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We consider two different non-autonomous anisotropic time-optimal control problems.

For the min-time-from-boundary problem, we show that the value function is recovered
as a viscosity solution of a static Hamilton—Jacobi—-Bellman partial differential equation
H(Vu(x),u(x),z) = 1. We demonstrate that the space-marching Ordered Upwind Methods
(introduced in[[29] for the autonomous control) can be extended to this non-autonomous case. We
illustrate this approach with several numerical experiments.

For the min-time-to-boundary problem, where no reduction to a static PDE is possible, we show
how the space-marching methods can be efficiently used to approximate individual level sets of the
time-dependent value function.

1. Introduction

Min-time autonomous control problems are among the most studied in the control literature (see,
for example, [[1], [2], [12], and references therein.) Time-dependent (non-autonomous) control
problems can be easily reduced to the above case by adding the time as an extra dimension to the
system-state; however, such a reduction can be expensive from the practical point of view since it
also increases the dimensionality of the computational domain. The goal of this paper is to treat non-
autonomous control problems directly—by working in the original state-space whenever possible.
In discussing the properties of the corresponding value functions we provide detailed proofs only
when there is a significant difference from the standard arguments employed in the autonomous-
control setting.

We consider two different anisotropic non-autonomous time-optimal control problems on an
open bounded domdi2 ¢ R2.

In the first problem, the value functionis the minimum time for driving the vehicle te € 2
starting from any poinyy € 952, and enduring the entry time-penaliyyy). Normally, a value
function for a non-autonomous control problem is also time-dependent. In this case, we demonstrate
that, despite the time-dependence of the vehicle’s dynamics, a time-independent value function
u(x) can be defined, and thatx) can be recovered as the unique viscosity solution for a static
Hamilton—Jacobi—-Bellman PDE of the form

, V”—(“"),u(m)) 1 zeq,
Vu@
u(@) = (@), 2 e i,

H(Vu,u,x) = IIVu(oc)IIF(Sc (1)

This interpretation serves as a basis for the computational methods for hybrid coritrdl in [31] and is
also at the core of the recent work by Sethian and Shan on non-autonomous isotropic [control [28].

t .
E-mail: vliad@math.cornell.edu
1 For the sake of notational clarity we restrict our discussicR4pall results can be restated f&f and on manifolds.
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However, to the best of our knowledge, the theoretical aspects of this re-casting have not appeared
elsewhere and thus we are covering them in detail in Sejction 2.

We show that additional controllability assumptions yield an upper bound for the angle between
the characteristics of the PDE| (1) and the gradient lines of its viscosity solution. In a joint work
with Sethian[[29,_30], this observation was used to design non-iterative Ordered Upwind Methods
(OUMs) for the autonomous control problems, later extended to the non-autonomous and hybrid
control in [31]. In Section |3 we briefly describe these methods, and derive sharper (localized) upper
bounds for the characteristic-gradient angles to improve the computational efficiency. The approach
is illustrated with several min-time-from-boundary exampl¢s if 3.1.

In the second problem, the value functioiis the minimum time needed for a vehicle to leave
the domain if it starts at: € §2 and endures an exit time-penaltyon the boundary. For this min-
time-to-boundary problem, the time-dependent dynamics corresponds to a time-dependent value
functionv(zx, ¢) even if the exit time-penalty is stationary. (The optimal path for reachiag
from x truly depends on the starting time@ Under a standard set of assumptiong;, ) can be
obtained as the unique viscosity solution for a Hamilton—Jacobi—Bellman PDE

ve(x,t) — H(—Vyv(z,t),t,2) =0, xe,tek, @)
vz, t) =gz, 1) +1t, redfR, teR.

This interpretation is fairly standard and we discuss it only briefly in Seftion 4. We then proceed to
demonstrate that, ifg(x, t) + ¢) is a monotone function of time, then any individual level set of
v(x, t) can be computed separately by converting to a dual (min-time-from-boundary) problem and
solving the latter using OUMs.

We note that efficient methods for static Hamilton—Jacobi PDEs have recently become an
active research area. Alternatives to OUMs include Dijkstra-like methods based on cell-mapping
techniquesl[1/7] or bisimulations![5] 6], time-marching methods based on paraxial approximations
[25,[2€], and alternating-direction Gauss—Seidel relaxations! [9, 4], which also served as the basis
for the recent family of “fast sweeping methods” [34] 36], 18]. To the best of our knowledge, these
techniques have been used only for Hamiltonians depending directliyuobut not onu itself.
However, we believe that it should also be possible to extend them to the problems studied here,
and we note that the control-theoretic analysis in Secfipns Zjand 4 is largely independent of our
numerical approach.

We conclude by discussing the limitations of our method and possible future extensions in
Sectior( 5.

