4 , we provide
some explicit examples of the pinning phenomena. These examples are illustrative in the sense that
they clearly demonstrate the existence of a nontrivial pinning state. Furthermore, the constants in
the abstract formulation can be computed analytically. In Appendix B, for the reader’s convenience,
the spectral estimates for the linearised Allen–Cahn operator are provided.

Here we briefly describe the method of the proof. For the semilinear case, we first show the
existence of a threshold force and some properties of the stationary solutions. In particular, we prove
that the threshold valueF∗ is characterised by the fact that the principal eigenvalue of the linearised
operator at any stationary solution must be zero. The principal eigenfunction and the nondegeneracy
conditionA3 are then used to construct sub- and supersolutions near the critical solution. In this
way, we can deduce the time a solution spends near a pinned state forF slightly larger thanF∗.

This is reminiscent of the analysis of the dynamics on the centre-manifold of a stationary solution.
Sharp asymptotic estimates for the period of the pulsating wave are also available. The overall
phenomenology is very similar to the behaviour already revealed in the simple ODE model (5) and
its analysis (6). The existence of pulsating wave solutions is then obtained by the Schauder fixed
point theorem. The contracting property of the heat semigroup is crucial in setting up the nonlinear
map used in the fixed point theorem.

In Section 3, we obtain the existence of pulsating wave solutions for (2) and quantitative
information about their speed of propagation. We work in the weakly spatial heterogeneity regime
(0 < δ � 1) so that we can employ the techniques of perturbation theory. We heavily use the
spectral properties of a one-parameter manifold of stationary solutions of the unperturbed equation
(δ = 0). Even though it is conceivable that a proof similar to the one in the semilinear case is
also available for the reaction-diffusion case so thatδ might not be constrained to be small, we
believe that the strategy employed here provides a different perspective and most importantly, it
gives explicit quantitative information about the threshold valueF∗ and the speed of the propagating
front.

Here we also mention some related results. The work [20] studies similar equations to (1) but
their spatial forcing is required to be positive everywhere. In the sequence of works [26, 27, 28],
the pinning phenomena is investigated for the spatially forced Allen–Cahn equation (2). This is
commonly referred to as thebi-stable case. The existence of pulsating waves is also proved. The
inhomogeneity in [26, 27, 28] is different from the case studied in this paper. Recently, [6, 7], and,
within a more general framework, [18], analyse similar front propagating phenomena and establish
some homogenisation results in the setting of Hamilton–Jacobi and degenerate parabolic differential
equations. However, in all of these works, the pinning and de-pinning transition is not studied which
is the main emphasis here.

2. The semilinear equation: Proofs

In this section we prove Theorems 1 and 2 for the semilinear equation (1). They are consequences
of several propositions.

As the analysis of the dynamics relies very much on the properties of the stationary solutions,
we state here the static version of equation (1):

0 = ∆u+ f (x, u)+ F, whereu is Zn-periodic inx ∈ Rn. (14)
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Recall thatF is a constant and thatf (·, ·) fulfills A1. An important role will be played by the
linearised operator (7) at a functionu(x), which is stated here again for convenience:

Lf (u)ϕ = ∆ϕ + ∂uf (x, u)ϕ, whereϕ ∈ H 1(Rn) is Zn-periodic. (7)

The eigenvalue problem forLf (u) is given by

Lf (u)ϕ = λϕ for ϕ ∈ H 1(Rn) andZn-periodic. (15)

First we show a proposition which makes assumptionA2 more natural.

PROPOSITION4 If f (x, u) satisfiesA1 and∫ 1

0

∫
Q

f (u, x)dx du = 0,

then equation (14) has a solution forF = 0.

Proof. Note that the energy functional

E(u) :=
1

2

∫
Q

|∇u|2 dx −

∫
Q

H(u, x)dx, where H(u, x) =

∫ u

0
f (u, x)du, (16)

is lower semicontinuous ifun → u strongly and∇un → ∇u weakly inL2. In addition, because of∣∣∣∣∫ H(x, u(x)) dx

∣∣∣∣ 6 C‖u‖L1,

the energy is bounded from below. ThusE(u) has a minimiser in the classH 1
s of all periodic

H 1-functions with
∫
Q
u(x)dx = s.

Let G(s) := minH1
s
E(u). Note that asf has zero average, we have

∫
Q
H(u + 1, x)dx =∫

Q
H(u, x)dx.HenceG(s+1) = G(s).ComparingE(u) andE(u+ε), we see thatG is Lipschitz,

soG assumes its minimum for somes0. This minimum is attained at some functionu0. Therefore
a minimiser ofE in the class of periodicH 1 functions exists. This functionu0 solves the Euler–
Lagrange equation associated withE, which is (14) withF = 0. 2

REMARK . Theu0 from the above proof is stable in the sense of minimisation. It can further be
made stable in the sense ofA2 upon changingf to

f (x, u)+ εR(u− u0(x))− ε

∫ 1

0

∫
Q

R(u− u0(x))dx du

(and extended periodically inx andu), where 0< ε � 1 andR is a smooth function such that
R(s) = −s for |s| 6 1/8 andR(s) = 0 for |s| > 1/4. 2

The proof of Theorem 1 is divided into several propositions. For convenience, we use the notation
(1)F and (14)F to denote the dependence of the equations onF .
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PROPOSITION5 (Existence of threshold force) AssumeA1 andA2.

1. There exists anF∗ > 0 such that (14)F has a classical solution for 06 F 6 F∗ while it has no
solution forF > F∗.

2. At F = F∗, the collection of the stationary solutions is well ordered in the sense that ifu1 and
u2 are two solutions of (14)F∗

, then eitheru1 < u2 or u2 < u1.
3. Letu be a solution of (14)F∗

. Then the principal eigenvalue of the linearised operatorLf (u) (7)
is zero and simple and the corresponding eigenvectorϕp(·) is strictly positive.

Proof of 5(1). ConsiderF = {F > 0 : equation (14)F has a solution}. By assumption, 0∈ F
6= ∅. On the other hand, ifF > ‖f ‖∞, then (14)F has no solution. Hence we can defineF∗ =

sup{F ∈ F} < ∞. We claim thatF∗ ∈ F . For if not, there exists a sequence ofFn converging to
F∗ and also a sequence of functionsun(x) satisfying (14)Fn : ∆un + f (x, un) + Fn = 0. Sincef
satisfiesA1 and theFn’s are uniformly bounded, by elliptic regularity, the collection of{un}’s is
compact and hence has a subsequence converging to someu∗ satisfying∆u∗ + f (x, u∗)+F∗ = 0.
ThusF∗ ∈ F .

According toA2, the linearised operatorLf (u0) at a solutionu0 of (14)0 has negative principal
eigenvalue. ThusLf (u0) is invertible. A straightforward application of the implicit function theorem
(see for example [3]) implies that (14)F also has a solution for anyF which is slightly larger than 0.
HenceF∗ > 0.

Next we show that (14)F has a solution for any 0< F < F∗. Consider the solutionu∗ of (14)F∗

andu0 of (14)0. Then they are also super- and subsolutions of (14)F , respectively. By the periodicity
of f (x, u) in theu variable, we can assume thatu0 < u∗ + N for some large enough integerN .
Hence (14)F must have a solution for anyF in (0, F∗).

Proof of 5(2). Let u1 andu2 be two solutions of (14)F∗
. Suppose the graphs corresponding tou1

andu2 cross each other. Consider

U(x) = min{u1(x), u2(x)} and V (x) = max{u1(x), u2(x)}.

NowU(x) andV (x) are sub- and supersolutions of (14)F∗
, but not solutions. Again, by translating

U orV in theu-direction, we can assume without loss of generality thatV < U . The idea next is to
show that they are still super- and subsolutions for (1)F∗+γ for some small enough and positiveγ .
Thus a stationary solution for (1)F∗+γ exists, contradicting the definition ofF∗.

This is made precise as follows. Consider the solutionu(x, t) of the evolution equation (1)F∗

with initial dataU(x). Thenu(x, h) < u(x,0) for anyh > 0. The regularity assumptions satisfied
by f (x, u) imply that for 0< h � 1 the functionvh(x, t) := u(x, t)− u(x, t +h) solves the linear
equation

(vh)t = ∆vh + c(x, t)vh, v(x,0) > 0,

with a uniformly bounded potentialc(x, t). As a consequence,vh(x, t) cannot attain a negative
minimum, which leads tou(x, t + h) 6 u(x, t) and henceut (x, t) 6 0 but 6≡ 0 for t > 0.
Differentiating (1)F∗

with respect tot shows that the functionut solves a linear parabolic differential
equation with bounded coefficients. By the strong maximum principle, there exists at1 > 0 andc
such thatut (·, t1) < −c < 0. Now consider (1)F∗+γ for 0 < γ < c and the initial datau(x, t1).
Its solutionu2(x, t) will decrease monotonicallyin time. On the other hand, usingV (x) we can
construct in a similar way a solutionu3(x, t) of (1)F∗+γ which will increase monotonicallyin time.
Hence there must be a stationary solution of (14)F∗+γ leading to the desired contradiction.
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Proof of 5(3). Let u∗ be a solution of (14)F∗
. By the spectral theorem for compact self-adjoint

operators, the spectrum ofLf (u∗) consists of discrete eigenvalues:λp > λ1 > · · · → −∞. The
variational characterisation ofλp, using the Rayleigh quotient, implies thatλp is simple, i.e. of
multiplicity one, and its eigenfunctionϕp is nonnegative. The fact thatϕp is strictly positive follows
from the strong maximum principle. Now supposeλp 6= 0. Again, the idea is to construct sub- and
supersolutions of (14)F∗+γ for some small but positiveγ . Let 0< ε � 1. Consider the function

v±
ε (x, t) = u(x, t)± εϕp(x).

