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A free boundary problem for a coupled system of elliptic, hyperbolic, and
Stokes equations modeling tumor growth
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We consider a tumor model with three populations of cells: proliferating, quiescent, and necrotic.
Cells may change from one type to another at a rate which depends on the nutrient concentration.
We assume that the tumor tissue is a fluid subject to the Stokes equation with sources determined by
the proliferation rate of the proliferating cells. The boundary of the tumor is a free boundary held
together by cell-to-cell adhesiveness of intensityThus, on the free boundary the stress terfsor

and the mean curvatukeare related by'n = —y«#n wheres is the outward normal. We prove that

the coupled system of PDEs for the densities of the three types of cells, the nutrient concentration,
and the fluid velocity and pressure have a unique smooth solution, with a smooth free boundary, for
a small time interval.
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1. The model

In this paper we consider a model of tumor growth described in terms of elliptic and hyperbolic
PDEs coupled to the Stokes equation. The model involves three populations of cells: proliferating
cells with density-(x, 1), quiescent cells with density(x, 7), and necrotic cells with densin(x, 7).
Proliferating cells change into quiescent cells at a Fggc), which depends on the concentration
c(x, t) of the nutrients within the tumor. Similarly, quiescent cells become proliferating cells at a
rate Kz (c), and they become necrotic at a rdfe (c). Proliferating cells have a proliferation (or
growth) ratek g (c). Naturally,

Kr(c), Kg(c), andKy (c) are positive-valued functions
Ko(c) andKy (c) are decreasing in, while (1.2)
Kr(c) andK g(c) are increasing iia.
The functionK g (c) represents the balance between birth and death of the proliferating cells. We

assume that
Kg(©) =0 forsomer > O; (1.2)

¢ is a critical nutrient concentration: if > ¢ then the population of proliferating cells grows,
whereas ift < ¢ then the population of proliferating cells decreases.

We also assume that the necrotic cells degrade, and are removed from the tumor, at a constant
rateKo.
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We next need to introduce a constitutive law for the tissue. Most tumor models assume that
the tissue has the structure of a porous medium for which Darcy’s law applies (see, for example,
[5], [21]). There are however tumors for which the tissue is more naturally modeled as a fluid. For
example, in early stages of breast cancer the tumor is confined to the duct of a mammary gland,
which consists of epithelial cells, a meshwork of proteins, and extracellular fluid. Several recent
papers on ductal carcinoma in the breast use the Stokes equation in their mathematical model [10]—
[13]. If we denote the fluid velocity by = (v1, ve, v3) and the fluid pressure by, then the
constitutive law is

1-
0ij = —pdij + 21)(6,']' — §A5ij)

wherea;; is the stress tensop, = — oy,

1/0v; n ov;
e = — 2L 4 20T
Y 2 ij 8)(1‘
is the strain tensor) = ey, = div v is the dilatation, and is the viscosity coefficient. If there are
no body forces then
3
99 _
=1 B)Cj
We can rewrite this equation as the Stokes equation

o1 - .
Vp—vAv—:—adeIszo in$2;, t >0, (1.3)

wheres$2; is the tumor region.
We assume that the cells move with the fluid velogitsThen, by conservation of mass,

z_: +div(r) = [Kp(c) — Ko(©)]r + Kr(0)q,
3 o
a—ct] + div(gv) = Kg(c)r — [Kr(c) + Kn(0)]q.

on
at

We next assume that all the cells are of the same volume and mass, and that the total density of
the cells is uniform throughout the tumor. Then, after normalization, we have

+div(nv) = Kn(c)g — Kon.

r+qg+n=1

Summing up the three preceding conservation laws, we deduce thatdik z(c)r — Kon.
This equation can be used to replace the conservation law e now substitute =1 —r — ¢
into the expression for div and, together with the conservation laws foandq, we obtain the
system

divy = h(c,r,q) in2,, t >0, (1.4)
8—};—{—T)~Vr=f(c, rq) Ny, t>0, (1.5)
aq . .