2. Time-dependent case: min-timdrom the boundary

Given an open bounded domaih c R?, the goal is to find the minimum time necessary to reach a
pointx € 2 starting from any point 0as2. The vehicle’s dynamics if is defined by

y'(1) = fy@), a(),Ha(t),

3
y(t = 4(yo)) = yo € D2, ®)

whereg : 92 — R, o is anentry time-penaltyy(z) is the vehicle’s position at the time €
[7,400), f : £2 x S1 x Ry o0 = R4 g is the speed of motion in the chosen directwf), and
A = {measurable : R, g — S1} is the set ofadmissible controlsUnless otherwise explicitly
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specified, we will assume that bofhandg are Lipschitz-continuous and that there exist constants
F1, F», g1, g2 and continuous functiong, f> : 2 — R, such that

0<A< AW < fy.a,t) < foly) S Fa<oco Yye R2,Vace S,V eRyp;

<
4
0<q1<qy) <g2<00 Vyedf. “

For notational convenience, we will also define tin@sotropy coefficient” = Fy/Fy. Strictly
speaking, sincé and F» are global bounds, the coefficient reflects the measure of anisotropy
only in the homogeneous domain (i.e., whégx, a, t) = f(a, t)). In what follows, we us&” to

derive the worst-case-scenario computational complexity of the algorithms. In local estimates, we
will further use two more relevant constantseighborhood anisotropy coefficient

f2(y1)

Tu(x) = B ,
Y1,Y2€B4(x)NS2 S1(y2)

whereB,; (x) is a ball of radius/ centered at, and alocal anisotropy coefficient

_ fo(®)
fi(x)
We now define the total time/cost for every trajectory

T (x)

= lim 7, .
d—0 d(m)

min{t € [t, +00) | y(t) = x}, if y(-) passes througi,
otherwise.

J (@, a(), yo. 7) = (5)

We will often omit the last argumentif y, € 92 and the starting time is = ¢(yg). We define a
value function forr € £2 as follows:

w@= it J@a). o). (6)

REMARK 2.1 The min-time problem is among the most classical in control theory. A detailed
theoretical discussion and extensive bibliography can be found, for examglé, in [1]. Here we note
several differences between our formulation and the usual setting.

1.

The problem is normally formulated for an autonomous dynamical system. To treat our case in
that framework, one would have to switchdce= (y, ) or, equivalently, to define a value function

u(z, v), wherer is the (re)starting time. Indeed, for the problem considered in Section 4, this
cannot be avoided. Here, however, the optimality condition (and the corresponding PDE) can be
derived without raising the dimensionality. The existence of efficient non-iterative methods for
the static PDE (e.g., [30]) makes such an interpretation preferable from the computational point
of view.

. The assumption§](4) guarantee the continuity of the value functish even in the presence of

state-constraintsfy > 0 yields both Soner’s tangentiality along the boundary of the constraint
set (as in[[3R]) and the local controllability neaf2 (as in [2], for example). This model is
admittedly restrictive since many realistic problems in control theory and robotics do not satisfy
the small-time controllability requirement. A much more general treatment is possible, but we
choose to ignore it to concentrate on the key idea (i.e., derivation of a static PDE for the value
function of a non-autonomous problem).

. As discussed in [30], the Ordered Upwind Method also reliegos 0, but this restriction can

often be relaxed in practice. For example, if the value funati@) is Lipschitz-continuous and
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L, isits Lipschitz constant, then the anisotropy coefficient can be similarly defirgéd-a4.,, F»

even if F1 = 0. (Note thatF;, > 0 impliesL, < Fl‘l.) As shown in[[35], this is sufficient to
produce alternative proofs for Lemnfas]2.7 and]2.12, justifying the use of the method described
in Sectior{ B in a more general case.

4. We do not assume convexity of the gé&tc, S1, r), thus the optimal control need not exist (though
u(x) is still well defined). To simplify the presentation, we will somewhat loosely refer to the
optimal controls and trajectories. The corresponding properties can be formulated and proven for
thee-suboptimal controls and trajectories as well.

The following lemma is the reason why a static PDE can be derived for this value function.
LEMMA 2.2 Suppose a trajectory defined By (3) passes thraugh 2. Let 71 be such that
q(yp) <11 < J(z, a(-), yg) and letz1 = y(11). Define a trajectory
§'(0) = f@@), a@), Ha(d),
Y(u(z1) = 1, (7)

wherea(-) is chosen so thaj(7) = y(z). Then

J (@, a(), z1, u(x1)) < J(x, a(-), yo),
and the above inequality becomes striat it> u(x1).

Proof. First, we note that if the speefiwere assumed decreasing in time, the lemma would simply
follow from the fact that«(x1) < J(x1, a(-), yo) = t1. However, the result holds evenffis not
monotone.

Definef by

Py = fy@), a@), i)
fly@®),a@),)
i(t1) = u(x). 9)

Under the assumptions|(4), the ODE (8) has a unique and strictly increasing solution for any initial
conditions. Since(r) = ¢ also satisfiesﬂB) antlry) < 11, it follows that

fort > 1; 8)

)<t forallt > 1. (10)

We also note that, sindér) is strictly increasing, its inverse?) is well defined as long ag(t) € £2.
For a system defined by

¥ (1) = f(y( D), alt (@), DHa(t (@),

11
fu(@) = a1 )

we obtain
d . .
FACIOR 9(D) = fy@), a@t), Ha(t) — f(y(), at), Ha ()i (1) =0.

