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A free boundary problem for a coupled system of elliptic, hyperbolic, and
Stokes equations modeling tumor growth
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We consider a tumor model with three populations of cells: proliferating, quiescent, and necrotic.
Cells may change from one type to another at a rate which depends on the nutrient concentration.
We assume that the tumor tissue is a fluid subject to the Stokes equation with sources determined by
the proliferation rate of the proliferating cells. The boundary of the tumor is a free boundary held
together by cell-to-cell adhesiveness of intensityγ . Thus, on the free boundary the stress tensorT

and the mean curvatureκ are related byT En = −γ κ En whereEn is the outward normal. We prove that
the coupled system of PDEs for the densities of the three types of cells, the nutrient concentration,
and the fluid velocity and pressure have a unique smooth solution, with a smooth free boundary, for
a small time interval.
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1. The model

In this paper we consider a model of tumor growth described in terms of elliptic and hyperbolic
PDEs coupled to the Stokes equation. The model involves three populations of cells: proliferating
cells with densityr(x, t), quiescent cells with densityq(x, t), and necrotic cells with densityn(x, t).
Proliferating cells change into quiescent cells at a rateKQ(c), which depends on the concentration
c(x, t) of the nutrients within the tumor. Similarly, quiescent cells become proliferating cells at a
rateKR(c), and they become necrotic at a rateKN (c). Proliferating cells have a proliferation (or
growth) rateKB(c). Naturally,

KR(c), KQ(c), andKN (c) are positive-valued functions;

KQ(c) andKN (c) are decreasing inc, while

KR(c) andKB(c) are increasing inc.

(1.1)

The functionKB(c) represents the balance between birth and death of the proliferating cells. We
assume that

KB(c̃) = 0 for somec̃ > 0; (1.2)

c̃ is a critical nutrient concentration: ifc > c̃ then the population of proliferating cells grows,
whereas ifc < c̃ then the population of proliferating cells decreases.

We also assume that the necrotic cells degrade, and are removed from the tumor, at a constant
rateKO .
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We next need to introduce a constitutive law for the tissue. Most tumor models assume that
the tissue has the structure of a porous medium for which Darcy’s law applies (see, for example,
[5], [21]). There are however tumors for which the tissue is more naturally modeled as a fluid. For
example, in early stages of breast cancer the tumor is confined to the duct of a mammary gland,
which consists of epithelial cells, a meshwork of proteins, and extracellular fluid. Several recent
papers on ductal carcinoma in the breast use the Stokes equation in their mathematical model [10]–
[13]. If we denote the fluid velocity byEv = (v1, v2, v3) and the fluid pressure byp, then the
constitutive law is

σij = −pδij + 2ν

(
eij −

1

3
∆̄δij

)
whereσij is the stress tensor,p = −

1
3σkk,

eij =
1

2

(
∂vi

∂xj

+
∂vj

∂xi

)
is the strain tensor,̄∆ = ekk = div Ev is the dilatation, andν is the viscosity coefficient. If there are
no body forces then

3∑
j=1

∂σij

∂xj

= 0.

We can rewrite this equation as the Stokes equation

∇p − ν∆Ev −
1

3
ν∇ div Ev = 0 in Ωt , t > 0, (1.3)

whereΩt is the tumor region.
We assume that the cells move with the fluid velocityEv. Then, by conservation of mass,

∂r

∂t
+ div(r Ev) = [KB(c) − KQ(c)]r + KR(c)q,

∂q

∂t
+ div(q Ev) = KQ(c)r − [KR(c) + KN (c)]q,

∂n

∂t
+ div(nEv) = KN (c)q − KOn.

We next assume that all the cells are of the same volume and mass, and that the total density of
the cells is uniform throughout the tumor. Then, after normalization, we have

r + q + n = 1.

Summing up the three preceding conservation laws, we deduce that divEv = KB(c)r − KOn.
This equation can be used to replace the conservation law forn. We now substituten = 1 − r − q

into the expression for divEv and, together with the conservation laws forr andq, we obtain the
system

div Ev = h(c, r, q) in Ωt , t > 0, (1.4)
∂r

∂t
+ Ev · ∇r = f (c, r, q) in Ωt , t > 0, (1.5)

∂q

∂t
+ Ev · ∇q = g(c, r, q) in Ωt , t > 0, (1.6)
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where

h(c, r, q) = −KO + [KB(c) + KO ]r + KOq,

f (c, r, q) = [KB(c) − KQ(c)]r + KR(c)q − rh(c, r, q), (1.7)

g(c, r, q) = KQ(c)r − [KR(c) + KN (c)]q − qh(c, r, q).