E+U-Vq:g(c, r,g) ing2, t>0, (1.6)
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where

]’l(C, r, CI) = _KO + [KB(C) + KO]r + KOC],
fle.r.q) =[Kp(c) — Ko(0)]r + Kr(c)qg —rh(c,r, q), (1.7
gle,r,q) = Kg(o)r —[Kr(c) + Kn(c)lg — gh(c, 1, q).

The nutrient concentrationis depleted as it is consumed by the live cells. We assume that it
satisfies a quasi-stationary diffusion equation

Ac—A(r+q)c=0 ing2, t >0, (1.8)
wherex is a positive constant; in Section 4 we shall consider briefly also a parabolic equation for
We now turn to the boundary conditions at the boundgref $2,. We assume that the tumor
is held together by the forces of cell-to-cell adhesion with constant intepsitiie role ofy is

discussed in[]2]£[4]. Introducing the stress tengoe= v(Vo + (VU)*) — (p + 2—; divv)I with
components

we then have
Th=—yxin only, t>0, (1.9)

wheren is the outward unit normal and is the mean curvaturec(> 0 if I is the surface of a
convex body). We also assume the kinematic condition

v-n=V, onl; t>0, (1.10)
whereV,, is the velocity of the free boundary} in the direction:. Finally, we assume that
c=const=c onl t>0, (1.11)
wherec is a time and space-independent constant. We note that no boundary conditions are needed
for r andg, since (by[(1.1I0)) the characteristic curves initiating@twill remain onT7; for all .
The system[(1]3)[ (T.4), and (1.9) has six-dimensional kerfebnsisting of rigid motions

T)o:Zl—i—EX)?, po=0.

We must therefore add six scalar constraints;see [22]. These constraints can be written in the form
/ Tdr = A(r), (1.12)
£

f U x Xdx = B(r) (1.13)
o

whereK(t), E(r) are prescribed functions.
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Finally, we prescribe initial conditions:
Qli—0= R0, rl=0o=ro®), ¢gli=0=qo(x). (1.14)

Note that, givens2o, ro, qo, the functionco = c|;=o is determined by[(I]8)[ (1.11), so that
alsohg = h(c, r, q)li=o is determined. We can then solye (1.8), [1.9) (withie# ho) with the
constraints[(1.72)[ (1.13), a&= 0.

We assume that
ro(x) >0, qo(x) >0, ro(x)+qo(x) <1 inS2. (1.15)

Since proliferating cells reside in nutrient rich regions and, in particular, near the boundary of the
tumor, we shall assume that

ro(x)=1 onlp. (1.16)

We shall also assume that
Ko(¢) =0, (2.17)

that is, proliferating cells do not become quiescent if the nutrient concentration is at its makimum

REMARK 1.1 Asin [7] one can easily show that for any solution[of(1[3)—(1.16),
rz0, ¢g=20 r+g<l

in factr + ¢ + n = 1 andn, the density of necrotic cells, i 0. Also 0 < ¢ < ¢

by the maximum principle. Hence without loss of generality we may truncate the functions
hic,r,q), f(c,r,q),g(c,r,q) forr < 0,9 < 0,¢c < 0 andr, ¢, andc positive and large, so

that these functions remain as smooth in their variables as the original functions and, at the same
time, they have compact support.