By linearising the nonlinearityf (u, x) up to second order, we obtain

∆(v±
ε )+ f (·, v±

ε )+ F∗ + γ = ±ε(λpϕp +O(ε))+ γ.

Assumeλp > 0. Asϕp(x) is strictly positive, we can first choose anε and then aγ > 0 such that
v+
ε is a supersolution of (14)F∗+γ , whereasv−

ε is a subsolution. Hence, by reasoning as before, we
see that there must be a stationary solution forF ∗

+ γ betweenv+
ε andv−

ε + N for some large
integerN , which again contradicts the definition ofF ∗. The case ofλp < 0 follows similarly. 2

PROPOSITION6 (Uniqueness of space-time periodic solution) LetF∗ be as in Proposition 5. Then
for anyF > F∗, if a space-time periodic solution satisfying (8) exists, then the time periodTF is
unique. In addition, the solution is unique up to a time shift, i.e. ifU1

F , U
2
F are two such solutions,

then for somet0,
U1
F (x, t) = U2

F (x, t − t0).

Proof. Let U1(x, t) andU2(x, t) be two space-time periodic solutions of (1)F with time-periods
∞ > T1 > T2 > 0. Now consider solutionsu1(x, t) andu2(x, t) of (1)F with initial dataU1(x,0)+
N andU2(x,0) whereN is a large enough positive integer such thatU1(x,0) + N > U2(x,0).
By (8), there must be at1 andx1 such thatu2(x1, t1) = u1(x1, t1), contradicting the comparison
principle. ThusT1 = T2 = TF .

Now consider again the solutionU2(x, t). There must be a timet2 andx2 such thatU2(x2, t2) =

U1(x2,0)+N andU2(·, t2) 6 U1(·,0)+N for some large positive integerN . Now solve (1)F with
initial dataU1(x,0) + N andU2(x, t2). By time periodicity, after a timeT , the two solutions will
touch again—contradicting the comparison principle, unlessU1 ≡ U2 (up to an additive integer).
Thus the space-time periodic solution must be unique in the sense stated in the proposition.2

PROPOSITION7 (Existence of space-time periodic solution) For eachF > F∗, there exists a
number 0< TF < ∞ and a functionUF (x, t) satisfying (1)F and (8).

Proof. It is easy to show that under assumptionA1, the initial value problem (1)F is well-posed in
L2 and a solution exists globally in time. We will employ the Schauder fixed point theorem to prove
the existence of a solution satisfying (8).

Let u(x, t) be a solution of (1)F . It can be decomposed asu(x, t) = p(t) + ξ(x, t) with
〈ξ(·, t)〉 = 0, where〈g(·)〉 =

∫
Q
g(x)dx. Thenp(t) andξ(·, t) satisfy

ṗ(t) = 〈f (·, p(t)+ ξ(·))+ F 〉,

ξt (x, t)−∆ξ(x, t) = f (x, p(t)+ ξ(x, t))− 〈f (·, p(t)+ ξ(·, t))〉,

〈ξ(·, t)〉 = 0.

(17)
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Let ξ0(·) = ξ(·,0) and assume as a normalisation condition thatp(0) = 〈u∗(x)〉. Furthermore,
let ‖ξ0‖L∞ < A for some constantA. We claim that for anyF > F∗, there exists a unique time
T = T (ξ0) such thatp(T (ξ0)) = p(0)+ 1 and constants 0< τ1 < τ2 independent ofξ0 such that

0< τ1 < T (ξ0) < τ2 < ∞. (18)

An obvious lower bound forT (ξ0) can of course be obtained from|ṗ| 6 ‖f ‖L∞ so that‖f ‖
−1
L∞ <

T (ξ0). But an upper bound follows from the centre manifold type analysis as described in Theorem
11 (which also gives much more precise estimates).

Now let S(t) be the solution operator for the heat equationvt = ∆v on Q = [0,1]n with
periodic boundary condition. Let alsoψ(x, t) = f (x, p(t) + ξ(x, t)) − 〈f (·, p(t)+ ξ(·, t))〉. We
introduce the nonlinear map

T (ξ0) = ξ(x, T (ξ0)) which equals S(T (ξ0))ξ0 +

∫ T (ξ0)

0
S(T (ξ0)− s)ψ(·, s)ds. (19)

The existence of a space-time periodic solution is equivalent to finding aξ0(·) such thatξ0 = T (ξ0).
To analyse the mapT , we introduce the closed subset ofL2(Q),

BA = {v : ‖v‖L∞ 6 A, 〈v〉 = 0}

whereA is to be determined. First note thatT is a continuous function onB. This follows from the
continuous dependence ofξ(·, t) on t andT (ξ0) on ξ0. Note that we only need to consider those
timest satisfying (18). Next, we claim the following property forS(t) (which is proved immediately
afterwards):

For eachτ > 0, there exists a0< C1(τ ) < 1 such that for allv(·), 1-periodic with〈v〉 = 0,

‖S(τ)v‖L∞ 6 C1(τ )‖v‖L∞ (20)

and there are constantsM andN such that

‖S(t)v‖L∞ 6 Me−Nt‖v‖L∞ for t > 0. (21)

With the above estimates and the lower bound forT = T (ξ0), we have

‖T (ξ0)‖L∞ 6 ‖S(T )ξ0‖L∞ +

∫ T

0
‖S(T − s)ψ(x, s)‖L∞ ds

6 C1(τ1)‖ξ0‖L∞ +

∫ T−1

0
‖S(T − s)ψ(x, s)‖L∞ ds +

∫ T

T−1
‖S(T − s)ψ(x, s)‖L∞ ds

6 C1(τ1)‖ξ0‖L∞ +

∫ T−1

0
Me−N(T−s)

‖ψ(·, s)‖L∞ ds + C2

6 C1(τ1)‖ξ0‖L∞ + C3

for some 0< C3 < ∞. In the above, we have used the fact that‖ψ(·, s)‖L∞ 6 2‖f ‖L∞ < ∞.
Now letA = C3/(1 − C1(τ1)). Then‖ξ0‖ 6 A implies that‖T (ξ)‖L∞ 6 A. ThusT (·) maps

BA into itself. The lower bound forT together with parabolic regularity leads to the compactness of
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the mapT in L2. Hence the Schauder fixed point theorem (see [13, Corollary 11.2]) implies thatT
has a fixed point. 2

Proof of (20). First, by maximum principle,‖S(t)v‖L∞ 6 ‖v‖L∞ for all t > 0. Without loss of
generality, assume‖v‖L∞ = 1. Using the heat kernel, it is easily seen that there is a constantC(τ)

such that
‖D2S(τ/2)v‖L∞ 6 C(τ) < ∞. (22)

Now introduce the periodically extended version of the functionU(x) := min(C(τ)‖x‖2,1). Let
x∗ be a point such that

(S(τ/2)v))(x∗) = I∗ = inf
Rn
(S(τ/2)v)(·).

Since〈S(τ/2)v〉 = 0, we haveI∗ 6 0. ConsiderQ(x) = U(x−x∗). Then (22) and the definition of
U imply that(S(τ/2)v)) 6 Q(x). Hence by the strong maximum principle, for allt > 0 we have

sup
x∈Rn

(S(t + τ/2)v)(x) 6 sup
x∈Rn

(S(t)Q)(x) = C1(τ ) < 1,

which leads to (20). 2

Proof of (21). This follows immediately from (20) once we observe that for anyt ∈ [kτ, (k+1)τ ],

‖S(t)v‖L∞ 6 ‖S(kτ)v‖L∞ 6 C1(τ )
k
‖v‖L∞ = e−k|ln(C1(τ ))|‖v‖L∞

6 e|ln(C1(τ ))|e−t |ln(C1(τ ))|/τ‖v‖L∞

so that we can setN = |ln(C1(τ ))|/τ andM = e|ln(C1(τ ))|. 2

What is left is proving the asymptotic statement (9) in Theorem 2 about the propagating velocity.
The strategy is to construct sub- and supersolutions of (1)F to provide sharp bounds forTF . For
this, we need to make use of the nondegeneracy assumptionA3. In particular, this implies that there
are only afinite numberof stationary solutions{u(i)}Ni=1 of (14)F∗

. Now, the key observation is that
neareach of theu(i)’s, the dynamical behaviour of the solution of (1)F∗

is well-approximated by the
dynamics on the centre-manifold whileaway fromthe stationary point, the velocity of the evolving
graph is uniformly positive andindependent ofthe additional forcing above the critical value. These
are made precise by the following definitions and constructions.