Sincey(r) = §(7), the ODE[(11) can be rewritten ag (7) by settin@) = a(z(7)). Thus,
j(xv a’()v 1, M(ml)) = f(j(mﬂ a()’ yO)) g j(ma a()’ yo)
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Finally, if u(x1) < t1, then the non-intersection of integral curves of the ODE (8) guarantees that
f(t) < tforallt > t1, yielding

J (@, a(), x1, u(x1)) = 1(J (®, a(-), yg)) < J (@, a(-), yo). O
COROLLARY 2.3 If y(-) defined by[(B) is a time-optimal trajectory to reactirom the boundary,
thenu(y(r1)) =t for all 11 € (q(yo), u(x)).
Proof. First,u(y(f1)) < r1 simply by the definition of the value function. dfix1) < 1 for some
x1 = y(t1), then a strictly better trajectory to reaahcould be constructed by using an optimal

trajectory to reack1 and then continuing vig(-) as described in Lemnfia 2.2. This would contradict
the assumption thaj(-) is time-optimal. O

The following two versions of the optimality principle can be easily proven using the above lemma.

LEMMA 2.4 (Fixed-Time Optimality Principle) Let(x) be the minimum distance to the boundary
9£2. Then for every poink € 2 and for anyAt < d(x)/ Fa,

u(x) = yoeaglfl(_)eA{At +u(y(J (z, a(), yo) — A1)}, 12)

wherey(-) is a trajectory passing through the painind corresponding to a chosen cont¢l).

LEMMA 2.5 (Fixed-Boundary Optimality Principle) Consider an open connecte@set 2 and
an arbitrary pointc € £21. Then

I/t($) = yoeaﬂlpfa(~)EAj(w, 0,('), Yo, u(yO)) (13)

We now enumerate several properties of the value funetien (the proofs are similar to those
for the time-optimal autonomous control [n [30]).

LEMMA 2.6 The value function:(x) is Lipschitz-continuous and bounded oh. If y'(r) =
f @), a(), t)a(tr) defines an optimal trajectory to a point(i.e., u(x) = J(x, a(-), yg)), then
the functionu(y(z)) is strictly increasing for € [¢(yq), u(x)].

LEMMA 2.7 Consider a poink € £2. Then, for any constan® such thaty, < C < u(x), the

optimal trajectory forz will intersect the level set(x) = C at some pointe. If z is distanced;
away from that level set, then

[z — 2| < diT. (14)
Proof. Briefly, if Z is too far, thent can be reached more quickly starting framthe closest point
to z such thau(z) = C. |

REMARK 2.8 A better (but implicit) bound is
[ — x| < diYz-z) ().
An explicit approximation of the above can be derived recursively:
|z —z| < 1K,
whereK is the limit of the non-increasing sequence
Ko =7, Knt1 = Tak, ().

An additional improvement is achieved by noting that, in computing the anisotropy coefficient,
f1(y) can be minimized irB,, instead ofBy x, .
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LEMMA 2.9 Consider an unstructured (triangulated) m¥ssf diameter: on a simply-connected
domains2. Consider a simple closed curyeC §2 and suppose it is “well-resolved” by, i.e., for
any pointx on I, there exists a mesh poiftinsideI” such thatjx — | < h. Supposex is a mesh
pointinsidel” such thai«(x) < u(«;) for all other mesh pointg; € X insidel". Then the optimal
trajectory forz will intersectl” at some poinfe such that

I1Z — &|| < hT. (15)
Proof. Briefly, if & is too far fromz € I, then reaching fronk a nearby mesh poiri inside I”
will take less time than it takes to reagh This yieldsu () > u(x), a contradiction. O

REMARK 2.10 The assumption tha® is simply-connected is only used to guarantee that an
optimal trajectory fore will intersectr”.

In addition, a tighter implicit bound can be obtained by replaciigoy Y (x) for R =
|z — x| + h. A recursive formula can be written by using the limit of the non-increasing sequence

Ko=7, Kuy1=Tha+k,)(T).

An infinitesimal version can be formally derived for the Optimality Principlg (12), i.e., itis easy
to show that, wherevevu is well-definedy is a classical solution of the Hamilton—Jacobi—Bellman
PDE

MaXges, {(Vu(x) - a) f(z, a, u(x))} = 1, Tes2, (16)
u(x) =q(x), =xecais2.
This PDE can be rewritten in the form
\%
H(Vu,u, x) = IIVM(X)IIF(w, ﬂ, u(:l:)) =1, 17)
[ Vu(z)||
whereF is a homogeneous Legendre transform of the speed
F(z,n,t) =max{(n-a)f(z,a,1)}. (18)
acsSt

A dual interpretation describgsas a “normal speed” of an anisotropically contracting front, whose
position at timer is the level seti(x) = ¢. (Seel[10] and [33] for a detailed treatment of the case
F = F(x,n).) Here we simply note that the Hamiltoniah is Lipschitz-continuous, convex, and
homogeneous of degree one in the first argument.

