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Travelling front solutions arising in the chemotaxis-growth model
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We consider a bistable reaction-diffusion-advection system describing the growth of biological
individuals which move by diffusion and chemotaxis. We use the singular limit procedure to study
the dynamics of growth patterns arising in this system. It is shown that travelling front solutions
are transversally stable when the chemotactic effect is weak and, when it becomes stronger, they
are destabilized. Numerical simulations reveal that the destabilized solution evolves into complex
patterns with dynamic network-like structures.
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1. Introduction

Some biological individuals have a tendency to move preferentially toward higher concentrations
of chemicals in their environment, which is calledemotaxislt is experimentally observed, for
instance, that bacteria calldgicoli, which move by not only diffusion but also chemotaxis and
grow by performing cell-division, to exhibit complex spatio-temporal colony patterns (Budrene and
Berg [4,5]).

For theoretical understanding of such chemotactic growth patterns, several continuum as well
as discrete models have been proposed so far (see Woodward et al. [25], Brennér et al. [3], Stevens
[19], Ezoe et al.[[6], Kawasaki and Shigesada [12], for instance). In the previous paper (Mimura
and Tsujikawal[14]), we considered a chemotaxis-growth model to investigate the influence of the
chemotactic effect on growth patterns under the special situation where nutrients are constantly
supplied. Let the density of biological individuals bé, x) and the concentration of a chemical
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attractant be(z, x) at timer and positior in the planeR2. The model is described by

ou

57 = dudu =V @Vx)+ @),

or t>0, xeR? (1.1
5= dyAv + au — pu,

where the migration of individuals consists of two effects, “randomly walking” by diffusion and
“directed movements” by chemotaxis,. andd, are the diffusion rates af andv, respectivelyy (v)

is the chemotactic sensitivity function of the chemical attractant, satisfyitg > 0 forv > 0,

in the sense that the flux rate of individuals is the response to its chemical gradient distributed in
space. Several plausible formsypfv) have been proposed (Ford and Lauffenburger [9]). A simple
example isy (v) = kv with a constantt > 0. The growth termf (u) takes the formf(u) =
(g(u) — &)u with growth rateg(«) and degradation ratemodelling the stress due to waste products
(seel[22], for instance). i («) includes the Allee effect (sele [16], for instance), the functional form
of g(u) is threshold-like. For suitable we may assumg (1) to have a cubic-like nonlinearity, that
is, f(u) satisfiesf (0) = f(u,) = f(*) = 0 with two constants, andu* (0 < u, < u*) where
f'(0) < 0andf’(u*) < 0. For the chemical attractant « is the production rate anf is the
degradation rate, which are both positive constants.

For the systen] (1]1) we consider the situation where (i) the chemical attractant diffuses much
faster than the movement of individuals; (ii) individuals mainly move by chemotaxis rather than
diffusion. In order to model this situation, we conveniently introduce a small paramete® to
rewrite [1.1) in the following form:

9

a_” = &2 Au — eVuVy(v) + f ),

alt] t>0, xe RZ, (12
5 =Av+4u—yv,

wherey is a positive constant andl(z) has three zeros,@ and 1 (O< a < 1). Hereafter, we
simply specifyf (u) as f (u) = u(1 — u)(u — a) with 0 < a < 1. Note that[(T.2) has three spatially
constant equilibrigu, v) = (0,0), (a,a/y) and(l, 1/y) for which (0, 0) and (1, 1/y) are both
stable, while(a, a/y) is unstable, that is[ (1].2) is a bistable system. For the boundary condition to
(L.2), it is biologically natural to impose

| I‘im (u,v)#,x)=(0,0, >0 (1.3
X|— 00

If there is no chemotactic effect in the systen, [(1.2) with](1.3) simply reduces to the following
scalar bistable reaction-diffusion equation:

d
a_L; =e?Au+ fu), >0, xeR2 (1.4
with the boundary condition
lim u(,x)=0, ¢>0. (1.5)
|X]— o0

The qualitative behaviour of solutions ¢f (L.4), (1.5) has been intensively investigated by many
authors (see Aronson and Weinberger [1, 2], for instance). Suppose that the initial@atais
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given such that the region whei€0, X) > a is bounded and relatively large. Then the behaviour of
solutions to[(T.]4) essentially consists of two stages: (i) There occur internal layers which separate
R? into two qualitatively different regions whetenearly takes the value either 1 or 0, and (ii) if
folf(u) du > O (resp.< 0), the region whera(z, X) is nearly 1 (we may call it the aggregating
region) expands (resp. shrinks) uniformly (Jores [10, 11]). Thus, in the absence of chemotaxis, the
pattern dynamics is so simple thaexpands uniformly and its shape becomes asymptotically disk-
like. If ¢ is sufficiently small, the behaviour of internal layers can be more precisely analyzed by
using the singular limit analysis (de Mottoni and Schatzman [15]). In the kmjit O, the layers
become interfaces, sdy(r), which indicate the boundary between two regishgr) = {x € R? |
u(t,x) = 1} and2o(r) = {x € R? | u(z, x) = 0}, and the time evolution of (r) is approximately
described by

V(1) = e(c — ek (1)), (1.6)

whereV (¢) is the normal velocity af"(r), which is oriented from21(¢) to £2o(¢) and« (¢) is the
curvature atl"(¢). Herec is the velocity of the travelling front solutiom(x — ct) of the following
1-dimensional problem:

uy =uyy + fw), t>0, xeR,

u(t,—oo0)=1 and u(,oo0)=0.

If fol f(u)du > 0 (resp.< 0), we knowc > 0 (resp.< 0) (see Fife and McLeod [8], for example).
In particular, if the shape af'(0) is given by a disk with radiugy, I"(¢) is also a disk with radius
r(t), satisfying the simple differential equation

F=¢e(c—e/r), t>0, (1.7

with r(0) = ro.

