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Stability and attractors for the quasi-steady equation of cellular flames
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We continue the study of a simple integro-differential equation: the quasi-steady equation (QS)
of flame front dynamics. This equation is dynamically similar to the Kuramoto–Sivashinsky (KS)
equation. In [FGS03], where it was introduced, its well-posedness and proximity for finite time
intervals to the KS equation in Sobolev spaces of periodic functions were established. Here we
demonstrate that QS possesses a universal absorbing set, and a compact attractor. Furthermore we
show that the attractor is of a finite Hausdorff dimension, and give an estimate on it. We discuss
relationships with the Kuramoto–Sivashinsky and Burgers–Sivashinsky equations.

1. Introduction

In a recent paper [BFHS05] we studied the quasi-steady (QS) model of cellular flames:

Φt +
1

2
Φ2

x = (I − αA)Φxx, (1)

where
A := (I − ∂2

x )−1.

The equation in (1) arises as a certain truncation of a weakly-nonlinear version of a more detailed
model of cellular flames (theκ-θ model) introduced in [FGS03]. Theκ-θ model may serve as a
basis for the description of the flame interaction with the background flow-field, which so far has
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been developed only for cellularly stable flames. As we argue below, the QS equation, in contrast
with the Kuramoto–Sivashinsky equation, presents a uniform approximation of the spectrum of the
original combustion problem.

Equation (1) was shown to be well-posed in Sobolev spaces of periodic functions. Moreover,
for a fixed time interval in a certain sense solutions of (1) become uniformly close to those of the
Kuramoto–Sivashinsky (KS) equation

Φt +
1

2
Φ2

x = (1 − α)Φxx − Φxxxx, (2)

as the instability parameterε = 1 − α approaches zero.
The latter result seems to imply a strong resemblance between the dynamics generated by the

two equations, in particular one would expect that QS is capable of generating a cellular structure
and chaotic behavior for an appropriate range of parameters. Indeed, some preliminary results of a
direct numerical simulation [BFHS05] confirm this expectation. Thus, “quasi-steady” in the name
of (1) relates rather to the way it was originally introduced, and is in no way indicative of its rich
dynamics.

However, one wonders whether the dynamical features, such as stability/dissipativity and
existence of a compact attractor of finite Hausdorff dimension that were established rigorously for
KS, can be demonstrated for the QS model. The positive answer to this question is the main result
of the current paper.

Since the time of writing the paper [BFHS05] our view of the nature of (1) has somewhat
evolved, therefore we present a slightly different discussion of its basic properties that are expressed
through its dynamics. First, it is easy to show that (1) can be represented in a slightly different and
more convenient form:

Φt +
1

2
Φ2

x = Φxx + α(I − A)Φ. (3)

This form is rather reminiscent of yet another dissipative system that has been a subject of discussion
in recent years (see [RS87, G94, BKS01]), the so called Burgers–Sivashinsky (BS) equation:

Φt +
1

2
Φ2

x = Φxx + (α − 1)Φ. (4)

The coefficientα − 1 (we assumeα > 1) is chosen in such a form here simply to adjust the neutral
stability wave number (atω(k) = 0, see the dispersion relations below) to the other two equations
for easier comparison.

All three of these equations (2), (3), and (4) share the same basic quality revealed by
linear stability analyses, namely long-wave destabilization, which is suppressed by the dominant
dissipative principal term for small wave lengths. The respective dispersion relations read

ω(k) = (α − 1)k2
− k4, (KS)

ω(k) = −k2
+

αk2

1 + k2
, (QS)

ω(k) = −k2
+ α − 1. (BS)

The neutral stability curve is the same for all three equations, it is the parabola

k(α) =
√

α − 1. (5)
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As one can easily see, in the long-wave part of the spectrumk � 1, the dispersion relation for QS
is similar to that of KS,

ω(k) = −k2
+

αk2

1 + k2
= (α − 1)k2

− αk4
+O(k6) + · · · , (6)

while for the short wavesk � 1 its decay (in contrast to KS)ω ∼ −k2 is identical to that of BS.
In order to understand which dispersion relation better reflects the physical reality we should

turn to the original combustion problem. The real-life flames constitute a rather intricate physical
system involving the fluid dynamics of the multicomponent gaseous mixture, the multistep chemical
kinetics, as well as the molecular and radiative transfer. It transpires, however, that the cellular
instability may be successfully captured by a simple reaction-diffusion system. In an appropriate
range of physico-chemical parameters a subsequent reduction to a free interface problem can be
performed [MS79]. The dispersion relation for this free-interface problem reads (see e.g. [BL00])

(1 + 4ω + 4k2
− α)(1 −

√
(1 + 4ω + 4k2)) − 2αω = 0. (FI)

To compare the latter dispersion relation with (KS) and (QS) we turn to the scaling employed in
the derivation of the KS equation [Siv]:ε := α − 1 = o(1), k2

= O(ε), andω = O(ε2). Then, up
to ε2, (FI) yields

ω = (α − 1)k2
− 4k4.