REMARK 1.2 In view of [1.10) the characteristic curves [of {1.), (1.6) which starfpwill lie
on[; forallz. Sincec = ¢ onI; andKp(¢) = O, the unique solution of (1.5], (1.6) alorg with

initial conditions (I.1p) ando = 0 (by (1.15)) isy = 0, r = 1, and from|[(1.4)[(1]7) we then get
divi|; = const= Kp(c). (1.18)

The system[(1]3)F(1.17) may be viewed as a problem(Fop) coupled to a problem for
(c,r,g). In Section 2 we consider the subproblem {or p). Using results of Solonnikov [22]
we establish existence, uniqueness, and regularity estimates. Next, in Section 3, we consider the
elliptic-hyperbolic system forc, r, g) and, by means of the results established in Section 2, we
define a mappindc, r, g) — S(c,r, q). We prove that if 0< ¢+ < T whereT is sufficiently
small thenS is a contraction, and its fixed point is the solution of the sysfem (1.3)4(1.17). The free
boundaryl; and its first-derivative are shown to be smooth functions in the spatial variables. Our
proof of existence, uniqueness, and regularity for the solutidn df (L.3)4(1.17) does not use the special
assumptiond (1}1), (1.2), arffd ([L.7); the proof is valid for general functians, ¢), f(c,r, ¢) and
g(c,r, q), provided divu = const on/; (as in [1.1B)). In Section 4 we prove a few additional results
and state some open problems.
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2. Auxiliary results

In this section we study the auxiliary problem

—VAT+Vp=f f:--vg) in$2, >0, (2.1)

divv = in £, t >0, (2.2)

T, pyn =—ykn only, t >0, (2.3)

v-n=1V, onrl;, t >0, (2.4)

20 is given (2.5)

We introduce a basi®; (x), ..., we(x) in the six-dimensional spadé generated byi + bxXx

whered, b are any vectors iiR3:

‘ljjl = (13 Ov 0)7 17)2 = (01 17 O)v 17)3 = (Oa 07 1)7 17)4 = (O’ —X3, x2)7

ws = (x3,0, —x1), W = (—x2, x1,0).
We can then write the constrainfs (1.12), (1.13) in the form
@, W) = M(t) (k=1,...,6) (2.6)

where (v, W) = f!zt v(x,1) - wi(x) dx, and the functionsVy(¢) are linearly dependent on the
componentsi; (¢), B;(¢) of /Y(t), E(t). Note that

divw, =0 forallk. 2.7)

We recall [19, Lemma 6.1] that
/xﬂ;kﬁ:o 1<k <6). (2.8)
I

We also have
/wk.ﬁzo 1<k <6). (2.9)
I

/J)k~ﬁ'= divii, = 0 by.
I; £2;

Our treatment of the probler@ 1)—(R.6) will be similar to that of Solonnikov [22] who proved
existence and unigueness in the caseaidiy 0, that is, whenf = 0, g = 0. (An alternative proof
was given by @Gnther and Prokerf [20].) Accordingly, we shall replace the Eulerian variable
the Lagrangian variablg, where

Indeed,

-

t
*=s+/ i d=XE D, e (2.10)
0

2 = §20, and
uE, D =vXE 0,0, pE1)=pXE),1);

for simplicity, we shall often denoté andé by x ands.
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We introduce the notation

[wemaiy = Y suplD/wx)|+ Y Hyo(D/w)
ljl<m |jl=m
where
[k(x) — k()|

’

Hoc,.Q(k) = Ssup (x
x,ye |x - Y|
herem is any integee> 0 anda € (0, 1). We setl” = I'p = 0820, and similarly defingéw|cm+«(r).
A function w(x, t) is said to belong taC (0, T; C"*(2)) if + — w(,t) is a continuous
function from [Q 7] into C"*%(£2), and we then define the norm
|lwlco,T:cm+a(eyy = SUP |w(:, 1)|cm+a(g)-
\[\
Similarly we define the concept € C1(0, T; C"*%(£2)).
We coverI” with a finite number of coordinate patches, 12, n3) such that in each patch we

can writeny = ¢; ('), wheren’ = (12, n3) varies in some open sef. Suppose we can represent
I locally in the form

n=g¢i(n',1), where ¢ €C(O,T;C""*w)).
Then we say thaf} belongs taC (0, T; C"*%) and set

[T co,1;cmtey = Z l9ilc(o,T:cm+e (w;))-
1
Similarly we define the concept, € clo, T; cmtay,