In this paper, we assurry%1 f)du > 0 (or 0 < a < 1/2) to require the situation where the
aggregating region uniformly expands in the absence of chemotactic effect, and study how this effect
influences the expanding pattern. More precisely, we study the dependence of the functional forms
of x(v) on the stability of the expanding pattern. Let us first show some numerical computations
for ), ). To do it, we pug (v) = kxo(v) with max,-.o x4(v) = 1, so that is a parameter to
measure the intensity of the chemotactic effect. Let us speeify) asxo(v) = 8v2/3(3+ v?) (see
Schaafl[18], for instance). The first case is restricted to the radially symmetric situatiopwthr-,
that is, the initial condition is given by(0, r) = 1 for 0 < r < rg andu(0, r) = 0 for ro < r with
some constani andv(0, r) = 0 for anyr > 0. Because of radial symmetry, the solution[of[1.2),
(1.3) is represented &8, v) (¢, r) where there occurs an internal layeni, r), whose location is
described by a circle in such a way thatakes the value nearly 1 inside and nearly O outside of
the circle. Wheri is small, one can easily expect py (1.7) that the circle of internal layer uniformly
expands with asymptotically constant velocity where the velocity is slightly slower than the one in
the casek = 0. Whenk increases, the influence of chemotaxis on the expanding circle becomes
apparent so that there appears a disk-like equilibrium solution. Wistill increases, there is no
more disk-like equilibrium solution, the initial circle shrinks and finally becomes exiinct [14]. These
phenomena clearly suggest that the chemotactic effect suppresses expanding of growth.

Next, we numerically consider the case where the initial shapg®fx) is slightly deformed
from the circle. Wherk is small, the deformation instantly decays and the pattern recovers the
circular shape. However, whehn increases, the situation changes. The initial circular shape is
destabilized so that there appears a flower-like pattern (Fjgure 1a). Wimeneases further, the
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FiG. 1. Time evolution of«(z, X) under non—radially symmetric initial conditions, where the curve the cofiéyr= {x
R? | u(t, x) = 0.1}. Parameters are choosernas 0.05,a = 0.1 andy = 1.0 and the system size is 2020. (a) Formation
of the flower-like patternk(= 1.3): (i) r = 0, (ii) r = 80, (iii) + = 160,(iv)¢t = 240, (v)t = 320, (vi) = 400. (b) Formation
of network—like patternk = 2.0): (i) t = 0, (ii) + = 100, (iii) # = 200 (iv) r = 300, (v)¢ = 400, (vi)¢ = 500. (c) Formation
of the finger—like patternk(= 5.0): (i) = O, (ii) # = 20, (iii) ¢t = 40, (iv) ¢ = 100, (v)t = 200, (vi)z = 300.

circular shape is destabilized to be a star-like one with multi-branches and then the resulting pattern
exhibits dynamic network-like structure through tip-splitting and coalescing processes (Figure 1b).
Whent still increases further, the instability of the circular shape occurs, which is similar to the
initiation in Figurg 1b and then each branch proceeds as if it were a 2-dimensional travelling finger
wave. Also a triple junction phenomenon is observed (Figlre 1c). These numerical results indicate
that the chemotactic effect provides not only suppression of expanding but also shape-destabilization
of patterns.

In order to analytically understand the dependence of the chemotactic effect on these properties,
we consider the 1-dimensional travelling front solutiong of]|(1.2) and their transversal stability in the
strip domains2; = {(x,y) € R? | —o0 < x < 00, 0 < y < £} with width £ > 0, where the
boundary conditions are

(u,v)(, —00,y) =1, 1/y), t>0 0<y<d, (18)
(u, v)(t, +00,y) = (0, 0), t>0,0<y</, .
and o a
<a—u,8—v)(t,x,0)=(0,0), t >0, —00 <x < 400,
yooy (19

du 9
—u, i (t,x,0) =(0,0, >0 —00<x < +o00.
dy 9y
This paper is organized as follows: In Section 2, we apply the singular perturbation method
to (1.3) with a sufficiently smalt > 0 and show the existence of 1-dimensional travelling front
solutions(U?, V#)(z) (z = x — €6(e)t) with velocity e6(¢). The profiles of U¢, V¥¢)(z) are shown
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FIG. 2. Spatial profiles of the travelling front solutiétré, V#)(z), where the parameters are as in Fiqgre 1 exkeptl.O.
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Fic. 3. Dependence of the velocity (k) on k for a travelling front solution wher& means the velocity given b1).
The parameters except fbrare as in Figurp|1.

in Figure[2; they demonstrate th#f (z) is smooth and/¢(z) possesses a single internal layer,
which becomes a sharp interfacesag 0. As for the dependence &fon the velocityd (¢), it is
shown that)(¢) is decreasing witlk and there ig*(¢) with lim, 0 k* () = k* = 2,/yc/xo(1/2y)
such that(¢) > 0 for 0 < k < k*(¢), while () < 0 fork*(¢) < k (Figure[3). Consequently, this
result indicates that chemotaxis suppresses expanding of patterns.

In Section 3, we use the singular limit analysiseag 0 to study the transversal stability of
the travelling front solutiongU?, V¢)(z) in the strip domain2,. Our result (Theorem 2) reveals
that the transversal stability crucially depends on the siggy@f) wherev is the value of the 1-
dimensional travelling front solutiol ¢ (z) at the interfacial point, which is obtained by taking the
limit & | 0. If x{(v)) < O, the solution is stable for aly> 0 and¢ > 0. However, ifx[ (v)) > 0,
the stability depends on the valueiofWhenk is small, travelling front solutions are stable for any
fixed ¢ > 0, while they are destabilized whénincreases. In order to show the stability property,
we consider the distribution of eigenvalues of the linearized eigenvalue problgm|of[(T.2)[(1]8), (1.9)
around the planar travelling front solution, depending on the paramesagd?. It should be noted
that the fastest growing mode, say of the perturbations given in the planar interfac®ie—1/3)
for sufficiently smalle > 0, that is, the fastest growing wavelengity @ is O (¢1/3). This indicates
that the destabilized pattern in short time does not depend on the fMdihon the smallness of
We remark that this behaviour is also observed in reaction-diffusion systems with activator-inhibitor
interaction[[21]. In Section 4, we give some remarks on our results. Finally, the Appendix is devoted
to the proofs of the lemmas used in Section 3.
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The following function spaces are used in this paper:

Cunif(R) = {u | u is bounded and uniformly continuous &3,
d2

d
Cai(R) = {M € C*(R) | u(x), au(X), WM(X) € Cunif(R)},

1/2
lull 2 = (/ Ie"""u(x)lzdx) < oo},
“ R

H*(R) = the interpolation spacé{*(R), L?(R)]1_, for0 <s <1,
HY(R) = the dual space affY(R), H*(R) = the dual space off*(R),

L2R) = {u € L%(R)

and C?, (R) indicates uniform convergence on any compact subs& with respect toC?(R)-
norm.