It is easy to see that fork � 1, (FI) yieldsω = −k2.
Thus, while in the long-wave approximation the behavior of the exact dispersion relation for

the free-interface problem is mimicked by KS and QS, its decay at infinity is identical to BS
and once again to QS. The three equations QS, KS and BS share the same nonlinearity, and the
destabilization-dissipation mechanism is identical for all three (as we show below). The nonlinearity
disperses the energy from the unstable modes to the rest of the spectrum sufficiently for the principal
term to dissipate the energy excess.

Therefore, the (linear part of) QS equation presentsa uniform approximation of the spectrumof
the original combustion problem. Fig. 1 illustrates our remarks concerning the comparative linear
stability analyses of the three equations on the one hand, and the free-interface problem on the other
hand. Fig. 1 (left) represents the dispersion relations while Fig. 1 (right) is a magnification of its
long wave region. It is necessary to remark that while KS is the model equation for the onset of
cellular-chaotic dynamics, one may expect that some important features of global dynamics of the
original physical system should be better described by the QS equation, as they may be influenced
by the manner in which the energy created by the long-wave instability is channeled to the rest of
the spectrum.

It is necessary to remark that in Fig. 1 for comparison with the free boundary problem, the
dispersion relation in (KS) had to be modified as follows:

ω(k) = (α − 1)k2
− 4k4.

Indeed, when the KS equation is derived from the free boundary problem the factor 4 arises
naturally. Traditionally however, it is scaled out as in (KS). A similar factor would appear in the
QS equation: the operator(I − ∂2

x )−1 should be replaced by(I − 4∂2
x )−1. However when QS

was introduced as anad hocmodel in [BFHS05] the factor was left out for comparison with the
traditional KS. This factor is reintroduced in the dispersion relations depicted in Fig. 1.
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FIG. 1. Dispersion relations for the KS (pluses), the QS (thin line), the BS (dots) and the original free-interface problem
(thick line) forα = 3/2. A magnification of the long wave region is on the right.

It appears that the QS equation represents as it were a middle ground between the KS and BS.
Indeed, on the one hand the dynamics of the QS is qualitatively identical to the KS regarding the
basic ability to generate chaotic cellular solutions. On the other hand, the standard energy typeupper
boundson the size of the absorbing set and the dimension of the attractor are practically identical
for both QS and BS.

It should be noted that, unlike KS and QS and in spite of the rather sizable upper bound
for the attractor, the dynamics generated by the BS equation is asymptotically trivial (see e.g.
[BKS01, G94]) as all its solutions gravitate to steady states dictated by the length of the interval
and the parameter. Consequently, the true dimension of the attractor should be equal to zero. This
is obviously due to the fact that, in contrast to the KS and QS equations, the most linearly unstable
mode corresponds to the infinite wave lengthk = 0.

If one carries out the estimates of the attractor for BS in the Sobolev spaces ofL-periodic
functions, one obtains an estimate for the Hausdorff dimension that is a certain power of the
periodL, with no indication whatsoever on the triviality of the dynamics on the attractor. In fact, the
bounds for BS in [G94] are practically identical to the ones for QS, obtained in the present paper.

This is a rather disturbing outcome, especially in view of the considerable effort [NST85,
G94, CEES93, GA04] to lower the bounds on the size of the absorbing set, and consequently the
dimension of the attractor. This effort is based on the belief that these characteristics measure the
“amount of chaos” or ”the strength of turbulence” in the solutions of KS. Therefore one should
keep in mind that the estimates of the Hausdorff dimension of the attractor are just upper bounds.
Nonetheless, they should be considered as important characteristics of the infinite-dimensional
dynamics. Thus, the main results of the paper, the estimates on the size of the absorbing set and
on the Hausdorff dimension of the attractor for the QS equation, are of a considerable interest.