The system[:(Z]l)E@S)qis an elliptic system in the Agmon—Douglas—Nirenberg sense, but the
homogeneous system (with = 0, g = 0) has the 6-dimensional null spakg. In order to secure
unigueness, we need to factor out the null space. This can be done, as in [22], by using the Schmidt
lemma [24, Section 21]. Accordingly, we replafe [2.1) by

VAT @) +Vp=F (f:—ng) in 2, 1> 0, (2.11)
where .
0@) = Y (@, wg) — Mi()]ie(x). (2.12)
k=1

Then the systenj (2.11), (2.2)), (R.3) has a unique solution. We can now state:

THEOREM2.1 Letlp € C™t3t (m > 0,0 < a < 1) and assume that, for sonf@ > O,
g belongs taC (0, To; €119 (£20)) and theM; (1) are continuous functions forQ r < To. If T is
sufficiently small then there exists a unique solutionp) = (u, p) to (2.11), [2.2)4(2]5) such that
I; belongs taC (0, T; c™t3teyn (0, T; €™ T2+), 5i(&, 1) belongs taC (0, T; C" 24 (£2)), and
p(&, 1) belongs toC (0, T; C™ 1+ (02)); furthermore,

|L_2|C(O,T;Cm+2+‘1(.(2)) + |ﬁ|C(O’T;Cm+1+a(_Q)) + |FI|C(O,T;C’"+3+°‘)

6
+ | Tileto.rcmiry <C{|g|c(0j;cm+l+a(m)+z sup |Mk(t)|} (2.13)
k=1 0T

whereC is a constant independent of
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Proof. We rewrite the systeng:@]llw ). 4) in the Lagrangian coordinates. As irM22hn
be written in the formzj Aijre % where, if divo =

t
ou; (&,
A;; are cofactors o«ﬁij+/ Md
o g

andT (v, p) takes the form
Lo . 2v .
Tu(u, p) = —(p + §g>1 +vSu(u)

where S, (u) is a first order differential operator with coefficierds;. In the present case, where
divv = g, the determinant of the JacobienX/d¢) is not identically equal to 1 in general,

A;; are the elements of the Jacobian of the inverse transformation (2.14)

(which depends org), and some coefficients of the Stokes equation there will depend on
g(X(&,1),1) wheret is the Lagrangian coordinate. We also need to replégeby

L) = {/ [i(n, 1) - wk(X(n,t))—Mk(t)]de( )dn}wk(X(é 7).

We can nevertheless proceed aslin [22] with minor changes. The proof is based on linearization
and localization of the system written in the Lagrange variables (in the fixed dathanO, 7)).
A critical step is the careful study of a model problem in a half-space for an inhomogeneous system.
In this step, the introduction q? andg in the present case @ .2) does not cause any changes
in the proof, so that Theorem 2 in [22], which deals with the model problem, extends to the present
case.

Next we write the system, as in [22], in the form of a perturbation problem

L, p) = F(, p. 1) (2.15)

whereL is a linear operator. As in [22], we can use the estimates for the model problem to derive
existence, uniqueness and estimates for the linear problamy) = F for any given functionf .
We then can solvg (2.15) for& + < T, T small, by a fixed point argument (using a contraction
mapping, or successive approximations), and here again the fagt ématg are non-zero functions
makes for only trivial changes in the proof 6f [22] for the cgse- 0, ¢ = 0.

Returning to the Eulerian coordinates, we then obtain the asserted solufion f (2.11), (3.2)—(2.5)
with the estimatd (2.13).