2. Travelling front solutions

We will briefly demonstrate how 1-dimensional travelling front solutions of|(1[2)] (1.8) can be
constructed, by using the well known singular perturbation methods. By introducing the travelling
coordinate; = x — 61 with velocity 6 in (1.7), one finds that the travelling front solutian v)(z)
satisfies the following system:

{ 0=¢c2%u.. +ebu, — ek[uxy()v ] + f (), R, 2.1
O=v,, +0v,+u— yv,
with the boundary conditions

(u,v)(—o0) = (1,1/y) and (u, v)(+00) = (0, 0). (2.2

We first construct the outer and inner approximate solutionjs of (2.1) with (2.2), taking the limit
el 0.

2.1 Outer and inner solutions
By puttings = 0 in (2.1), the lowest outer solutiam?, v°) of (2.1) satisfies

0= s,
{Ozvzz+u_)/v, zeR. (2.3)

From the first equation of (2.3) with the boundary conditidns|(2.2), we may:i4ke as

0 (z>0),
%) = 2.4
@ {1 (z <0). @
Substituting it into the second equation [of {2.3), we obtdifr) as
1
ep-y7) (>0,
Wy =17 2.5)

% — % expl/vz) (z<0),
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which belongs taC'(R). (1, v%)(z) is called aroutersolution of [2.1),[(2.) irR. Sinceu®(z) is
discontinuous at = 0, it is not an approximate solution ¢f (2.1) in a neighbourhood ef 0, so
that we have to look for another approximate solution there. In order to construct an approximate
solution in a neighbourhood af= 0, we introduce the usual stretched variaple z/¢ and rewrite

@D as

£ eR, (2.6)

0=iige +{0 — kxo(0):}ig — ek{xo(D)V. )i + f (@),
0= sg + &2{00s + it — yd),

where(ii, 9)(£) = (u, v)(e). Puttinge = 0 in (2.6) and noting®(0) = 1/2y, we obtain

{o = ?55 + {6 — kx4(®)0:)ie + f (@), feR. 7
0 = g,
with the boundary conditions
ii(—00) =1, ii(+00) =0,
- 1 (2.8)
3(d00) = —.
2y
Since the second equation pf (2.7) with {2.8) leads(td = 1/2y, the first equation of (2]7) is
0= +{e+ £ (1>} + £ 29
=u —xol =— ) tu J(u). .
33 ZW 0 2y §

In order to solve the equation (2.9) wifh (R.8), we need the following lemma:

LeEmMA 1 (Fife and McLeod([B]) For any fixed < (0, 1), there exists a unique such that the
following problem has a unique decreasing solutiBe; c):

{o = Wee +cWe + f(W), §€R, (2.10)

W(—00) =1, W(+00) =0, W(0) = <.

Furthermore, iffol f(u)du > 0 (resp.< 0), thenc > 0 (resp.< 0).

Lemmd ] indicates that a solutianof (2.9) with [2.8) is given byi(§) = W (§) with 6* (k) =
c—kxp(1/2y)/2,/y; (i1, D)(z/e) is called arinner solution in a neighbourhood af= 0.

2.2 Existence of 1-dimensional travelling front solutions

By matching the outer and inner solutions obtained above, travelling front solutions of the problem
(2.7)), [2.2) can be constructed (see Fife [7], Mimura efal. [13], for example). The result is stated as
follows:

THEOREM1 Fixk > O arbitrarily. There igo > 0 such that for any € (0, o), (2.1), [2.2) has a
solution(U¢, V¢)(z) with 6 = 6(e; k) satisfying

i fy e K (L
E%@(s,k}:@ k) =c 2ﬁX°<2y>' (2.11)
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The solution(U*¢, V¥) is represented as

U(z) = W(z/e) + p°(2) and V(z) =v°(2) + ¢ (2),
where(p?, ¢°) is an error term for small > 0 in view of the following convergences:

Iiirg) U®(z) = uz) uniformly in (—oo, —8) U (8, +00),
&

im V*(5) = 1) uniformly in . (212

with any small constart > 0 and

lim &) = W) i CZ,(R),

i 5 (£ — 1 nC2 (R (2.13)
glir(])v (5)—5 in c_u,( )’

where(i®, v°)(§) = (U*, V*)(£§).
The profile of(U*, V*)(z) is shown in Figurg]2. By (2.11), we immediately obtain

PropPosITIONL (i) If fol f(u)du <0 (c <0),thend*(k) < 0 for anyk > 0.

(i) If folf(u)du > 0 (c > 0), then there is the critical value’ = 2,/y¢/x,(1/2y) such that
0*(k) > 0 forany O< k < k*, while 6*(k) < O for anyk > k*.

For the case (ii) of Propositigr 1, the dependena#“¢f) andé (¢; k) onk is shown in Figurg]3.
The uniqueness of the travelling front solution pf {2.1),](2.2) has been numerically confirmed,
although it is still unsolved. Sincec = ¢0(¢; 0) is the velocity of the travelling front solution
of (2.1), [2.2) in the absence of chemotaxis 0), (2.1]) indicates that chemotaxis suppresses the
expansion of patterns.