The nutrient concentrationc is depleted as it is consumed by the live cells. We assume that it
satisfies a quasi-stationary diffusion equation

∆c − λ(r + q)c = 0 in Ωt , t > 0, (1.8)

whereλ is a positive constant; in Section 4 we shall consider briefly also a parabolic equation forc.
We now turn to the boundary conditions at the boundaryΓt of Ωt . We assume that the tumor

is held together by the forces of cell-to-cell adhesion with constant intensityγ ; the role ofγ is
discussed in [2]–[4]. Introducing the stress tensorT = ν(∇Ev + (∇Ev)∗) − (p +

2ν
3 div Ev)I with

components

Tij = ν

(
∂vi

∂xj

+
∂vj

∂xi

)
− δij

(
p +

2ν

3
div Ev

)
,

we then have

T En = −γ κ En onΓt , t > 0, (1.9)

whereEn is the outward unit normal andκ is the mean curvature (κ > 0 if Γt is the surface of a
convex body). We also assume the kinematic condition

Ev · En = Vn onΓt , t > 0, (1.10)

whereVn is the velocity of the free boundaryΓt in the directionEn. Finally, we assume that

c = const= c̄ onΓt , t > 0, (1.11)

wherec̄ is a time and space-independent constant. We note that no boundary conditions are needed
for r andq, since (by (1.10)) the characteristic curves initiating atΓ0 will remain onΓt for all t .

The system (1.3), (1.4), and (1.9) has six-dimensional kernelV0 consisting of rigid motions

Ev0 = Ea + Eb × Ex, p0 = 0.

We must therefore add six scalar constraints; see [22]. These constraints can be written in the form∫
Ωt

Ev dx = EA(t), (1.12)∫
Ωt

Ev × Ex dx = EB(t) (1.13)

where EA(t), EB(t) are prescribed functions.
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Finally, we prescribe initial conditions:

Ω|t=0 = Ω0, r|t=0 = r0(x), q|t=0 = q0(x). (1.14)

Note that, givenΩ0, r0, q0, the functionc0 = c|t=0 is determined by (1.8), (1.11), so that
alsoh0 = h(c, r, q)|t=0 is determined. We can then solve (1.3), (1.9) (with divEv = h0) with the
constraints (1.12), (1.13), att = 0.

We assume that

r0(x) > 0, q0(x) > 0, r0(x) + q0(x) 6 1 in Ω0. (1.15)

Since proliferating cells reside in nutrient rich regions and, in particular, near the boundary of the
tumor, we shall assume that

r0(x) = 1 onΓ0. (1.16)

We shall also assume that

KQ(c̄) = 0, (1.17)

that is, proliferating cells do not become quiescent if the nutrient concentration is at its maximumc̄.

REMARK 1.1 As in [7] one can easily show that for any solution of (1.3)–(1.16),

r > 0, q > 0, r + q 6 1;

in fact r + q + n ≡ 1 and n, the density of necrotic cells, is> 0. Also 0 6 c 6 c̄

by the maximum principle. Hence without loss of generality we may truncate the functions
h(c, r, q), f (c, r, q), g(c, r, q) for r < 0, q < 0, c < 0 andr, q, andc positive and large, so
that these functions remain as smooth in their variables as the original functions and, at the same
time, they have compact support.

REMARK 1.2 In view of (1.10) the characteristic curves of (1.5), (1.6) which start onΓ0 will lie
on Γt for all t . Sincec = c̄ on Γt andKQ(c̄) = 0, the unique solution of (1.5), (1.6) alongΓt with
initial conditions (1.16) andq0 = 0 (by (1.15)) isq ≡ 0, r ≡ 1, and from (1.4), (1.7) we then get

div Ev|Γt = const= KB(c̄). (1.18)

The system (1.3)–(1.17) may be viewed as a problem for(Ev, p) coupled to a problem for
(c, r, q). In Section 2 we consider the subproblem for(Ev, p). Using results of Solonnikov [22]
we establish existence, uniqueness, and regularity estimates. Next, in Section 3, we consider the
elliptic-hyperbolic system for(c, r, q) and, by means of the results established in Section 2, we
define a mapping(c, r, q) 7→ S(c, r, q). We prove that if 06 t 6 T whereT is sufficiently
small thenS is a contraction, and its fixed point is the solution of the system (1.3)–(1.17). The free
boundaryΓt and its firstt-derivative are shown to be smooth functions in the spatial variables. Our
proof of existence, uniqueness, and regularity for the solution of (1.3)–(1.17) does not use the special
assumptions (1.1), (1.2), and (1.7); the proof is valid for general functionsh(c, r, q), f (c, r, q) and
g(c, r, q), provided divEv = const onΓt (as in (1.18)). In Section 4 we prove a few additional results
and state some open problems.
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2. Auxiliary results