2.1 Construction of sub- and supersolutions near a stationary point

Let u∗ be one of the solutions of (14)F∗
. By Proposition 5(3), the principal eigenvalueλp of

the linearised operator (7) is zero and simple with positive eigenfunctionϕp(x). The following
construction is motivated by the centre-manifold theory for (1)F∗+γ nearu∗ (see [15, pp. 173]). We
make the following ansatz:

v(x, t) = u∗(x)+ (R0(x)+ s(t)ϕp(x)+ R(x, t)) (23)

and compute:

vt −∆v − f (x, v)− F∗ − γ = ṡ(t)ϕp + Rt

− {Lf (u∗)R0 + γ +
1
2fuu(x, u∗)(R0 + s(t)ϕp + R)2 + Lf (u∗)R + E3(R0, s(t), R)}
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where
‖E3‖∞ 6 (|s| + ‖R0‖∞ + ‖R‖∞)

2ω(|s| + ‖R0‖∞ + ‖R‖∞) (24)

for some continuous and increasing functionω(·) such thatω(0) = 0. For simplicity, ϕp is
normalised to have norm one:‖ϕp‖ = 1. To construct thesupersolutionv+(x, t), we defineR0, s,
andR1 by

Lf (u∗)R0 = −γ + 〈γ, ϕp〉ϕp, (25)

ṡ(t) = (1 + σ){〈γ, ϕp〉 + 〈
1
2fuu(x, u∗)(sϕp + R0 + R)2, ϕp〉}, (26)

Rt = Lf (u
∗)R + Ψ, R(0) = 0, (27)

Ψ =
1
2fuu(x, u∗)(sϕp + R0 + R)2 − 〈

1
2fuu(x, u

∗)(sϕp + R0 + R)2, ϕp〉ϕp, (28)

where 0< σ � 1. The initial condition fors is to be determined. With the above choices,v+ will
be a supersolution if for allx, t ,

|E3(x, t)| 6 1
2σ |〈γ, ϕp〉ϕp(x)+ 〈

1
2fuu(x, u∗)(R0(x)+ s(t)ϕp(x)+ R(x, t))2, ϕp(x)〉|. (29)

Note thatϕp is uniformly positive in the sense thatϕp(x) > Cp > 0. To proceed further, we
state the following two claims which are proved in Section 2.3:

CLAIM I AssumeA3. Then ∫
Q

fuu(x, u∗(x))ϕp(x)
3 dx > 0. (30)

CLAIM II Let

BM,0,T := {(s, R) : [0, T ] → R × L∞(Q) : sup
t∈[0,T ]

(|s(t)| + ‖R(t)‖L∞) 6 M}.

1. There existsC0 > 0 such that
‖R0‖∞ 6 C0γ.

2. There exist 0< γ0, C1 � 1 andC, T∗ > 0 such that for all 0< γ < γ0, there exists a solution
(s(t), R(t)) ∈ BC1,0,T∗

of (26)–(28) and

‖R(t)‖∞ 6 C( sup
r∈[0,t ]

s(r)2 + γ 2) for 0< t < T . (31)

Furthermore,T∗ can be chosen to be

T∗ = inf{t > 0 : |s(t)| > C1}

The above two claims imply that forγ ands small enough, we have

|〈
1
2fuu(x, u∗)[(R0 + sϕp + R)2 − (sϕp)

2], ϕp〉| 6 o(1){〈γ, ϕp〉 + 〈
1
2fuu(x, u∗)ϕ

2
p, ϕp〉s

2
}.

This leads to the validity of (29) for the same range ofγ ands. Furthermore, we have

(1 + σ/2)(〈γ, ϕp〉 + 〈
1
2fuu(x, u∗)ϕ

2
p, ϕp〉s(t)

2)

6 ṡ(t) 6 (1 + 3σ/2)(〈γ, ϕp〉 + 〈
1
2fuu(x, u∗)ϕ

2
p, ϕp〉s

2(t)), (32)



PINNING AND DE-PINNING PHENOMENA 91

which in particular implies thaṫs(t) > 0 for 0< t < T∗. Finally, by Claim II, there exists 0< K

< C1 independent ofγ such that for 0< γ < γ0 we have

1
2Kϕp(x) > |R0(x)+ R(x, t)| (33)

for all t as long as (31) holds.

DEFINITION 8 Given 0 < γ, σ � 1, the supersolutionv+

in(x, t) near a stationary pointu∗ is
defined by (23), together with (25)–(28):

s(t) : 0< t < Tin, wheres(0) = −K ands(Tin) = K. (34)

The subsolutionv−

in(x, t) is defined in the same way except with the factor 1+σ in (26) replaced by
1− σ . (By abuse of notation, we use the sameTin for both the sub- and supersolutions, even though
they can be two different values.)

Note that in both cases,

v±

in(x,0) < u∗(x)−
1
2KCp and v±

in(x, Tin) > u∗(x)+
1
2KCp. (35)

2.2 Construction of sub- and supersolution away from a stationary point

Now, by assumption, we have only finitely many (up to vertical translations) periodic solutions of
(14)F∗

: u(1)∗ , . . . , u
(N)
∗ . By Proposition 5(2), they can be well-ordered:u

(1)
∗ < · · · < u

(N)
∗ .

We now describe the construction of subsolutions between any two stationary solutionsu
(i)
∗ and

u
(i+1)
∗ . (Supersolution can be trivially constructed upon the introduction of discontinuous jumps.)

Let v−

in,i be the subsolutions near theu(i)∗ ’s constructed in the previous section. Let also [0, Tin,i ] be

the time interval defined in (34) foru(i)∗ . Denote byS∗

0,t (v) the solution at timet of (1)F∗
with initial

datumv at time 0. It has the following property which will be proved in Section 2.3:

CLAIM III There exists a timeT > 0 bounded independently ofγ andσ such that

u(i+1)
∗ −

1
2KCp < S∗

0,T (v
−

in,i(Tin,i)) < u(i+1)
∗

whereK,Cp are the constants for theu(i)∗ as in (35).

We now give the following definition:

DEFINITION 9 The subsolutionv−

out,i,i+1 betweenu(i)∗ andu(i+1)
∗ is given by

v−

out,i,i+1(x, t) := S∗

0,t (v
−

in,i(·, Tin,i)) for 0< t 6 Tout,i,i+1 (36)

where
Tout,i,i+1 := inf{t : v−

out,i,i+1(·, t)− v−

in,i+1(·,0) > 0}. (37)

Note that thev±

out,i,i+1 andTout,i,i+1 do not dependonγ.

With the above construction, we can define the following sub- and supersolutions fromu
(1)
∗ (x)

to u(1)∗ (x)+ 1, i.e. they evolve vertically through one spatial period. They are used to provide upper
and lower bounds for the propagating speed of the front.
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DEFINITION 10 The subsolutionV −(t) is given by

V −(t) :=

{
v−

in,i(Pi−1 + t) for 0< t 6 Tin,i,

v−

out,i,i+1(Pi−1 + Tin,i + t) for 0< t 6 Tout,i,i+1,
i = 1, . . . N,

whereP0 = 0 andPi =
∑i
j=1(Tin,j + Tout,j,j+1).

The supersolutionV +(t) is given by

V +(t) := v+

in,i(Qi−1 + t) for 0< t 6 Tin,i, i = 1, . . . N,

whereQ0 = 0 andQi =
∑i
j=1 Tin,j .

REMARK . Note that we do not need the construction of the supersolution in between two
stationary solutionsv+

out,i,i+1 as we introduce the upward discontinuous jumps at theQi ’s.
The above sub- and supersolutions are piecewise continuous in time, the subsolution is upper
semicontinuous and the supersolution lower semicontinuous. In such a case a comparison theorem
between solutions and, respectively, sub- and supersolutions holds. For such a comparison theorem
see e.g. [25].

The following statement gives the sharp asymptotic value for the propagation speed.

THEOREM 11 LetTtot be the time it takes for the solution to travel one period in space. Then for
eachσ > 0, there exists aγ0(σ ) such that for 0< γ < γ0(σ ), we have

(1 − σ)Aγ−1/2 6 Ttot 6 (1 + σ)Aγ−1/2 (38)

where

A = π

N∑
i=1

{(∫
Q

ϕ(i)p (x)dx

)
〈

1
2fuu(x, u

(i)
∗ )(ϕ

(i)
p )

2, ϕ(i)p 〉

}−1/2

. (39)

Proof. This is a simple consequence of (32) and the uniform bound for theTout,i,i+1’s which is
independent ofγ . Consider the supersolution,V +(t). Let

A1 :=
∫
Q

ϕ(i)p (x)dx and A2 := 〈
1
2fuu(x, u

(i))(ϕ(i)p )
2, ϕ(i)p 〉.