Observe thab X (£, 1)/dt = i(&, t) belongs toC (0, T; C"+2%(2)). Henced A;;/dt belongs
to the same class. If we assume that

geclo,T;c"(2)), Mpecto,T), (2.16)

then we can formally differentiate the system i@k, ), p(&, t) in t and obtain an elliptic system
for ii;, p;. Sincel; € €0, T; C"*+2+), the boundary conditions have sufficient regularity to
ensure that

ii; € CO, T; C"TH(2)),  p; € CO,T; C"T(R)). (2.17)
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A rigorous proof of [(2.1I]7) can be obtained by working with finite differences,iror,
alternatively, by first establishing existence, uniqueness, and regularity of a solutiofi*) of
the formally differentiated system (with} being the free boundary established in Thedrer 2.1) and
then verifying that

t

i, = ﬁ($,0)+/ u* (&, v)dr,
0

t
5.1 =15(€,0)+/O 5. 7) dr.

We conclude:
THEOREM 2.2 If (2.18) holds then the solution established in Thedrein 2.1 satisfie$ (2.17), and

|ﬁ|cl(o,T;cm+1+W) + 1Pl 7:cmre 2y < CUIGIm+14+0 + IM]]) (2.18)

where the normi ||,;+1+« is defined by

||(/7||m+l+ot = |¢|C(Q,T;Cm+l+01(g)) + |¢|C1(0,T;C’”+°‘(Q))’ (219)
and
6
IMIl =" sup [|M()] + M (0)]].
k=10<s<T

We would like to replace[ (2.11) by (2.1), that is, to show th@t) = 0. This is not possible
for generalg(x, r). However, ifg(x, t) = h(c, r, g) whereh(c,r, ¢) is as in[(1.¥), then, as noted in

RemarK 1.p,
g(x,t) =const onl;. (2.20)

In preparation for this case we shall prove:

THEOREM2.3 If (2.20) holds then in Theorgm 2.1 we can replace {2.11]) by (2.1); tiabis= 0

and the constraint§ (3.6) are satisfied.

Proof. We recall [20] the identity, for any, w, p,

1 31),' ij aw,' Bwj / N
= Ly )= =L )de — div @ dx
Z/QIZ<3XJ' +8x,~)(8x]~ + 8xi) Qrp w

_ (_Aa+vp).wdx—/ V(divﬁ)-zf)dx—i—/ T, p) - i ds.
24 2 T;

Taking for (v, p) the solution established in Theorém|2.1 aie= w, as in [2.12), and noting that
the left hand side vanishesuf = w, and the integral ot} vanishes by{ (2]3)[ (2.8), we obtain

- N N N - v
(f—€@) wedx — | Vg-wedx =0 (f=—§Vg)-
24 2

/ Vg.@F/g@.ﬁ:const./ =0,
2 I; I

Since
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by ) and9), we gef, ¢(D) - W, =0, that s,
6
> 1@, i) — Mr()] (i ) =0 fore=1,....6.
k=1

It follows that the expressions in brackets vanish. Thus the constiaints (2.6) are satisfied, 4nd (2.11)
reduces to[(2]1). O

3. The main result
We shall need the following lemma.
LEMMA 3.1 Consider the hyperbolic system
W+ (b-Vow = G(x,t,w) in R" x(0,T), (3.1)
Wli=0 = wo INR", (3.2)
wheren > 1, % = (w1, w2), G = (G1, G2), and assume that
D.b, DG € C(0, T; C" TRy, m
DIYIDIG e L*®R" x0,T), 0<j<
Do € C"HIF R,
Then there exists a unique solution[to {3.[),](3.2) such that
W:, Dy belong toC (0, T; C" 1 (R")).

Proof. A similar result withm + 1 = 0 andC (0, T'; C" 1+ (R")) replaced b)Cf(‘;f R* x (0, T))
was proved in[[B, Lemma 2.2]. The proof of the present lemmasfarl = 0 is similar and will be
omitted. The proof forn + 1 > 0 follows by successive differentiation ¢f (B.1) with respect to

As in Section 1 we shall use the notation
2 =89, I =Iyp.