In this section we study the auxiliary problem

−ν∆Ev + ∇p = Ef ( Ef = −
ν

3
∇g) in Ωt , t > 0, (2.1)

div Ev = g in Ωt , t > 0, (2.2)

T (Ev, p)En = −γ κ En onΓt , t > 0, (2.3)

Ev · En = Vn onΓt , t > 0, (2.4)

Ω0 is given. (2.5)

We introduce a basisEw1(x), . . . , Ew6(x) in the six-dimensional spaceV0 generated byEa + Eb × Ex

whereEa, Eb are any vectors inR3:

Ew1 = (1, 0, 0), Ew2 = (0, 1, 0), Ew3 = (0, 0, 1), Ew4 = (0, −x3, x2),

Ew5 = (x3, 0, −x1), Ew6 = (−x2, x1, 0).

We can then write the constraints (1.12), (1.13) in the form

(Ev, Ewk) = Mk(t) (k = 1, . . . , 6) (2.6)

where(Ev, Ewk) =
∫
Ωt

Ev(x, t) · Ewk(x) dx, and the functionsMk(t) are linearly dependent on the

componentsAj (t), Bj (t) of EA(t), EB(t). Note that

div Ewk = 0 for all k. (2.7)

We recall [19, Lemma 6.1] that∫
Γt

κ Ewk · En = 0 (1 6 k 6 6). (2.8)

We also have ∫
Γt

Ewk · En = 0 (1 6 k 6 6). (2.9)

Indeed, ∫
Γt

Ewk · En =

∫
Ωt

div Ewk = 0 by (2.7).

Our treatment of the problem (2.1)–(2.6) will be similar to that of Solonnikov [22] who proved
existence and uniqueness in the case divEv = 0, that is, whenEf = 0, g = 0. (An alternative proof
was given by G̈unther and Prokert [20].) Accordingly, we shall replace the Eulerian variablex by
the Lagrangian variableξ , where

Ex = Eξ +

∫ t

0
Eu(ξ, τ ) dτ ≡ X(ξ, t), ξ ∈ Ω, (2.10)

Ω = Ω0, and
Eu(ξ, t) = Ev(X(ξ, t), t), p̃(ξ, t) = p(X(ξ, t), t);

for simplicity, we shall often denoteEx andEξ by x andξ .
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We introduce the notation

|w|Cm+α(Ω) =

∑
|j |6m

sup
Ω

|Djw(x)| +

∑
|j |=m

Hα,Ω(Djw)

where

Hα,Ω(k) = sup
x,y∈Ω

|k(x) − k(y)|

|x − y|α
;

herem is any integer> 0 andα ∈ (0, 1). We setΓ = Γ0 = ∂Ω0, and similarly define|w|Cm+α(Γ ).
A function w(x, t) is said to belong toC(0, T ; Cm+α(Ω)) if t 7→ w(·, t) is a continuous

function from [0, T ] into Cm+α(Ω), and we then define the norm

|w|C(0,T ;Cm+α(Ω)) = sup
06t6T

|w(·, t)|Cm+α(Ω).

Similarly we define the conceptw ∈ C1(0, T ; Cm+α(Ω)).
We coverΓ with a finite number of coordinate patches(η1, η2, η3) such that in each patch we

can writeη1 = ϕi(η
′), whereη′

= (η2, η3) varies in some open setωi . Suppose we can represent
Γt locally in the form

η1 = ϕi(η
′, t), where ϕi ∈ C(0, T ; Cm+α(ωi)).

Then we say thatΓt belongs toC(0, T ; Cm+α) and set

|Γt |C(0,T ;Cm+α) =

∑
i

|ϕi |C(0,T ;Cm+α(ωi )).