Technically, in the stability section the paper represents a combination of the methods employed
in [G94] and [CEES93], while the estimate of the dimension follows rather faithfully the book of
Temam [Temam]. In view of the above comments we did not attempt to obtain necessarily the lowest
estimate opting for the transparency of presentation. We should remark that, as it seems, the method
suggested in [GA04] can be customized for the QS, leading to a lower estimate for the absorbing
ball, R ∼ L.
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We preface the main part of the paper by a brief summary of results of [BFHS05] in Sec. 2. We
conclude the introduction with a remark on the notation convention: unless otherwise indicated,all
the spatial integrals are assumed to be over the spatial period, i.e., we always write

∫
. . . dx instead

of
∫ L/2
−L/2 . . . dx.

2. Mathematical setting and previous results

We consider (1) in the class ofL-periodic functions inx. It is more convenient and rather
conventional (cf. [Temam]) to study the equation differentiated with respect tox

ut + uux = uxx + α(I − A)u. (7)

Hereu = Φx is in the class of periodic functions with zero average;Φ can be easily recovered
from u. It is (7) that we study below. In fact the discussion in the introduction also concerns rather
the differentiated forms of the three equations QS, KS and BS.

For integer or arbitrary reals we denote byH s the usual Sobolev spaces ofL-periodic
(generalized) functionswith zero average. We remark thatA is positive definite:∫

uAu > 0, (8)

which is frequently used below.
The global existence is stated as follows:

THEOREM 2.1 ([BFHS05]) Let u0 ∈ H s where s = 0, 1, 2, 3, . . . . Then (7) has a unique
solution on any time interval [0, T ] with u(·, 0) = u0. The solution belongs toL2(0, T ; H s+1) ∩

C0([0, T ]; H s), and hasut ∈ L2(0, T ; H s−1), and the corresponding norms are bounded by a
constant which depends only onα, s, L, T and‖Ψ (0)‖s . Thus the solution is smooth fort > 0.

In order to explain the asymptotic proximity result in [BFHS05] we note first that in contrast
with (2) the usual form of KS in (11) below is parameter-free. It was derived from the original free-
interface problem via a rescaling of coordinates under the assumptionε = α − 1 � 1. For this
reason, to compare the solutions of QS and KS, the QS should also undergo the same rescaling.

Thus, we are interested inα = 1 + ε, whereε is a (small) fixed positive number. We take the
period to depend onε, introducing a reference periodL0 > 0 and (reference) time interval [0, T0].
The reference space and time variables are denoted byξ andτ :

x = ξ/
√

ε, t = τ/ε2, u = εϕ. (9)

We consider (1) in the class of periodic functions with periodL0/
√

ε in x, on the time interval
[0, T0/ε

2] in t . The rescaled version of (1) is

(I − ε∂2
ξ )

(
ϕτ +

1

2
ϕ2

ξ

)
+ ϕξξξξ + ϕξξ = 0. (10)

The solution of (10) is sought asϕ = U + εw, so that forε = 0 one recovers the (parameter-free)
KS:

Uτ +
1

2
U2

ξ + Uξξξξ + Uξξ = 0. (11)
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The equation for the perturbationw reads

(I − ε∂2
ξ )

[
wτ +

1

2
(2Uξwξ + εw2

ξ ) + wξξξξ + wξξ

]
= ∂2

ξ (Uτ +
1
2U2

ξ ).

We assume for simplicity that both QS and KS start from exactly the same initial condition, i.e.
w(ξ, 0) = 0. Then one can perform an energy type estimate forw to obtain

THEOREM 2.2 LetU0 ∈ H 3. There existsε0 > 0 such that, whenever 0< ε < ε0, |w(ξ, τ )| 6 C

for all (ξ, τ ) in [−L0/2, L0/2] × [0, T0]. The numberε0 and the boundC depend only onU0 ∈ H 3

andT0.

For the original problem,Φ = εϕ, ϕ = U + εw, the theorem yields a nearness estimate:

COROLLARY 2.3
max|Φ(x, t) − εU(x

√
ε, tε2)| 6 Cε2 (12)

for |x| 6 L0/(2
√

ε), 0 6 t 6 T0/ε
2.

3. Absorbing set

The essence of the dissipative nature of QS is expressed in uniform boundedness of solutions. The
well-posedness results of [BFHS05] do not provide a necessary bound. The purpose of this section
is to establish such a bound.