3. Transversal stability of travelling front solutions

In Section 1, by numerical simulations, we found that chemotaxis effects destabilization of patterns.
In order to show this theoretically, we focus on the travelling front soluti@fs V¢)(z) and study

their transversal stability in a strip domaizy = R x (0, £). We first define théinearizedstability

of travelling front solutions of (1]2)[ (11.8), (1.9) as follows:

DEerFINITION A travelling front solution of [(1.R),[(1]8)[ (19) isansversally stablexcept for
translational invariance in if and only if zero is a simple eigenvalue of the eigenvalue problem
associated with the linearized system|[of [1.2),](1[8), (1.9) around the travelling front solution and
the remaining spectrum is contained in a closed sector lying in the left complex half-plane (see
\olpert et al. [24], for instance). The travelling front solutionuisstablef it is not stable.

We only study the distribution of eigenvalues of the eigenvalue problem of the linearized system

of (1.2), [1.8),[(1.P) around the travelling front solutia@$, 7°)(z, y) = (U¢, V*)(z) with velocity
e0(e; k) in the strip domain2,. Here we writef (e; k) as6(e) for simplicity. The eigenvalue
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problem for(p, ¢)(z, y) associated witH (1}2), (1.8), (1.9) is given by
3% 92 3 3
2 I (AENAE
)Lp = |:8 (8_Z2 + W) + 89(8)8—Z — sk{(xo(v )UZ)E
3% 92
+ (xé(ve)vi)z} +f (Mg)]P — ¢k |:M€X6(U6)(8—Z2 + 3_y2>

. A R . a . A
+ {i® xo (0°) 0% + (ugx(’)(vg))z}a—Z + (usxé’(vg)vi)z]q,

A + i + & + 9()a
= — + — ef(e)— — ,
1=p 972 09y2 PER

with the boundary conditions

p(F£oo,y) =0, g(xoo,y)=0, O0<y <,

0
Pero=0 Lco=0 :eRr
a dy

0
Po=0 Lzo=0 zeRr
ad dy

For (p, q)(z, y) € L2(£2¢) x L?(£2¢), we define(py,, gm)(z) (z € R,m =0,1,2, ..

L 4
pm(z)=/0 p(z, V)Y, (y) dy, qm(z)=/0 q(z, Y)Y (y) dy,

where
1
— form =0,
Je
Y (Y) = 2 ot
- cos(—y> form > 1
l V4
Then(p, ¢)(z, y) is expanded as
o0 o0
p(z,y) = P @Y (y),  q(z,y) = qm (D) Y (y)
m=0 m=0

231

(3.1

(z,y) € §2¢,

.) by

in L2(£2;). It thus follows from [(3.1) that the equations fgr,,, g..)(z) with = mx /¢ are given

by
Apm = (L® — £20%) pm — N*“qp,
Agm = pm + (M* — 0®)qm,
Pms qm € CSnif(R)v

z€eR,

3.2
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where

2

re= 2 & +e{6(e) — kxO(V)vs}d

o &~ KIeVOVE e+ £ W),

2
N& —Bk[sté(V ){d— - }~I—{US oVE) +2U° xq (VE)V, }—+{USX (Ve )Vs}z],

2

ue =2 +9()——
a2 gl(e Y.

For the eigenvalues df (3.2), we obtain the following two lemmas:

LEMMA 2 There is a constanf; > 0 and for any giveni > 0 there ise1 > 0 such that any
eigenvalue. € C of (3.2) satisfies either Re< —Cy or

|?w? + A <d for0 < e <& andw > 0. 3.3

This lemma indicates that the distribution of eigenvalue$ of (3.2) is divided into two classes as
¢ | 0: one class is the distribution of eigenvalues of the o@dét) which have negative real part
and the other is of the ordex1). Therefore, the distribution of the latter eigenvalues is critical for
the stability of travelling front solutions. By (3.3), we may assume that there is a positive function
d(e) with lim o d(e) = 0 such that

1€%w® + A| < d(e). (3.4)

For the eigenvalues df (3.2) satisfyirjg (3.4), we have the following key lemma:

LEMMA 3 For sufficiently smalle > 0, let,, be an eigenvalue of (3.2) which satisfigs [3.4).
Then there exists a continuous functign(e, ¢, k) such that.,,, = €1, (¢, £, k) satisfying

lim{zn (e, €, k) — 1,5 (¢,£,k)} =0
el0

with

5 (e, k) = — (3.5)

(F) (G (3

el— ) +t—=|—=———= )Xo\ 5 |-

¢ WY\VY Vy +mr02) 7\ 2y
Whenm = 0, we knowzg (e, £, k) = 0, which corresponds to the zero eigenvalu(3.2) with

the eigenfunctionU?, V¢)(z) where(U*¢, V*®)(z) is the travelling front solution 02). Lemmas

2 and 3 are proved in the Appendix. By using these lemmas, we can easily arrive at the following

theorem:

THEOREM2 (i) Wheny(1/2y) < 0, for any fixed¢ > 0 andk > 0, there issg > 0 such that if
0 < ¢ < &g, theni,, < Ofor anym > 0, i. e. the travelling front solution is transversally stable.
(i) When x((1/2y) > 0, for any fixed¢ > 0 andk > 0, there iseo(£, k) > O such that for any
0 < ¢ < go(¢, k), the travelling front solution is transversally unstable.

It follows from Theorem 2 and[(2.13) that transversal stability of travelling front solutions
depends on the sign of/(v) where v, is the value ofV(z) on the interface. In fact, when



CHEMOTAXIS-GROWTH MODEL 233
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FIG. 4. Bifurcation curve& = k;, (¢, £) (m = 1, 2, ...) of the flat travelling front solution whergg(v) = 8v2/3(3+ v2).
The parameters except forare as in FigurE]l. Here is the mode number of perturbations arjde) = lim,_, « k1(e, £).

xo(v) > 0, the travelling front solution is destabilized lasncreases. Let be fixed andh,,;q )
be the largest eigenvalue. Then it follows frdm {3.5) that for sufficiently small(¢) satisfies

¢ ky!(1/2 1/3
Ymoe) _<M) ~ 5.
21 JY
where §(¢) is a positive function satisfying limod(e) = 0. Therefore, the fastest growth

wavelengthuo(e) = 2¢/mo(e) satisfiesuo(e) = 0(£1/3) for sufficiently smalle. This implies
that the wavelengtlg(¢) does not depend on the widthout on the smallness @f, that is, when
¢ is sufficiently small, any fine structure with wavelength whiclig:'/3) appears in the first time
scale.