Similarly we define the conceptΓt ∈ C1(0, T ; Cm+α).
The system (2.1)–(2.3) is an elliptic system in the Agmon–Douglas–Nirenberg sense, but the

homogeneous system (withEf = 0, g = 0) has the 6-dimensional null spaceV0. In order to secure
uniqueness, we need to factor out the null space. This can be done, as in [22], by using the Schmidt
lemma [24, Section 21]. Accordingly, we replace (2.1) by

−ν∆Ev + `(Ev) + ∇p = Ef ( Ef = −
ν

3
∇g) in Ωt , t > 0, (2.11)

where

`(Ev) =

6∑
k=1

[(Ev, Ewk) − Mk(t)] Ewk(x). (2.12)

Then the system (2.11), (2.2), (2.3) has a unique solution. We can now state:

THEOREM 2.1 Let Γ0 ∈ Cm+3+α (m > 0, 0 < α < 1) and assume that, for someT0 > 0,
g belongs toC(0, T0; Cm+1+α(Ω0)) and theMk(t) are continuous functions for 06 t 6 T0. If T is
sufficiently small then there exists a unique solution(Ev, p) = (Eu, p) to (2.11), (2.2)–(2.5) such that
Γt belongs toC(0, T ; Cm+3+α)∩C1(0, T ; Cm+2+α), Eu(ξ, t) belongs toC(0, T ; Cm+2+α(Ω)), and
p̃(ξ, t) belongs toC(0, T ; Cm+1+α(Ω)); furthermore,

|Eu|C(0,T ;Cm+2+α(Ω)) + |p̃|C(0,T ;Cm+1+α(Ω)) + |Γt |C(0,T ;Cm+3+α)

+ |Γt |C1(0,T ;Cm+2+α) 6 C
{
|g|C(0,T ;Cm+1+α(Ω)) +

6∑
k=1

sup
06t6T

|Mk(t)|
}

(2.13)

whereC is a constant independent ofg.
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Proof. We rewrite the system (2.11), (2.2)–(2.4) in the Lagrangian coordinates. As in [22],∇x can
be written in the form

∑
j Aij

∂
∂ξj

where, if divEv = 0,

Aij are cofactors ofδij +

∫ t

0

∂ui(ξ, τ )

∂ξj
dτ,

andT (Ev, p) takes the form

Tu(Eu, p̃) = −

(
p̃ +

2ν

3
g

)
I + νSu(Eu)

whereSu(Eu) is a first order differential operator with coefficientsAij . In the present case, where
div Ev = g, the determinant of the Jacobian(∂X/∂ξ) is not identically equal to 1 in general,

Aij are the elements of the Jacobian of the inverse transformation (2.14)

(which depends ong), and some coefficients of the Stokes equation there will depend on
g(X(ξ, t), t) whereξ is the Lagrangian coordinate. We also need to replace`(Ev) by

˜̀(Eu) =

6∑
k=1

{∫
Ω

[ Eu(η, t) · Ewk(x(η, t)) − Mk(t)] det

(
∂x

∂η

)
dη

}
Ewk(x(ξ, t)).

We can nevertheless proceed as in [22] with minor changes. The proof is based on linearization
and localization of the system written in the Lagrange variables (in the fixed domainΩ × (0, T )).
A critical step is the careful study of a model problem in a half-space for an inhomogeneous system.
In this step, the introduction ofEf andg in the present case of (2.1), (2.2) does not cause any changes
in the proof, so that Theorem 2 in [22], which deals with the model problem, extends to the present
case.

Next we write the system, as in [22], in the form of a perturbation problem

L(Eu, p̃) = EF(Eu, p̃, t) (2.15)

whereL is a linear operator. As in [22], we can use the estimates for the model problem to derive
existence, uniqueness and estimates for the linear problemL(Eu, p̃) = EF for any given functionEF .
We then can solve (2.15) for 06 t 6 T , T small, by a fixed point argument (using a contraction
mapping, or successive approximations), and here again the fact thatEf andg are non-zero functions
makes for only trivial changes in the proof of [22] for the caseEf = 0, g = 0.

Returning to the Eulerian coordinates, we then obtain the asserted solution of (2.11), (2.2)–(2.5)
with the estimate (2.13).

