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Static PDEs for time-dependent control problems
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We consider two different non-autonomous anisotropic time-optimal control problems.
For the min-time-from-boundary problem, we show that the value function is recovered

as a viscosity solution of a static Hamilton–Jacobi–Bellman partial differential equation
H(∇u(x), u(x),x) = 1. We demonstrate that the space-marching Ordered Upwind Methods
(introduced in [29] for the autonomous control) can be extended to this non-autonomous case. We
illustrate this approach with several numerical experiments.

For the min-time-to-boundary problem, where no reduction to a static PDE is possible, we show
how the space-marching methods can be efficiently used to approximate individual level sets of the
time-dependent value function.

1. Introduction

Min-time autonomous control problems are among the most studied in the control literature (see,
for example, [1], [2], [12], and references therein.) Time-dependent (non-autonomous) control
problems can be easily reduced to the above case by adding the time as an extra dimension to the
system-state; however, such a reduction can be expensive from the practical point of view since it
also increases the dimensionality of the computational domain. The goal of this paper is to treat non-
autonomous control problems directly—by working in the original state-space whenever possible.
In discussing the properties of the corresponding value functions we provide detailed proofs only
when there is a significant difference from the standard arguments employed in the autonomous-
control setting.

We consider two different anisotropic non-autonomous time-optimal control problems on an
open bounded domain1 Ω ⊂ R2.

In the first problem, the value functionu is the minimum time for driving the vehicle tox ∈ Ω

starting from any pointy0 ∈ ∂Ω, and enduring the entry time-penaltyq(y0). Normally, a value
function for a non-autonomous control problem is also time-dependent. In this case, we demonstrate
that, despite the time-dependence of the vehicle’s dynamics, a time-independent value function
u(x) can be defined, and thatu(x) can be recovered as the unique viscosity solution for a static
Hamilton–Jacobi–Bellman PDE of the form

H(∇u, u,x) = ‖∇u(x)‖F

(
x,

∇u(x)

‖∇u(x)‖
, u(x)

)
= 1, x ∈ Ω,

u(x) = q(x), x ∈ ∂Ω.

(1)

This interpretation serves as a basis for the computational methods for hybrid control in [31] and is
also at the core of the recent work by Sethian and Shan on non-autonomous isotropic control [28].
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However, to the best of our knowledge, the theoretical aspects of this re-casting have not appeared
elsewhere and thus we are covering them in detail in Section 2.

We show that additional controllability assumptions yield an upper bound for the angle between
the characteristics of the PDE (1) and the gradient lines of its viscosity solution. In a joint work
with Sethian [29, 30], this observation was used to design non-iterative Ordered Upwind Methods
(OUMs) for the autonomous control problems, later extended to the non-autonomous and hybrid
control in [31]. In Section 3 we briefly describe these methods, and derive sharper (localized) upper
bounds for the characteristic-gradient angles to improve the computational efficiency. The approach
is illustrated with several min-time-from-boundary examples in 3.1.

In the second problem, the value functionv is the minimum time needed for a vehicle to leave
the domain if it starts atx ∈ Ω and endures an exit time-penaltyq̂ on the boundary. For this min-
time-to-boundary problem, the time-dependent dynamics corresponds to a time-dependent value
function v(x, t) even if the exit time-penaltŷq is stationary. (The optimal path for reaching∂Ω
from x truly depends on the starting timet .) Under a standard set of assumptions,v(x, t) can be
obtained as the unique viscosity solution for a Hamilton–Jacobi–Bellman PDE

vt (x, t)−H(−∇xv(x, t), t,x) = 0, x ∈ Ω, t ∈ R,
v(x, t) = q̂(x, t)+ t, x ∈ ∂Ω, t ∈ R. (2)

This interpretation is fairly standard and we discuss it only briefly in Section 4. We then proceed to
demonstrate that, if(q̂(x, t) + t) is a monotone function of time, then any individual level set of
v(x, t) can be computed separately by converting to a dual (min-time-from-boundary) problem and
solving the latter using OUMs.

We note that efficient methods for static Hamilton–Jacobi PDEs have recently become an
active research area. Alternatives to OUMs include Dijkstra-like methods based on cell-mapping
techniques [17] or bisimulations [5, 6], time-marching methods based on paraxial approximations
[25, 26], and alternating-direction Gauss–Seidel relaxations [9, 4], which also served as the basis
for the recent family of “fast sweeping methods” [34, 36, 18]. To the best of our knowledge, these
techniques have been used only for Hamiltonians depending directly on∇u but not onu itself.
However, we believe that it should also be possible to extend them to the problems studied here,
and we note that the control-theoretic analysis in Sections 2 and 4 is largely independent of our
numerical approach.

We conclude by discussing the limitations of our method and possible future extensions in
Section 5.

2. Time-dependent case: min-timefrom the boundary

Given an open bounded domainΩ ⊂ R2, the goal is to find the minimum time necessary to reach a
pointx ∈ Ω starting from any point on∂Ω. The vehicle’s dynamics inΩ is defined by

y′(t) = f (y(t),a(t), t)a(t),

y(τ = q(y0)) = y0 ∈ ∂Ω,
(3)

whereq : ∂Ω → R+,0 is an entry time-penalty, y(t) is the vehicle’s position at the timet ∈

[τ,+∞), f : Ω × S1 × R+,0 → R+,0 is the speed of motion in the chosen directiona(t), and
A = { measurablea : R+,0 → S1} is the set ofadmissible controls. Unless otherwise explicitly
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specified, we will assume that bothf andq are Lipschitz-continuous and that there exist constants
F1, F2, q1, q2 and continuous functionsf1, f2 : Ω → R+ such that