Then upon integrating (32), we have

1

(1 + 3σ/2)
√
A1A2γ

{
tan−1

(√
A2

A1γ
s(t)

)
− tan−1

(√
A2

A1γ
s(0)

)}

6 t 6
1

(1 + σ/2)
√
A1A2γ

{
tan−1

(√
A2

A1γ
s(t)

)
− tan−1

(√
A2

A1γ
s(0)

)}
.

Choosings(0) = −K, s(Tin,i) = K as in Definition 8, for 0< γ � 1 we have

π

(1 + 3σ/2)
√
A1A2γ

6 Tin,i 6
π

(1 + σ/2)
√
A1A2γ

.

A similar estimate applies toTin,i for the case of subsolution.
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Estimate (38) then follows immediately upon summing over thei’s:

N∑
i=1

Tin,i 6 Ttot 6
N∑
i=1

Tin,i + Tout,i,i+1. 2

REMARK . AssumptionA3 is needed for the precise time asymptotics. If we are only interested in
the existence of a piecewise subsolution without further information, then we can simply use

v−(x, t) := u∗(x)+
γ t

2‖ϕp‖∞

ϕp(x)

for |t | < T1(γ ), and continue this solution away from the stationary points by the evolution atF∗

as in (36). 2

2.3 Proof of Claims I, II, and III

Proof of Claim I. We argue by contradiction. Consider for 0< s � 1 the functions

w := u∗ + sϕp − s2R, (40)

R = (Lf (u∗))
−1(1

2fuu(x, u∗)ϕ
2
p − 〈

1
2fuu(x, u∗)ϕ

2
p, ϕp〉ϕp).

Clearlyu∗ is a supersolution of (14)F∗+γ for anyγ > 0, andu∗ < w for s small enough. If we can
show thatw is a subsolution, then there exists a stationary solution forF∗ + γ, which contradicts
the assumption thatF∗ is critical.

By expanding the nonlinearity up to second order we obtain

∆w + f (x,w)+ F∗ + γ = s2
〈

1
2fuu(x, u∗)ϕ

2
p, ϕp〉 + o(s2)+ γ,

which can be made negative by first choosings so small that theo(s2)-terms are dominated by the
second order terms, and then choosingγ to be sufficiently small. 2

Proof of Claim II. 1. The right hand side of (25) is orthogonal toϕp. Hence there existsc > 0 such
that‖R0‖2 6 cγ. The regularity assumptionA1 for the nonlinearity implies further that‖R0‖W2,2 6
c′′γ. The claim follows directly (forn < 4) or from‖R0‖p 6 c′′′γ for somep > 0. We can then
conclude by a standard bootstrapping procedure.

2. The local existence forR(·, t) ∈ L2(0,1) follows from a Banach fixed point type argument.
To prove (31), letΨ be as in (28). Then by Step 1, we can find aT and(s, R) ∈ BC1,0,T for anyC1,

provided the initial datum satisfies‖R(0)‖ + |s| 6 C1/2. Given a small constantρ, we can choose
C1 sufficiently small in order to ensure that there exists a large constantC3(ρ) such that

|Ψ (x, t)| 6 ρR(x, t)+ C(γ 2
+ s(t)2).

Moreover, there existA > 0 andb > 0 such that if〈R, ϕp〉 = 0, then

‖etLf (u∗)R‖∞ 6 Ae−bt‖R‖∞. (41)

The above is proved by first establishing that‖eLf (u∗)R‖∞ 6 M‖R‖L2 for someM > 0. As
standard regularity theory for the periodic Laplacian implies thatu∗ is at leastC2, this follows
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from short time regularity estimates for parabolic equations (see for example [12, Chapter 1.6, Thm.
11], adapted to the periodic case, for Hölder continuous coefficients, or for an alternative approach
[15, Chapter 3.5, Exercise 4] which requires less regularity assumption for the potential). Then (41)
follows from theL2-exponential decay in time due to the spectral gap forLf (u∗).

Hence we can estimate

‖R(t)‖∞ 6
∫ t

0
Ae−b(t−t

′)(ρ‖R(t ′)‖∞ + C(γ 2
+ s(t ′)2)dt ′

6
A

b
(ρ sup

t ′∈[0,t ]
‖R(·, t ′)‖∞ + sup

t ′∈[0,t ]
|s(t ′)| + γ 2).

The claim follows ifρ is chosen so small thatAb−1ρ 6 1/2. 2

Proof of Claim III. Let v(x) := v−

in,i(x, Tin). Consider the sequence of functions

vn := (S∗

0,n)(v).

As u(i)∗ < vn 6 u
(i+1)
∗ , the sequence is bounded inL∞; then parabolic regularity (recall the

regularity assumptionA1) implies that it is bounded inC0,α for someα > 0. Hence it has a
convergent subsequence inC0. This sequence converges to eitheru

(i)
∗ or u(i+1)

∗ .

It remains to show thatvn cannot converge tou(i)∗ . Let w be as in (40). By expanding the
nonlinearity as in the proof of Claim I, we conclude thatw is a supersolution of (14)F∗

for s
sufficiently small. Moreover we can choosew in such a way thatu(i)∗ < w < v. Therefore,
convergence ofvn to u(i)∗ contradicts the comparison principle.

By the same reasoning,(S∗

0,t )(w) will converge tou(i+1)
∗ . This behaviour does not depend onγ

andσ and hence the time it takes forw to evolve fromu(i)∗ +
1
2KCp tou(i+1)

∗ −
1
2KCp is independent

of them. The claim follows asS∗

0,t (w) 6 S∗

0,t (v). 2

2.4 Nondegeneracy conditionA3

This section demonstrates that there are “abundant” examples of nonlinear functionsf (x, u)

satisfying the nondegeneracy conditionA3. See also Section 4.1 for an explicit example.

PROPOSITION12 Given anyf (x, u) satisfyingA1 andA2 and anyε > 0, there exists a function
g(x, u) satisfyingA1–A3 with ‖g − f ‖∞ < ε. Moreover,g can be chosen such that:

1. The critical forces forf andg are the same.
2. The set{u : ∆u+ g(x, u)+ F∗ = 0} can be taken to be any finite subset of

{u : ∆u+ f (x, u)+ F∗ = 0}.
3. Instead of property 1 above, we can require that∫ 1

0

∫
[0,1]n

g(x, u)dx du =

∫ 1

0

∫
[0,1]n

f (x, u)dx du

(so that Lemma 4 can be applied tog). In this case, the critical forces forg andf can differ by
at most orderε.
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Proof. Given any finite subset of{u : ∆u+ f (x, u)+ F∗ = 0} = {u(1) < · · · < u(N)} (and setting
u(j+N)(x) = u(j)(x)+ 1 for j ∈ Z) we introduce

g(x, u) = f (x, u)+ ε

∞∏
j=−∞

Q

(
u− u(j)(x)

1
8 minj ‖u(j+1) − u(j)‖∞

)
whereQ is a smooth even function having the form

Q(r) =

{
1
2r

2 for |r| 6 1,

1 for |r| > 2,
and Q(|r|) is an increasing function, (42)

so thatQ(0) = Q′(0) = 0 andQ′′(0) > 0.
LetF∗ be the critical force forf . Asg > f , the critical force forg is no greater thanF∗. On the

other hand, it is immediate that

{u(j)}∞j=−∞
⊂ {u : ∆u+ g(x, u)+ F∗ = 0}.

Thusg andf have the same critical force value.
Analogous to (7), consider the linearised operator

Lg(u
(i))ϕ = ∆ϕ + ∂ug(x, u

(i))ϕ.

Let ϕ(i)p (x) (> 0) be the principal eigenfunction ofLf (u(i)). Note that

Lg(u
(i))ϕ(i)p = Lf (u

(i))ϕ(i)p + ε

{ ∞∏
j=−∞

Q

(
u− u(j)(x)

1
8 minj ‖u(j+1) − u(j)‖∞

)}′
∣∣∣∣
u=u(i)

ϕ(i)p = 0.

Hence it is also the principal eigenfunction ofLg(u(i)) with eigenvalue 0. Moreover,∫
Q

∂2
ug(x, u

(i)(x))ϕp(x)
3 dx =

∫
Q

∂2
uf (x, u

(i)(x))ϕp(x)
3 dx + ε

∫
Q

ϕp(x)
3 dx > 0.

ThusA3 is satisfied forg at anyu(i).
To continue, suppose∆v + g(x, v) + F∗ = 0 andv is not equal to any of theu(i)’s. Then we

must have∆v+ f (x, v)+F∗ 6 0 butnot identically zero. Now, similar to the proof of Proposition
5(2), consider

ut = ∆u+ f (x, u)+ F∗, u(x,0) = v(x).