Let us apply this theorem to two specific forms gf(v). First, we takexo(v) = v. Since
xo (v) = 0, the travelling front solution is always transversally stable for/any 0. We next take
xo(v; 5) = 8v/35v2/9(s+v?), for which there is some valug = 3/4y2 such thaty/ (1/2y; s) < 0
for 0 < s < s* and x5 (1/2y;s) > 0fors* < s. For the latter case, the bifurcation curves of
(e, L, k) = 0@ = 1,2,...) are drawn in thek, £)-plane, as in FigurE]4. This indicates the
following:

(i) Let k = ki (e, £) be a solution of) (e, £,k) = 0 (m = 1,2,...). Thenky(e, £) < ko(e, £)
< - .- for any fixed¢ > O.
(i) There is the critical value

1
k6.0 = dopy + 027+ + 02 1 ()

such that ifk < k. (e, €), thenx,, < O for anym > 0, while if k. (¢, £) < k, theni,, > O for
somem > 0.

Figure[4 shows that for any fixed width > 0, the travelling front solution is transversally
destabilized a# increases. Let us show some numerical simulations for the problein (1.2), (1.8),
(1.9) in £2, with suitably large¢ > 0. We usexo(v; s) and fixy = 1. Sinces* = 3/4, we take
xo(v; 3) = 8v2/3(3 + v?) . Whenk is small, the travelling front solution is transversally stable
(Figure[$a). Wherk increases so that > ki(e, £), it becomes unstable (Figuf¢ 5b). When
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T

d )

(i)

(iii)

(iv)

(v)

iy @.
[ S

FiG. 5. Time evolution of(z, x), where the curves depict the contalift) = {x € £2; | u(r, x) = 0.1}, with the parameters
being as in Figur]1 except for the system sizex180. (a) Transversal stability of a perturbed travelling front solution
(k =0.3): (i)t = 0, (ii) r = 100, (iii) r = 200, (iv)z = 300. (b) Destabilized travelling front solutiok & 1.0): (i) r = 0,

(i) + = 200, (iii) t = 400, (iv)+ = 600. (c) Formation of the network-like patterh & 2.0): (i) + = O, (ii) + = 100,

(iiiy r = 200, (iv)tr = 300, (v)r = 400, (vi)t = 500. (d) Formation of the finger-like patterkh & 5.0): (i) + = O,

(i) + = 200, (iii) r = 400, (iv)t = 600, (v)t = 800.
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increases further, the travelling front solution evolves into a complex pattern (ffiure 5c), where
two features can be observed: one is tip-splitting to generate a branching pattern and the other
is coalescing of these branches, by which network-like structures appear. M8tdinincreases
further, the situation drastically changes. The destabilized travelling front solution exhibits a finger-
like pattern (Figur¢]sd). For this pattern, we note that the interfaces are initially destabilized with
small wavelengths of the ordéx(¢'/3), as was noted, but in the next stage, this fine structure breaks
and there appear finger-like branched patterns with width of the @rdeyr.

4. Concluding remarks

The numerical simulations suggest that chemotaxis has two effects: one is suppression of expanding
of patterns, the other is transversal destabilization of patterns. To understand these properties, we
have studied the existence and transversal stability of 1-dimensional travelling front solutions in the
strip domain. As was shown in Figuré 3, the velocity of travelling front solutions is positive for
smallk, while it is negative for largé. This clearly explains that the chemotactic effect inhibits the
expansion of growth patterns. We have shown in Theorem 2 that transveral stability of travelling
front solutions depends on the sign gf(1/2y) for the chemotactic sensitivity functioxp(v). If
xo(1/2y) > 0, the travelling front solution is destabilized/amcreases. Ik is small, the travelling

front solution is transversally stable. However, wlieincreases, it becomes unstable through static

u 4

FiG. 6. 2—dimensional travelling finger-like solution with positive velocity, where the parameters are as iffigure 1 except
for k = 5.0 and the system sizex3 3. The values of:(z, x) andv (¢, X) become larger from outside to inside.

0.01

0.00
-0.01 |
-0.02

-0.03

-0.04 k
4 10 16

FIG. 7. & means the velocity of 2-dimensional travelling fingerlike solutions, where the parameters are as in|Figure 1. —
means the velocity* (k) of 1-dimensional travelling front solutions as| 0.
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(i) (iv)

(i) )

(i)

FiG. 8. Time evolution ofu(z, x) under non-radially symmetric initial conditions, where the curve is the cort@ur =
{x € R2 | u(z,x) = 0.1}. Parameters are as in Figlie 6 except the system size220 (i) = 0, (i) + = 100, (iii) # = 200,
(iv) + = 300, (v)¢t = 400, (vi)t = 500.