If an optimal trajectory to a poink exists, then it can be easily shown to coincide with a
characteristic of (16) passing through that point. If an optimal trajectory is not unique, then several
characteristics collide at and Vu(x) is undefined. Thus[ (16) usually does not have a smooth
solution, and a weak (Lipschitz-continuous) solution is not unique. The uniqueness is achieved by
defining aviscosity solutior{8], imposing additional conditions on smooth test functidns [7] as
follows:

A bounded, uniformly continuous functienis aviscosity solutiorof (16) if the following holds
for each smooth test functigh € C2°(£2):

() if u — ¢ has alocal minimum atg € £2 then
;ne%i<{(v¢(:co) -a) f(zo, @, u(zo))} —120; (19)

(ii) if u — ¢ has a local maximum atg € £2 then

[ll%f{(v") (o) - @) f (xo, a, u(xo))} — 1< 0. (20)
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The Optimality Principle can be used to show that the value function is a viscosity solution. We
omit this proof here since the argument is virtually the same as for the autonomous control (see, for
example,[[1, Chapter 4.2]). On the other hand, a usual proof of uniqueness assumes the monotonicity
of the Hamiltonian in:. We now show that this assumption is unnecessary in our setting.

LEMMA 2.11 There exists only one non-negative, bounded viscosity soluti@h of equa-
tion (18).
Proof. Let umax = maxe u(x) and useLy to denote the Lipschitz constant for the Hamil-

tonian [I7).
Employing a Kruzhkov-type transformi [19], we definér) = 1~1(1 — e *@)), wherex is
chosensothat & A < (e“mxL ;)1 Then

v(x) < rmax=A"HL— e, u(@) = —log(l - hv(x)), V= - —V
— AV
Define a new Hamiltonian
ﬁ(p, r,x)=r-+ m%x{(p -a) f(x, a, —log(1l — Ar))}. (21)
acdy

By a standard argument (see, for example, [1, Proposition 2.2.8)a viscosity solution of

H(Vv(z), v(z), z) = 171, x € 2,

v@) =21 —e 1™ xedf, (22)

if and only if u is a viscosity solution of (16).
ForO0< r1 < r2 < rmax

H(p,r2, ) — H(p, r1, ®) > (r2 — r1) — Ly (log(1 — Ar1) — log(1 — Arz))

= (rz—r1) — Ly(ra — r)ae”’,

=(r2—r) —Lu(ra—r1) -

for somer* € [r1, r2] and for the corresponding® < umax. By the definition ofx, C = 1 —
Lygietmax > 0, and ~ ~

H(p,r2,x) — H(p,r1,x) > C(rp —ry1) > 0.
Hence,ﬁ(p, r, ) is monotone in- for r € [0, rmay, and a standard argument (e.@J, [1, Chapter

2.3]) guarantees the uniqueness of thus bounded viscosity solutidn for (22). This, in turn, implies
the uniqueness of the non-negative viscosity solution boundeghkyfor (16). |

We now use the fact thdf; is positive to modify the usual definition of the viscosity solution. This
idea is fundamental for the numerical methods of Se¢fion 3.

LEMMA 2.12 DefineSl’m ={a € S1 | a-Vo@) > ||[Vo(x)|(T(x))"1}. An equivalent
definition of the viscosity solution f06) can be obtained by usffﬁg”o instead ofS; in the
inequalities[(IP) and (20).

Proof. We first observe that, sincé > F1 > 0, if the maximum is attained for sonee= a1, then

a1 - Vo(xg) > 0. Letb = Vo (xg) /|| Vo (xo)]. Sincea; is a maximizer, we have

(Vo (o) - a1) f (o, a1, u(xo)) = (Vé(xo) - b) f (o, b, u(x0)) = Ve (xo)ll f1(x0).
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Therefore,

ay-Vé(xzo) > ||V¢($O)II& > [V (x0) (T (z0) L. O
f(xo, a1, u(xzo))

REMARK 2.13 The above lemma practically establishes an upper bound on the angle between
the characteristic of the PDE ([16) and the gradient line of its viscosity solution. Indééd(af)

is well-defined, thertVu(xzg) = Ve (xo), anday - Vu(xo) > ||[Vu(xo)||Y L(zg). If y is the

angle betweeWVu(xg) anday, then cogy) > 1/7 (xg). We note that this result is consistent with
what was derived for the case of autonomous contral i [30] with one caveat: since the problem
considered in[[30] is a min-tim&em -boundary, a similar upper bound is established there on the
angle betweeWu(xg) and—ayj.

Finally, we observe that the problem considered in this section can be alternatively interpreted
as an implicitly defined autonomous control problem. In particular, supposing ¢aats a known
value function for the problen[(3), we could define the new dynamics by

y'@) = fy@®), al®), u(y®)))a),

23
y(t = q(yp)) = yo € 952, (23)

and letu* (x) be the value function for this system. It is easy to seeithat u from the uniqueness
of the viscosity solution to the PDE

Vu*(x)

Vu (m)||F<w, W,

u(w)) =1 (24)
corresponding to the systeri {23). However, Corollary] 2.3 yields a more precise result: the
characteristics of the PDEF (16) arjd|(24) also coincide. This is a much stronger relation. For
example, the viscosity solutiari* of the eikonal PDE

Vu(x)

Vu (:c)||F(a:, Va@]’

u(:c)) =1
also coincides withe(x), but the characteristics of this PDE are generally quite different (in fact,
for this PDE they coincide with the gradient linesudfr)).