There existγ, t∗ > 0 such that∆u(x, t∗)+f (x, u(x, t∗))+F∗ +γ < 0, i.e.u(x, t∗) is a subsolution
of (14)F∗+γ . Combining this with the fact that eachu(i) is a supersolution of (14)F∗+γ , we get a
contradiction with the definition ofF∗. Thus{u : ∆u+ g(x, u)+ F∗ = 0} ⊂ {u(j)}∞j=−∞

.
Finally, by assumption, forf (x, u), there is a stable solution of (14)0 in the sense ofA2. By the

implicit function theorem, for any small enoughε > 0, the same condition also holds forg(x, u).
Statement 3 follows simply by changingg to g(x, u)−

∫ 1
0

∫
[0,1]n g(x, u)dx du. 2

PROPOSITION13 Given any collection{u(1) < · · · < u(N)} of Zn-periodic functions (and setting
u(j+N)(x) = u(j)(x)+ 1 for j ∈ Z), there exists anf (x, u) satisfying

∫ 1
0

∫
[0,1]n f (x, u)dx du = 0

and conditionsA1–A3 such that at its critical forcingF∗, we have

{u : ∆u+ f (x, u)+ F∗ = 0} = {u(1) < · · · < u(N)}.
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Proof. The proof is similar to that of the previous proposition once we takef to be f̃ (x, u) −∫ 1
0

∫
[0,1]2 f̃ dx du where

f̃ (x, u) = −

∞∏
j=−∞

∆u(j)(x)P

(
u− u(j)(x)

1
8 minj ‖u(j+1) − u(j)‖∞

)

+A

∞∏
j=−∞

Q

(
u− u(j)(x)

1
8 minj ‖u(j+1) − u(j)‖∞

)
and

• A � {maxi ‖∆u(i)‖∞};
• P is a smooth positive even function such thatP(r) = 1 for |r| < 1 andP(r) = 0 for |r| > 2;
• Q is as in (42).

With the abovef , for large enoughA, in fact, we haveF∗ =
∫∫
f̃ dx du. First of all, it is simple to

check that
{u(j)}∞j=−∞

⊂ {u : ∆u+ f (x, u)+ F∗ = 0}.

In addition, atF∗ and for eachu(i), the linearised operatorLf (u(i)) has the principal eigenvalue
λp = 0 and eigenfunctionϕp ≡ 1. Furthermore, as∂2

uf (x, u
(i)) ≡ 1/2 > 0, A3 is satisfied. Also,

the facts that{u : ∆u+ f (x, u)+ F∗ = 0} ⊂ {u(j)}∞j=−∞
andF∗ is indeed the critical force follow

from the following one-parameter family of supersolutions of (14)F∗
“foliating” the region between

anyu(j) andu(j+1):

vλ(x) =


u(j)(x)+ dλ for 0< λ 6 1,
(2 − λ)(u(j)(x)+ d)+ (λ− 1)(u(j+1)(x)− d) for 1< λ 6 2,
u(j+1)(x)− d(3 − λ) for 2< λ 6 3,

whered =
1
8 minj ‖u(j+1)

− u(j)‖∞. (Recall that we have chosenA to be sufficiently large.)
Since

∫∫
f dx du = 0, we can apply Proposition 4 and the remark afterward to ensure thatA2

is also satisfied. 2

3. Forced Allen–Cahn equation in the perturbative regime

The equation studied in this section is the spatially inhomogeneous Allen–Cahn equation (2) in the
regime 0< δ � 1. We assume thatg(·) is aC3 spatial 1-periodic function:g(x + 1) = g(x).

In order to study the front propagation in heterogeneous medium, we only consider solutions
resembling a front structure. For 0< δ � 1, the equation (2) has two end states close to 1 and−1.
These are described by means of the functionsm±(x) which satisfy

δm−
xx(x)−W ′(1 + δm−(x))+ δ(g(x)+ F) = 0,

δm+
xx(x)−W ′(−1 + δm+(x))+ δ(g(x)+ F) = 0.

We now take the following ansatz for the solutionv(x, t) of (2):

v(x, t) = m(z)+ δE(z, t)+ δϕ(z, t)
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wherez = x−δc(t),E(z, t) = α(z)m−(x)+β(z)m+(x) andα(z) andβ(z) are two smooth positive
functions such that for some large but fixed positive constantK,

α(z) =

{
1 for z < −K,

0 for z > −K + 1,
β(z) =

{
0 for z < K − 1,
1 for z > K.

Note that the above ansatz forv(x, t) connects−1 + δm+(x) asx → +∞ and 1+ δm−(x) as
x → −∞. Nowϕ(z, t) satisfies an equation of the form

ϕt = ϕzz + ċ(mz + δEz + δϕz)− Et

+
1

δ
(mzz + δEzz −W ′(m+ δE + δϕ)+ δ(g(z+ δc(t))+ F)) (43)

so that
ϕt = ϕzz −W ′′(m)ϕ +H(t, z, ϕ) (44)

where

H(t, z, ϕ) = ċ(mz + δEz + δϕz)− Et (45)

+
1

δ
{mzz + δEzz −W ′(m+ δE)+ δ(g(z+ δc(t))+ F)} (46)

+O1(δϕ)+O2(δϕ
2).

We will work with the following weighted function spaces:

B0,b = {f : ‖f ‖0,b = sup{|f (z)eb|z|| : z ∈ R} < ∞}, (47)

B1,b = {f : ‖f ‖1,b = ‖f ‖0,b + ‖f ′
‖0,b} (48)

where 0< b < W ′′(±1). The value ofbwill be chosen later according to the spectral estimates (83).
Expressions (45) and (46) are estimated as follows. For (45),

(45) = ċ(mz + δEz + δϕz)− Et = ċ{mz + δ(α′(z)m−(x)+ β ′(z)m+(x))+ δϕz}

so that for some constantA,

‖(45)‖0,b < A|ċ(t)|(1 + δ‖ϕ(·, t)‖1,b). (49)

For (46), it can be rewritten as

(46) =
1

δ
{mzz −W ′(m+ δE)+W ′(α(z)+ δE − β(z))

+ δEzz −W ′(α(z)+ δE − β(z))+ δ(g(x)+ F)}.

After some routine computation, it is easily verified that for some constantA again,

‖(46)‖0,b < A.

Hence
‖H(·, t)‖0,b 6 A{1 + |ċ(t)|(1 + δ‖ϕ(·, t)‖1,b)+ δ‖ϕ‖1,b + δ‖ϕ‖

2
1,b}. (50)
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We now choosec(t) to make
∫
ϕ(z, t)mz(z)dz = 0 for all t > 0. Such a choice can always be

made if
∫
ϕ(z,0)mz(z)dz = 0 andc(t) satisfies

ċ(t) = −
1

δ

〈mzz + δEzz −W ′(m+ δE)+ δ(g(z+ δc(t))+ F),mz〉

‖mz‖2 + δ〈α′(z)m−(x)+ β ′(z)m+(x)+ ϕz, mz〉
. (51)

The above expression is well defined provided that the denominator of the right hand side does not
vanish. In particular, there exist some positive constantsB,C such that

if C > δ‖ϕ‖1,b, then |ċ(t)| 6
B

C − δ‖ϕ(·, t)‖1,b
. (52)

Such a choice ofc(t) also implies that∫
H(z, t)mz(z)dz = 0 for all t > 0. (53)

Next we will make use of the decay properties of the linear operator

LWψ = ψzz −W ′′(m(z))ψ (54)

to deduce some long time estimates for‖ϕ(·, t)‖1,b. First we provide the following preliminary
result.

LEMMA 14 (Gronwall type estimate) Letf (t) (t > 0) be a continuous positive function such that
for some constantsP > 1,Q,R,ω, andδ > 0,

f (t) 6 Pe−ωtf (0)+

∫ t

0
e−ω(t−s)(Q+ Rδf (s))ds.

If furtherRδ 6 ω/2, thenf (t) 6 Pf (0)+ 2Q/ω for all t > 0.

Proof. Let h(t) = eωtf (t). Then

h(t) 6 Ph(0)+
Q

ω
(eωt − 1)+ Rδ

∫ t

0
h(s)ds

Gronwall’s inequality implies that

h(t) 6 Ph(0)+
Q

ω
(eωt − 1)+ Rδ

∫ t

0
eRδ(t−s)

(
Ph(0)+

Q

ω
(eωs − 1)

)
ds

6 Ph(0)+
Q

ω
(eωt − 1)+ Ph(0)(eRδt − 1)+

QRδ

ω(ω − Rδ)
(eωt − eRδt )+

Q

ω
(1 − eRδt ).