Observe that∂X(ξ, t)/∂t = Eu(ξ, t) belongs toC(0, T ; Cm+2+α(Ω)). Hence∂Aij/∂t belongs
to the same class. If we assume that

g ∈ C1(0, T ; Cm+α(Ω)), Mk ∈ C1(0, T ), (2.16)

then we can formally differentiate the system forEu(ξ, t), p̃(ξ, t) in t and obtain an elliptic system
for Eut , p̃t . SinceΓt ∈ C1(0, T ; Cm+2+α), the boundary conditions have sufficient regularity to
ensure that

Eut ∈ C(0, T ; Cm+1+α(Ω)), p̃t ∈ C(0, T ; Cm+α(Ω)). (2.17)
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A rigorous proof of (2.17) can be obtained by working with finite differences int , or,
alternatively, by first establishing existence, uniqueness, and regularity of a solution (Eu∗, p̃∗) of
the formally differentiated system (withΓt being the free boundary established in Theorem 2.1) and
then verifying that

Eu(ξ, t) = Eu(ξ, 0) +

∫ t

0
Eu∗(ξ, τ ) dτ,

p̃(ξ, t) = p̃(ξ, 0) +

∫ t

0
p̃∗(ξ, τ ) dτ.

We conclude:

THEOREM 2.2 If (2.16) holds then the solution established in Theorem 2.1 satisfies (2.17), and

|Eu|C1(0,T ;Cm+1+α) + |p̃|C1(0,T ;Cm+α(Ω)) 6 C(‖g‖m+1+α + ‖M‖) (2.18)

where the norm‖ ‖m+1+α is defined by

‖ϕ‖m+1+α = |ϕ|C(0,T ;Cm+1+α(Ω)) + |ϕ|C1(0,T ;Cm+α(Ω)), (2.19)

and

‖M‖ =

6∑
k=1

sup
06t6T

[|Mk(t)| + |M ′

k(t)|].

We would like to replace (2.11) by (2.1), that is, to show that`(Ev) = 0. This is not possible
for generalg(x, t). However, ifg(x, t) = h(c, r, q) whereh(c, r, q) is as in (1.7), then, as noted in
Remark 1.2,

g(x, t) = const onΓt . (2.20)

In preparation for this case we shall prove:

THEOREM 2.3 If (2.20) holds then in Theorem 2.1 we can replace (2.11) by (2.1); that is,`(Ev) = 0
and the constraints (2.6) are satisfied.

Proof. We recall [20] the identity, for anyEv, Ew, p,

1

2

∫
Ωt

∑(
∂vi

∂xj

+
∂vj

∂xi

)(
∂wi

∂xj

+
∂wj

∂xi

)
dx −

∫
Ωt

p div Ew dx

=

∫
Ωt

(−∆Ev + ∇p) · Ew dx −

∫
Ωt

∇(div Ev) · Ew dx +

∫
Γt

T (Ev, p) · Ew dS.

Taking for(Ev, p) the solution established in Theorem 2.1 andEw = Ew` as in (2.12), and noting that
the left hand side vanishes ifw = Ew` and the integral onΓt vanishes by (2.3), (2.8), we obtain∫

Ωt

( Ef − `(Ev)) · Ew` dx −

∫
Ωt

∇g · Ew` dx = 0 ( Ef = −
ν

3
∇g).

Since ∫
Ωt

∇g · Ew` =

∫
Γt

g Ew` · En = const·
∫

Γt

Ew` · En = 0,
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by (2.20) and (2.9), we get
∫
Ωt

`(Ev) · Ew` = 0, that is,

6∑
k=1

[(Ev, Ewk) − Mk(t)]( Ewk, Ew`) = 0 for ` = 1, . . . , 6.

It follows that the expressions in brackets vanish. Thus the constraints (2.6) are satisfied, and (2.11)
reduces to (2.1). 2

3. The main result

We shall need the following lemma.

LEMMA 3.1 Consider the hyperbolic system

Ewt + (Eb · ∇x) Ew = EG(x, t, Ew) in Rn
×(0, T ), (3.1)

Ew|t=0 = Ew0 in Rn, (3.2)

wheren > 1, Ew = (w1, w2), EG = (G1, G2), and assume that

Dx
Eb, Dx

EG ∈ C(0, T ; Cm+1+α(Rn)), m > 0,

D
m+1−j
x D

j

Ew
EG ∈ L∞(Rn

× 0, T ), 0 6 j 6 m + 1,

Dx Ew0 ∈ Cm+1+α(Rn).

Then there exists a unique solution to (3.1), (3.2) such that

Ewt , Dx Ew belong toC(0, T ; Cm+1+α(Rn)).

Proof. A similar result withm + 1 = 0 andC(0, T ; Cm+1+α(Rn)) replaced byCα,β
x,t (Rn

× (0, T ))

was proved in [8, Lemma 2.2]. The proof of the present lemma form + 1 = 0 is similar and will be
omitted. The proof form + 1 > 0 follows by successive differentiation of (3.1) with respect tox.