3. Min-time-from-boundary: Ordered Upwind Method

The non-iterative method presented below is a generalization of the semi-Lagrangian OUM for the
autonomous control introduced [n [29]; a detailed discussion of earlier Dijkstra-like methods for the
eikonal case can also be found|in|[30].

OUMs are typically defined on an unstructured méskliscretizings2. We refer to a pair of
mesh pointse;, z; as “adjacent” whenever both of them are vertices of the same triangle\ive
assume that the meshis such that

¢ the mesh-diameter is, i.e., if mesh points; andx; are adjacent thejw; — x|l < 7,
e 082 is “well-resolved”, i.e., for eacly € 952 there exists a mesh poimt € B, (y) N 3s2.
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For notational convenience, we define the “mesh degeneracy” coefficient/ hmin, wherehmin
is the smallest triangle height ixi.

The general idea behind OUMs is to allow tlspace-marchingfor the boundary value
problems—not unlike explicit forward-time marching for initial-boundary value problems. The
solution can be “marched” (on the mesh) from the boundary using the characteristic information,
and a new (smaller) boundary value problem can be posed using the newly computed “boundary”—
the current divide between the already-comput@dcéptedl and not-yet-touchedFér) mesh
points. The mesh discretization of that “new boundary” is referred tAceptedFrontthe not-
yet-Acceptedmesh points which are adjacent to tAeceptedFrontare designate€onsidered
A tentative value ¥ (x)) can be computed for ea€onsiderednesh pointc under the assumption
that its characteristic intersects tAeceptedFrontn some vicinity of that mesh point (designated
N F(x)). All Consideredpoints are sorted by their tentative valugs and a typical step of the
algorithm consists of picking th€onsideredx with the smallestV and making itAccepted
(U(x) := V(x)). This operation modifies thAcceptedFron{x in, other mesh points possibly
out), and causes a possible recomputation of all the noAgegptednesh-points neat.

We note that Lemmja 2.9 provides a practical upper bound on a distance between the smallest
Consideredmesh pointe and the intersection of its characteristic with theceptedFrontsee also
Figure[1. Furthermore, we can us&;, () for any positive fixed/ > h7; see also Remafk Z.]10.

P o Fa Away

Considered

- Accepted Front

® Accepted

FIG. 1. TheAcceptedFronand theConsideredmesh points. Segments afF are shown in bold. The optimal trajectory to
& cannot intersect F too far away fromg, for if |& — | > AT, thenu(x;) < u(x).

Given a pair of adjacemcceptedFronimesh pointse;, x;, we define an update formula for
V (x) under the assumption that an optimal trajectory fatersectse; x; at some poin and then
follows a straight line tac :

T =z + (1 -
AQ) = |y — xll;

T X
SEGR (@5)
U@e) =¢U)) + 1= U (zr);
V. = Min {Lﬁ-[](i )}.
T e f (2, ag, UEe)) ¢

This semi-Lagrangian discretization is related to the numerical schemes develdped in]20], [21], and
[14]. However, we emphasize the},; o, () is defined even ifc; andx; are not adjacent te.
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Assuming the existence of a locally smooth (sub)optimal trajectory and the smoothness of the
value function on the segmeamfxy, it is easy to show that the local truncation errotigh?). The
first of these assumptions is satisfied if the get, S1, t) is convex for alke € 2,1 € R, o; seel[1].
The second assumption might be wrong near the shocks (Wheig discontinuous), but this does
not affect the global convergence since the characteristics might run into a shock, but never originate
from the shock([30].

We now briefly state the algorithm and refer(tol[30] for the implementation details and possible
optimizations.

Semi-Lagrangian Ordered Upwind Method

All the nodes are divided into three class€ar (no information about the correct value of

is known), Accepted(the correct value ol has been computed), arf@bnsidered(adjacent to
Acceptedl The AcceptedFronis defined as a set &cceptedmesh points, which are adjacent to
some not-yet-accepted (i.€pnsideredimesh points. Define the sa of the line segments; xy,
wherex; andx; are adjacent mesh points on theceptedFrontsuch that there existsGonsidered
mesh pointz; adjacent to botfx; andx;. For eachConsiderednesh pointz we define the “near
front” as the part ofA F “relevant tox:

NF(x) = {xjz; € AF | 3% onxjx; such that|z — x| < hYy(x)}.

=

. Start with all the mesh points Far.

. Move the mesh points on the boundayd 952) to AcceptedU (y) := g (y)).

3. Move all the mesh pointg adjacent to the boundary in@onsideredand evaluate the tentative
values

N

Vv = min Vg, . 26
() ;@ NF(@) @), X () ( )
. Find the mesh poirit with the smallest value df among all theConsidered
. Movez to Accepted U (x) := V(x)) and update thAcceptedFront
. Move theFar mesh points adjacent to into Consideredand compute their tentative values by

9.