Hence switching back tof (t) and upon simplification, we get

f (t) 6 Pf (0)e−(ω−Rδ)t
+

Q

ω − Rδ
(1 − e−(ω−Rδ)t ),

leading to the desired statement. 2
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Now the solutionϕ(·, t) of (44) can be written as

ϕ(t) = S(t)ϕ(0)+

∫ t

0
S(t − s)H(s)ds (55)

whereS(t) is the solution operator for the linear equationϕt = LWϕ. We have the following
estimate forϕ(t):

PROPOSITION15 There existD > 1 andω > 0 such that if sups∈[0,t ] δ‖ϕ(s)‖1,b < C/2, then

‖ϕ(t)‖1,b 6 De−ωt‖ϕ(0)‖1,b +

∫ t

0
De−ω(t−s)A

{
1 +

2B

C
(1 + δ‖ϕ(s)‖1,b)

+ δ‖ϕ(s)‖1,b + δ‖ϕ(s)‖2
1,b

}
ds.

Proof. From (55), we can write

‖ϕ(t)‖1,b 6 ‖S(t)ϕ0‖1,b +

∫ t

0
‖S(t − s)H(s)‖1,b ds.

The estimate forS(t) (from Theorem 25) gives‖S(t)ϕ(0)‖1,b 6 De−ωt‖ϕ0‖1,b. To estimate the
remaining term, consider, for 0< t < 2,∫ t

0
‖S(t − s)H(s)‖1,b ds 6

∫ t

0

De−ω(t−s)
√
t − s

‖H(s)‖0,b ds 6 C‖ϕ(0)‖1,b

where we have made use of (80). Fort > 2, consider∫ t

0
‖S(t − s)H(s)‖1,b ds 6

∫ t−1

0
‖S(t − s)H(s)‖1,b ds +

∫ t

t−1
‖S(t − s)H(s)‖1,b ds

6
∫ t−1

0

De−ω(t−s)
√
t − s

‖H(s)‖0,b ds +

∫ t

t−1
De−ω(t−s)‖H(s)‖1,b ds.

By (50) and (52), the first integral can be bounded by the term stated in the proposition. For the
second integral, an extension of (50) and parabolic regularity as in (67) give∫ t

t−1
De−ω(t−s)‖H(s)‖1,b ds

6
∫ t

t−1
De−ω(t−s)A{1 + |ċ(s)|(1 + δ‖ϕ(s)‖2,b)+ δ‖ϕ(s)‖2,b + δ‖ϕ(s)‖2

2,b} ds

6
∫ t

t−1
D′e−ω(t−s)A

{
1 +

2B

C
(1 + δ‖ϕ(s − 1)‖1,b)+ δ‖ϕ(s − 1)‖1,b + δ‖ϕ(s − 1)‖2

1,b

}
ds

6
∫ t−1

t−2
D′e−ω(t−s)A

{
1 +

2B

C
(1 + δ‖ϕ(s)‖1,b)+ δ‖ϕ(s)‖1,b + δ‖ϕ(s)‖2

1,b

}
ds,

which can then be absorbed into the first integral. The stated conclusion is thus proved. 2



100 N. DIRR AND N. K . YIP

From the above result, we see thatif for someT > 0,ϕ satisfies supt∈[0,T ] ‖ϕ(s)‖1,b 6 M (withM
to be chosen later) then forδ 6 C/2M, there are positive constantsE (independent ofM) andFM
such that

‖ϕ(t)‖1,b 6 De−ωt‖ϕ(0)‖1,b +

∫ t

0
e−ω(t−s)(E + FMδ‖ϕ(s)‖1,b)ds for 0 6 t 6 T . (56)

The next two results provide some long time estimates for the solutionϕ(t). In all of the
following, the constantsA,B,C,D,E, FM , ω are as in (50), (52) and (56).

PROPOSITION16 LetM > 8E/ω andδ < min{ω/2FM , C/2M}. If the initial condition satisfies
‖ϕ(0)‖1,b 6 M/4D, then‖ϕ(t)‖1,b 6 M/2 for all t > 0.

Proof. SupposeTM = inf{t : ‖ϕ(t)‖1,b = M} < ∞. Then Lemma 14 says

sup
t∈[0,TM ]

‖ϕ(t)‖1,b 6 D‖ϕ(0)‖1,b +
2E

ω
6
M

4
+
M

4
6
M

2
.

Then standard parabolic regularity implies that‖ϕ(t)‖1,b 6 M for t ∈ [TM , TM+ε] whereε is some
small enough number. This contradicts the definition ofTM . HenceTM = ∞ and so‖ϕ(t)‖1,b 6
M/2 for all t > 0. 2

PROPOSITION17 LetM > 16DE/ω andδ 6 min{ω/8DFM , C/2M}. If ‖ϕ(0)‖1,b 6 M/4D,
then‖ϕ(t)‖1,b 6 M/4D for all t > ω−1 ln(2D).

Proof. Note that under the current hypothesis, the assumptions of the previous Proposition 16 are
also satisfied. Hence we can legitimately write

‖ϕ(t)‖1.b 6 De−ωt‖ϕ(0)‖1,b +

∫ t

0
e−ω(t−s)

(
E +

FMδM

2

)
ds 6

M

4
e−ωt +

1

ω

(
E +

1

2
FMδM

)
6
M

8D
+
E

ω
+
FMδ

2ω
M 6

M

8D
+

M

16D
+

M

16D
=
M

4D
. 2

The next quantitative result implies that as long as the external forcingF is near the threshold value,
it takes avery longtime for the front to travel across the heterogeneous spatial environment. Thus,
the condition of large time in Proposition 17 is automatically satisfied. Recall the definitions given
in (10).

THEOREM 18 (Estimation of velocity) LetM > 16DE/ω. Then for anyσ > 0, there exist 0<
δ∗ 6 min{ω/8DFM , C/2M} andC1, C2 > 0 such that for any 0< δ < δ∗ and‖ϕ0‖1,b 6 M/4D
and the forcingF within the range

0< C1δ 6 F − F∗ 6 C2,

the velocityVF of the front satisfies the estimate (13).

Proof. From (51), as‖ϕ(t)‖1,b 6 M/2 for all t , we see that

ċ(t) =
1

δ

〈mzz + δEzz −W ′(m)− δW ′′(m)E +O(δ2)+ δ(g(z+ δc(t))+ F),−mz〉

‖mz‖2 +O(δ)

=
〈g(z+ δc(t))+ F,−mz〉

‖mz‖2
+O(δ)

where we have used the facts thatmzz −W ′(m) = 0 andmzzz −W ′′(m)mz = 0.
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Using the notations of (10), we can write

ċ(t) =
(2F + h∗)+ (h(δc(t)))− h∗)

‖mz‖2
+O(δ)

= α(γ +O(δ)+ β(δc(t))2), whereγ = F + h∗/2.

Now fix a positive constant 0< P � 1 which isindependent ofγ andδ. Then the timetP it takes
for the front locationδc(t) to travel from 0 toP can be computed as

tP =
1

α

∫ P/δ

0

dc

γ +O(δ)+ β(δc)2
.

Similar to the proof of Theorem 11, by choosingC1 large enough andδ∗ andC2 small enough, we
can estimatetP as

(1 − σ)π

2αδ
√
βγ

6 tP 6
(1 + σ)π

2αδ
√
βγ

. (57)

Again, the time it takes for the front to travel fromP to 1 − P is some numberindependent
of γ and δ. We conclude that the total timeTγ for the front to travel one period of the spatial
heterogeneity follows the same asymptotics astP , leading to the assertion of the theorem. 2

The previous results facilitate the use of the Schauder fixed point theorem to prove the existence of
a pulsating wave.

THEOREM 19 (Existence of fixed point) For anyM, δ andF as in Theorem 18, there exists aϕ0
with ‖ϕ0‖1,b 6 M/4D and 0< T (ϕ0) < ∞ such that

ϕ(T (ϕ0)) = ϕ0 (58)

whereϕ(t) is the solution of (44) with initial dataϕ0.

Proof. Let (ϕ(t), c(t)) be the solution of (44) and (51) with initial condition(ϕ0, c0). In addition,
let

T (ϕ0) = inf{t : c(t) = c0 + 1}.

Then (57) implies that 0< T (ϕ0) < ∞ and it is uniformly boundedindependently ofϕ0.
Proposition 17 also implies that the set{ψ : ‖ψ‖1,b 6 M/4D} is mapped into itself by the nonlinear
map

S : ϕ0 7→ ϕ(T (ϕ0)).

Parabolic regularity (67) implies that it is a continuous map.
Now consider the Banach spaceBC of bounded continuous functions ofz ∈ R with the uniform

norm. Since the set{ψ : ‖ψ‖1,b 6 M/4D} is a compact convex subset ofBC, [13, Corollary 11.2]
gives the desired existence of a fixed point ofS. 2

4. Analytical examples

This section provides two analytical examples of the pinning and de-pinning behaviour, one in the
semilinear graph case and the other in the reaction-diffusion case.
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4.1 Semilinear graph case

Consider forδ > 0 the equation

0 = uxx + δ sin(2πu(x)) cos(2πx)+ F, u(0) = u(1). (59)

We have the following lemma:

LEMMA 20 1. Let 0< δ < 1/4π so that 2πδ/(1 − 2πδ) < 1. Then forF > δ22π/(1 − 2πδ),
(59) does not have a solution.