bifurcation. We discussed the stability analysis of planar travelling front solutions, depending on
the functional form ofy (v). The resulting destabilized patterns are quite interestingiri€reases
further, the destabilized pattern exhibits tip-splitting and coalescing phenomena alternatively so that
a network-like pattern appears, as in Figure 5&.dfill increases, it shrinks and generates branched
patterns as in Figuiig 5d. This structure is similar to the one shown in Higure 1c. We should note
that each branch grows as if it were a 2-dimensional travelling finger-like solution which moves
with constant velocity, which is numerically confirmed, as in Figure 6. The comparison between 1-
dimensional travelling front solution and a 2-dimensional travelling branch solution is demonstrated
in Figure[7. We should remark that for relatively largehe velocity of 1-dimensional travelling

front solutions is negative, while the velocity of 2-dimensional travelling finger-like solutions is
positive. For the possibility of existence of such 2-dimensional finger-like solutions, there are three
plausible reasons by using the results obtained in [14], [23]: (i) The travelling finger-like solution in
R? is regarded as a heteroclinic orbit connecting two stable states; ¢0gisat y = oo and the

other is(Uy(x), V,(x)) aty = —oo where(U,(x), V,(x)) is the 1-dimensional stable equilibrium
pulse solution. (ii) The equilibrium pulse solution is transversally stable in the strip domain. This
suggests that the side parts of a finger stably exist. (iii) 2-dimensional disk-like equilibrium solutions
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are unstable under 2-mode disturbance. As in Figure 8, a disk-like equilibrium solution destabilizes
to form a peanut shape. It seems that this is the onset of travelling finger-like solutions. The stability
of 2-dimensional travelling finger-like solutions will be the subject of our future work.
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Appendix. Proof of Lemmas 2 and 3

According to the proof of Theorem 2 in [23], we prove two lemmas.

Proof of Lemma@]2
Substituting the second equation[of {3.2) into the first one, we have
(T¢ — e%w® = M) pm = S* (V).
Mo =P =D =—pe A1
Pms Gm € Coir(R),
where
T = L° + ekU*® x4(V®),

d
SEO) = 8k[{—89(8)U8)(6(V8) + U xo(VE) + ZUEX(’)/(Vg)VZE}d—Z
+ A+ YU x(VE) + {fog(vg)v;}z].

Solving the first equation of (Al1) with respect tg, and then using it, we rewrite the second
equation of[(A.l) as a scalar equation fgr. To do it, we first consider the following eigenvalue
problem forTé:

(A.2)

T?¢ =¢9,
¢ (£o0) = 0.

Let {¢7)i>0 and {¢]},>0 be, respectively, eigenvalues and the corresponding orthonormal
eigenfunctions of the probIe@.Z). In order to study the properties of the principal eigegjalue
it is convenient to introduce the stretched variable z/¢ into (A.2) so that it is rewritten as

{ ¢ = ¢,

- A.3
¢(£o0) =0, A-3)

where with(ii¢, 7¢) (&) = (U¢, V¢)(g£), T is defined by
2

. d d
17 =gz T10) —kxo(@)0ch g — ekllxo(B)3c)e = @ xo@)] + f1@").
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Itis easy to show that the distribution of eigenvalues of the prollen] (A.3) is the same|as for (A.2).
Letting ¢ be the corresponding normalized eigenfunction, we conclude that

$5(6) = Vedy(§) = Vo) (s5).
Taking the limite | 0in T¢, we definel* by

TR Y P ’(1 4y o (A.2)
2 27"\ 2y ) | de ‘ ‘
We thus find that-(d/d&)W is a constant multiple of the positive normalized eigenfuncﬁgn
which corresponds to the principal eigenvalug’éf and that

d~ *— 1 7% d
—£u8—>p 1¢0 (=—£W> ase — 0,

wherep* = ||(d/d&)W|| 3.
Let ;gﬁ be the principal eigenvalue arzﬂg:I be the corresponding eigenfunction of the adjoint
operator of’¢, sayT*".

LEMMA 4 (Nishiura and Fuijiil[17]) We have

o5 — b5 in C2,, (R) ase — 0
and

ret * CFE Nk i 2

¢y —o07e “pg InCE,(R)ase — 0
with o* = ||eC*5/2q§(’§||222, whereg?" is defined similarly tapg.

This lemma gives the asymptotic form gf ase | 0 as follows: Differentiating@l) with
respect ta, we have

0= &2(ur)ec + £{0() — kxg(W)ve} (o) — 2ek{xg IV + xg(V)veclue
- Sk{X(/)N(U)UZS + 3X6/(U)Uzvzz + Xé(v)vzzz}u + ffau;,  zeR, (A.5)
0= vy, +0(8)vy; +uy — Y.

Substituting the second equationof (A.5) into the first one, we obtain

0= T?u, — ek{x{()v2 + x{()v.: u;
— ek[x§ (0)v3 + 3x{ (V)vvz: + x5 ({—€0 ()22 + Y v}l (A.6)

By using the stretched variable = z/¢, it follows from (A.G) that the stretched travelling front
solution(uf, v%) (&) satisfies

- (1. . o
0=T°¢ <gu§> - k{)((/)/(v)vz2 + x0(D) 0 }iag + O(e). (A.7)
Multiplying by égﬁ and integrating ofR, we have

~of 1 e 1N~ LN 5. A
<T€<Eﬁs)’ ¢01:> = (k{xg )02 + x¢(D)dzzite ., ¢>0u> + O(e), (A.8)
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where(., -) means the.2(R) inner product. Since
Tt = ¢595F and o, = —e0(e)b, — it + 3,
(A.8) can be rewritten as
1. . . o . . . A
~C5 e, B = k(xg D2 + xo(0)(—eB(e)iz — it +yD)ie., §) + O(e). (A.9)

By using Lemma 4 and (Al9), we know the following lemma:

LEMMA 5 (J17]) Forsmalle > 0O,

1 ct
e S 1 1 1 1 X0(7,) (We, e 5 We)r_
f=lim 2L =k =X =)+ Zxi( =) - , A.10
o =10"% {4VX0<2V)+2X0(2)/> (We, e<"8 We) (A19

where(-, )g_ means thd.2(R_) inner product withR_ = (—oo, 0). Moreover, there is a positive
constani independent of such that other eigenvalue$ of T¢ satisfy ¢5 < —pu for any integer
n > 0.