In the spirit of [G94, Proposition 1] we need the following result:

LEMMA 3.1 Define

b(x) =

0, |x| > ε,

B

ε
(1 − |x|/ε), |x| 6 ε

(i.e., the graph ofb is a triangle of areaB with base 2ε). Then for anyu ∈ H 1,∫
b(x)u(x)2 dx 6

4

B
〈ub〉

2
+ 2Bε

∫
u′(x)2 dx (13)

where

〈ub〉 =

∫
b(y)u(y) dy.

Proof. On the intervalx, y ∈ (−ε, ε),

u(x) = u(y) +

∫ x

y

u′(z) dz.

We multiply this equation byb(y) and integrate with respect toy to obtain

Bu(x) = 〈ub〉 +

∫ ε

−ε

b(y) dy

∫ x

y

u′(z) dz

=: 〈ub〉 +

∫ ε

−ε

K(x, z)u′(z) dz =: 〈ub〉 + K̂u′
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whereK̂ is an integral operator onL2[−ε, ε] with the kernel

K(x, z) =


∫ ε

z

b(y) dy if z > x,∫ z

−ε

b(y) dy if z 6 x.

Next we estimate theL2 norm ofu on (−ε, ε):∫ ε

−ε

u(x)2 dx =
1

B2

∫ ε

−ε

[〈ub〉
2
+ 2〈ub〉(K̂u′)(x) + (K̂u′)(x)2] dx

6
2

B2

∫ ε

−ε

[〈ub〉
2
+ (K̂u′)(x)2] dx =

2

B2

[
2ε〈ub〉

2
+

∫ ε

−ε

(K̂u′)(x)2 dx

]
6

4ε

B2
〈ub〉

2
+

2

B2
‖K̂‖

2
∫ ε

−ε

(u′)2(x) dx.

It is clear that|K(x, z)| 6 B, hence the Hilbert–Schmidt norm satisfies

‖K̂‖
2

=

∫ ε

−ε

∫ ε

−ε

|K(x, z)|2 dx dz 6 B2ε2,

Therefore∫
b(x)u2(x) dx 6 supb

∫ ε

−ε

u(x)2 dx

6
B

ε

[
4ε

B2
〈ub〉

2
+

2

B2
‖K̂‖

2
∫ ε

−ε

(u′)(x)2 dx

]
=

4

B
〈ub〉

2
+ 2Bε

∫
u′(x)2 dx.

The selection ofε = 1/(8B) in (13) gives rise to the following important inequality:

COROLLARY 3.2 (Poincaŕe type inequality)∫
b(x)u(x)2 dx 6

4

B
〈ub〉

2
+

1

4

∫
u′(x)2 dx. (14)

The main result of this section is the following

THEOREM 3.3 (Existence of an absorbing ball) LetL > 1/(2α). Then for any solutionu of (7),

lim sup
t→∞

‖u(·, t)‖ 6 CaαL3/2,

whereCa is a universal constant;‖ · ‖ is theH 0-norm.

REMARK 3.4 The assumptionL > 1/(2α) covers the most interesting case, when unstable modes
exist. Indeed, the smallest eigenvalue for theL-periodic problem with zero mean isλ = (2π/L)2.
From the neutral stability curve we getL > 2π/

√
α − 1 for the unstable modes to appear, which is

a stronger condition thanL > 1/(2α). It is a rather simple matter to prove that all solutions decay
exponentially in time in the opposite case.
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Proof of Theorem 3.3. Let s be a fixed periodic function with zero mean (to be selected later).
Introducey(t) as a solution of the initial-value problem for the ode

ẏ(t) =

∫
u(x, t)s′(x + y(t))) dx, y(0) = 0,

whereu(x, t) is a given solution. Introduce the function

Φ(t) :=
1

2

∫
[u(x, t) − s(x + y(t))]2 dx

(it is easy to see that for the shifty0 for which the integral above is minimal,
∫

u(x)s′(x + y0) = 0).
We compute the derivative ofΦ and substituteut from the equation (7) to obtain

d

dt
Φ(t) =

∫
(u − s)[−ẏs′(x + y(t)) − uxu + uxx + αu − αAu]

= −‖ux‖
2
+ α‖u‖

2
− ẏ

∫
us′

− α

∫
uAu

−

∫
suxx +

∫
suxu − α

∫
su + α

∫
sAu. (15)