2. Let 0< δ < 1/2. Then for 0< F < δ2(1/4 − 2δ3), (59) has a stable stationary solution.

REMARK . Statement 2 shows that there is pinning while statement 1 shows that the de-pinning is
nontrivial, i.e. it occurs beforeδ sin(2πu(x)) cos(2πx)+F has a definite sign. Note that the ranges
of the parameters are not expected to be sharp forδ small. 2

Proof. For statement 1, the claim is obvious ifF > δ. Hence assumeF = f δ, 0 < f < 1. We
argue by contradiction and assume that there exists a stationary solutionu. By standard regularity
this solution is smooth, and because it is periodic, there exists anx0 ∈ [0,1] such thatu′(x0) = 0.
Hence|u′(x)| 6 δ(1 + f ) and|u(x)− u(0)| 6 δ(1 + f ).

Integrating (59) over [0,1] we obtain

0 = δf + δ

∫ 1

0
sin(2πu(0)) cos(2πx)dx

+ δ

∫ 1

0

(
cos(2πx)(u(0)− u(x))2π

∫ 1

0
cos(2π{(1 − s)u(0)+ su(x)})ds

)
dx

> δf − 2πδ sup
0<x<1

|u(0)− u(x)| > δ(f − 2πδ(1 + f )) > 0,

which proves the first claim.
For statement 2, we will construct sub- and supersolutions. The comparison principle implies

that there exists a stable solution between the sub- and the supersolution. We writeF = δ2f,

0< f < 1. Let ρ > δ3 and choosec± ∈ (1/8,3/8) such that

cos(2πc±) sin(2πc±) = −4π(f ∓ ρ),

which is possible forf 6 (8π)−1
− δ3. Let

u±(x) := c± + δ(2π)−2 sin(2πc±) cos(2πx)−
1

2
(2π)−2δ2(f ∓ ρ) cos2(2πx).

Then

u±
xx = −δ sin(2πc±) cos(2πx)+ δ22(f ∓ ρ) cos2(2πx)− δ2(f ∓ ρ),

δ sin(2πu±) cos(2πx) = δ sin(2πc±) cos(2πx)+ δ2(2π)−1 cos(2πc±) sin(2πc±) cos2(2πx)

−
δ3

2
(2π)−1 cos(2πc±)(f ∓ ρ) cos3(2πx)+O(δ3).

Henceu±
xx + δ sin(2πu±) cos(2πx)+ δ2f = ±δ2ρ +O(δ3) so that

u+
xx + δ sin(2πu+) cos(2πx)+ δ2f > δ2ρ −O(δ3) > 0,

u−
xx + δ sin(2πu−) cos(2πx)+ δ2f 6 −δ2ρ +O(δ3) < 0,

i.e. the desired sub- and supersolutions exist. 2
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4.2 Reaction-diffusion (Allen–Cahn) case

This example is not constrained by the heterogeneity being weak and yet the exact values of the
threshold force and the relevant constant in the time asymptotic (9) can be found. The computations
are formal but yet illustrative. Consider the equation

vt = vxx −
W ′(v)

2
+ A sin

(
x

L

)
+ F (60)

where 0< A,F � 1 andW(·) is chosen to be the the bilinear double-well potential

W(p) = (|p| − 1)2 so that W ′(p) =

{
2(p − 1) for p > 0,
2(p + 1) for p < 0.

We first look forstationary solutionsof (60) with one transitional interface—there is one single
value ofz at whichv changes its sign. Under this assumption, the solutionv takes the form

vxx − v + 1 + A sin

(
x

L

)
+ F = 0 for x 6 z,

vxx − v − 1 + A sin

(
x

L

)
+ F = 0 for x > z,

v(z−), v(z+) = 0,

vx(z
−) = vx(z

+).

In the above, we implicitly assume thatv > (<) 0 for x < (>) z. Now v is explicitly given by

v(x) =


−ex−z +

L2

1 + L2
A sin

(
x

L

)
+ F + 1 for x < z,

e−(x−z) +
L2

1 + L2
A sin

(
x

L

)
+ F − 1 for x > z.

We also have the following expressions for the value ofz and the slope ofv at z:

sin

(
z

L

)
= −

F

A

1 + L2

L2
, (61)

vx(z) = −1 +
AL

1 + L2
cos

(
z

L

)
. (62)

From (61), we see that the threshold force is given by

F∗ =
AL2

1 + L2
< 1,

so that at the threshold, the spatial inhomogeneity still changes sign so that de-pinning is also
nontrivial.

The above value ofF∗ coincides with the forcing which makes the stationary solution just lose
its stability. This is illustrated as follows. The eigenvalue problem of the linearised operator for the
stationary solution of (60) is written formally as

ϕxx −
W ′′(v)

2
ϕ = λϕ.
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If we assume without loss of generality thatz = 0, the above problem takes the form

ϕxx − ϕ = λϕ for x 6= 0,

ϕx(0
+)− ϕx(0

−) = −
2ϕ(0)

|vx(0)|
,

ϕ(0+) = ϕ(0−).

The principal eigenfunctionϕp(x) (which is positive) and eigenvalueλp are given by

ϕp(x) =

{
e
√

1+λpx, x 6 0,

e−
√

1+λpx, x > 0,
λp =

1

|vx(0)|2
− 1.

Hencev is stable, i.e.λp < 0 if and only if |vx(0)| > 1.
Next we will compute the constantA of (9).

A. Short time regularity estimates

This section provides some finite time regularity estimates for semilinear parabolic differential
equations. The results are crude, but useful as an initial step to obtain more refined estimates. Here
we only give the properties relevant to this paper, in particular in the weighted spacesB1,b from (48).

PROPOSITION21 Consider the equation

ut = uxx + f (u, ux)+ g(x, t), u(x,0) = u0(x). (63)

Assumef is a C1 function satisfying|f (p, q)| 6 C(|p| + |q|), supp,q{|fp|, |fq |} < ∞ and
‖g(·, t)‖0,b < ∞ for all t . Then for allT > 0, there exists aC(T ) such that

‖u(·, t)‖0,b 6 C(T ){‖u0‖0,b + sup
t∈[0,T ]

‖g(·, t)‖0,b}, (64)

‖u(·, t)‖1,b 6 C(T ){‖u0‖0,b/
√
t + sup

t∈[0,T ]
‖g(·, t)‖0,b}, (65)

‖u(·, t)‖1,b 6 C(T ){‖u0‖1,b + sup
t∈[0,T ]

‖g(·, t)‖0,b}. (66)

If further, ‖g(·, t)‖1,b < ∞, then

‖ux(·, t)‖1,b 6 C(T ){‖u0‖1,b/
√
t + sup

t∈[0,T ]
‖g(·, t)‖1,b}. (67)

REMARK . The proof is omitted as the technique of proof can be found in many standard texts
such as [12, 19]. But we remark that sincef is globally Lipschitz, the results can be obtained by
analysing the linear equation

ut = uxx + A(x, t)u+ B(x, t)ux + C(x, t)

with L∞ coefficients. Standard iteration steps then produce the estimates (64)–(67) for the fully
nonlinear equation (63).

The purpose of considering (63) is to analyse (44) which originates from (2). As the nonlinearity
W ′(·) satisfiesuW ′(u) > cu2 for |u| large enough, it follows that with theL∞ source term
δ(g(x)+ F), the space{‖u‖∞ < C} is invariant under the flow of (2). In this setting, we can assume
without loss of generality that the nonlinear term is globally Lipschitz. 2
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B. Spectral analysis of the Allen–Cahn operator

This section analyses the spectral and decay properties for the linear equation given byLW (see
(54)). The approach adopted here is based on [24]. For simplicity, we will suppress the subscriptW .

Let V+ = −W ′′(1), V− = −W ′′(−1), andV∗ = maxV±. For a given complex numberλ,
consider the linear equation

(L− λ)ϕ = 0. (68)

The parameterλ will be taken from

Ωα,β = {|arg(λ− V∗)| < π − α} ∩ {|λ− V∗| > β} for some 0< α < π/2 andβ > 0. (69)

The expressionsγ±(λ) =
√
λ− V± appear often in the analysis. They are taken to be single-valued

and analytic inΩ0,0.
Equation (68) has solutionsϕi(λ, x) andψi(λ, x) (i = 1,2) such thatΩ0,0 3 λ → ∞; they

satisfy (the prime′ refers to thex-derivative):

for x > 0:


ϕ1(λ, x)= e

−γ+(λ)x(1 +O(|λ|−1/2)),

ϕ′

1(λ, x)= e
−γ+(λ)x(−γ+(λ)+O(1)),

ϕ2(λ, x)= e
γ+(λ)x(1 +O(|λ|−1/2)),

ϕ′

2(λ, x)= e
γ+(λ)x(γ+(λ)+O(1)),

(70)

for x 6 0:


ψ1(λ, x) = eγ−(λ)x(1 +O(|λ|−1/2)),

ψ ′

1(λ, x) = eγ−(λ)x(γ−(λ)+O(1)),

ψ2(λ, x) = e−γ−(λ)x(1 +O(|λ|−1/2)),

ψ ′

2(λ, x) = e−γ−(λ)x(−γ−(λ)+O(1)).