0< F1 6 f1(y) 6 f (y,a, t) 6 f2(y) 6 F2 < ∞ ∀y ∈ Ω, ∀a ∈ S1,∀t ∈ R+,0;

0 6 q1 6 q(y) 6 q2 < ∞ ∀y ∈ ∂Ω.
(4)

For notational convenience, we will also define theanisotropy coefficientΥ = F2/F1. Strictly
speaking, sinceF1 andF2 are global bounds, the coefficientΥ reflects the measure of anisotropy
only in the homogeneous domain (i.e., whenf (x,a, t) = f (a, t)). In what follows, we useΥ to
derive the worst-case-scenario computational complexity of the algorithms. In local estimates, we
will further use two more relevant constants: aneighborhood anisotropy coefficient

Υd(x) = max
y1,y2∈Bd (x)∩Ω

f2(y1)

f1(y2)
,

whereBd(x) is a ball of radiusd centered atx, and alocal anisotropy coefficient

Υ (x) =
f2(x)

f1(x)
= lim
d→0

Υd(x).

We now define the total time/cost for every trajectory

J (x,a(·),y0, τ ) =

{
min{t ∈ [τ,+∞) | y(t) = x}, if y(·) passes throughx,

+∞ otherwise.
(5)

We will often omit the last argumentτ if y0 ∈ ∂Ω and the starting time isτ = q(y0). We define a
value function forx ∈ Ω as follows:

u(x) = inf
y0∈∂Ω,a(·)∈A

J (x,a(·),y0). (6)

REMARK 2.1 The min-time problem is among the most classical in control theory. A detailed
theoretical discussion and extensive bibliography can be found, for example, in [1]. Here we note
several differences between our formulation and the usual setting.

1. The problem is normally formulated for an autonomous dynamical system. To treat our case in
that framework, one would have to switch toz = (y, t) or, equivalently, to define a value function
u(x, τ ), whereτ is the (re)starting time. Indeed, for the problem considered in Section 4, this
cannot be avoided. Here, however, the optimality condition (and the corresponding PDE) can be
derived without raising the dimensionality. The existence of efficient non-iterative methods for
the static PDE (e.g., [30]) makes such an interpretation preferable from the computational point
of view.

2. The assumptions (4) guarantee the continuity of the value function onΩ even in the presence of
state-constraints;F1 > 0 yields both Soner’s tangentiality along the boundary of the constraint
set (as in [32]) and the local controllability near∂Ω (as in [2], for example). This model is
admittedly restrictive since many realistic problems in control theory and robotics do not satisfy
the small-time controllability requirement. A much more general treatment is possible, but we
choose to ignore it to concentrate on the key idea (i.e., derivation of a static PDE for the value
function of a non-autonomous problem).

3. As discussed in [30], the Ordered Upwind Method also relies onF1 > 0, but this restriction can
often be relaxed in practice. For example, if the value functionu(x) is Lipschitz-continuous and
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Lu is its Lipschitz constant, then the anisotropy coefficient can be similarly defined asΥ = LuF2
even ifF1 = 0. (Note thatF1 > 0 impliesLu 6 F−1

1 .) As shown in [35], this is sufficient to
produce alternative proofs for Lemmas 2.7 and 2.12, justifying the use of the method described
in Section 3 in a more general case.

4. We do not assume convexity of the setf (x, S1, t), thus the optimal control need not exist (though
u(x) is still well defined). To simplify the presentation, we will somewhat loosely refer to the
optimal controls and trajectories. The corresponding properties can be formulated and proven for
theε-suboptimal controls and trajectories as well.

The following lemma is the reason why a static PDE can be derived for this value function.

LEMMA 2.2 Suppose a trajectory defined by (3) passes throughx ∈ Ω. Let t1 be such that
q(y0) 6 t1 6 J (x,a(·),y0) and letx1 = y(t1). Define a trajectory

ŷ′
(t̂) = f (ŷ(t̂), â(t̂), t̂)â(t̂),

ŷ(u(x1)) = x1, (7)

whereâ(·) is chosen so that̂y(t̂) = y(t). Then

J (x, â(·),x1, u(x1)) 6 J (x,a(·),y0),

and the above inequality becomes strict ift1 > u(x1).

Proof. First, we note that if the speedf were assumed decreasing in time, the lemma would simply
follow from the fact thatu(x1) 6 J (x1,a(·),y0) = t1. However, the result holds even iff is not
monotone.

Definet̂ by

t̂ ′(t) =
f (y(t),a(t), t)

f (y(t),a(t), t̂)
for t > t1; (8)

t̂ (t1) = u(x1). (9)

Under the assumptions (4), the ODE (8) has a unique and strictly increasing solution for any initial
conditions. Sincêt(t) = t also satisfies (8) and̂t(t1) 6 t1, it follows that

t̂ (t) 6 t for all t > t1. (10)

We also note that, sincêt(t) is strictly increasing, its inverset (t̂) is well defined as long asy(t) ∈ Ω.
For a system defined by

ŷ′
(t̂) = f (y(t (t̂)),a(t (t̂)), t̂)a(t (t̂)),

ŷ(u(x1)) = x1,
(11)

we obtain

d

dt
(y(t)− ŷ(t̂)) = f (y(t),a(t), t)a(t)− f (y(t),a(t), t̂)a(t (t̂))t̂ ′(t) = 0.