As in Section 1 we shall use the notation

Ω = Ω0, Γ = Γ0.

REMARK 3.1 Later on we shall consider (3.1) withEb = Ev, where(Ev, p) is the solution asserted in
Theorems 2.1 and 2.2. SinceEv · En = Vn on Γt , the characteristic curves initiating inΩ0 (or atΓ0)
will lie in Ωt (or onΓt ) for all t . Hence the proof of Lemma 3.1 remains unchanged if we replace
Rn

× (0, T ) by
⋃

0<t<T Ωt × {t}. It will be convenient to consider the solutionEw as a function of
(ξ, t) whereξ ∈ Ω andx is related toξ by (2.10). If we write

EW(ξ, t) = Ew(x, t),

equation (3.1) takes the form
EWt + Eb · A∇ξ

EW = EG (3.3)

where A = (Aij ) and the Aij are defined by (2.14). SinceEut and Dξ Eu belong to
C(0, T ; Cm+1+α(Ω)), Lemma 3.1 implies that

EWt , Dξ
EW belong toC(0, T ; Cm+1+α(Ω)).
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We introduce the space

Xm+1+α
= {ϕ(ξ, t) : ϕt , Dξϕ belong toC(0, T ; Cm+1+α(Ω))}

with norm‖ϕ‖m+1+α defined by (2.19). For anyM > 0 we set

Xm+1+α
M = {ϕ ∈ Xm+1+α : ‖ϕ‖m+1+α 6 M}.

In what follows we shall assume that

the functionsKB(c), KQ(c), KR(c), andKN (c) belong toCm+1+α(R1). (3.4)

This implies that

the functionsh(c, r, q), f (c, r, q), andg(c, r, q) belong toCm+1+α(R3). (3.5)

We shall also assume that

Γ0 ∈ Cm+3+α, r0 ∈ Cm+2+α(Ω), q0 ∈ Cm+2+α(Ω) (3.6)

and that, for someT0 > 0,

EA(t), EB(t) are continuously differentiable for 06 t 6 T0. (3.7)

We can now state the main result of the paper.

THEOREM 3.1 If (3.4) (or (3.5)) and (3.6), (3.7) hold for somem > 0 and 0< α < 1, then there
exists a unique solution of (1.3)–(1.17) for some time interval 06 t 6 T such thatΓt belongs to
C(0, T ; Cm+3+α)∩C1(0, T ; Cm+2+α) and, in Lagrangian coordinates(ξ, t), the functionEu(ξ, t) ≡

Ev(x, t) belongs to
C(0, T ; Cm+2+α(Ω)) ∩ C1(0, T ; Cm+1+α(Ω)),

and the pressurep and the cell densitiesr, q belong, in the variables(ξ, t), to

C(0, T ; Cm+1+α(Ω)) ∩ C1(0, T ; Cm+α(Ω)).

Proof. The proof is by a fixed point argument. Let(c, r, q) ∈ Xm+1+α
M . We shall define a mapping

(ĉ, r̂, q̂) = S(c, r, q)

from Xm+1+α
M into Xm+1+α

M , for somem > 0, and prove that it is a contraction, and that the
corresponding fixed point yields the solution asserted in the theorem.

Set
h̃(ξ, t) = h(c(ξ, t), r(ξ, t), q(ξ, t)). (3.8)

By Theorems 2.1 and 2.2 there exists a unique solution(Eu, p̃) of (2.11), (2.2)–(2.5) for the function
g(x, t) defined as̃h(ξ, t). We next want to solve the equations

∆ĉ − λ(r + q)ĉ = 0 in Ωt , ĉ = c̄ onΓt , (3.9)
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and

∂r̂

∂t
+ Ev · ∇x r̂ = f (ĉ, r̂, q̂) in Ωt , 0 < t < T,

(3.10)
∂q̂

∂t
+ Ev · ∇x q̂ = g(ĉ, r̂, q̂) in Ωt , 0 < t < T,

with
r̂|t=0 = r0, q̂|t=0 = q0 in Ω0. (3.11)

However, it will be more convenient to do this in the Lagrangian variables(ξ, t). Then (3.9) takes
the form

Lĉ − λ(r + q)ĉ = 0 in Ω, ĉ = c̄ onΓ, (3.12)

where

L =

∑
aij (ξ, t)

∂2

∂ξi∂ξj
+

∑
bi(ξ, t)

∂

∂ξi

,

the aij are quadratic polynomials in the variablesAk` introduced in (2.14) and thebi are linear
functions in the derivatives∂Ak`/∂ξn. The system (3.10) takes the form

∂r̂

∂t
+ Eu · A∇ξ r̂ = f (ĉ, r̂, q̂) in Ω, 0 < t < T,

(3.13)
∂q̂

∂t
+ Eu · A∇ξ q̂ = g(ĉ, r̂, q̂) in Ω, 0 < t < T,

whereA is the matrix(Aij ).
Note that the coefficients ofL and theirt-derivatives belong toC(0, T ; Cm+α(Ω)). Hence, by

elliptic estimates,
ĉ ∈ C1(0, T ; Cm+2+α(Ω)).