REMARK 3.1 Later on we shall consid.l) wibh= 7, where(7, p) is the solution asserted in
Theorem$ 2]1 arjd 3.2. Sinde 1 = V,, on I, the characteristic curves initiating i (or at I'p)

will lie in §2, (or on I7) for all z. Hence the proof of Lemnja 3.1 remains unchanged if we replace
R" x (0, T) by Ug-, -7 $2: x {t}. It will be convenient to consider the solutiahas a function of

(¢, 1) whereg € 2 andx is related tc by (2.10). If we write

W(E, 1) = ib(x, 1),

equation[(3.]) takes the form

W, +b-AV:W =G (3.3)
where A = (A;;) and the A;; are defined by[(2.14). Sinc&, and D:i belong to

C(0, T; C"t14%(2)), Lemmd 3.1 implies that
W,, D¢ W belong toC (0, T; C" 14 ().
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We introduce the space
X" — (o (£, 1) ¢, Deg belong toC (0, T; ™14 (2)))
with norm |¢||,u+1+« defined by[(2.19). For any/ > 0 we set
X = (o € X" glptara < M)
In what follows we shall assume that
the functionsk 3 (c), Ko(c), Kr(c), andKy(c) belong toc™ 1+ (R%). (3.4)
This implies that
the functionsi(c, r, ¢), f(c, r, ¢), andg(c, r, ) belong toC” T+ (R3). (3.5)
We shall also assume that
[oe C"3 g e CMPY(Q),  goe CM"THY(Q) (3.6)
and that, for somé&yp > 0,
Zf(t), E’(t) are continuously differentiable forQ ¢ < To. 3.7)

We can now state the main result of the paper.

THEOREM 3.1 If (3:4) (or [3:5)) and (3]6)[ (3.7) hold for some> 0 and O< « < 1, then there
exists a unique solution o[@}.e,g(’gl?) for some time interval @ < 7' such that/; belongs to
C(0, T; c"t3+toyncl(0, T; C™*2*) and, in Lagrangian coordinatés, ¢), the functioni (¢, t) =
v(x, t) belongs to

C(O, T, Cm+2+0t(9)) ) Cl(o’ T, Cm+1+0t (.{2)),

and the pressurg and the cell densities ¢ belong, in the variable§, 1), to
CO, T; " @) n o, T; ¢ (2)).
Proof. The proof is by a fixed point argument. Let r, ¢) € Xﬂ“*“. We shall define a mapping
¢, 7,9)=S(c,rq)

from X7 into X7, for somem > 0, and prove that it is a contraction, and that the
corresponding fixed point yields the solution asserted in the theorem.
Set

h(E 1) = h(c(E. 1), r(E, 1. q(E. 1), (38)
By Theorem§ 2]1 ar{d 3.2 there exists a unique solufio) of (2.11), [2.2)4(2)5) for the function

g(x, 1) defined agi(&, r). We next want to solve the equations

AC—Ar+q)c=0 ing, <¢=c only, (3.9)
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and
or . . n e
a——}—v-er:f(c,r,q) in;, 0<t<T,
af (3.10)
a—f+a-vxc;=g(é,f,c}) in2, 0<t<T,
with

Fli=o=ro. qli=0o=4qo in . (3.11)

However, it will be more convenient to do this in the Lagrangian variatles). Then [3.9) takes
the form
Lé—A(r+4q)c=0 inR2, ¢=c¢ onrl, (3.12)

where

82 3
L= a(gvt)——'— b(s’t)_7
Z Y 0&; 0§ Z l 0&;
the a;; are quadratic polynomials in the variablég, introduced in[(2.14) and the; are linear
functions in the derivative8A,/0&,. The systen(3.10) takes the form
a—r+ﬁ~AV5f=f(é,f,c}) N2, 0<r<T,
, ! (3.13)
8—(5+ii~AV§c}=g(é,f,c}) N2, 0<r<T,

whereA is the matrix(A;;).
Note that the coefficients df and theirt-derivatives belong t@ (0, T; C"™ % (£2)). Hence, by
elliptic estimates,
¢ e cXo, T; c"HY Q).