Sincey(t) = ŷ(t̂), the ODE (11) can be rewritten as (7) by settingâ(t̂) = a(t (t̂)). Thus,

J (x, â(·),x1, u(x1)) = t̂ (J (x,a(·),y0)) 6 J (x,a(·),y0).
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Finally, if u(x1) < t1, then the non-intersection of integral curves of the ODE (8) guarantees that
t̂ (t) < t for all t > t1, yielding

J (x, â(·),x1, u(x1)) = t̂ (J (x,a(·),y0)) < J (x,a(·),y0). 2

COROLLARY 2.3 If y(·) defined by (3) is a time-optimal trajectory to reachx from the boundary,
thenu(y(t1)) = t1 for all t1 ∈ (q(y0), u(x)).

Proof. First,u(y(t1)) 6 t1 simply by the definition of the value function. Ifu(x1) < t1 for some
x1 = y(t1), then a strictly better trajectory to reachx could be constructed by using an optimal
trajectory to reachx1 and then continuing viây(·) as described in Lemma 2.2. This would contradict
the assumption thaty(·) is time-optimal. 2

The following two versions of the optimality principle can be easily proven using the above lemma.

LEMMA 2.4 (Fixed-Time Optimality Principle) Letd(x) be the minimum distance to the boundary
∂Ω. Then for every pointx ∈ Ω and for any∆t < d(x)/F2,

u(x) = inf
y0∈∂Ω,a(·)∈A

{∆t + u(y(J (x,a(·),y0)−∆t))}, (12)

wherey(·) is a trajectory passing through the pointx and corresponding to a chosen controla(·).

LEMMA 2.5 (Fixed-Boundary Optimality Principle) Consider an open connected setΩ1 ⊂ Ω and
an arbitrary pointx ∈ Ω1. Then

u(x) = inf
y0∈∂Ω1, a(·)∈A

J (x,a(·),y0, u(y0)) (13)

We now enumerate several properties of the value functionu(x) (the proofs are similar to those
for the time-optimal autonomous control in [30]).

LEMMA 2.6 The value functionu(x) is Lipschitz-continuous and bounded onΩ. If y′(t) =

f (y(t),a(t), t)a(t) defines an optimal trajectory to a pointx (i.e.,u(x) = J (x,a(·),y0)), then
the functionu(y(t)) is strictly increasing fort ∈ [q(y0), u(x)].

LEMMA 2.7 Consider a point̄x ∈ Ω. Then, for any constantC such thatq2 6 C 6 u(x̄), the
optimal trajectory forx̄ will intersect the level setu(x) = C at some point̃x. If x̄ is distanced1
away from that level set, then

‖x̃ − x̄‖ 6 d1Υ. (14)

Proof. Briefly, if x̃ is too far, thenx̄ can be reached more quickly starting fromx̂, the closest point
to x̄ such thatu(x̂) = C. 2

REMARK 2.8 A better (but implicit) bound is

‖x̃ − x̄‖ 6 d1Υ‖x̃−x̄‖(x̄).

An explicit approximation of the above can be derived recursively:

‖x̃ − x̄‖ 6 d1K,

whereK is the limit of the non-increasing sequence

K0 = Υ, Kn+1 = Υd1Kn(x̄).

An additional improvement is achieved by noting that, in computing the anisotropy coefficient,
f1(y) can be minimized inBd1 instead ofBd1Kn .
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LEMMA 2.9 Consider an unstructured (triangulated) meshX of diameterh on a simply-connected
domainΩ. Consider a simple closed curveΓ ⊂ Ω and suppose it is “well-resolved” byX, i.e., for
any pointx onΓ , there exists a mesh pointx̂ insideΓ such that‖x− x̂‖ < h. Supposēx is a mesh
point insideΓ such thatu(x̄) 6 u(xi) for all other mesh pointsxi ∈ X insideΓ . Then the optimal
trajectory forx̄ will intersectΓ at some point̃x such that

‖x̃ − x̄‖ 6 hΥ. (15)

Proof. Briefly, if x̄ is too far fromx̃ ∈ Γ , then reaching from̃x a nearby mesh point̂x insideΓ
will take less time than it takes to reachx̄. This yieldsu(x̄) > u(x̂), a contradiction. 2

REMARK 2.10 The assumption thatΩ is simply-connected is only used to guarantee that an
optimal trajectory forx̄ will intersectΓ .

In addition, a tighter implicit bound can be obtained by replacingΥ by ΥR(x̂) for R =

‖x̃ − x̄‖ + h. A recursive formula can be written by using the limit of the non-increasing sequence

K0 = Υ, Kn+1 = Υh(1+Kn)(x̄).

An infinitesimal version can be formally derived for the Optimality Principle (12), i.e., it is easy
to show that, wherever∇u is well-defined,u is a classical solution of the Hamilton–Jacobi–Bellman
PDE

maxa∈S1{(∇u(x) · a)f (x,a, u(x))} = 1, x ∈ Ω,

u(x) = q(x), x ∈ ∂Ω.
(16)

This PDE can be rewritten in the form

H(∇u, u,x) = ‖∇u(x)‖F

(
x,

∇u(x)

‖∇u(x)‖
, u(x)

)
= 1, (17)

whereF is a homogeneous Legendre transform of the speedf :

F(x,n, t) = max
a∈S1

{(n · a)f (x,a, t)}. (18)

A dual interpretation describesF as a “normal speed” of an anisotropically contracting front, whose
position at timet is the level setu(x) = t . (See [10] and [33] for a detailed treatment of the case
F = F(x,n).) Here we simply note that the HamiltonianH is Lipschitz-continuous, convex, and
homogeneous of degree one in the first argument.