By using Lemma}p, there is a constant- 0 depending ory andu such that for any € A =
{» € C | Rex > —v}, the first equation iff (A]1) can be rewritten as

pm = (T? — 202 — 1) "L1SF (W) gm

(S° (W) qm. $5) 2 o ot
= m(ﬁé + (T¢ — e“w — X)"'SEM\)gm- (A1)
Here the first term means the projection on the space spanned by the eigenfgficoresponding
to the principal eigenvalug] of 7¢ and(7* —&2w?—)Tis the projection operator on its orthogonal
complement in.2(R), respectively. We note thar’® — 1) is a uniformly Z2-bounded operator for
A € A ande > 0, and it satisfies

1T =)o 2 < (A.12)

1+ A

where M is a constant independent ef > 0 andA € I (see [20, Lemma 1], for instance).
Substituting[(A.I]L) into the second equation[of (A.1), we obtain the equatiap,fas follows:
(8°(\gm: $°)
t§ —e2w? — 1
+(@m)zz + €0 @Gm)z — (¥ + @) (A.13)

Agm = o5 + (T — &2w? — 1) TSE (M) gm

Therefore,[(A.IB) is solved by using the following bilinear form:

0= —((gm)e ¥2) + €0(e)((Gm), ¥) — (v + @ + 1) {gm, ¥)

(SE () qm> P57

ez 7, 96 V) (T = 20 = IS Mg, ¥) (A.14)
0

for gm, ¥ € HY(R), whereg,, is normalized afigmll 2 = 1.
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LEMMA 6 There is a positive constaM, independent of O< ¢ < 1 andw > 0 such that any
eigenvalue. € A5 = {A € A | |e2w? + 1| > 8} of (A.1) satisfiege2w? + A| < M. for any given
5> 0.

Proof. Settingy = g,, in (A.14), we have

S )\' mo
(y + w? + M gm "iz + “‘Imz“iz = 25(:;]—2(?)((1)0’ qm)
0
+((T* — 20° — 1)TSE (W qms Gm)- (A.15

For the real part of (A.75), it follows fronj (A.12) that

(v + &® + ReMlgmll52 + ll(gm): 1122

80‘)‘]mv¢ . .

e{; — 6202 o) (05, an) + (T° — e%0® = )'s <x>qm,qm>}
(5% 0 gm. 95)]
|§0_82 2 — Al

< Cligmll 2{l(@m)zll 2 + 6 + @ + 12D gm | 12 + llgml .2}

(6, gm)| + (T = e%0® = 1)'S* ) gm, )]

1 + M
X ;
|{8—820)2—)\.| 1+ |e2w2 + A|

WhereC is a positive constant independent ok0s < 1 andw > 0. Since||gm || 211(gm):ll 2 <
4c1 ||qm||L2 + C1||(c1m)z||L2 for anyC1 > O, it follows from the above inequality and;,[/;2 = 1
that

1
2 2
Rex 1-CC
J/+C() + +|: 1{|§0—8 | l+|82a)2+)n|}:|||(QM)Z||L2
1 2
Cl—+¢ A 1 , A.16
< <4C1+(y+w +[AD + >{|§é—22—)\|+1~|—|82w2+)»|} ( )

where( is a small positive constant such that

1-ccC = + M 0
— > U.
Nigg =202 =i ' 1+ 6202 + Al

Therefore, the left hand side ¢f (A[16) is larger than the right orje%as’ + Rei| — oo. Thisis a
contradiction so that2w? + ReA| is finite.
On the other hand, it follows from (A:15) that

SE(A)gm,
Im )‘HQmHLZ = Im{%(‘ﬁos Gm) + (T —¢ 2% — A) SS()\)C]ms Qm>}

By using the same argument as above, one showd thad.||;2 — oo as Imr — oo. Noting that
(A.16) is valid in this case, one finds that|ém 1| — oo, the left hand side becomes larger than the
right one for smalk > 0, which is a contradiction. Hencgm i| < oo, that is, there is a positive
constantV, such thate?w? + A| < M, for any eigenvalué. € As.
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LEMMA 7 If g, is the eigenfunction corresponding to any eigenvalues A; satisfying
le2w? 4+ 1| < M. of (A.1), then there is a positive constafitsuch that

1< llgmllgz < C.
Proof. From [A.15), there is a positive constarg satisfying
‘ S(A')Qm’ ¢0 )
%

<y+o®+ A+ cs{n(qm)anz +ely +o®+ M)+ 1)

(00, gm) | + ((T* = e2w? — 1) TS0 qm, gm)|

lgm)=1122 < ¥ + @ + A +

1 n M
X .
12§ — e20% — 1] 1+ |e20? + A
By using||g. [l ;2 = 1 and the argument similar o (A]16), we have

C3C4 1 M )
1-—
|: 2 {|§0—8 Al 1+|82w2+k|}:|”(41m)z”L2

<y +of M+ Col oo el + @ I+ L T
o

2C4 — Al 148202 4 A

for a small positive constarts. Thus, there is a positive constaty satisfying||(gm):ll;2 < Cs.
Moreover, it follows from [(A.1IB) that| (gm)zzll 2 < Csllgmll y1 with some positive constards.
Therefore, there is a positive constéhsatisfying 1< lgm |l g2 < C.

To show the distribution of eigenvalues @.1) in {» € As | |¢2w? + A| < M.}, we need the
following two lemmas:

LEMMA 8 ([20]) Let F(u, v) be a smooth function af andv. Then, for anys € (0, 1/2),
0

T¢ —)'(Ff) — ——
( ) (F7) W) =%

lim =0 uniformlyinix € A,
e—0

L(L2,H—)
where?, v9)(z) is given in Theorem 1F¢ = F(U%(z), VE(z)) andFO = F(u®(2), v2(2)).

LEMMA 9 There issp > 0 such that no. € Ay satisfying|e?w? + A| < M. is an eigenvalue of
(A.1) forany O< ¢ < &g.

Proof. Let A be an eigenvalue gfA.1). By LemmdY, there are positive consta€ts C», C3 and
C4 independent of andu such that

(0> gm)| < llgmllLC1v/e < Cov/e
and
(SE ) gm. D5 < ISEWam L2117 1 2 < Call S* () gmll 2 < Ca(l+ elA])
for smalle > 0. Moreover, it follows from (A12) that forany € A,
(T¢ — A)T(eU;?.) — 0 uniformly on any bounded set i (R) ase 0.