By Lemmd 3.1 and Remalk 3.1 we then conclude that the sygten (8.13), (3.11) has a unique solution
with
(*,§) € C(O, T; C"T?**(2)) n Y0, T; C"1H(2)).

Thus(¢, 7, q) € Xﬁ“z*”‘ for someN, and, as is easily seeN, depends only oM.
We now set

S(e,r,q) = (¢,7,q)
so that the mapping satisfies

S(X;‘Vf-l-ﬁ-a) C Xﬁ+2+a’ N = N(M) (314)
From Remark T]1 we also easily infer that
el + 171+ 141 = (2) < Co (3.15)

whereCy is a constant independent &f.
By standard calculus estimates one can show that fonan there is a constaudt, such that

lwlmt1+e < nllwlmi2+a + Cpllwlze (3.16)
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for any functionw in X" +1+¢_ From [3.14),[(3.15) we then deduce that
S(xﬁ-i‘l-ﬁ-a) C X%—HH_& (317)

providedM is sufficiently large. We next prove thatis a contraction mapping iﬁﬁ“*“ if Tis
sufficiently small.
Take any(c;, i, ¢;) (i = 1,2) in X7 and set
c=c1—c2, r=rn-r2 qg=q—q, d=I[c7r¢lnt1ta-
Denote byi; the velocity corresponding t@;, r;, ¢;) (according to Theorenjs 2.1 ahd]2.2). Then
by the estimates of [22] we have

||12]_ - ﬁz"C(O,T;Cm+2+a(Q)) + ||L_21 - ﬁz”cl(O,T;C”l+’+“(Q)) < C]_S

By the arguments used in the proof of Lemmg 3.1 (cf. [6]) we can then derive the estimate
IS(c, 7, q) — S(c2,r2, g2)Im+2+a < C16
with another constary, so that, by[(3.76),
S(c, 7, q) = S(c2, 72, g2 lm+1+e < 18+ Cylllel + [r[ + gl [ (3.18)

for any smallp > 0.

If we take the difference of the hyperbolic equations fgrand r,, we readily obtain the
inequality |[r| < CT$ for some constan€. The same estimate holds ffr|, and then from the
equation forc = ¢1 — ¢2 we deduce that alsig| < CT$ with another constan®. Hence the right
hand side of[(3.18) is bounded gy + C,CT$. Takingn = 1/4 and7T small enough, we conclude
thatS is a contraction, so that it has a unique fixed point.

The fixed point is not yet a solution g¢f (1.3)—(1]17) since we still have to eliminate the/t&m
and verify the constraint§ (1.J12)), (I]13). But this follows from Thedrer 2.3 and R¢mark 1(2.

4. Further results and open problems

REMARK 4.1 Theorem[ 3]1 does not require the special structiirgl (1.7) of the functions
hic,r,q), f(c,r q), andg(c, r, g). The theorem is valid for general functiohs f, g of (c,r, q)
provided we can establish the relatib(t, r, ¢) = const onI; for all ¢, for the solution of[(15),
(I:6) with constant initial data ofp.

REMARK 4.2 Theorem 3]1 extends to the case where the elliptic equptign (1.8) is replaced by the
parabolic equation

—Bcr+Ac—Ar+q)c=0 in2, t>0(8>0),

andc|,—o = co(x) is given. In this case we require tha belongs toC”t2+%(£2) and that the
appropriate consistency conditions holdgtso that we can use the Schauder estimates.