If an optimal trajectory to a pointx exists, then it can be easily shown to coincide with a
characteristic of (16) passing through that point. If an optimal trajectory is not unique, then several
characteristics collide atx and∇u(x) is undefined. Thus, (16) usually does not have a smooth
solution, and a weak (Lipschitz-continuous) solution is not unique. The uniqueness is achieved by
defining aviscosity solution[8], imposing additional conditions on smooth test functions [7] as
follows:

A bounded, uniformly continuous functionu is aviscosity solutionof (16) if the following holds
for each smooth test functionφ ∈ C∞

c (Ω):

(i) if u− φ has a local minimum atx0 ∈ Ω then

max
a∈S1

{(∇φ(x0) · a)f (x0,a, u(x0))} − 1 > 0; (19)

(ii) if u− φ has a local maximum atx0 ∈ Ω then

max
a∈S1

{(∇φ(x0) · a)f (x0,a, u(x0))} − 1 6 0. (20)
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The Optimality Principle can be used to show that the value function is a viscosity solution. We
omit this proof here since the argument is virtually the same as for the autonomous control (see, for
example, [1, Chapter 4.2]). On the other hand, a usual proof of uniqueness assumes the monotonicity
of the Hamiltonian inu. We now show that this assumption is unnecessary in our setting.

LEMMA 2.11 There exists only one non-negative, bounded viscosity solutionu(x) of equa-
tion (16).

Proof. Let umax = maxΩ u(x) and useLH to denote the Lipschitz constant for the Hamil-
tonian (17).

Employing a Kruzhkov-type transform [19], we definev(x) = λ−1(1 − e−u(x)), whereλ is
chosen so that 0< λ < (eumaxLH )

−1. Then

v(x) < rmax = λ−1(1 − e−umax), u(x) = − log(1 − λv(x)), ∇u =
λ

1 − λv
∇v.

Define a new Hamiltonian

H̃ (p, r,x) = r + max
a∈S1

{(p · a)f (x,a,− log(1 − λr))}. (21)

By a standard argument (see, for example, [1, Proposition 2.2.5]),v is a viscosity solution of

H̃ (∇v(x), v(x),x) = λ−1, x ∈ Ω,

v(x) = λ−1(1 − e−q(x)), x ∈ ∂Ω,
(22)

if and only if u is a viscosity solution of (16).
For 06 r1 < r2 6 rmax,

H̃ (p, r2,x)− H̃ (p, r1,x) > (r2 − r1)− LH (log(1 − λr1)− log(1 − λr2))

= (r2 − r1)− LH (r2 − r1)
λ

1 − λr∗
= (r2 − r1)− LH (r2 − r1)λe

u∗

,

for somer∗ ∈ [r1, r2] and for the correspondingu∗ 6 umax. By the definition ofλ, C = 1 −

LHλe
umax > 0, and

H̃ (p, r2,x)− H̃ (p, r1,x) > C(r2 − r1) > 0.

Hence,H̃ (p, r,x) is monotone inr for r ∈ [0, rmax], and a standard argument (e.g., [1, Chapter
2.3]) guarantees the uniqueness of thus bounded viscosity solution for (22). This, in turn, implies
the uniqueness of the non-negative viscosity solution bounded byumax for (16). 2

We now use the fact thatF1 is positive to modify the usual definition of the viscosity solution. This
idea is fundamental for the numerical methods of Section 3.

LEMMA 2.12 DefineSφ,x1 = {a ∈ S1 | a · ∇φ(x) > ‖∇φ(x)‖(Υ (x))−1
}. An equivalent

definition of the viscosity solution for (16) can be obtained by usingS
φ,x0
1 instead ofS1 in the

inequalities (19) and (20).

Proof. We first observe that, sincef > F1 > 0, if the maximum is attained for somea = a1, then
a1 · ∇φ(x0) > 0. Letb = ∇φ(x0)/‖∇φ(x0)‖. Sincea1 is a maximizer, we have

(∇φ(x0) · a1)f (x0,a1, u(x0)) > (∇φ(x0) · b)f (x0, b, u(x0)) > ‖∇φ(x0)‖f1(x0).
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Therefore,

a1 · ∇φ(x0) > ‖∇φ(x0)‖
f1(x0)

f (x0,a1, u(x0))
> ‖∇φ(x0)‖(Υ (x0))

−1. 2

REMARK 2.13 The above lemma practically establishes an upper bound on the angle between
the characteristic of the PDE (16) and the gradient line of its viscosity solution. Indeed, if∇u(x0)

is well-defined, then∇u(x0) = ∇φ(x0), anda1 · ∇u(x0) > ‖∇u(x0)‖Υ
−1(x0). If γ is the

angle between∇u(x0) anda1, then cos(γ ) > 1/Υ (x0). We note that this result is consistent with
what was derived for the case of autonomous control in [30] with one caveat: since the problem
considered in [30] is a min-time-from -boundary, a similar upper bound is established there on the
angle between∇u(x0) and−a1.

Finally, we observe that the problem considered in this section can be alternatively interpreted
as an implicitly defined autonomous control problem. In particular, supposing thatu(x) is a known
value function for the problem (3), we could define the new dynamics by

y′(t) = f (y(t),a(t), u(y(t)))a(t),

y(τ = q(y0)) = y0 ∈ ∂Ω,
(23)

and letu∗(x) be the value function for this system. It is easy to see thatu∗
= u from the uniqueness

of the viscosity solution to the PDE

‖∇u∗(x)‖F

(
x,

∇u∗(x)

‖∇u∗(x)‖
, u(x)

)
= 1 (24)

corresponding to the system (23). However, Corollary 2.3 yields a more precise result: the
characteristics of the PDEs (16) and (24) also coincide. This is a much stronger relation. For
example, the viscosity solutionu∗∗ of the eikonal PDE

‖∇u∗∗(x)‖F

(
x,

∇u(x)

‖∇u(x)‖
, u(x)

)
= 1

also coincides withu(x), but the characteristics of this PDE are generally quite different (in fact,
for this PDE they coincide with the gradient lines ofu(x)).