Therefore, Lemmds| 7 afd 8 show that the left hand sidp of [A.15) is larger than the right one for
smalle > 0, which is a contradiction.

We thus find that there is no eigenvalug(af1) in A5 = {1 € A | |e2w? + A| > §}.
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Proof of Lemma 3
We now show the asymptotic form of the eigenvalusatisfying [[3.4) for sufficiently small > 0
by using [(A.14) and Lemmas 4 and 5. Frgm (A.14) we define the following bilinear form:

B (p.q) = (pz. :) — 0(e){pz. q) + (v + 07 + 1) (p. q) (A.17)

for p,q € HY(R). Itis easy to see that there are two positive constapsndC, such that

|B*(p, ¢)| < Callpll gllgll g2

and
|B*(q.9)| > Callql%:

for A andw satisfying ). By the Lax—Milgram theorem, for ahye H~1(R) there exists; €
H(R) such that

B**4(g,¥) = (h,¥) foranyy € H'(R).
Then a bounded linear operat&if*-¢ from H~1(R) to H1(R) can be defined by = K*¢h. It
follows from (3:3) that

SEMN)gm,
BOME (g V) = é()q—w(%, ¥) + (T% — &20? — )TSE Mg, ¥) (A.18)
0

for anyy € H(R). Therefore,[(A.1B) is rewritten as

(ST, g
"l — e2w? —
(ST ). By /NE)
(gf - 2w =) /e

KO (g8) + KM ((T¢ — e2w? — A)TSE (M) gm)

KOME(@6//E) + KoM (TF — 620® = MTS* (Mgm).  (A19)

Putting
am = K" (95 //€) + K™ (b)

with (b, ¢8n) = 0, we have

—_ )\. e
“o 88“’ (S KON G5/, B NE) + (S K (b), 95 /B,

b= (T° — &2w? — MTSE M) (@K™ (95//8) + K24 (b)).

(A.20)
Then the second equation pf (A]20) can be rewritten as

[1 — (T¢ — 2w? — W)TSEQ)KOME]b = a(T? — £%w? — M)TSE (W) KOME (¢8//5).
0

We remark thatk®*¢ is also a bounded operator frob?(R) to H2(R). It follows that
KoM (¢5//e) € HA(R), sincegs/ /e € L?(R) for smalle > 0. Moreover,

1S5 KM E (@ /e L2 = O(e)
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and
1(T? — 2w? — TS K™ |2, 2 = O(e)  forsmalle > 0.
Therefore, the operatdr — (T¢ — £2w? — 1)TS¢(A)K®*¢ has a bounded inverse fron?(R) to
L?(R). We haveb = [I — (T® — &2w? — 1)TS* (W) K M1 1aSe K42 (@5 //6) = O(e) in
L2(R), which implies thatk ®-*:¢(b) = O(¢) in H2(R) for smalle > 0. If « = 0, we knowb = 0,
thatis,(pm, gn) = (0, 0). This contradicts the fact thép,,, ¢.,) is an eigenfunction, so that# 0.
Next, we consider the limiting form of the first equation(in (A.20), taking 0.

LEMMA 10 ([17]) The following relations fos; andgbéIi hold:

95 .

lim =2 = p*s§ in H1(R);

e p*8o (R)
b’

lim 2% = p*o*sy  in HL(R);

/e Jo 0 (R)

Li?gﬁugx(;(v%gﬁ = —p*a*xé(%)m, e“We)do  in HHR);
. pra* 1 . . _
E%\/EUZSXE,’(VS)VZ%? = ﬁXcl)/ 5)(%» e We)do in HL(R),
whereég is the Diracs-function atz = 0.
If w is large to be of the orde® (¢ 1/2) for smalle > 0, Lemma 10 leads to

a(lf — e’ — 1) =« §%<SE(A)K‘°***€<¢3/\/E>, 06" /) (A.21)

for A = et(e) with limgot(e) = t*. Puttingg = aK“”)"g(¢8/\/E), we have the following
equation:

(Ger ¥2) — £0(0) Gz, V) + (v + @+ 1)(G, ¥) = a(gh/ve, ) foranyy € H'(R).

By the above equation and Lemma 10, we can segjthat lim, o4 with ||§*||;> = 1 satisfies

g —(y +0Hg* =0, ze(—00,0)U (0, +00), Ao
{51*(:&00) =0, ¢ 0=y, (A-22)
and
G (=0) — g (+0) = ap®, (A.23)
wherey is some constant. The solutigri of is easily seen to be
~x vexp—Vy + %) (z>0),
q7(2) = (A.24)
vexpy + %) (2> 0),

so that[(A.ZB) gives
ap® =2y y + 2. (A.25)
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By using the first equation df (A.20), Lemma 6 ahd (A.24), we find that
A 1
a(gy — £w? — %) = _kp*U*X(/)(z)[ZW\/ Y+ a)Z(WS, et Welr_

k k k., /1 l 2
Uy R (We, e W] + M+\/;/J/)W(W§, EWs).  (A.26)

By the definitions ofp*, o* and Lemma 4, we have
—1 A _ _
(We, 5 We) = [e/2(—p* @915, = (p) (0™ L. (A.27)

It follows from (A.25), [A.26) and[(A.2]7) that

- 1
- cw? — T* = —kp*zo*xé<§>(Wg, e”ng)Rf

+ k (A.28)

(o) (3
Xl = )+ ———=x =)
272y ) a2 0\ 2y

Therefore, by using (A.10) and (AR7), (Al28) can be rewritten as follows:

*

i ma)iE)
T = —¢tw ——=——— X0l = ).
47 \T Jy+e2) P \2y

On the other hand, in the case lifp ew? = o0, the above argument shows lippt = —o0.
Therefore, puttings = mx/¢ andt, = t*, we can complete the proof of Lemijnp 3 by using the
implicit function theorem.
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