7. Recompute the value for all the oti@onsiderede such thatc € NF(x):

(o2& F 5

V(x) := min{V(x), o m’ilr'l(m) Va,z; ()} (27)

8. If Considereds not empty then go to 4.

Efficiency. This results in a “single-pass” method since the maximum number of times each mesh
point can be re-evaluated is bounded by the number of mesh points/ifrjheeighborhood of that
point. Thus, this method formally has the computational complexity @f M log(M)). Moreover,

since theAcceptedFrontis approximating the level set of the viscosity solutionas the mesh

is refined, the complexity will behave a3(T M log(M)). The above computational complexity
bounds are derived for the implementation that uses heap-sort data structures [30].

Convergence. The proof of the following convergence result is omitted since it is virtually the
same as for the autonomous case [30]:
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PrRopPOSITION3.1 Let{X,} be a sequence of meshes did'} be a sequence of approximate
solutions obtained orX, as described above. {fX,} is such thatd$2 remains “well-resolved”,
h, — 0, andn, < nasr — oo, thenU” uniformly converge to the viscosity solution ¢f {16) as
r — OQ.

The numerical evidence indicates that the error decreases a3(h); this corresponds to the
accuracy of the update formula {25) and the piecewise-smoothness of optimal trajectories in the
examples considered.

3.1 Min-time-from-boundary: numerical examples

We consider a “min-time control from a point” problem with the state constrgint € Q0 =
(0,100 x (0,100. We let2 = QO \ {(x0, yo)} and selectj(xo, yo) = 0, andg = +oo 0nadQ.
A tourist is moving through a rough landscape modeled by the graph of

g(x,y) = 45 sir(%) sin(%), (x, y) € [0, 100] x [0, 100].

Our goal is to compute the min-time for him to reach each painty, g(x, y)) starting from

ST O

(x0, Yo, g(x0, y0)); see Figuré]2.

FIG. 2. The test surface (left) and the geodesic circles on that surface projected antqoihee (right).

We will further assume that the tourist’'s speed on the surface is affected by the inclination of
that surface along his trajectory. Given a direction of motioa S1 for the tourist's projection in
the xy plane, we can express the angldetween the direction of motion on the surface and the
positive direction ot-axis:

0o = % —arctanfVg(x, y) - a).

If ¢(6g) is an inclination-factor anay (¢) is a time-factor, then the resulting formula for the
speed of tourist’s projection in the plane is

fx,y,a,1) = o@DV )L+ (Vglx, y) - a)?) Y2,
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In the following experiments we have chosen

#(©®) = sin®() +0.1.

100 T T T T T T T T T 100 T T T T T T T T T

80

60/

40

20+

10

100

FiG. 3. The min-time-fromixg, yg) function fory (r) = ¢=*: 4 = 0.0 (top left), A = 0.001 (top right), and. = 0.005
(bottom). The level sets are plotted at the same values in all three cases. Theqoigi is indicated by an asterisk.

Figure 3 shows the level sets of the value function for a time-monoton@ case
Y =e

2 The first example (Figu@ 3) was previously numerically studiedin [31].
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FIG. 4. The min-time-fromxg, yg) function for a periodiay (7).

and for (xg, yo) = (50,50). The time-dependence here can be interpreted as an impact of the
tourist’s tiredness on his ability to move.
Our second example uses an oscillating

1  [(tn -1
w(t)=[1+§sm<%>:| ,

thus modeling the dependence on some time-periodic factors (e.g., weather, mood-swings, etc).
Figure[4 shows the level sets of the value function for two different choicésofo).

4. Time-dependent case: min-timeo the boundary
Suppose the dynamics on an open bounded dosainR? is given by

Y () = f(y(s), als), )als),

28
yit) =x € $2, (28)

wherez is the starting point; is the starting timea(-) € A is the control, andf (y, a, t) is the
speed of moving througp in the directiona at the timer. As in the autonomous case, we define
the time-to-boundary as

T(z,a(), 1) =inf{s > t|y(s) € 92},

and the total time-cost associated with usit(g as

whereg : 32 x R — Ry g is theexit time-penalty
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The value function for this problem has to be time-dependent as well:

vz, t) = |rgf) T(x,a(), 1), (29)

sincet(x) = v(x, fp) is generally insufficient to formulate an Optimality Princie.

To mirror the min-time-from-boundary problem, we will again assume thaand § are
Lipschitz-continuous and that the boundedness condit[gns (4) hold. In addition, we will assume
thatg + ¢ is non-decreasing in time:

g(x,t1) —q(x, ) <rp—r foranyn < andanyx € 952. (30)

Below we enumerate some properties of the value function that easily follow from the above
assumptions.