3. Min-time-from-boundary: Ordered Upwind Method

The non-iterative method presented below is a generalization of the semi-Lagrangian OUM for the
autonomous control introduced in [29]; a detailed discussion of earlier Dijkstra-like methods for the
eikonal case can also be found in [30].

OUMs are typically defined on an unstructured meshX discretizingΩ. We refer to a pair of
mesh pointsxj ,xk as “adjacent” whenever both of them are vertices of the same triangle inX. We
assume that the meshX is such that

• the mesh-diameter ish, i.e., if mesh pointsxj andxk are adjacent then‖xj − xk‖ 6 h;
• ∂Ω is “well-resolved”, i.e., for eachy ∈ ∂Ω there exists a mesh pointxi ∈ Bh(y) ∩ ∂Ω.
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For notational convenience, we define the “mesh degeneracy” coefficientη = h/hmin, wherehmin
is the smallest triangle height inX.

The general idea behind OUMs is to allow thespace-marchingfor the boundary value
problems—not unlike explicit forward-time marching for initial-boundary value problems. The
solution can be “marched” (on the mesh) from the boundary using the characteristic information,
and a new (smaller) boundary value problem can be posed using the newly computed “boundary”—
the current divide between the already-computed (Accepted) and not-yet-touched (Far) mesh
points. The mesh discretization of that “new boundary” is referred to asAcceptedFront; the not-
yet-Acceptedmesh points which are adjacent to theAcceptedFrontare designatedConsidered.
A tentative value (V (x)) can be computed for eachConsideredmesh pointx under the assumption
that its characteristic intersects theAcceptedFrontin some vicinity of that mesh point (designated
NF(x)). All Consideredpoints are sorted by their tentative valuesV , and a typical step of the
algorithm consists of picking theConsideredx̄ with the smallestV and making itAccepted
(U(x̄) := V (x̄)). This operation modifies theAcceptedFront(x̄ in, other mesh points possibly
out), and causes a possible recomputation of all the not-yet-Acceptedmesh-points near̄x.

We note that Lemma 2.9 provides a practical upper bound on a distance between the smallest
Consideredmesh pointx̄ and the intersection of its characteristic with theAcceptedFront; see also
Figure 1. Furthermore, we can usehΥd(x) for any positive fixedd > hΥ ; see also Remark 2.10.

x

x

x
xi

x

k

j

Far Away

Accepted

Accepted Front

Considered

FIG. 1. TheAcceptedFrontand theConsideredmesh points. Segments ofAF are shown in bold. The optimal trajectory to
x̄ cannot intersectAF too far away fromx̄, for if ‖x̃ − x̄‖ > hΥ , thenu(xi ) < u(x̄).

Given a pair of adjacentAcceptedFrontmesh pointsxj , xk, we define an update formula for
V (x) under the assumption that an optimal trajectory tox intersectsxjxk at some point̃x and then
follows a straight line tox :

x̃ζ = ζxj + (1 − ζ )xk;

∆(ζ) = ‖x̃ζ − x‖;

aζ =
x − x̃ζ

∆(ζ)
;

U(x̃ζ ) = ζU(xj )+ (1 − ζ )U(xk);

Vxjxk = min
ζ∈[0,1]

{
∆(ζ)

f (x,aζ , U(x̃ζ ))
+ U(x̃ζ )

}
.

(25)

This semi-Lagrangian discretization is related to the numerical schemes developed in [20], [21], and
[14]. However, we emphasize thatVxjxk (x) is defined even ifxj andxk are not adjacent tox.
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Assuming the existence of a locally smooth (sub)optimal trajectory and the smoothness of the
value function on the segmentxjxk, it is easy to show that the local truncation error isO(h2). The
first of these assumptions is satisfied if the setf (x, S1, t) is convex for allx ∈ Ω, t ∈ R+,0; see [1].
The second assumption might be wrong near the shocks (where∇u is discontinuous), but this does
not affect the global convergence since the characteristics might run into a shock, but never originate
from the shock [30].

We now briefly state the algorithm and refer to [30] for the implementation details and possible
optimizations.

Semi-Lagrangian Ordered Upwind Method

All the nodes are divided into three classes:Far (no information about the correct value ofU
is known), Accepted(the correct value ofU has been computed), andConsidered(adjacent to
Accepted). TheAcceptedFrontis defined as a set ofAcceptedmesh points, which are adjacent to
some not-yet-accepted (i.e.,Considered) mesh points. Define the setAF of the line segmentsxjxk,
wherexj andxk are adjacent mesh points on theAcceptedFront, such that there exists aConsidered
mesh pointxi adjacent to bothxj andxk. For eachConsideredmesh pointx we define the “near
front” as the part ofAF “relevant tox”:

NF(x) = {xjxk ∈ AF | ∃x̃ onxjxk such that‖x̃ − x‖ 6 hΥd(x)}.