In the calculation above and everywhere in what follows we keep the notations for the shifted
functions(· + y(t)); we also uses0 for the unshifteds(· + 0). Taking into account the definition of
ẏ and (8), we continue the estimate:

6 −‖ux‖
2
+ α‖u‖

2
− 〈us′

〉
2
+

∫
suxu −

∫
suxx − α

∫
su + α

∫
sAu︸ ︷︷ ︸ . (16)

Terms containings are estimated as follows:

. . .︸︷︷︸ = −
1

2

∫
s′u2

+

∫
s′ux − α

∫
(s − As)u

6 −
1

2

∫
s′u2

+
1

2
‖s′

‖
2
+

1

2
‖ux‖

2
+

α

2
‖s − As‖2

+
α

2
‖u‖

2 (17)

Then we have

d

dt
Φ(t) =

1

2

d

dt
‖u − s‖2

6
(16)-(17)

− 〈us′
〉
2
−

1

2
‖ux‖

2
+

∫ (
3

2
α −

1

2
s′

)
u2

+
1

2
‖s′

‖
2
+

α

2
‖s − As‖2

= −〈us′
〉
2
−

1

2
‖ux‖

2
+

∫
u2

(
2α −

1

2
s′

)
−

α

2
‖u‖

2
+

1

2
(‖s′

‖
2
+ α‖s − As‖2).

So fars was arbitrary. Now we selects that satisfies

s′
= 4α − 2b(x) (18)

where the particular choice ofb(x) is described in the lemma above.
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To guarantees being periodic, we demand∫
s′

=

∫
(4α − 2b(x)) = 4αL − 2B = 0,

which impliesB = 2αL. Note that∫
ub = 〈ub〉 =

〈
u

(
2α −

1

2
s′

)〉
= −

1

2
〈us′

〉

and consequently〈ub〉
2 in the inequality (14) can be replaced by〈us′

〉
2/4. Then

1

2

d

dt
‖u − s‖2 6

(14)

(
−1 +

1

2αL

)
〈us′

〉
2
−

1

4
‖ux‖

2
−

α

2
‖u‖

2
+

1

2
(‖s′

‖
2
+ α‖s − As‖2)

6
L>1/(2α)

−
1

4
‖ux‖

2
−

α

2
‖u‖

2
+

1

2
(‖s′

‖
2
+ α‖s − As‖2)

6 −
1

4
‖ux‖

2
−

α

4
‖u − s‖2

+
α

2
‖s‖2

+
1

2
(‖s′

‖
2
+ α‖s − As‖2)

where in the last step we used an elementary inequality

−‖u‖
2 6 −

1

2
‖u − s‖2

+ ‖s‖2

that follows from the triangle inequality. Thus,

1

2

d

dt
‖u − s‖2 6 −

α

4
‖u − s‖2

+
1

2
(‖s′

‖
2
+ α‖s‖2

+ α‖s − As‖2)︸ ︷︷ ︸ .

The bound for the terms. . .︸︷︷︸ is easily obtained. First,

1

2
‖s′

‖
2

= −8α2L +
64

3
B3 6

B=2αL
C1(αL)3,

and also

1

2
(‖s‖2

+ ‖s − As‖2) 6
1

2
(2 + ‖A‖

2)‖s‖2 <
‖A‖<1

3

2
‖s‖2 :=

3

2
C2α

2L3 (19)

whereC1 andC2 are absolute constants that are obtained explicitly from (18) through integration.
Therefore, assumingα > α0 > 0, we see that. . .︸︷︷︸ 6 C(αL)3 and consequently

1

2

d

dt
‖u − s‖2 6 −

α

4
‖u − s‖2

+ Cα3L3. (20)

Finally, from the Gronwall lemma we get

‖u − s‖2 6 (‖u0 − s0‖
2
− 4Cα2L3) exp

(
−

α

2
t

)
+ 4Cα2L3,
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showing the exponential approach to the absorbing set. This inequality yields

‖u‖ 6 ‖u − s‖ + ‖s‖

6
∣∣‖u0 − s0‖

2
− 4Cα2L3

∣∣1/2 exp

(
−

α

4
t

)
+ 2α

√
CL3/2

+ α
√

C2L
3/2

=
∣∣‖u0 − s0‖

2
− 4Cα2L3

∣∣1/2 exp

(
−

α

4
t

)
+ αL3/2Ca (21)

whereCa = 2
√

C +
√

C2.