PROPOSITION4.1 1. v(x,t) is locally bounded, i.e., for any finite intervalC R there exists a
constaniC; such thaw(x, 1) < C; on2 x I;

2. v(x, 1) is Lipschitz-continuous o2 x R;

3. Ifro > 1 >0, thenv(zx, 1) > v(x, 1) forall z € 2.

The standard Optimality Principle for this case [3] is
v(x,t) = Irgf) v(y(Ar), t + Ar). (32)
al-

The associated Hamilton—-Jacobi—Bellman PDE is
v (@, 1) + min{(Vyv(z, 1) - a) f(x,a,0)} =0, xR, ek,
ac$, (32)
v(x, 1) = q(x, t) + 1, xecif2, t €R,
and it usually appears asMayer problemin the context of finite-horizon optimal control; see,
for example, [[1] and references therein. By a standard argument, this PDE has a unique viscosity
solution on$2 x R and that solution is the above-defined value functiofihe characteristics of the
PDE can be again interpreted as optimal trajectories and, if a characteristic emanates &ane
at the timerg, thenv(x, 1) = 1o + ¢ (xo, ro) for all points(x, ¢) on that characteristic; see FigL[J]e 5.

In order to compute the value function &hx[T4, 7], the PDE has to be solved ¢hx[T3, T3],
whereTs > T> is sufficiently large to ensure thatx, 7>) can be computed for alt € 2; see
Figure[§. The problem is then naturally interpreted as a standard “backward time” finite horizon
problem with a terminal value(x, 73) = +oo for all x € 2. The resulting Cauchy-Dirichlet
boundary value problem can be efficiently solved by higher-order semi-Lagrangian methods (e.qg.,
[13]) or by a variety of Eulerian-framework finite-difference schemes. Such explicit time-marching
methods obtain the solution i@ (M N) operations, wher@/ is the number of mesh points in the
meshX discretizings2 and N is the number of time slices. We also note thafratike coefficient
is implicitly embedded in this complexity estimate for the finite-difference methods since the CFL-
type stability conditions severely limit the “stable” ratio &fto ~/M.

Even though a numerical solution on the enfi?ex [Ty, T>] is outside the scope of our paper,
we now show how OUMs can efficiently approximate the individual level setgofr).

First, suppose that we are only interested in an optimal control for a single @ajnt) <
2 x R. Let £21 be an open bounded set such tlatc 21, and let2, = 21\ {xo}. We can now

. 3 An obvious exception is the case of a time-discounted control normally used in the infinite horizon problems. There,
fy, a,s) = fy, a)e’, v(x, t) = e Mu(x, 0), andi(x) is therefore quite sufficient.
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Time

Time

FIG. 6. Solving onf2 x [T1, T»]: the characteristics for all points i2 x {T»} reach the boundary by the tinTg.

reduce the problem to the static PDE of Secfipn 22rby setting

fy.a,1)=f(y,a,1); q@o) =10, qy) =400 forallye sy

For a trajectory passing through a paint7 (z, a(-), x;) < ooimpliesx; = xg. Thus, forz € £21,
u(z) is the earliest time when can be reached fromg, and

v(xo, 10) = zrg,gg {u(z) +q(2)}.

If z is a minimizer andy(¢) is an optimal trajectory fromg to z, thenv(y(¢), t) = u(z) + 4(z)
forall 7 € [10, u(2)].

The above procedure effectively yields the characteristic($) ¢f (32) passing thtegigh) and
takesO (T M log M) operations. The resuling optimal trajectory fafg, t¢) is globally optimal—

this is in contrast with “local” methods (e.g., based on Pontryagin’s maximum principle) which
yield only locally optimal controls and trajectories. Nevertheless, since the computational cost of
the latter methods is independent of the dimension of state-space, the described procedure would
not be worthwhile just to recover those characteristic(s) of (32) that pass through a single point in

£2 x R. Fortunately, a similar construction can be used to recallectharacteristics lying in the
same level set of (x, t) without increasing the computational cE]st.

4 As pointed out by Sethian and Shan[28], if the time is reversed, the time-independent min-time-from-boundary value

function of Sectioff P can be interpreted as an answer to a different queatrat:is the latest time when one can depart

from eachx € 2 and still leaves2 before the specified tin#e? Our discussion here is somewhat more general sin¢eln [28]

the setting is limited to isotropic time-optimal control problems with zero exit/entrance time-penalties.
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(Ygs 7(¥))

Time

FiG. 7. Alevel set ofv(x, t) and its intersection witd 2 x R.

OBSERVATION 4.2 Since v(x,t) is constant along the characteristics, two characteristics
emanating from the point&eo, 19) and (x1, t1) on 32 x R can collide only ifzg + ¢(xo, to) =

1 + g(x1, t1). The assumption on monotonicity §f+ ¢ implies that every level set af(z, ¢) in

2 x Ris a graph of some function ové? and transversally intersects the boundafy x R; see
Figureﬂ. We emphasize that this observation is valid even when the sfb'ezadot a monotone
function of time. [Moreover, even if, = 0 and the reachable set is not the entirgeach level set

of v will be a (possibly infinite) surface emanating from a single curve of boundary conditions on
92 x R]

We now use OUMs to reconstruct the levelset, ) = T in £2 xR by solving a min-time-from-
boundary problem ofe. For everyyq € 952, lett (yg) be the time such that(yg)+4¢ (yo. T(yg)) =
T and let . _

fy,a,t) = f(y,—a, T —1t) forallye 2, acS,tekR;

q9(Yo) = 4(yo, T(yp)) for all yg € 952.