1. Start with all the mesh points inFar.
2. Move the mesh points on the boundary (y ∈ ∂Ω) to Accepted(U(y) := q(y)).
3. Move all the mesh pointsx adjacent to the boundary intoConsideredand evaluate the tentative

values

V (x) := min
xjxk∈NF(x)

Vxj ,xk (x). (26)

4. Find the mesh point̄x with the smallest value ofV among all theConsidered.
5. Movex̄ to Accepted(U(x̄) := V (x̄)) and update theAcceptedFront.
6. Move theFar mesh points adjacent tōx into Consideredand compute their tentative values by

(26).
7. Recompute the value for all the otherConsideredx such thatx̄ ∈ NF(x):

V (x) := min{V (x), min
x̄xi∈NF(x)

Vx̄,xi (x)}. (27)

8. If Consideredis not empty then go to 4.

Efficiency. This results in a “single-pass” method since the maximum number of times each mesh
point can be re-evaluated is bounded by the number of mesh points in thehΥd neighborhood of that
point. Thus, this method formally has the computational complexity ofO(Υ 2M log(M)). Moreover,
since theAcceptedFrontis approximating the level set of the viscosity solutionu, as the mesh
is refined, the complexity will behave asO(ΥM log(M)). The above computational complexity
bounds are derived for the implementation that uses heap-sort data structures [30].

Convergence. The proof of the following convergence result is omitted since it is virtually the
same as for the autonomous case [30]:
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PROPOSITION3.1 Let {Xr} be a sequence of meshes and{U r} be a sequence of approximate
solutions obtained onXr as described above. If{Xr} is such that∂Ω remains “well-resolved”,
hr → 0, andηr < η asr → ∞, thenU r uniformly converge to the viscosity solution of (16) as
r → ∞.

The numerical evidence indicates that theL∞ error decreases asO(h); this corresponds to the
accuracy of the update formula (25) and the piecewise-smoothness of optimal trajectories in the
examples considered.

3.1 Min-time-from-boundary: numerical examples

We consider a “min-time control from a point” problem with the state constrainty(t) ∈ Q =

(0,100) × (0,100). We letΩ = Q \ {(x0, y0)} and selectq(x0, y0) = 0, andq = +∞ on ∂Q.
A tourist is moving through a rough landscape modeled by the graph of

g(x, y) = 45 sin

(
πx

50

)
sin

(
πy

50

)
, (x, y) ∈ [0,100]× [0,100].

Our goal is to compute the min-time for him to reach each point(x, y, g(x, y)) starting from
(x0, y0, g(x0, y0)); see Figure 2.
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FIG. 2. The test surface (left) and the geodesic circles on that surface projected onto thexy plane (right).

We will further assume that the tourist’s speed on the surface is affected by the inclination of
that surface along his trajectory. Given a direction of motiona ∈ S1 for the tourist’s projection in
the xy plane, we can express the angleθ between the direction of motion on the surface and the
positive direction ofz-axis:

θa =
π

2
− arctan(∇g(x, y) · a).

If φ(θa) is an inclination-factor andψ(t) is a time-factor, then the resulting formula for the
speed of tourist’s projection in the plane is

f (x, y,a, t) = φ(θa)ψ(t)(1 + (∇g(x, y) · a)2)−1/2.
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In the following experiments we have chosen

φ(θ) = sin6(θ)+ 0.1.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

FIG. 3. The min-time-from-(x0, y0) function forψ(t) = e−λt : λ = 0.0 (top left),λ = 0.001 (top right), andλ = 0.005
(bottom). The level sets are plotted at the same values in all three cases. The point(x0, y0) is indicated by an asterisk.

Figure 3 shows the level sets of the value function for a time-monotone case2

ψ(t) = e−λt

2 The first example (Figure 3) was previously numerically studied in [31].
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FIG. 4. The min-time-from-(x0, y0) function for a periodicψ(t).

and for (x0, y0) = (50,50). The time-dependence here can be interpreted as an impact of the
tourist’s tiredness on his ability to move.

Our second example uses an oscillating

ψ(t) =

[
1 +

1

2
sin

(
tπ

20

)]−1

,

thus modeling the dependence on some time-periodic factors (e.g., weather, mood-swings, etc).
Figure 4 shows the level sets of the value function for two different choices of(x0, y0).

4. Time-dependent case: min-timeto the boundary

Suppose the dynamics on an open bounded domainΩ ⊂ R2 is given by

y′(s) = f̂ (y(s),a(s), s)a(s),

y(t) = x ∈ Ω,
(28)

wherex is the starting point,t is the starting time,a(·) ∈ A is the control, andf̂ (y,a, t) is the
speed of moving throughy in the directiona at the timet . As in the autonomous case, we define
the time-to-boundary as

T (x,a(·), t) = inf{s > t | y(s) ∈ ∂Ω},

and the total time-cost associated with usinga(·) as

Ĵ (x,a(·), t) = T (x,a(·), t)+ q̂(y(T (x,a(·), t)), T (x,a(·), t)),

whereq̂ : ∂Ω × R → R+,0 is theexit time-penalty.
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The value function for this problem has to be time-dependent as well:

v(x, t) = inf
a(·)

Ĵ (x,a(·), t), (29)

sinceṽ(x) = v(x, t0) is generally insufficient to formulate an Optimality Principle.3

To mirror the min-time-from-boundary problem, we will again assume thatf̂ and q̂ are
Lipschitz-continuous and that the boundedness conditions (4) hold. In addition, we will assume
that q̂ + t is non-decreasing in time:

q̂(x, t1)− q̂(x, t2) 6 t2 − t1 for anyt1 6 t2 and anyx ∈ ∂Ω. (30)

Below we enumerate some properties of the value function that easily follow from the above
assumptions.

PROPOSITION4.1 1. v(x, t) is locally bounded, i.e., for any finite intervalI ⊂ R there exists a
constantCI such thatv(x, t) < CI onΩ × I ;

2. v(x, t) is Lipschitz-continuous onΩ × R;
3. If t2 > t1 > 0, thenv(x, t2) > v(x, t1) for all x ∈ Ω.