By Lemma 3.1 and Remark 3.1 we then conclude that the system (3.13), (3.11) has a unique solution
with

(r̂, q̂) ∈ C(0, T ; Cm+2+α(Ω)) ∩ C1(0, T ; Cm+1+α(Ω)).

Thus(ĉ, r̂, q̂) ∈ Xm+2+α
N for someN , and, as is easily seen,N depends only onM.

We now set
S(c, r, q) = (ĉ, r̂, q̂)

so that the mappingS satisfies

S(Xm+1+α
M ) ⊂ Xm+2+α

N , N = N(M). (3.14)

From Remark 1.1 we also easily infer that

‖ |ĉ| + |r̂| + |q̂| ‖L∞(Ω) 6 C0 (3.15)

whereC0 is a constant independent ofM.
By standard calculus estimates one can show that for anyη > 0 there is a constantCη such that

‖w‖m+1+α 6 η‖w‖m+2+α + Cη‖w‖L∞ (3.16)
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for any functionw in Xm+1+α. From (3.14), (3.15) we then deduce that

S(Xm+1+α
M ) ⊂ Xm+1+α

M (3.17)

providedM is sufficiently large. We next prove thatS is a contraction mapping inXm+1+α
M if T is

sufficiently small.
Take any(ci, ri, qi) (i = 1, 2) in Xm+1+α

M and set

c = c1 − c2, r = r1 − r2, q = q1 − q2, δ = ‖(c, r, q)‖m+1+α.

Denote byEui the velocity corresponding to(ci, ri, qi) (according to Theorems 2.1 and 2.2). Then
by the estimates of [22] we have

‖Eu1 − Eu2‖C(0,T ;Cm+2+α(Ω)) + ‖Eu1 − Eu2‖C1(0,T ;Cm+′+α(Ω)) 6 C1δ.

By the arguments used in the proof of Lemma 3.1 (cf. [6]) we can then derive the estimate

‖S(c, r, q) − S(c2, r2, q2)‖m+2+α 6 C1δ

with another constantC1, so that, by (3.16),

‖S(c, r, q) − S(c2, r2, q2)‖m+1+α 6 ηδ + Cη‖ |c| + |r| + |q| ‖L∞ (3.18)

for any smallη > 0.
If we take the difference of the hyperbolic equations forr1 and r2, we readily obtain the

inequality |r| 6 CT δ for some constantC. The same estimate holds for|q|, and then from the
equation forc = c1 − c2 we deduce that also|c| 6 CT δ with another constantC. Hence the right
hand side of (3.18) is bounded byηδ + CηCT δ. Takingη = 1/4 andT small enough, we conclude
thatS is a contraction, so that it has a unique fixed point.

The fixed point is not yet a solution of (1.3)–(1.17) since we still have to eliminate the term`(Ev)

and verify the constraints (1.12), (1.13). But this follows from Theorem 2.3 and Remark 1.2.2

4. Further results and open problems

REMARK 4.1 Theorem 3.1 does not require the special structure (1.7) of the functions
h(c, r, q), f (c, r, q), andg(c, r, q). The theorem is valid for general functionsh, f, g of (c, r, q)

provided we can establish the relationh(c̄, r, q) = const onΓt for all t , for the solution of (1.5),
(1.6) with constant initial data onΓ0.

REMARK 4.2 Theorem 3.1 extends to the case where the elliptic equation (1.8) is replaced by the
parabolic equation

−βct + ∆c − λ(r + q)c = 0 in Ωt , t > 0 (β > 0),

andc|t=0 = c0(x) is given. In this case we require thatc0 belongs toCm+2+α(Ω) and that the
appropriate consistency conditions hold atΓ0 so that we can use the Schauder estimates.

Theorem 3.1 raises the following questions:

PROBLEM 1 For what initial data does there exist a solution of (1.3)–(1.16) for allt > 0?