REMARK 3.5 With some modifications, the above proof can be repeated for any bounded operator
A leading to a slightly worse estimate; however, this result is irrelevant for our model.

From the proof above it is easy to derive the following

COROLLARY 3.6 DefineRa = CaαL3/2. Then for any ballBR = {‖u0‖ 6 R}:

(i) for all t > 0, ‖u(·, t)‖ 6 R + 2Ra;

(ii) there existst0 = t0(R) so that‖u(·, t)‖ 6 Ra + ε for anyt > t0.

Proof. The proof is based on the estimate in (21). First we note that∣∣‖u0 − s0‖
2
− 4Cα2L3

∣∣1/2
6 ‖u0‖ + ‖s0‖ + 2αL3/2

√
C

6
(19)

R +

√
C2αL3/2

+ 2αL3/2
√

C = R + Ra .

Thus (21) can be replaced by

‖u‖ 6 (R + Ra) exp

(
−

α

4
t

)
+ Ra 6 R + 2Ra .

It also shows that‖u(·, t)‖ 6 Ra + ε, starting from somet0.

We note that the constants in the proof above are not necessarily optimal.

4. Compact attractor

A compact attractor is obtained as anω-limit set of any absorbing ballB := BRa+ε. We have already
proved uniform boundedness for the orbits. To demonstrate compactness via Rellich’s theorem, it is
sufficient to obtain a uniform bound on the derivative:

LEMMA 4.1 For anyt > 0, and anyr > 0,

‖ux(·, t + r)‖2 6

(
α +

1

r

)
R2 exp

{
(αr + 1)

LR2

2
+ 2α

}
whereR = ‖u(·, 0)‖ + 2Ra .
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Proof. First we will derive two rather standard a priori energy estimates for solutions of (7). We
multiply the equation in (7) byu and integrate by parts with respect tox to obtain

1

2

d

dt
‖u‖

2
= −‖ux‖

2
+ α‖u‖

2
− α

∫
u(I − ∂2

x )−1u︸ ︷︷ ︸
>0

6 −‖ux‖
2
+ α‖u‖

2. (22)

Similarly, we multiply the equation byuxx and integrate by parts:

1

2

d

dt
‖ux‖

2
= −‖uxx‖

2
+ α‖ux‖

2
− α

∫
uxAux −

∫
uuxuxx

6 −‖uxx‖
2
+ α‖ux‖

2
+

∣∣∣∣∫ uuxuxx

∣∣∣∣.
The cubic term is routinely handled as follows:∣∣∣∣∫ uuxuxx

∣∣∣∣ 6 max|u(x)|

∫
|uxuxx | 6

Poincaŕe’s inequality
L1/2

‖ux‖

∫
|uxuxx |

6 ‖uxx‖
2
+

1

4
L‖ux‖

4.

Therefore
1

2

d

dt
‖ux‖

2 6 ‖ux‖
2
(

α +
1

4
L‖ux‖

2
)

. (23)

On the other hand, we rewrite the energy estimate (22) as

‖ux‖
2 6 α‖u‖

2
−

1

2

d

dt
‖u‖

2 (24)

and integrate fromt to t + r to see that∫ t+r

t

‖ux‖
2 dτ 6 α

∫ t+r

t

‖u‖
2 dτ −

1

2
‖u‖

2
|
t+r
t 6 αrR2

+ R2 (25)

whereR = ‖u(·, 0)‖ + 2Ra is a uniform bound for‖u‖ (see Corollary 3.6).
Now we can apply the uniform Gronwall lemma [Temam, Lemma III.1.1] withy = ‖ux‖

2,

g = 2α +
1
2L‖ux‖

2, andh = 0, which yields

‖ux(·, t + r)‖2 6

(
α +

1

r

)
R2 exp

{
(αr + 1)

LR2

2
+ 2α

}
. (26)

From the proof above it is easy to derive the following result that we will need for the dimension
estimates.

COROLLARY 4.2 If u(·, t) belongs to the attractor then

‖ux(·, t)‖
2 6 (α + 1)R2

a exp

{
α + 1

2
R2

aL + 2α

}
, (27)

1

t

∫ t

0
‖ux‖

2 6 αR2
a +

1

t
R2

a =

(
α +

1

t

)
R2

a . (28)
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Proof. For u(·, t) in the attractor,‖u‖ 6 Ra; in this caseR in (26) is replaced byRa . Now we
selectr = 1 in (26) to obtain (27) fort > 1. Next, similarly to the derivation of (25) above, we
integrate the estimate in (24) with respect tot from 0 tot and obtain (28).