The standard Optimality Principle for this case [3] is

v(x, t) = inf
a(·)

v(y(∆t), t +∆t). (31)

The associated Hamilton–Jacobi–Bellman PDE is

vt (x, t)+ min
a∈S1

{(∇xv(x, t) · a)f̂ (x,a, t)} = 0, x ∈ Ω, t ∈ R,

v(x, t) = q̂(x, t)+ t, x ∈ ∂Ω, t ∈ R,
(32)

and it usually appears as aMayer problemin the context of finite-horizon optimal control; see,
for example, [1] and references therein. By a standard argument, this PDE has a unique viscosity
solution onΩ×R and that solution is the above-defined value functionv. The characteristics of the
PDE can be again interpreted as optimal trajectories and, if a characteristic emanates fromx0 ∈ ∂Ω

at the timet0, thenv(x, t) = t0 + q̂(x0, t0) for all points(x, t) on that characteristic; see Figure 5.
In order to compute the value function onΩ×[T1, T2], the PDE has to be solved onΩ×[T1, T3],

whereT3 > T2 is sufficiently large to ensure thatv(x, T2) can be computed for allx ∈ Ω; see
Figure 6. The problem is then naturally interpreted as a standard “backward time” finite horizon
problem with a terminal valuev(x, T3) = +∞ for all x ∈ Ω. The resulting Cauchy–Dirichlet
boundary value problem can be efficiently solved by higher-order semi-Lagrangian methods (e.g.,
[13]) or by a variety of Eulerian-framework finite-difference schemes. Such explicit time-marching
methods obtain the solution inO(MN) operations, whereM is the number of mesh points in the
meshX discretizingΩ andN is the number of time slices. We also note that anΥ -like coefficient
is implicitly embedded in this complexity estimate for the finite-difference methods since the CFL-
type stability conditions severely limit the “stable” ratio ofN to

√
M.

Even though a numerical solution on the entireΩ × [T1, T2] is outside the scope of our paper,
we now show how OUMs can efficiently approximate the individual level sets ofv(x, t).

First, suppose that we are only interested in an optimal control for a single point(x0, t0) ∈

Ω × R. LetΩ1 be an open bounded set such thatΩ ⊂ Ω1, and letΩ2 = Ω1 \ {x0}. We can now

3 An obvious exception is the case of a time-discounted control normally used in the infinite horizon problems. There,
f̂ (y,a, s) = f̂ (y,a)eλs , v(x, t) = e−λtv(x,0), andṽ(x) is therefore quite sufficient.
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FIG. 5. A spiraling characteristic emanating from(x0, t0) ∈ ∂Ω × R.

FIG. 6. Solving onΩ × [T1, T2]: the characteristics for all points inΩ × {T2} reach the boundary by the timeT3.

reduce the problem to the static PDE of Section 2 onΩ2 by setting

f (y,a, t) = f̂ (y,a, t); q(x0) = t0; q(y) = +∞ for all y ∈ ∂Ω1.

For a trajectory passing through a pointx,J (x,a(·),xs) < ∞ impliesxs = x0. Thus, forz ∈ Ω1,

u(z) is the earliest time whenz can be reached fromx0, and

v(x0, t0) = min
z∈∂Ω

{u(z)+ q̂(z)}.

If z is a minimizer andy(t) is an optimal trajectory fromx0 to z, thenv(y(t), t) = u(z) + q̂(z)
for all t ∈ [t0, u(z)].

The above procedure effectively yields the characteristic(s) of (32) passing through(x0, t0) and
takesO(ΥM logM) operations. The resuling optimal trajectory for(x0, t0) is globally optimal—
this is in contrast with “local” methods (e.g., based on Pontryagin’s maximum principle) which
yield only locally optimal controls and trajectories. Nevertheless, since the computational cost of
the latter methods is independent of the dimension of state-space, the described procedure would
not be worthwhile just to recover those characteristic(s) of (32) that pass through a single point in
Ω × R. Fortunately, a similar construction can be used to recoverall characteristics lying in the
same level set ofv(x, t) without increasing the computational cost.4

4 As pointed out by Sethian and Shan [28], if the time is reversed, the time-independent min-time-from-boundary value
function of Section 2 can be interpreted as an answer to a different question:What is the latest time when one can depart
from eachx ∈ Ω and still leaveΩ before the specified timeT ? Our discussion here is somewhat more general since in [28]
the setting is limited to isotropic time-optimal control problems with zero exit/entrance time-penalties.
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FIG. 7. A level set ofv(x, t) and its intersection with∂Ω × R.

OBSERVATION 4.2 Since v(x, t) is constant along the characteristics, two characteristics
emanating from the points(x0, t0) and (x1, t1) on ∂Ω × R can collide only ift0 + q̂(x0, t0) =

t1 + q̂(x1, t1). The assumption on monotonicity ofq̂ + t implies that every level set ofv(x, t) in
Ω × R is a graph of some function overΩ and transversally intersects the boundary∂Ω × R; see
Figure 7. We emphasize that this observation is valid even when the speedf̂ is not a monotone
function of time. [Moreover, even ifF1 = 0 and the reachable set is not the entireΩ, each level set
of v will be a (possibly infinite) surface emanating from a single curve of boundary conditions on
∂Ω × R.]

We now use OUMs to reconstruct the level setv(x, t) = T inΩ×R by solving a min-time-from-
boundary problem onΩ. For everyy0 ∈ ∂Ω, letτ(y0) be the time such thatτ(y0)+q̂(y0, τ (y0)) =

T and let
f (y,a, t) = f̂ (y,−a, T − t) for all y ∈ Ω, a ∈ S1, t ∈ R;

q(y0) = q̂(y0, τ (y0)) for all y0 ∈ ∂Ω.