(71)

In addition, the functionsϕi andψi can be related in the following way:

ϕi(λ, x) = Ai(λ)ψ1(λ, x)+ Bi(λ)ψ2(λ, x), (72)

ψi(λ, x) = Ci(λ)ϕ1(λ, x)+Di(λ)ϕ2(λ, x), (73)

where the coefficientsAi, Bi, Ci andDi are analytic functions ofλ ∈ Ω0,0 and can all be shown to
be uniformly bounded asΩ0,0 3 λ → ∞.

Recall the definitions (47) and (48) of the weighted function spacesB0,b andB1,b. We have the
following main estimates in these spaces.

LEMMA 22 Given 0< α < π/2,β > 0 and the domainΩα,β , let

0< b < 1
2 min{<γ+(λ),<γ−(λ) : λ ∈ Ωα,β}. (74)

Then the following two statements hold.

(I) For anyλ ∈ Ωα,β , if the Wronskian

W(ϕ1, ψ1, λ) = ϕ1(x, λ)ψ
′

1(x, λ)− ϕ′

1(x, λ)ψ1(x, λ) 6= 0,

then the resolvent operator(L− λ)−1 exists as a bounded operator onB1,b.
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(II) There exists a constantC(α, β) such that for any large enoughλ ∈ Ωα,β , the resolvent operator
(L− λ)−1 exists and the following estimates hold:

‖(L− λ)−1g‖0,b 6
C(α, β)

|λ|
‖g‖0,b, (75)

‖(L− λ)−1g‖1,b 6
C(α, β)
√

|λ|
‖g‖0,b, (76)

‖(L− λ)−1g‖1,b 6
C(α, β)

|λ|
‖g‖1,b. (77)

Proof. The proof relies on estimating the Green’s function of the resolvent:

G(x, y, λ) =
1

W(ϕ1, ψ1, λ)

{
ψ1(y, λ)ϕ1(x, λ), x > y,

ϕ1(y, λ)ψ1(x, λ), x < y.

Note thatW is independent ofx. HenceG(x, y, λ) is well defined ifW 6= 0. We will only prove
statement (II) (75, 76, 77), statement (I) follows immediately.

Using the estimates forϕ andψ , it is possible to show that asλ → ∞:

W(ϕ1, ψ1, λ) = −(γ+(λ)+ γ−(λ))+O(1) = O(
√
λ)

Hence ifλ ∈ Ωα,β and is large enough,W(λ) does not vanish and thusG is well defined. In this
case, the functionf = (L− λ)−1g can be written as

f (x) =

∫
∞

−∞

G(x, y, λ)g(y)dy

=
1

W(λ)

{∫ x

−∞

ϕ1(x, λ)ψ1(y, λ)g(y) dy +

∫
∞

x

ψ1(x, λ)ϕ1(y, λ)g(y) dy

}
. (78)

Suppose‖g‖1,b < ∞. We will estimate‖f ‖0,b as follows. Letx > 0. The first term of (78) is
bounded by∣∣∣∣ϕ1(x, λ)

W(λ)

∣∣∣∣{∫ 0

−∞

|ψ1(y, λ)g(y)e
−byeby | dy +

∫ x

0
|ψ1(y, λ)g(y)e

bye−by | dy

}
6

∣∣∣∣ϕ1(x, λ)

W(λ)

∣∣∣∣{∫ 0

−∞

|ψ1(y, λ)e
by

| dy +

∫ x

0
|ψ1(y, λ)e

−by
| dy

}
‖g‖0,b

6 C

∣∣∣∣e−<γ+(λ)x

W(λ)

∣∣∣∣{∫ 0

−∞

e<γ−(λ)yeby dy +

∫ x

0
D1(λ)e

<γ+(λ)ye−by dy

}
‖g‖0,b (by (73))

6 C

∣∣∣∣e−<γ+(λ)x

W(λ)

∣∣∣∣{ 1

<γ−(λ)+ b
+
e(<γ+(λ)−b)x − 1

<γ+(λ)− b

}
‖g‖0,b 6

Ce−bx

|λ|
‖g‖0,b

where we have used the fact thatD1(λ) is bounded. The second term of (78) is estimated as∣∣∣∣ψ1(x, λ)

W(λ)

∣∣∣∣ ∫ ∞

x

|ϕ1(y, λ)g(y)e
bye−by | dy 6 C

∣∣∣∣e<γ+(λ)xW(λ)

∣∣∣∣ ∫ ∞

x

e−(<γ+(λ)+b)y dy‖g‖1,b

6
Ce−bx

|λ|
‖g‖0,b.

Similar estimates can be obtained forx < 0. Thus (75) is proved.
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Estimate (76) is proved in exactly the same way. Taking the derivative brings down a
√

|λ|.
Estimate (77) is proved by the following observation:

(fx)xx + (V (x)+ λ)fx = gx + V ′(x)f ,

i.e.

‖fx‖0,b 6
C‖g‖1,b

|λ|
+ ‖f ‖0,b 6

C‖g‖1,b

|λ|
+
C‖g‖0,b

|λ|
6
C‖g‖1,b

|λ|
. 2

Next we introduce the concept of eigenvalues ofL.

DEFINITION 23 A complex numberλ is called aneigenvalueof L if there exists a bounded
functionϕ 6≡ 0 such that(L− λ)ϕ = 0.

A complex numberλ is said to belong to theresolvent setof L if (L− λ)−1 exists as a bounded
operator on the space of bounded functions, i.e.B0,0.

With the above, we have the following lemma (which basically summarises the results of [24,
Lemma 5.3 and Theorem 5.5]).

LEMMA 24 1. The eigenvalues ofL are real. Furthermore, those eigenvalues in the interval
(V∗,∞) are discrete and actually confined in(V∗, ‖V ‖∞) and can only cluster atV∗.

2. Sincem′(x) > 0 is an eigenfunction with respect toλ = 0, the operatorL has no positive
eigenvalues. The previous statement then implies that there is a spectral gap, i.e. there is a positive
distance between the principal eigenvalue, 0, and the the second largest eigenvalue.

3. There are 0< α < π/2 andβ > 0 such that(L−λ)−1 exists for allλ ∈ Ωα,β . Hence there exist
C(α, β) andb > 0 such that the estimates (75), (76) and (77) hold for allλ ∈ Ωα,β .

We now state and prove a linear decay estimate for the semigroup of (54).

THEOREM 25 Letv(x, t) be the solution of

vt = vxx −W ′′(m(x))v, v(x, 0) = v0, (79)

wherev0 ∈ B1,b and
∫

∞

−∞
v0(x)m

′(x)dx = 0. Then there existD > 1 andω > 0 such that for all
t > 0,

‖v(t)‖1,b 6 D
e−ωt
√
t

‖v0‖0,b, (80)

‖v(t)‖1,b 6 De−ωt‖v0‖1,b. (81)

Proof. From Lemma 24(3), we can findω > 0 andπ/2 < γ < π such that the spectrum ofL
minus zero lies completely to the left of the complex curve

Cω,γ = {λ = −ω + ρe±iγ : 0< ρ < ∞}. (82)

Hence the solutionv(t) can be written as the following contour integral:

v(t) =
1

2πi

∫
Cω,γ

etλ(λ− L)−1v0 dλ.

Chooseb with
0< b < 1

2 min{<γ+(λ),<γ−(λ) : λ ∈ Cω,γ }. (83)



108 N. DIRR AND N. K . YIP

We now estimate the solutionv(t) as follows:

‖v(t)‖1,b 6
1

2π

∫
Cω,γ

|etλ|‖(λ− L)−1
‖ ‖v0‖0,b |dλ| 6

C(α, β)

2π

(∫
Cω,γ

|etλ|
√

|λ|
|dλ|

)
‖v0‖0,b.

The last integral is bounded by∫
Cω,γ

|etλ|
√
λ

|dλ| 6 2
∫

∞

0

e−ωtetρ cosγ dρ

[(ρ cosγ − ω)2 + ρ2 sin2 γ ]1/4
6 2

∫
∞

0

e−ωtetρ cosγ dρ

[ω2 + ρ2 sin2 γ ]1/4

6 De−ωt
∫

∞

0

etρ cosγ dρ
√
ρ sinγ

6 D
e−ωt
√
t
,

leading to (80).
Finally, by parabolic regularity, for anyT > 0, there existsC(T ) such that

‖v(t)‖1,b 6 C(T )‖v0‖1,b for 0< t < T .

Hence by choosing a largerD and a smallerω (depending onT ), the conclusion (81) also follows.2
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