Now we are ready to establish the compactness result.

THEOREM 4.3 The initial value problem (7) in the class of periodic functions with zero average
possesses a maximal, connected, compact attractor inH 0.

Proof. A compact attractor is obtained as anω-limit set of the absorbing ballB := BRa+ε, A =⋂
t0>0 Ω(t0)B, whereΩ(t0)u0 is the orbit of the time evolutionS(t)u0 with the initial condition

u0, that is,Ω(t0)u0 =
⋃

t>t0
S(t)u0. For a fixedr = r0 the estimate in (26) is uniform fort > r0,

and for allu0 with ‖u0‖ 6 R. It holds for anyR, including the absorbing ball. Together with the
uniform bounds on‖u(·, t)‖ from Corollary 3.6 it allows us to use Rellich’s theorem and conclude
that the orbitΩ(t0)B is precompact inH 0. It is known (see e.g. [Temam, Theorem I.1.1]) that in
this case theω-limit set ofB is a maximal, connected, compact attractor of the flowS.

5. Dimension of attractor

In order to obtain the estimate on the Hausdorff dimension of the attractor we study evolution of
the infinitesimal volume along the orbits in the attractor. We demonstrate that for sufficiently large
m the “m-dimensional volume” decays exponentially. This property combined with compactness
of the attractor and differentiability of the semigroup imply that the Hausdorff dimension of the
attractor is no larger thanm. In the argument regarding the Hausdorff dimension of the attractor we
follow quite closely the ideas outlined in [Temam, Chap. V].

Let v be a solution of (7) in the attractor, andu = v+εw, its perturbation. Then the linearization
is given by

zt = −vzx − zvx + zxx + αz − α(I − ∂2
x )−1z =: L[v]z. (29)

Sincev is smooth, clearly the linearized problem is well-posed inH 0.
Now we will estimate the evolution of the volume element. To this end we need to estimate

the trace of the finite-dimensional projections of the generator of the linear semigroup. Letξj ,

j = 1, . . . , m, be elements ofH 0 and letzj be the solution of the linearized problem with initial
dataξj . Then the volume element spanned by{ξ1, . . . , ξm} evolves according to the formula

|z1(t) ∧ · · · ∧ zm(t)| = |ξ1 ∧ · · · ∧ ξm)| exp
∫ t

0
Tr[L[v(τ)] ◦ Qm(τ )] dτ,

whereQm(τ ) is the projector inH 0 onto the space spanned byΞ(τ) = {z1(τ ), . . . , zm(τ )}.
In order to calculate the trace we choose a basis{φ1, . . . , φm} in Ξ(τ) orthonormal inH 0. For

the diagonal entry of the matrix of the correspondingm-dimensional projection we have

〈Lφj , φj 〉 = −‖∂φj‖
2
+ α‖φj‖

2
+

∫
vφj∂φj − α

∫
φjAφj .
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The term
∫

vφj∂φj is estimated as follows:∣∣∣∣− ∫
vφj∂φj

∣∣∣∣ 6 sup|v|

∫
|φj | |∂φj | 6

Schwarz
sup|v|‖φj‖ ‖∂φj‖

6
Young

1

2
(sup|v| ‖φj‖)

2
+

1

2
‖∂φj‖

2 6
Poincaŕe

1

2
‖
√

Lvx‖
2
‖φj‖

2
+

1

2
‖∂φj‖

2

=
1

2
L‖vx‖

2
+

1

2
‖∂φj‖

2.

For the trace we get

m∑
j=1

〈Lφj , φj 〉 6 −
1

2

m∑
j=1

‖∂φj‖
2
+ αm +

m

2
L‖vx‖

2.

Since the eigenvalues of∂2/∂x2 are given by(2πj/L)2, j = 1, 2, . . . , it is clear that for some
absolute constantc,

m∑
j=1

‖∂φj‖
2 > cm3/L2.

As a result we get the estimate for the trace

1

t

∫ t

0

m∑
j=1

〈Lφj , φj 〉 dτ 6 −
1

2
cm3/L2

+ αm +
m

2
L

(
1

t

∫ t

0
‖vx‖

2 dτ

)
6

(28)
−

1

2
cm3/L2

+ αm + c1mα3L4

wheret in (28) is sufficiently large.
Thus, the trace becomes negative when

m ∼ α3/2L3. (30)

REMARK 5.1 A substantially more involved argument, based on a more precise estimate of the
cubic term due to Lieb and Thirring, gives a better estimate for the dimension:m ∼ cL29/18.