THEOREM 4.3 Letu(x) be the value function of the min-time-from-boundary problem specified
above. Then

u(x) = t ⇔ v(x, T − t) = T .

Proof. Consider a particular controla(·) and a starting pointy0 ∈ ∂Ω such that the corresponding
trajectoryy(·) passes throughx. Let ta = J (x,a(·),y0) and define

ŷ′
(s) = f̂ (ŷ(s), â(s), s)â(s),

ŷ(T − ta) = x,
(33)

whereâ(s) = −a(T − s) and

T − ta 6 s 6 T − q̂(y0, τ (y0)) = τ(y0).

Then, by Gronwall’s lemma,̂y(s) = y(T − s) and

Ĵ (x, â(·), T − ta) = τ(y0)+ q̂(y0, τ (y0)) = T .

Thus,v(x, T − ta) 6 T for ta arbitrarily close tou(x), yieldingv(x, T − u(x)) 6 T .

Let t1 be such thatv(x, t1) = T . (Note thatt1 > T − u(x) by the monotonicity ofv.) If â(s) is
an optimal control, then

v(x, t1) = Ĵ (x, â(·), t1) = T .
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Thus, ify0 = ŷ(T (x, â(·), t1)), thenτ(y0)+ q̂(y0, τ (y0)) = T anda(s) = −â(T − s) is a valid
control foru(x). Hence,

u(x) 6 J (x,a(·),y0) = T − t1.

Therefore,t1 = T − u(x), which completes the proof. 2

REMARK 4.4 The above proof relies on the existence of an optimal control forv(x, t1). A more
general proof can be constructed: anε-suboptimal trajectorŷy(·) for v(x, t1) will reach somey0 ∈

∂Ω at the timeτ1 such that

τ(y0)+ q̂(y0, τ (y0)) 6 τ1 + q̂(y0, τ1) 6 τ(y0)+ q̂(y0, τ (y0))+ ε.

Reparameterizing this trajectory backwards in time and starting along it at the timeq̂(y0, τ (y0)),
we obtain foru(x) a valid trajectory whose cost is close toT − Ĵ (x, â(·), t1) by the Lipschitz-
continuity off̂ andq̂.

We note that OUM used on the above min-time-from-boundary problem yields all the
characteristics of (32) inside the level setv(x, t) = T (and thus the optimal trajectories for all
the points in that level set) inO(ΥM logM) operations. In addition, we list two special problems
for which our approach should be particularly useful:

1. Suppose that an additional/independent starting costK(x, t) is incurred and the goal is to choose
the starting position/time(x, t) to minimizeK while ensuring that we can exitΩ before some
fixed timeT (i.e.,v(x, t) 6 T should be satisfied). Ifu(x) is defined as in Theorem 4.3, thenK
has to be minimized over the set{(x, t) | x ∈ Ω, 0 6 t 6 T − u(x)}.

2. More generally, it is often necessary to find a control/trajectory satisfying multiple integral
constraints (a recent discussion of this problem can be found in [22]). In the non-autonomous
case, if one of the constraints is based on the time-to-exit, the above techniques will allow one
to restrict the computational domain to a smaller subset ofΩ × I before checking whether other
constraints can be satisfied.

We also hope that similar “reduction-to-static-case” methods might be applicable for more general
time-dependent problems.

5. Conclusions

We have analyzed a min-time-from-boundary non-autonomous control problem and interpreted its
value function as the unique viscosity solution of the Dirichlet problem for a static Hamilton–
Jacobi–Bellman PDE. We have described a non-iterative semi-Lagrangian Ordered Upwind Method
to obtain a first-order numerical approximation on the meshX in O(M logM) operations, where
M is the number of mesh points. We have illustrated our method with several non-autonomous
time-optimal control problems.

We note that our approach is, in some sense, the opposite of a common prior technique, which
converted a Dirichlet problem foru(x) into a Cauchy problem for a functionψ(x, t) with the
property that

u(x) = t ⇔ ψ(x, t) = 0

(see, for example, [23] or [27] and references therein). Supposingu = q is constant on the boundary,
ψ(x,0) was initialized as a signed distance to∂Ω on some bigger domainΩ1 and the level set
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methods [24] were used to evolveψ forward in time. We believe that the original motivation for
such an approach was the absence of computationally efficient methods for non-linear hyperbolic
boundary value problems. In this paper, we have presented an alternative—a fast non-iterative
solver—for the case when the HamiltonianH is convex and homogeneous of degree one in the first
argument. The advantage, of course, is the reduced dimensionality of the computational domain
and the overall reduction of the time required to obtain a solution on a given grid. Moreover, in
Section 4 we have demonstrated that fast boundary value solvers can also be used to efficiently
obtain individual level sets of the viscosity solution to a particular time-dependent HJB PDE.

We believe that the general idea of space-marching is applicable to a much wider class of PDEs.
We note that OUMs were already used to solve quasi-variational inequalities in the context of
hybrid control [31], a linear Liouville PDE arising in the context of seismic imaging [16], and,
more recently, a special class of quasi-linear PDEs arising in invariant manifold approximations
[15].

The presented idea of a purely static reformulation is largely independent of the simplifying
assumptions (e.g.,F1 > 0) used here to obtain a simple and efficient numerical method. Extending
OUMs to handle the general non-small-time-controllable dynamics and non-holonomic constraints
will make the method applicable to a wide range of realistic problems in optimal control and
robotic navigation. Other topics of current research include extensions of OUMs to non-convex
Hamiltonians and design of provably higher-order non-iterative methods.
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