THEOREM4.3 Letu(x) be the value function of the min-time-from-boundary problem specified
above. Then
ulx)=t < v, T-1=T.

Proof. Consider a particular contral(-) and a starting poingg € 92 such that the corresponding
trajectoryy(-) passes through. Letz, = J(x, a(-), yg) and define

S gis; - if@(s), as). $)a(s), (33)
wherea(s) = —a(T — s) and
T —1,<s<T—4(yo t(yo) = t(yo)-
Then, by Gronwall's lemmay(s) = y(T — s) and
J (@, a(), T —1a) = T(yo) + (Yo, T(yp) = T.

Thus,v(z, T —t,) < T for 1, arbitrarily close ta«(x), yieldingv(z, T — u(x)) < T.
Letr; be such that (x, r1) = T. (Note thatr; > T — u(x) by the monotonicity ob.) If a(s) is
an optimal control, then R
v(x, ) =J(x, a(),n)="T.
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Thus, ifyg = (T (x, a(-), 1)), thent (yo) + ¢ (yg, 7(yg)) = T anda(s) = —a(T — s) is a valid
control foru(x). Hence,

Thereforefs = T — u(x), which completes the proof. O

REMARK 4.4 The above proof relies on the existence of an optimal contralerz1). A more
general proof can be constructed:easuboptimal trajectoryj(-) for v(x, 1) will reach somey, €
452 at the timer; such that

T(Yo) + G (Yo, T(Yo)) < 71+ 4 (Yo, 71) < T(Yo) + ¢ (Yo, T(Yyo)) + €.

Reparameterizing this trajectory backwards in time and starting along it at thej twger (yo)),
we obtain fory (x) a valid trajectory whose cost is close To— 7 (x, a(-), t1) by the Lipschitz-
continuity of f andg.

We note that OUM used on the above min-time-from-boundary problem vyields all the

characteristics of (32) inside the level s&tc, r) = T (and thus the optimal trajectories for all
the points in that level set) iD (Y M log M) operations. In addition, we list two special problems
for which our approach should be particularly useful:

1. Suppose that an additional/independent startingkc@st ¢) is incurred and the goal is to choose
the starting position/timéz, t) to minimize K while ensuring that we can exi2 before some
fixed timeT (i.e.,v(x, t) < T should be satisfied). li(x) is defined as in Theorejn 4.3, th&n
has to be minimized overthe sgtz, 1) |z € 2, 0< ¢t < T — u(x)}.

2. More generally, it is often necessary to find a control/trajectory satisfying multiple integral
constraints (a recent discussion of this problem can be fourid in [22]). In the non-autonomous
case, if one of the constraints is based on the time-to-exit, the above techniques will allow one

to restrict the computational domain to a smaller subse&2 of I before checking whether other
constraints can be satisfied.

We also hope that similar “reduction-to-static-case” methods might be applicable for more general

time-dependent problems.

5. Conclusions

We have analyzed a min-time-from-boundary non-autonomous control problem and interpreted its
value function as the unique viscosity solution of the Dirichlet problem for a static Hamilton—
Jacobi-Bellman PDE. We have described a non-iterative semi-Lagrangian Ordered Upwind Method

to obtain a first-order numerical approximation on the m&sim O (M log M) operations, where

M is the number of mesh points. We have illustrated our method with several hon-autonomous

time-optimal control problems.

We note that our approach is, in some sense, the opposite of a common prior technique, which

converted a Dirichlet problem fai(x) into a Cauchy problem for a functio (x, r) with the
property that
u(x)=t < Y(x,t)=0

(see, for examplel, [23] or [27] and references therein). Suppasiag is constant on the boundary,
¥ (x, 0) was initialized as a signed distanced€ on some bigger domaif2; and the level set
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methods[[24] were used to evolye forward in time. We believe that the original motivation for

such an approach was the absence of computationally efficient methods for non-linear hyperbolic
boundary value problems. In this paper, we have presented an alternative—a fast non-iterative
solver—for the case when the Hamiltoniahis convex and homogeneous of degree one in the first
argument. The advantage, of course, is the reduced dimensionality of the computational domain
and the overall reduction of the time required to obtain a solution on a given grid. Moreover, in
Section 4 we have demonstrated that fast boundary value solvers can also be used to efficiently
obtain individual level sets of the viscosity solution to a particular time-dependent HIB PDE.

We believe that the general idea of space-marching is applicable to a much wider class of PDEs.
We note that OUMs were already used to solve quasi-variational inequalities in the context of
hybrid control [31], a linear Liouville PDE arising in the context of seismic imaging [16], and,
more recently, a special class of quasi-linear PDEs arising in invariant manifold approximations
[15].

The presented idea of a purely static reformulation is largely independent of the simplifying
assumptions (e.gF1 > 0) used here to obtain a simple and efficient numerical method. Extending
OUM s to handle the general non-small-time-controllable dynamics and non-holonomic constraints
will make the method applicable to a wide range of realistic problems in optimal control and
robotic navigation. Other topics of current research include extensions of OUMs to non-convex
Hamiltonians and design of provably higher-order non-iterative methods.
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