PROBLEM 2 What will be the asymptotic behavior of such a solution ast → ∞?
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These questions lead us to explore whether stationary solutions to (1.3)–(1.16) do in fact exist.
Let us consider the simple case where we have only proliferating cells, that is,r ≡ 1, q ≡ 0, and that
the proliferating rate isµ(c − c̃). We shall consider the case wherec satisfies a parabolic equation.
Then

∇p − ν∆Ev −
1

3
ν∇ div Ev = 0 in Ωt , t > 0, (4.1)

div Ev = µ(c − c̃) in Ωt , t > 0, (4.2)

−βct + ∆c − c = 0 in Ωt , t > 0 (β > 0), (4.3)

the boundary conditions (1.9)–(1.10) hold,

c = c̄ onΓt , t > 0; c|t=0 = c0(x) onΩ0, (4.4)

and we take the constraints (1.12)–(1.13) to be∫
Ωt

Ev dx = 0,

∫
Ωt

Ev × Ex dx = 0. (4.5)

We shall denote this problem by(AE), and its stationary version by(A0). We make the assumption
that c̃ < c̄; this ensures that the tumor will not disappear in finite time.

THEOREM 4.1 There exists a unique spherically symmetric stationary solution to problem(A0),
with free boundaryr = R, and it is given by

Ev = µG(r)Ex, p = p̄ +
4

3
νµc,

G(r) = g(r) − g(R), g(r) =

∫ r

0

dr

r4

∫ r

0
c′(ρ)ρ3 dρ

where

c(r) = c̄
R

sinhR

sinhr

r

andR is the solution of the equation

R tanhR =
R

1 + ΛR2
, Λ =

1

3

c̃

c̄
. (4.6)

The constant̄p is determined by the condition

p|r=R =
γ

R
+

4

3
νµ(c̄ − c̃).

The proof of Theorem 4.1 is by direct calculation. The fact that (4.6) has a unique solution was
proved in [17].

PROBLEM 3 Is the stationary solution established in Theorem 4.1 asymptotically stable?

By asymptotic stability we mean that for any initial data near the stationary solution there exists
a solution to problem(AE) for all t > 0, and the free boundary converges to the sphere{r = R} as
t → ∞.

The answer to Problem 3 should depend on the value ofµ. For µ = 0, the case of viscous
droplet, asymptotic stability was proved by Solonnikov [23], Günther and Prokert [20], and
Friedman and Reitich [19].
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In the case of Darcy’s law (instead of the Stokes equation), Problem 3 was completely solved by
Friedman and Hu [14], [15]; see also [1]. In this case, there exists a numberµ∗ such that asymptotic
stability holds ifµ < µ∗, whereas the stationary solution is linearly unstable ifµ > µ∗. Is there a
similar result in the case of the Stokes equation?

For the model with Darcy’s law it was proved in [9], [18] that there exists an increasing sequence
{µn : n > 2} of bifurcation points of symmetry-breaking branches of solutions with free boundary

r = R + εYn,0(θ) +

∞∑
k=2

εkΛk(θ) (|ε| small)

whereYn,0(θ) is the spherical harmonic of order(n, 0). Clearlyµ2 > µ∗, but the caseµ2 > µ∗

cannot be ruled out. Indeed, such an inequality does occur ifR is small, and in that case the value
µ = µ∗ corresponds to a Hopf bifurcation [16].

PROBLEM 4 Is there a similar sequence of bifurcation points for the stationary version of the
problem (4.1)–(4.5), (1.9)–(1.10)?

PROBLEM 5 Compare the valuesµ∗, µ2, µ3, . . . for the two models, the one with Darcy’s law
and the other with the Stokes equation.

We note that instead of takingµ as the bifurcation parameter, we could have takenγ as a
bifurcation parameter. The two parameters, after scaling, appear as a single parameterµ/γ .

Problems 3, 4 deal with the case where all the cells in the tumor are proliferating.

PROBLEM 6 Explore Problems 3, 4 for the general model (1.3)–(1.17).

In the case of Darcy’s law, partial results have been proved in [5], [7], [8].

Added in proof

A solution to Problems 3–5 was recently given in the following articles by A. Friedman and B. Hu:

1. Bifurcation for a free boundary problem modeling tumor growth by Stokes equation. Submitted
for publication.

2. Bifurcation from stability to instability for a free boundary problem modeling tumor growth by
Stokes equation.Math. Anal. Appl.(2006), to appear.
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