Theorenj 3]l raises the following questions:
ProBLEM 1 For what initial data does there exist a solutiorf of|(1[3)=(1.16) farall0?
PROBLEM 2 What will be the asymptotic behavior of such a solutiom as co?
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These questions lead us to explore whether stationary solutions to [(1.3)—(1.16) do in fact exist.
Let us consider the simple case where we have only proliferating cells, thatig, ¢ = 0, and that
the proliferating rate ig.(c — ¢). We shall consider the case whersatisfies a parabolic equation.
Then

Vp—vAﬁ—%deiVﬁ:O ing2, t>0, (4.1)
divi=pu(c—-¢) in, t>0, (4.2)
—Ber+Ac—c=0 in2, t>0 (B >0), (4.3)
the boundary condition§ (3.9)—(1]10) hold,
c=c¢ onl;, t>0; cl;=0=co(x) onS2, (4.4)
and we take the constrainfs (1. 12)—(1.13) to be
/mx:o, /ax;dxzo. (4.5)
2 2

We shall denote this problem iy £), and its stationary version biydg). We make the assumption
thatc < ¢; this ensures that the tumor will not disappear in finite time.

THEOREM4.1 There exists a unique spherically symmetric stationary solution to prablgm
with free boundary = R, and it is given by

- . _ 4
v=uGr)x, p=p+ 3VHe,

r dr r , 3
G@r)=g@r)—g(R), g =/ —4/ ¢ (p)p~dp
o " Jo

where .
) =¢ R sinhr
Y= SR F
andR is the solution of the equation
R 1¢
RtanhR = ———, A= ——. 4.6
1+ AR? 3¢ (4.6)

The constanp is determined by the condition

|— _R ( )
+ V Cc—2C).
pr—R 3“’

The proof of Theorerp 4]1 is by direct calculation. The fact tha (4.6) has a unique solution was
proved in [17].

PrROBLEM 3 Is the stationary solution established in Theofem 4.1 asymptotically stable?

By asymptotic stability we mean that for any initial data near the stationary solution there exists
a solution to problengAg) for all + > 0, and the free boundary converges to the sphete R} as
t — 00.

The answer to Problem 3 should depend on the value.dfor u = 0, the case of viscous
droplet, asymptotic stability was proved by Solonnikav ! [23Jin&er and Prokert [20], and
Friedman and Reitich [19].
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In the case of Darcy’s law (instead of the Stokes equation), Problem 3 was completely solved by
Friedman and Hu [14], [15]; see alsa [1]. In this case, there exists a nymlserch that asymptotic
stability holds ifu < w., whereas the stationary solution is linearly unstabje i .. Is there a
similar result in the case of the Stokes equation?

For the model with Darcy’s law it was proved [n [€], [18] that there exists an increasing sequence
{un * n > 2} of bifurcation points of symmetry-breaking branches of solutions with free boundary

o0
r=R+eY,00) + ) @) (lel smal)
k=2

whereY, o(0) is the spherical harmonic of ordét, 0). Clearly uz > s, but the caseiz > s
cannot be ruled out. Indeed, such an inequality does ocatiisfsmall, and in that case the value
1 = . corresponds to a Hopf bifurcation [16].

PROBLEM 4 Is there a similar sequence of bifurcation points for the stationary version of the
problem [Z.1)(25) [(T9)(L10)?

PROBLEM 5 Compare the valuesg,, u2, us, ... for the two models, the one with Darcy’s law
and the other with the Stokes equation.

We note that instead of taking as the bifurcation parameter, we could have takeas a
bifurcation parameter. The two parameters, after scaling, appear as a single pargmeter
Problems 3, 4 deal with the case where all the cells in the tumor are proliferating.

PROBLEM 6 Explore Problems 3, 4 for the general mogel|(1[3)—(1.17).
In the case of Darcy'’s law, partial results have been proved in[[5],[[7], [8].

Added in proof
A solution to Problems 3-5 was recently given in the following articles by A. Friedman and B. Hu:

1. Bifurcation for a free boundary problem modeling tumor growth by Stokes equation. Submitted
for publication.

2. Bifurcation from stability to instability for a free boundary problem modeling tumor growth by
Stokes equatiorMath. Anal. Appl(2006), to appear.
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