However, in view of the remarks in the introduction on the connection between dynamical behavior
and dimension, we present a simpler result given above.

Next, in order to utilize the trace estimate developed above we need to demonstrate that the
nonlinear evolution of the volume is well approximated by its linear counterpart. This will be
ensured by the differentiability of the semigroup solving the problem with respect to the initial
conditions (cf. [Temam, Sec. V.3.3]).

THEOREM 5.2 LetU andW be two solutions in the attractor,U = S(t)U0, W = S(t)W0, and
z(t) be a solution of the linearized problem (29) with the initial conditionz(0) = U0 − W0. Then
for anyt with 0 6 t 6 t0,

‖U(t) − W(t) − z(t)‖ 6 C‖U0 − W0‖
2

where the constantC depends only ont0.
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In this case the mappingz(0) 7→ z(t) is the Fŕechet differential ofS(t) at the pointU0.

Proof. The differencew = U − W solves the following problem:

wt = wxx + αw − αAw − wUx − Wwx,

w(x, 0) = U0(x) − W0(x).

As usual we perform an energy estimate:

1

2

d

dt
‖w‖

2
= −‖wx‖

2
+ α‖w‖

2
− α

∫
wAw︸ ︷︷ ︸

>0

+

∫
(2U − W)wxw

6 −‖wx‖
2
+ α‖w‖

2
+

√
L(2‖Ux‖ + ‖Wx‖)︸ ︷︷ ︸

Poincaŕe

(
1

2b
‖w‖

2
+

b

2
‖wx‖

2
)

6 −‖wx‖
2
+ α‖w‖

2
+ 3C

√
L

(
1

2b
‖w‖

2
+

b

2
‖wx‖

2
)

6 −
1

2
‖wx‖

2
+ (α + c)‖w‖

2,

where C is the uniform estimate on‖Ux‖, ‖Wx‖ (cf. (27)); the constantb is selected so that
3bC

√
L = 1. Therefore

‖w(·, t)‖2 6 ‖w(·, 0)‖2 exp(2(α + c)t)

In addition ∫ t

0
‖wx‖

2 6 (α + c)

∫ t

0
‖w‖

2
+ ‖w(·, t)‖2

− ‖w(·, 0)‖2

6 ‖w(·, 0)‖2
[

exp(2(α + c)t) − 1

2(α + c)
+ exp(2(α + c)t) − 1

]
=: C0‖U0 − W0‖

2. (31)

For the differencey = w − z we have the following problem:

yt = yxx + αy − αAy − Uxy − Uyx + wwx . (32)

We multiply the equation in (32) byy and integrate by parts to obtain the following identity for
the norm:

1

2

d

dt
‖y‖

2
= −‖yx‖

2
+ α‖y‖

2
− α

∫
yAy +

∫
Uyyx +

∫
wwxy. (33)

On the right hand side we drop the positive termα
∫

yAy and use∫
wwxy 6

Poincaŕe

√
L‖wx‖

∫
wxy 6

Schwarz

√
L‖wx‖

2
‖y‖

to estimate the right hand side of (33) as follows:

6 −‖yx‖
2
+ α‖y‖

2
+

√
L‖Ux‖

(
1

2b
‖y‖

2
+

b

2
‖yx‖

2
)

+
√

L‖wx‖
2
‖y‖,
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We selectb so that
√

L‖Ux‖
b

2
< 1,

which yields
1

2

d

dt
‖y‖

2 6 C‖y‖
2
+

√
L‖wx‖

2
‖y‖

or
d

dt
‖y‖ 6 C‖y‖ +

√
L‖wx‖

2.

Now from the Gronwall lemma we obtain

‖y(·, t)‖ 6 eCt

∫ t

0

√
L‖wx‖

2e−Cτ dτ 6
(31)

√
LeCtC0‖U0 − W0‖

2,

thus completing the proof of Theorem 5.2.

Finally, based on [Temam, Theorem V.3.1], the dimension estimate (30) and the differentiability
Theorem 5.2 allow us to obtain

THEOREM 5.3 The Hausdorff dimension of the attractor for the problem (7) in the class of periodic
functions with zero average is finite,

dimH (A) ∼ α3/2L3.
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